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ABSTRACT. Mean fields games (MFG) describe the asymptotic behavior of
stochastic differential games in which the number of players tends to +oco. Un-
der suitable assumptions, they lead to a new kind of system of two partial
differential equations: a forward Bellman equation coupled with a backward
Fokker-Planck equation. In earlier articles, finite difference schemes preserving
the structure of the system have been proposed and studied. They lead to
large systems of nonlinear equations in finite dimension. A possible way of nu-
merically solving the latter is to use inexact Newton methods: a Newton step
consists of solving a linearized discrete MFG system. The forward-backward
character of the MFG system makes it impossible to use time marching meth-
ods. In the present work, we propose three families of iterative strategies for
solving the linearized discrete MFG systems, most of which involve suitable
multigrid solvers or preconditioners.

1. Introduction. Mean field type models describing the asymptotic behavior of
stochastic differential games (Nash equilibria) as the number of players tends to
+0o have recently been introduced by J-M. Lasry and P-L. Lions [12, 13, 14].
In the periodic setting, a typical such model comprises the following system of
evolution partial differential equations for the unknown scalar functions u = u(t, x)
and m = m(t, x)

%(f, x) — vAu(t,x) + H(z,Vu(t,z)) = &(m(t, z)), in (0,7) x T4, (1)
%—T(t,x) + vAm(t, z) + div (m%—H(:v, Vu(t, :v))) =0, in (0,7) x T, (2)

p

with the initial and terminal conditions
U(O,.I) = U’O(I)a m(Ta I) = mT(x)v in Tdv (3)

given a cost function ug and a probability density mp. The system (1)-(3) implies
that

/ m(t,x)de =1, m>0. (4)
Td

We denote by T¢ = [0,1]? the d—dimensional unit torus, by v a nonnegative con-
stant and by A, V and div, respectively, the Laplace, the gradient and the diver-
gence operator acting on the x variable. The other operators involved in the system
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are the scalar Hamiltonian H(x,p), C* regular w.r.t. = and p and convex in the
second variable, and ® is a C! function from R, to R. The notation %—’Z(:z:,q) is
used for the gradient of p — H(x,p) at p = q.

System (1)- (2) consists of a forward Bellman equation coupled with a backward
Fokker-Planck equation. The forward-backward structure is an important feature of
this system, which makes it necessary to design new strategies for its mathematical
analysis (see [13, 14]) and for numerical approximation.

Remark 1. In some relevant situations, and for the justification of the model and
the mathematical analysis of the system (1)- (4), it is possible to replace the right
hand side of (1) by V[m(-,¢)](z) where the operator V maps a probability density
p on T to a real valued function V[ defined on T?. It is often helpful to assume
that V is a nonlocal regularizing operator. Although it is important, this case will
not be discussed in detail in what follows, and we will limit ourselves to saying if
the methods proposed below can be used or not.

Similarly, we have chosen to focus on the case when the cost wu,—, depends
directly on x. In some realistic situations, uj—o = Vo[m—o](x), where Vj is an
operator acting on probability densities. This case can be treated by the methods
presented below, at least when V; is a local operator, i.e. Vp[u](z) = ®o(p(z)), but
we will not discuss it in the present work.

Examples of MFG models with applications in economics and social sciences are
proposed in [9]. Many important aspects of the mathematical theory developed by
J-M. Lasry and P-L. Lions on MFG are not published in journals or books, but can
be found in the videos of the lectures of P-L. Lions at College de France: see the
web site of College de France, [15].

An important research activity is currently going on about approximation proce-
dures of different types of mean field games models, see [11] for a numerical method
based on the reformulation of the model as an optimal control problem for the
Fokker-Planck equation with an application in economics and [7] for a work on dis-
crete time, finite state space mean field games. We also refer to [8] for a specific
constructive approach when the Hamiltonian is quadratic.

In [3] and [2], the authors have proposed and studied finite difference methods
basically relying on monotone approximations of the Hamiltonian and on a suitable
weak formulation of the Fokker-Planck equation, both for infinite horizon mean field
games (which lead to a stationary system of PDEs) and for finite horizon mean field
games (leading to system (1)-(4)).

Inexact Newton iterations may be used for solving the system of nonlinear equa-
tions arising from the discretization of (1)-(4). They require solving the linearized
discrete MFG system. The present work is devoted to preconditioned iterative
methods for solving the discrete linearized MFG systems of equations. We propose
and compare three different strategies:

1. Eliminate uw by solving a Cauchy problem with the linearized discrete HJB
equation: the resulting system of linear equations (whose unknowns corre-
spond to m only and whose matrix corresponds to a nonlocal operator) is
solved by a preconditioned iterative method (BiCGstab in our implementa-
tion). The elimination of u and the preconditioning can be either done exactly
with a direct solver (Algorithm A below) or iteratively by means of multigrid
schemes (Algorithm B below).
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2. Eliminate m by using the linearized discrete HJB equation: the resulting sys-
tem (whose unknowns correspond to w only) is solved by a preconditioned
iterative method (BiCGstab in our implementation). It corresponds to a
boundary value problem in the domain [0,7] x T¢ involving a degenerate
elliptic operator which is fourth order w.r.t.  and second order w.r.t. t. Ap-
plying the preconditioner consists of performing one step of a carefully chosen
multigrid method. We will see that the choice of the multigrid scheme is
delicate because of the anisotropy (and degeneracy) of the above mentioned
operator, but that a good method can indeed be obtained. This method is
termed Algorithm C below.

3. Apply a preconditioned iterative method (BiCGstab in our implementation)
directly to the full system. Applying the preconditioner consists of performing
one step of a multigrid method, whose design requires a good understanding
of the system of PDEs, as for Algorithm C. This method is termed Algorithm
D below.

We will see that the three strategies lead to rather efficient algorithms at least
when v is not too small. Of course, the complexity of the system of PDEs (1)-(4)
makes it difficult to carry out a rigorous analysis of the multigrid schemes. Hence,
we will not try to fully analyze the multigrid methods, but we will rather justify
our choices and explain the observed behaviors by drawing relations with simpler
problems already studied in the literature. The work is organized as follows: the
finite difference schemes and the Newton method are presented in § 2. The first
strategy and the related algorithms are discussed in § 3. Section 4 is devoted to the
second strategy. The third strategy is addressed in § 5. Comparison of computing
times is the topic of Section 6 and some conclusions are drawn in Section 7.

2. Finite difference schemes.

2.1. Schemes preserving the structure of (1)-(4). For simplicity of notations,
we will always consider the case d = 2 although our approach and results hold for
general d (in practice d < 4 because of computer memory limitations).

Let T? be a uniform grid on the two-dimensional torus with mesh step h (assum-
ing that 1/h is an integer V) and denote by z;; a typical point in T%?. Let Ny be a
positive integer and At = T/Nrp, t, = nAt, n =0, ..., Np. The values of u and m
at (z;;,tn) are approximated, respectively by Uj; and M;";. Note that the choice
of a single grid step h for the two spatial directions is made only for simplicity.

We first discuss the approximations of the nonlinear operators in (1).

We introduce the finite difference operators

Ustr; — Uiy Us i1 — Uiy
(DYU)i; = % and  (DJU);; = %, (5)
and define
T
[DnU)i; = (DY U)i g, (DY U)iz14, (D3 U)i 5, (DFU)i 1) € RY, (6)
1
(ApU)ij = —ﬁ(‘lUi,j —Uit1,j = Uim1,j = Uijp1 = Ui j—1). (7)

In order to approximate the Hamiltonian H in equation (1), we consider a numerical
Hamiltonian g : T2 x R* = R, (2,q1,¢2,q3, @) — 9(%,q1,2,q3,qa) satisfying the
following conditions:
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(G1) monotonicity: g is nonincreasing with respect to ¢; and ¢s and nonde-
creasing with respect to ¢o and qq4.

(G2) consistency: g(x,q1,q1,42,92) = H(x,q), Vr €T Vg = (q1,¢2) € R?.

(G3) differentiability: g is of class C!.

(Ga) convezity : (q1,92,93,94) = g (¥, 41,2, 43, q4) is convex.
We will often make the following assumption on ®:

(®1) The function ® is monotone, strictly increasing.
Standard examples of numerical Hamiltonians fulfilling these requirements are pro-
vided by Lax-Friedrichs or Godunov type schemes, see [3].

The approximation of equation (1) is given by the semi-implicit scheme:

yrtt _pyn.
— — v(ARU )+ g [DAU ™) = (M), )

In order to approximate equation (2), it is convenient to consider its weak formula-
tion which involves in particular the term

OH
div { m—(z,Vu) | wdzx
/W ' ( op ( )>

which by periodicity turns out be equal to

H
. ma—p(a:, Vu) - Vw dz

for any test function w. This term will be approximated by
—h*Y " MijVeg(@ij, [DrULiy) - [DaWliy = h* Y Tis(U, M)W, 5,
1,5 4,J

where the transport operator 7 is defined as follows:

dg dg
I Bq fl,ja—ql(ﬂfiflm [DnU]i-1,5) 9)

Jg Jg
+Mz‘+1,ja—q2(xi+l,ja [DrUliy1,5) — Mi,ja—qQ(iﬂi,j, [DrU]; 5)

hTij(U, M) = M; (w54, [DrU]i ) — M;

9 dg
,ja_%(xi,j, [DrUl;5) — Mi,jfla_qg(xi,jfla [DrUli 1)
dg

Jg
M1 (@ jor, [DWUi 1) — Mi =2
+ ,a+1aq4(x +1, [DnU]i 1) S

+M,
(xi5, [DnU]i5)-

The discrete version of equation (2) is chosen as the following scheme:

MMy
WTW + V(Ath)iﬁj + 7~Z_7j(Un+1, Mn) =0. (10)

Remark 2. It is important to realize that the operator M — —v(ALM);; —
T:;(U, M) is the adjoint of the linearization of the operator U — —v(ARU); ; +
9(@ij, [DnUli j)-

Finally, we introduce the compact and convex set
K ={(M; )o<ijen : B> > Mij=1,M;; >0} (11)
,J

which can be viewed as the set of the discrete probability measures.
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The fully discrete scheme for system (1),(2),(3),(4) is therefore the following:
urit-uy

g = V(AU )i + g(wig, [DRU™ i) = ®(M]),

MM M n n n 0<n<Nr,

—g L F V(AR M) + Ti (UM, M™) = 0, 0<ij<§' (12)
M" e K, n=0,...Np,

MM = (mr)i;, uf ; = uo(wi ), 0<i,j<N,

where (m7)i; = 7= f\w—wi,jlxshﬂ mr.

Under assumptions (G1)-(Gg) existence for (12) has been proved in [3], using
Brouwer fixed point theorem. Note that this existence proof is not constructive, i.e.
it does not rely on an algorithm for solving (12).

Under the additional assumption (®1), uniqueness holds for (12). This can be
checked by using the fact that the discrete problem has exactly the same structure
as the continuous one, so the proofs proposed in [13, 14] can be used.

Remark 3. Note that the fact that M™ € K, n =0,... Np — 1, is a direct conse-
quence of (10) and M7 € K, so this constraint can be removed from (12).

2.2. Newton methods for solving (12). Hereafter, we assume that p — H(z,p)
and ¢ — g(z,q) are C? regular. This will allow us to use Newton like algorithms
for (9).

System (12) can be seen as a forward discrete HJB equation for U with a Cauchy
condition at ¢ = 0 coupled with a backward discrete Fokker-Planck equation for
M with a Cauchy condition at final time. This structure prohibits the use of a
straightforward time-marching solution procedure.

Call Y and M the vectors of RN N” such that UpN2iN+ = Ui’fj and Myn24ing;

= Mi]fj_l. (recall that U? and M7 are given). The system of nonlinear equations
can be written
FoU,M) =0, and FulU, M)=0, (13)
with
o Fy(U,M)=0<« (8) Vn, 0 <n < Np, Vi, j.
o Fy(U, M) =0« (10) Vn, 0 <n < Np, Vi, j.
In order to discuss the Newton method for solving (13), we use the following notation

Avu (U, M) = DyFuU, M), AU, M) = DpFu(U, M),

14
Aatw U M) = DuFaa@ M), Anpog U M) = DygFaatho ). Y
The matrices Ayy (U, M) and Ay (U, M) have the form
D1 0o ... 0 E 0o ... ... 0
_ﬁ[ Dy . 0 E-
AUU: 0 7,4[}]\/[:
: R ) 0 : 0
0 ... 0 —2%I Dn, 0o ... 0 En,
(15)

The blocks of Ayy (U, M) are sparse. The block D,, corresponds to the dis-
crete operator (Zi,j) — (ﬁZ” - V(AhZ)iyj + [DhZ]i,j . Vg(:z:l-_,j, [DhUn]ZJ)) com-
ing from the linearization of the discrete Bellman equation. From the assumptions
(G1) and (G3) on g, D,, is a M-matrix, thus Ayy is invertible.
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The blocks of Ay (U, M) are diagonal matrices, (note that they would be dense
matrices if ®(m(t,z)) was replaced by V[m(t,-)](z) for V a nonlocal operator).
Under Assumption (®1), ' > 0 so the diagonal entries of Ay (U, M) are negative.

From Remark 2, the matrices Aparas (U, M) and App (U, M) have the form

E, 0 ... .. 0
0 B :
: Eng—1 O
0 ... ... 0 En,

The block Apsps corresponds to a discrete linear transport equation. Note that

VIEW =Y M DRV - D2 (@i, [DhU™i ) [DrW]i ;-

.3

From the convexity of g, we see that the block E, is symmetric and positive
semi-definite if M™~! is a nonnegative grid function.

In [2], it is proved that under Assumptions (G1)-(Gg4) and (®1), and if the
iterate produced by the Newton method satisfies M > 0, then the Jacobian matrix

Avuv  Auwm

Avuv Amm
is invertible. The proof is similar to that used for the uniqueness of the solution of
(9). The positivity of M is not guaranteed though, but if the initial guess is close
enough to a solution (U, M) with M > 0, then the iterates M will stay positive.

Assuming the invertibility of the matrix, the most time consuming part of the
procedure lies in solving the system of linear equations

(e ) (%)= (€ o
Avu Amm M Gy )
In the sequel, we propose iterative strategies for solving (17).

As explained above, the Newton method described above may break down if in
the Newton loop, the approximation of mj, takes negative values. A similar phe-
nomenon was observed by Benamou, Brenier and Guittet [4, 5] when they studied a
somewhat similar but simpler penalty method (using conjugate gradient iterations
instead of Newton) for computing a mixed L2-Wasserstein distance between two
probability densities. This is of course a drawback of the method. However, break-
down does not happen if the initial guess is close enough to a solution. Therefore,
it is important to find good initial guesses for the Newton method.

A possible way of avoiding breakdowns is to start solving (12) with a rather high
value of the parameter v (of the order of 1), then gradually decrease v down to the
desired value, the solution of (12) found by the Newton method for a given value of
v being used as an initial guess for the next and smaller value of v. Doing so in our
tests, we have avoided breakdowns of the Newton method. We have generally taken
v between 1 and 0.1: the number of iterations of the Newton method to achieve
that the ¢ norm of the residual be smaller than 10~° was found to be less than 10
and to increase as v decreases. In our experiments, it has not been necessary to use
very high values of v, for which an asymptotic analysis remains to be done (except



ITERATIVE STRATEGIES FOR LINEARIZED MFG 203

for ¢ close to 0 and T', the functions z — u(t, z) and x — m(t, x) should be close to
constant as v — 00).

Although this is not the topic of the present work, we think that it would be
interesting to better understand nonlinear iterative algorithms for (12).

2.3. Our numerical tests. Hereafter, all the proposed methods will be tested for
different values of v, in the following case:

T=1, (18)

H(z,p) = sin(2nz1) + sin(27mw2) + cos(4mxy) + |p|, (19)
®(m) =m, (20)

uo(z) =0, (21)

mr(x) =1, (22)

and g corresponds to a classical Godunov scheme, see [3].

For what follows it interesting to plot the contours of m at time ¢t = T//2 = 0.5:
on Figure 1, we display the contours of m for v = 0.6 and v = 0.08. Note that for
v = 0.08, i.e. rather close to the deterministic case v = 0, m(z) is small (smaller
than 0.01) in a large region.

I I I I I 06 I I I I I 06
06 04 02 0 02 04 06 06 04 02 0 02 04 06

F1GURE 1. Contours of m for v = 0.6 (left) and v = 0.08 (right)
at time ¢ = 0.5
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3. Iterative strategies for solving (17) based on eliminating U/.

3.1. The most basic iterative method. The principle of the method is as fol-
lows:

1. first solve

Ayl = Gy. (23)
This is done by sequentially solving
DU' =G}, (24)
then
- 1 ~
DU = EU’H + Gy, for k> 1, (25)

i.e. marching in time in the forward direction. We know that (24) and (25)
have a unique solution if g satisfies assumptions (G1) and and (G3).
2. Introducing U = U — U, the vector (U, M)T satisfies

(it )5 (o )
Avu Amwm M Gy —AuoU )’

which implies
(Aasar = At AGly Avan ) M = Gag = Angoll (27)

3. Once (27) is solved, U is obtained by solving the discrete forward linearized
HJB equation

Av vl = — Ay, M (28)
by the same method as for (24), (23).

The system (27) is solved by means of an iterative method, for example, the
BiCGstab algorithm [17] in all what follows; it only requires an implementation of
the matrix-vector product with the matrix Ans,p — A M7UA,}11UAU) m- Of course, this
matrix is not assembled: the matrix-vector product involves matrix-vector products
with the matrices Ay ar, Aar,u and Ay y and solving a linear system of the form
(23), similar to that appearing in the first step.

Numerical tests not reported here show that, with the previously described itera-
tive method, the number of iterations to reduce the error by a fixed factor increases
as the size of the mesh grows; this can also be foreseen by using arguments similar
to those in § 3.2.1 below: hence it is desirable to modify this basic method by using
a suitable preconditioner.

3.2. Preconditioned iterative methods. We propose to use Ap;ps as a precon-
ditioner for (27): it amounts to applying an iterative algorithm (i.e. the BiCGstab
algorithm) to

(1 = A s An o ATl A ) M = Agfy (Gar = Aw o) (29)

rather than to (27).
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3.2.1. A heuristic interpretation in terms of partial differential operators. A heuris-
tic explanation for this preconditioner choice is as follows: calling v and n two
functions on T2,

e Ayy is the matrix counterpart of the linearized Bellman operator (advection-
diffusion operator):
v+ Lin-HIB(v) := %% — vAv + %—I;(x, Vu) - Vo
o Ay is the matrix counterpart of the operator: n+— —®'(m)n
e Ay is the matrix counterpart of the Fokker-Planck operator (transport-
diffusion operator):
n— FP(n):=—-2% — yAn — div(n%—g(x, Vu))
o App is the matrix counterpart of the operator: v — —div (mH,,(x, Vu)Vo),
where Hp,(x, q) stands for the Hessian of p — H(z,p) at p = q.

Let us define Lin—HJB_l(w) as the unique solution v of the Cauchy problem in-
volving the linearized Bellman equation:

0OH
— —vAv+ —(z,Vu) - Vo =w in (0,T] x T?,
- (. V) (0.7 )

v]4=o =0 in T?

and FP~!(r) as the unique solution n of the backward Cauchy problem involving
the Fokker-Planck equation:

% + vAn + div(n%—?(z, Vu)) = —r in (0,T] x T2, (31)

nli—p =0 in T?
The matrix —AI\*/}’ uA MﬁUA{]leAUy M is the counterpart of the nonlocal operator:
n— ( FP~' o (v —div (mHp,(z, Vu)Vv)) o Lin—HJBfl) (@' (m)n).

Now, assuming that u and m belong to C1+2/2:2+e ([0, T] x T?), it can be shown that
the latter operator maps continuously C*/2< ([0, T] x T?) to C1 /22t ([0, T] x T?),
so it is a compact operator on C*/%%([0, T] x T?). Compactness in L((0,T) x T?) is
also true. Hence I —A&{ uA M,UA{]}UAU, M is the discrete version of the perturbation
of the identity by a compact operator. Therefore, the convergence of the BiCGstab
algorithm should not depend on the size the grid. This will be confirmed by the
numerical experiments below.

The PDE interpretation of the preconditioner also leads us to predict that the
number of iterations needed by the iterative solver should increase as v decreases
to zero, which will indeed appear clearly in the tests.

3.2.2. Algorithm A. The matrix Ay, An,u Ay Av,um is not assembled. The pro-
posed method only requires an implementation of the matrix-vector product with
the matrix Apnr ar —AM,UAl}lUAU,M as discussed above (it does not need the matrix

AE}U), and solving systems of linear equations of the form

Ay M =Gy (32)
This is done by sequentially solving
DY, MV = Gl (33)
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then
1
At
i.e. marching in time in the backward direction. It has already been seen that the
blocks Dy, are invertible, and so are the blocks Df .

Note that an iteration of the preconditioned BiCGstab method involves two solves
of systems of the type (23) and two solves of systems of the type (32).

Solving the systems (24), (25), (33), (34) (two dimensional problems) can be done
with fast direct solvers: in our implementation, we have used the open source
library UMFPACK [1] which contains an Unsymmetric MultiFrontal method for
solving linear systems.

Hereafter, we shall refer to the above method as Algorithm A.

In Table 1, we show the number of iterations needed to decrease the residual
norm by a factor 1073 or 10~7 with the preconditioned BiCGstab method. In our
tests, choosing an error reduction of 1072 instead of 107 had no effect on the
convergence of the inexact Newton method. For this reason, we shall hereafter
make all our tests with an error reduction threshold of 10~3 in the preconditioned
BiCGstab methods.

We see that, as expected, the number of BiCGstab iterations is small and does
not depend on the size of the grid, and that it increases as v decreases.

DkTMk—l _ MFE 4+ G%,, for1<k< Nr, (34)

TABLE 1. Algorithm A for solving the linearized MFG system:
average (on the Newton loop) number of iterations of BiCGstab to
decrease the residual by a factor 1073 or 107

grid 32 x32x32[64x64x64]128x128 x 64
rel. accur. [ 1072 [ 107" [107° [ 1077 [107° [ 1077
v =0.6 1 2 1 2 1 2
v=036 175 | 2 [175 ]| 2 1.8 2
v=02 2 3.5 2 35 2 4
v=0.12 3 6 3 6 3 6.1
v=0046 | 49 | 10 [ 51 [ 10 | 51 10

Remark 4. It is possible to use this family of algorithms when the right hand side
of (1) is of the form V[m(t,-)](x), at least when V' is a monotone operator in the
following sense: (u1 — po, V[u1] — V]us]) > 0, for all probability measures p; and
1o on T2,

Remark 5. We have used this family of algorithms with success in some cases when
the monotonicity assumption on ® is not fulfilled, for example ®(m) = — log(m).

3.2.3. Algorithm B. Algorithm A works quite well but it relies on the use of a very
efficient direct solver: this has two consequences:

e the complexity of Algorithm A is superlinear in the number of degrees of
freedom, even with the best direct solvers
e More important, it seems difficult to use Algorithm A for d = 3.
The method described in this paragraph differs from Algorithm A in the fact that
the systems (24), (25), (33), (34) are now solved by means of suitable multigrid
methods. Multigrid methods are iterative, so the previously mentioned systems
are solved approximately only (the multigrid iterations stop when the norm of the
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residual is below a given threshold €). Therefore, the algorithm for solving the linear
problem (17) now involves nested iterations, and a small value of € is needed for the
leading iterative method (BiCGstab) to converge.

Let us briefly discuss the multigrid treatment of the system

BU = F, (35)

where B is any of the matrices Dy or DI (more generally, (35) may be a linear
system arising from the discretization of a partial differential equation by a finite
difference method). Note that the matrices Dy, are diagonal dominant.

We refer to [6], [16] and references therein for thorough introductions to multigrid
computational methods.

The basic idea of multigrid is that standard stationary iterative methods such
as Jacobi or Gauss-Seidel are often successful in damping oscillatory harmonics of
the initial residual, but they are inefficient in removing the smooth modes. Such
methods take a small number of iterations to make the residual smooth. For this
reason, stationary iterative techniques are called smoothers.

Multigrid methods combine the smoothing property of the stationary iterative
techniques with a suitable coarsening technique: a two grids algorithm consists of
first making a few smoothing iterations (n; smoothing iterations), then performing
a coarse grid correction (by solving the discrete PDE on the coarser mesh, the right
hand side being the residual approximated on the coarser mesh, and interpolating
the solution back onto the fine grid), then applying again a few smoothing iterations
(n2 smoothing iterations).

If there are more than two nested grids, one can design recursive algorithms by
realizing that smooth grid functions on a given grid generally look oscillatory on
a coarsened grid. The principle is to replace the coarse grid correction by one or
several recursive calls of the algorithm at the coarser level.

Basic multigrid scheme are the V-cycle and W-cycle in which the coarse grid
correction consists of one or two recursive applications of the multigrid scheme
(i.e. the V-cycle (resp W-cycle) corresponds to the choice v = 1 (resp. v = 2)
in the following algorithm, whereas v = —1 yields the so-called F-cycle, which is

intermediate between the V-cycle and the W-cycle):
function Multigrid-Scheme(¢, Uy, Fi, )

if £ =0 then
Uo + By ' Fo
else
for g=1,...,]v| do
Ue < Se(Ue, Fe,m) (m1 presmoothing iterations)
U1 <0

if y = —1 then
u¢—1 < Multigrid-Scheme(¢ — 1, U1, I}~ (F;, — BcUs), %)

end if
Multigrid-Scheme(£ — 1, U;_1, I}~ (Fr — BoUy), |])
Ue < Se(Ug + If,l Ue—1,Fy,m2) (172 postsmoothing iterations)
end for
end if

end function
The multigrid solver used in Algorithm B has the following components.
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e Hierarchy of grids: For simplicity, we focus on the case when the mesh step
is of the form h = 2~ H, where L is a positive integer. The hierarchy of grids
is (TS,ZH), for £=0,...,L.

e Cycle: We use the V-cycle or the F-cycle.

e Restriction operator: In any multigrid cycle, there are two types of inter-
grid communication. The fine-to coarse transfer (restriction) If_l is the in-
tergrid transfer from the grid ']I‘g,gH to the next coarser grid Tg,HlH, which
produces an approximation of a grid function defined on ’IF%,,_; g by a grid

function on the coarser grid TS,HI o

We shall use the second order full weighting operator IfflU ¢+ = RU, where

(RW);; = 1 ( AWa; 25 + 2 (Wait1,25 + Wai—1,25 + Waioj+1 + Waioj-1) ) '
' 16 \ +Waiy1 241 + Wai—1,2541 + Waig1,2j—1 + Wai—1 251
(36)

e Interpolation operator: The coarse-to-fine transfer (prolongation) I 571 in-
terpolates a grid function on the grid T%,ZHH to the next finer grid. In our
implementation, we have chosen for [, 571 the standard bilinear interpolation
which is second order accurate. Convergence analysis of multigrid methods
shows that it is necessary that the sum of the accuracy orders of the two inter-
grid transfer operators be not smaller than the order of the partial differential
operator. Here the sum of the orders of the transfer operators is 4 which is
greater than the order of the PDE. In this case, multigrid theory states that
convergence holds even with a single smoothing step: 11 + 72 = 1.

e Approximation of the operator on coarser grids: In  general, the
sequence of matrices By can either be obtained by applying the finite dif-
ference scheme to the partial differential operator on T%,[ g (in particular
B, = B), or from the backward induction B;—; = Ifleng_l (Galerkin ap-
proximation) with By, = B. In our case, since B comes from a linearization
process, we have chosen the second way.

e Smoother: The last component is the smoother S;. We have used the Gauss-
Seidel method with lexicographic ordering of the unknowns, and we have taken
m=mn2 =1
Alternatively, it is possible to construct the smoothing step by a multiplicative
combination of four Gauss-Seidel sweeps corresponding to the four following
lexicographic orderings of the unknowns:

Ordering 1: the unknown corresponding to x; ; is in position ¢ x N + j.

Ordering 2: the unknown corresponding to x; ; is in position j x N+ N —i.

Ordering 3: the unknown corresponding to x;; is in position (N — i) x

N+ N —j.

Ordering 4: the unknown corresponding to x; ; is in position (N —j7)x N +4.
This particular choice of the smoother aims at correctly treating the advection
in the advection-diffusion equation (30) and the transport in (31) when v gets
very small, because the velocities may take any direction a priori.

Remark 6. Note that with Algorithm B, any iteration of BiCGstab involves 2x2Np
multigrid solves of bidimensional periodic problems with 2 x 2N sparse matrices of
order N2, two by two distinct. Therefore, the initialization of the multigrid methods
(i.e. the construction of the sequence of the matrices By) has to be done 2 x 2Np
times. Initialization takes an important part of the computing time, even though
the initialization step of a single multigrid method has a complexity of O(N?).



ITERATIVE STRATEGIES FOR LINEARIZED MFG 209

With Algorithm B, the number of iterations needed to decrease the residual norm
by a given factor with the preconditioned BiCGstab method does not differ from
Algorithm A, see Table 1. In Table 2, we plot the average (on the Newton loop)
number of multigrid cycles needed to solve the systems of the form (25) and (34)
with an absolute accuracy of 10~7 in the normalized ¢? norm. The number of cycle
is fairly low, so the use of the more sophisticated smoother described above was not
necessary.

TABLE 2. Algorithm B: average (on the Newton loop) number of
multigrid cycles in order to solve the systems of the form (25) and
(34) with an absolute accuracy of 10~7 in the normalized ¢? norm

| v\ grid ]| 32 x 32 x 32 ] 64 x 64 x 32 [ 128 x 128 x 32 |

0.6 2.65 2.85 2.83
0.36 2.82 3.07 3.15
0.2 2.82 3.06 3.15
0.12 2.78 2.88 2.80
0.046 2.94 3.15 3.18

4. Tterative strategies for solving (17) based on eliminating M.

4.1. Elimination of M and PDE interpretation. This second family of iter-
ative strategies can be used only in the case when the right hand side of (1) is
®(m(t,z)) and ® is C* strictly monotonous function. In this case, Ay is a diag-
onal invertible matrix, and it possible to eliminate M from the linearized discrete
Bellman equation. The principle of the method is as follows:

1. solve first
AyyuM =Gy, (37)

which is very easy since Ay, s is diagonal.
2. Introducing M = M — M, the vector (U, M)T satisfies

(22 ) () (e bi).
Avu Amm M Gu — AvyuM )

which implies
(AM,U - AM,MA[;}MAU,U) U =Gy — AuuM. (39)

We propose to solve (39) by means of a suitably preconditioned iterative
method, (we have used a preconditioned BiCGstab method).

Remark 7. Note that the idea of eliminating m from (1)-(4) has been used by
P-L. Lions [15] e.g. for the mathematical analysis of the planning problem with
mean field games: under some suitable assumptions, P-L. Lions focused on the
deterministic case ¥ = 0 and showed that eliminating m yields a boundary value
problem with a nonlinear elliptic PDE for which existence can be proved.
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With the notations introduced in § 3.2.1, we see that the matrix
Avu — Awm, MAlleAU,U corresponds to the discretization of a three dimensional

boundary value problem in (0,7) x T? of the form
— div (mHpp(x, Vu)Vo) + FPo (n— (®'(m))"'n) o Lin-HIB(v) = f (40)
in (0,7) x T2,
vp—o =0, (41)
( Lin—HJB(v))‘t:T =g. (42)

Note that (40) involves a partial differential operator of order 4 with respect to x
and 2 with respect to t. This is in contrast with the Schur complement Ay pr —
AM7UA5)1UAU, M used in § 3 whose counterpart is a nonlocal operator. It is easily
seen that the principal part of the partial differential operator in (40) is
0%v
v (@ (m) 7 (=g + A%),

i.e. a degenerate fourth order elliptic operator in (0,T') x T? for which a theory of
weak solutions can be used.

The local character of Anrr — A, Ag 'y Av,u is a nice feature, since a matrix-
vector multiplication has a complexity which is linear in the size of the vector. The
bad news are that since the related partial differential operator is fourth order,
the condition number of Ap;y — AM7MA[})1MAU)U grows like that O(h=*) when
h tends to 0. This fast growth of the condition number makes it mandatory to
use a preconditioner; for example, in our experiments with the unpreconditioned
BiCGstab method for (39) and h = At = 1/32, we were not able to reduce the
initial residual even by a (large) factor 1/10.

The next paragraphs will be devoted to the construction of a suitable precon-
ditioner for Ay v — A, MAE71MAU7U. The idea is to precondition the matrix by
performing one step of a suitable multigrid algorithm. By contrast with Algorithm
B, multigrid schemes will be used for constructing preconditioners rather than as
stand-alone solvers.

4.2. Non optimality of standard full coarsening multigrid precondition-
ers. It is tempting to try a standard multigrid method for the three dimensional
problem (39). Coarsening of the grid is performed in both the spatial and the time
variables. This is termed full coarsening in the multigrid literature. Assuming that
At = h =27V H, one can try to use a method similar to the one described in § 3.2.3.
Let us specify the different components of the multigrid scheme:

e Restriction operator: The sum of the orders of the restriction and interpo-
lation operators must be at least 4 w.r.t x and 2 w.r.t. ¢: hence, we choose
the second order full weighting restriction

1

r—1 _ 2 2n+1 2n—1

(L0 = (R(U + U+ U h),
where R is given by (36).

e Interpolation operator: We choose the trilinear interpolation operator (same
as in § 3.2.3 with a three dimensional grid).

o Approximation of the operator on coarser grids: Galerkin approxima-
tion.

e Smoother: We have tried combinations of (damped) Gauss-Seidel or (damped)

Jacobi iterations with several lexicographic orderings.
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Remark 8. A difficulty that we do not have in the present context of periodic
problems is the treatment of boundary conditions by the multigrid strategy: some
other components have generally to be added to the smoothers to cope with the
boundary conditions; we refer to [10] for an article on multigrids for fourth order
diffusion equations with boundary conditions and to [6] for a theoretical article on
multigrid methods including the discussion of the boundary conditions.

Unfortunately, the multigrid strategy described above does not yield good precon-
ditioners for Ay — AM_’MAE}MAQU: in Table 3, we show the number of iterations
needed to decrease the residual norm by a factor 1072, with the preconditioned
BiCGstab method. It shows that the number of iterations grows as the grid size is
increased. In the last column, the prescribed maximal number of iterations (200)
was reached before convergence.

TABLE 3. Full coarsening multigrid preconditioner with 4 levels:
average (on the Newton loop) number of preconditioned BiCGstab
iterations to decrease the residual by a factor 0.01

| v\ grid [[ 32 x 32 x 32 | 64 x 64 x 64 | 128 x 128 x 64 |

0.6 40 92 fail
0.36 24 61 not done
0.2 21 45 not done

The reason for this bad behavior can be understood by realizing that the matrix
is strongly anisotropic: indeed, looking at the corresponding partial differential
operator, we have seen that it is fourth order in  and second order in ¢. Therefore,
the entries of Ay y — A, MA{]ylMAUyU connecting the unknowns sharing the same
time index, for example V;; and Vi, ;.,, are of the order of h™*, whereas the
entries connecting the unknowns with different time indices, for example V;"; and
I/Z’jil are of the order of At=2 = h=2. This implies that the Gauss-Seidel or Jacobi
iterations will smooth the residual in the planar cross-sections t = nAt, but will fail
to smooth the residual along the lines z = z; ;.

Note that in Table 3, the number of iterations decreases as v decreases: indeed
the anisotropy of the matrix decreases, so the full coarsening strategy becomes more
adapted.

4.3. Algorithm C: A semi-coarsening multigrid preconditioner. Having un-
derstood the reason of the bad behavior of standard multigrid preconditioners, we
are led to propose another method, where the hierarchy of nested grids is obtained
by coarsening the grids in the x directions and not in the ¢ direction. Indeed, since
the smoother does not damp the fast oscillations of the residual in the time vari-
able, there is no point in coarsening the mesh in the time direction. Therefore, the
grid of [0, T] x T? corresponding to level £ has ~ Np x fl—é nodes. Semi-coarsening
multigrid methods for anisotropic second order diffusion equations are dealt with
in [16].

Let us specify the different components of the multigrid scheme:

e Hierarchy of grids: Obtained by semi coarsening.

e Cycle: We use either the V-cycle or the F-cycle.

e Restriction operator: We use the second order restriction operator:

(I, 'U); = (RU™)
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where R is defined in (36)

e Interpolation operator: We choose the bilinear interpolation operator in
the planar cross-sections t = nAt, as in § 3.2.3.

e Approximation of the operator on coarser grids: Galerkin approxima-
tion.

e Smoother: We use (damped) Gauss-Seidel relaxation with a lexicographic
ordering. We take n; = 1 and 72 = 3.

e Coarse problem: A direct solver is used at the coarsest level: compared with
the full coarsening multigrid, the coarser problem is larger here.

In Table 4, we show the number of iterations needed to decrease the residual norm
by a factor 1073, with the preconditioned BiCGstab method (Algorithm C with
Gauss-Seidel smoother). We see that the number of iterations is much smaller
than with full coarsening but still depends on the size of the grid. It also grows
as v decreases. When using damped Gauss-Seidel smoother with damping factor
w = 0.8, see Table 5, the number of iterations still depends on the size of the grid
but it less sensitive to the variations of the parameter v.

TABLE 4. Algorithm C with Gauss-Seidel smoother: average (on
the Newton loop) number of iterations of the BiCGstab method to
decrease the residual by a factor 0.001

| v\ grid ]| 32 x 32 x 32 [ 64 x 64 x 64 | 128 x 128 x 64 |

0.6 4 5 7
0.36 4 5 7
0.2 4 5.5 7
0.12 6 9 12

TABLE 5. Algorithm C with the damped Gauss-Seidel smoother,
(w = 0.8): average (on the Newton loop) number of iterations of
the BiCGstab method to decrease the residual by a factor 0.001

| v\ grid [[ 32 x 32 x 32 ] 64 x 64 x 64 | 128 x 128 x 128 ]

0.6 3.75 4.5 6
0.36 3.4 4 5.4
0.2 3 4.15 5.5
0.12 4 4.5 6.2

Remark 9. Since the multigrid method is used as a preconditioner only, it does not
need be updated at each Newton step. In particular, close to the convergence of the
Newton method, it is possible to avoid reconstructing the multigrid components.
This saves computing time.

To summarize, Algorithm C is based on a multigrid method for a degenerate
elliptic PDE which is fourth order in the space variable and second order only in
time. Its results are satisfactory. The key feature is the semi-coarsening of the
grids. Note that the sum of the orders of the grid transfer operators matches
exactly the order of the operator, although the theory of A. Brandt[6] tells us that
it is desirable that the former be (strictly) larger than the latter for the multigrid
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method to have good convergence properties (independent of (11, 72): this explains
why in Tables 4 and 5, the number of iterations depends on the size of the grid. A
possible improvement of Algorithm C would be to use bicubic interpolation instead
of bilinear and change the Galerkin approximation of the operator on coarser grids
accordingly, but we have not tested it.

For the same reason, we know that the best multigrid methods for solving bound-
ary value problems with the bilaplacian (see e.g. [16] and [10]) do not address the
PDE directly, but are rather based on decomposing the fourth order PDE into a
system of two second order PDEs and using efficient multigrid methods for the sec-
ond order operators. From this argument, we expect that when v is not too small,
it may be better not to eliminate the variable M and to directly address the full
system of PDEs: this is the topic of the next section.

5. Multigrid preconditioners for the full system of PDEs. In § 3 (resp. §4),
we considered methods based on the elimination of U, (resp. M). Here, we are going
to consider preconditioned iterative methods for solving (17) without eliminating
any of the unknown grid functions (4 or M). We make the same assumptions
as in §4, in particular (®41). The preconditioner will be constructed by means of
a multigrid method for the following boundary value problem posed on a three
dimensional domain:

% —vAv + %—I;(a:, Vu) Vo —®(m)n = w in (0,T] x T?,
%—? + vAn + div(n%—g(x, Vu)) + div(mHy,(z, Vu)Vv) = r in (0,T] x T?,
v[g=o = 0 in T?
nli—r = 0 in T%
(43)

We refer to [16], chapter 8, for a survey on multigrid for systems of PDEs, with
a particular emphasis for systems arising in fluid mechanics. The main difference
with scalar PDEs lies in the choice of the smoothing schemes: quoting [16], a nat-
ural extension of smoothing by relaxation (for example, damped Gauss-Seidel or
damped Jacobi) is smoothing by collective relaxation. That is all the unknowns at
each single grid point are relaxed simultaneously.

5.1. Algorithm D: A multigrid preconditioner for the full linearized MFG
system. Algorithm D consists of applying a preconditioned BiCGstab method to
(17). Applying the preconditioner consists of performing one step of a multigrid
method either to the full matrix

Avv  Aum
Amu  Aum

Avuv  Aum
0 Aum )
Using the latter is equivalent to dropping the second order differential operator

v = —div(mHpp(z, Vu)Vo) in (40).
The components of the multigrid scheme are as follows:

or to the simpler one

Hierarchy of grids: From the conclusions of §4, we obtain the hierarchy of
grids by semi coarsening the finest one: coarsening is performed only for the
spatial variable.

e Cycle: We use either the V-cycle or the F-cycle.
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e Restriction operator: We use the same second order restriction operator as
in Algorithm C, except that we apply it to both &/ and M.

e Interpolation operator: We use the same second order interpolation oper-
ator as in Algorithm C, except that we apply it to both &/ and M.

e Approximation of the operator on coarser grids: Galerkin approxima-
tion.

e Smoother: Since the smoother is the same on all grids, let us describe it on
the finest grid: for 0 < n < Nr , the unknowns U"; and Mf;l are grouped
together and considered as a single vectorial one: hence, the unknowns are
ordered as follows

0 0
Upos---Un,n>
~—_———

N
(%0) (UflgN> ( U]s%l) o U,
MO,O ’ ’ MN,N ' ’ MO,()T_ , ’ MN,’I}V_ ,

M, ... MY,

—_——
where a lexicographic ordering with respect to the (4, ) indices is used for
the under-braced collections of scalar/vectorial unknowns. The smoother is a
collective Gauss-Seidel relaxation (or block Gauss-Seidel, with blocks of order
one/two): for 0 < n < Nr , the unknowns U}"; and Mi’fj_l are updated
simultaneously by solving a 2 by 2 systems of linear equations. In our tests,
we choose 71 = 1 and 72 = 3.

e Coarse problem: The coarse problem is solved by a direct method: its size

is twice the size of the corresponding coarse problem in Algorithm C, but its
matrix is sparser.

In Table 6, we show the number of iterations needed to decrease the residual norm by
a factor 1073, with the preconditioned BiCGstab method, see (19) for a description
of the PDEs in this test. For the smoother, we have used a collective damped
Gauss-Seidel method, with damping factor w = 0.8. Compared to Algorithm C,
the performances of Algorithm D do not deteriorate as the number of grid points
grows, which confirms the arguments given at the end of § 4: for v large enough,
the multigrid method for the full system of PDEs has a better behavior than the
multigrid method for (39). Therefore, Algorithm D is extremely efficient when v
is large enough, i.e. when the system has a clear elliptic behavior. On the other
hand, the performances of Algorithm D deteriorate rapidly as v decreases; this may
be explained as follows: in the deterministic limit (v = 0), m takes the value 0 in
a region with non zero measure (see the right side of Figure 1 where we see that
m at t = 0.5 is very small in a large region); in that region, (43) is a system of
two weakly coupled hyperbolic equations, for which the smoother described above
ceases to be efficient. It may be possible to improve the method by proposing other
smoothers, but we have not done it.

6. Computing times. It is a bit delicate to compare computing times, since they
depend much on implementation. In particular, for Algorithms B, C and D, the
C++ STL map data structure was used for storing the sparse matrices: this makes
coding much easier, but the complexity is not optimal. Moreover, the BLAS library
was not used for coding Algorithms B, C and D whereas it was used in Algorithm A.
Hence, one should not draw too many conclusions from the following data, except
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TABLE 6.  Algorithm D with the collective damped Gauss-Seidel
smoother (w = 0.8) : average (on the Newton loop) number of
iterations of the BiCGstab method to decrease the residual by a
factor 1073

| v\ grid [[ 32 x 32 x 32 ] 64 x 64 x 64 | 128 x 128 x 128 ]

0.6 1.75 1.5 1.25
0.36 2.2 2 2

0.2 4.9 3.5 2.9
0.12 14.4 11.4 6.8

for tendencies and qualitative behaviors. Although our program is sequential, the
times have been obtained on a Dell server with Six-core 2.93GHz Intel(R) Xeon(R)
X5670 processors.

Table 7 contains the average computing times for solving the linear systems of the
form (17) for different grids, in the case v = 0.6, more precisely for constructing the
preconditioner (possibly the multigrid data structure) and for reducing the residual
by a factor 10~3) with the preconditioned BiCGstab methods proposed above. We
see at first glance that the computing times are of the same orders with Algorithms
A,B and D, and that Algorithm C takes more time: this is mainly because the
number of iterations is higher than with the other algorithms and increases as the
grid step decreases, see Table 5. Although it does not appear on the table, the
time spent for constructing the multigrid data structure with Algorithms B and D
represents an important part of the overall computing time (close to one third),
since the number of iterations is small for v = 0.6

In Figure 2, we plot the computing times versus the number of unknowns for
Algorithm A, B, and D: with Algorithms B and D, the computing times grow close
to linearly with the number of unknowns; thus we may say that these methods are
close to optimal.

Finally, table 8 contains the average computing times for solving the linear sys-
tems of the form (17) with the preconditioned BiCGstab methods proposed above,
in the case v = 0.12. The computing times are longer than in the previous case,
because the number of iterations is larger. Here too, the computing times with
Algorithms B and D grow close to linearly with the number of unknowns, but the
time spent with Algorithm D is longer than with Algorithms A and B. Indeed, Algo-
rithm D is more sensitive to the variations of v than Algorithms A and B, (compare
Tables 1 and 5). Algorithm D becomes less attractive when v becomes small.

TABLE 7. v = 0.6 : average computing time for solving the lin-
earized problem

| Algorithm \ grid ]| 32 x 32 x 32 | 64 x 64 x 64 | 128 x 128 x 128 |

A 2.06 19.9 234.7
B 2.64 27.20 256.03
C 7.24 79.05 874.16
D 3.14 27.20 239.25
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FIGURE 2. v = 0.6: computing times for Algorithms A, B and D
versus the number of grid points Ny x N2

TABLE 8. v = 0.12 : average computing time for solving the lin-
earized problem

| Algorithm \ grid ]| 32 x 32 x 32 | 64 x 64 x 64 [ 128 x 128 x 128 |

A 5.02 50.03 577.25
B 6.64 65.7 581.05
C 12 145,46 1921
D 23.99 244.37 1181

7. Conclusions. We have presented three families of iterative strategies for solving
the linearized MFG systems. They have been tailored from the structure of the
PDEs system.

Algorithms A and B belong to the first family. They consist in eliminating i,
which leads to a problem involving a nonlocal operator. Preconditioning yields a
problem with a compact perturbation of the identity; hence Algorithms A and B
have the nice feature that the number of iterations does not depend on the grid size
and increases moderately as v becomes small, even very small (we tried v = 0.01
for which the minimum of m was found smaller than 107%). Algorithm A requires
a very efficient direct solver for sparse matrices arising from bidimensional PDEs,
but this kind of solvers are available as free-wares. The computing time grows
slightly superlinearly with the number of unknowns (due to the use of a direct
solver). Algorithm B is a variant of Algorithm A consisting of solving the numerous
2-dimensional problems with multigrid iterations. With our implementation, using
the C++ STL map data structure, and not using the BLAS library, the computing
times with Algorithm B were in general slightly longer than those with Algorithm
A: this confirms the fact that the direct solvers in [1] are very efficient. However,
in dimension d = 3, Algorithm B should definitely be preferred to Algorithm A.

Algorithm C consists of eliminating M (Assumption (®1) is needed), which leads
to a problem involving a partial differential operator, second order with respect to ¢
and fourth order with respect to x, and applying a suitable multigrid preconditioner.
The important feature is that the hierarchy of grids is obtained by semicoarsening.
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The number of iterations, which is higher than with Algorithm B, depends on the
grid size.

Algorithm D consists of using a suitable multigrid preconditioner for the full sys-
tem: it uses semicoarsening and collective smoothing. The computing time grows
close to linearly with the number of unknowns but it is sensitive to v. Thus, Algo-
rithm D is efficient for large values of v but becomes less attractive than Algorithms
A or B when v gets small and the density m gets close to zero in some regions. Fi-
nally, note that the ingredients of Algorithm D could be reused to design a multigrid
full approximation scheme for (12), i.e. to apply directly the multigrid strategy to
(12) and not to its linearized version.

REFERENCES

[1] UMFPACK. Available from: http://www.cise.ufl.edu/research/sparse/umfpack/current/.

(2] Y. Achdou, F. Camilli, and I. Capuzzo Dolcetta, Mean field games: numerical methods for
the planning problem, SIAM J. Control Optim., 50 (2012), 77-109.

[3] Y. Achdou and I. Capuzzo-Dolcetta, Mean field games: Numerical methods, STAM J. Numer.
Anal., 48 (2010), 1136-1162.

[4] J.-D. Benamou and Y. Brenier, Mized L?-Wasserstein optimal mapping between prescribed
density functions, J. Optim. Theory Appl., 111 (2001), 255-271.

(5] J.-D. Benamou, Y. Brenier and K. Guittet, The Monge-Kantorovitch mass transfer and
its computational fluid mechanics formulation, ICFD Conference on Numerical Methods for
Fluid Dynamics (Oxford, 2001), Internat. J. Numer. Methods Fluids, 40 (2002), 21-30.

[6] A.Brandt, Rigorous quantitative analysis of multigrid. I. Constant coefficients two-level cycle
with La-norm, SIAM J. Numer. Anal., 31 (1994), 1695-1730.

[7] D. A. Gomes, J. Mohr and R. R. Souza, Discrete time, finite state space mean field games,
J. Math. Pures Appl. (9), 93 (2010), 308-328.

[8] O. Guéant, Mean field games equations with quadratic hamiltonian: A specific approach,
arXiv:1106.3269, 2011.

9] O. Guéant, J.-M. Lasry and P.-L. Lions, Mean field games and applications, in “Paris-
Princeton Lectures on Mathematical Finance 2010,” Lecture Notes in Math., 2003, Springer,
Berlin, (2011), 205-266.

[10] S. Henn, A multigrid method for a fourth-order diffusion equation with application to image
processing, SIAM J. Sci. Comput., 27 (2005), 831-849 (electronic).

[11] A.Lachapelle, J. Salomon and G. Turinici, Computation of mean field equilibria in economics,
Math. Models Methods Appl. Sci., 20 (2010), 567-588.

[12] J.-M. Lasry and P.-L. Lions, Jeuz ¢ champ moyen. 1. Le cas stationnaire, C. R. Math. Acad.
Sci. Paris, 343 (2006), 619-625.

[13] J.-M. Lasry and P.-L. Lions, Jeuz & champ moyen. II. Horizon fini et contrdle optimal, C.
R. Math. Acad. Sci. Paris, 343 (2006), 679-684.

[14] J.-M. Lasry and P.-L. Lions, Mean field games, Jpn. J. Math., 2 (2007), 229-260.

[15] P.-L.  Lions, Cours du College de France, 2007-2011.  Available from:
http://www.college-de-france.fr/default/EN/all/equ$_-$der/.

[16] U. Trottenberg, C. W. Oosterlee and A. Schiiller, “Multigrid,” With contributions by A.
Brandt, P. Oswald and K. Stiiben, Academic Press, Inc., San Diego, CA, 2001.

[17] H. A. van der Vorst, Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the
solution of nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 13 (1992), 631-644.

Received November 2011; revised March 2012.

E-mail address: achdou@ljll.univ-paris-diderot.fr
E-mail address: v.j.f.perez@gmail.com


http://www.cise.ufl.edu/research/sparse/umfpack/current/
http://www.ams.org/mathscinet-getitem?mr=MR2888257&return=pdf
http://dx.doi.org/10.1137/100790069
http://www.ams.org/mathscinet-getitem?mr=MR2679575&return=pdf
http://dx.doi.org/10.1137/090758477
http://www.ams.org/mathscinet-getitem?mr=MR1865668&return=pdf
http://dx.doi.org/10.1023/A:1011926116573
http://www.ams.org/mathscinet-getitem?mr=MR1928314&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1302681&return=pdf
http://dx.doi.org/10.1137/0731087
http://www.ams.org/mathscinet-getitem?mr=MR2601334&return=pdf
http://arxiv.org/pdf/1106.3269
http://www.ams.org/mathscinet-getitem?mr=MR2762362&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2199910&return=pdf
http://dx.doi.org/10.1137/040611124
http://www.ams.org/mathscinet-getitem?mr=MR2647032&return=pdf
http://dx.doi.org/10.1142/S0218202510004349
http://www.ams.org/mathscinet-getitem?mr=MR2269875&return=pdf
http://dx.doi.org/10.1016/j.crma.2006.09.019
http://www.ams.org/mathscinet-getitem?mr=MR2271747&return=pdf
http://dx.doi.org/10.1016/j.crma.2006.09.018
http://www.ams.org/mathscinet-getitem?mr=MR2295621&return=pdf
http://www.college-de-france.fr/default/EN/all/equ$_-$der/
http://www.ams.org/mathscinet-getitem?mr=MR1807961&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1149111&return=pdf
http://dx.doi.org/10.1137/0913035
mailto:achdou@ljll.univ-paris-diderot.fr
mailto:v.j.f.perez@gmail.com

	1. Introduction
	2. Finite difference schemes
	2.1. Schemes preserving the structure of (1)-(4)
	2.2. Newton methods for solving (12)
	2.3. Our numerical tests

	3. Iterative strategies for solving (17) based on eliminating U
	3.1. The most basic iterative method
	3.2. Preconditioned iterative methods

	4. Iterative strategies for solving (17) based on eliminating M
	4.1. Elimination of M and PDE interpretation
	4.2. Non optimality of standard full coarsening multigrid preconditioners
	4.3. Algorithm C: A semi-coarsening multigrid preconditioner

	5. Multigrid preconditioners for the full system of PDEs
	5.1. Algorithm D: A multigrid preconditioner for the full linearized MFG system

	6. Computing times
	7. Conclusions
	REFERENCES

