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Abstract. We introduce a new method to homogenization of non-periodic
problems and illustrate the approach with the elliptic equation −∇·(aε∇uε) =

f . On the coefficients aε we assume that solutions uε of homogeneous ε-

problems on simplices with average slope ξ ∈ Rn have the property that flux-
averages −

∫
aε∇uε ∈ Rn converge, for ε→ 0, to some limit a∗(ξ), independent of

the simplex. Under this assumption, which is comparable to H-convergence, we

show the homogenization result for general domains and arbitrary right hand
side. The proof uses a new auxiliary problem, the needle problem. Solutions

of the needle problem depend on a triangulation of the domain, they solve an

ε-problem in each simplex and are affine on faces.

1. Introduction. Due to its relevance in many applications, homogenization the-
ory is nowadays an important field of mathematical analysis. To give a very general
description, homogenization is concerned with solutions uε of partial differential
equations Aε(uε) = f , where f are given data and Aε is a differential operator with
oscillatory coefficients that vary on a scale of order ε > 0. The task is to determine
a homogenized operator A∗ such that solutions u∗ of A∗u∗ = f are approximations
of the oscillatory solutions uε in the sense that uε → u∗ for ε→ 0 in some norm.

Let us be more specific and describe the idea in the most simple case of (Aεu)(x) =
−∇·(aε(x)∇u(x)) for u ∈ H1

0 (Q), understood in the weak sense on Q ⊂ Rn. The ho-
mogenized operator turns out to be A∗u = −∇·(a∗∇u(x)) with a matrix a∗ ∈ Rn×n
that can be characterized as follows. If a solution sequence uε of ∇ · (aε∇uε) = 0
has the average slope ξ ∈ Rn, then the corresponding fluxes aε∇uε have the average
value a∗ξ,

∇uε ⇀ ξ ⇒ aε∇uε ⇀ a∗ξ. (1)

Most often, the effective coefficient a∗ ∈ Rn×n is described with a cell problem, a
periodic problem on a unit cell in the case of periodic homogenization problems,

2000 Mathematics Subject Classification. Primary: 35J15, 35B27; Secondary: 65N30.
Key words and phrases. Non-periodic homogenization, elliptic boundary-value problems, rep-

resentative volume elements, div-curl lemma, adapted grids.
The support by DFG-grant SCHW 639/3-1 is gratefully acknowledged.

755

http://dx.doi.org/10.3934/nhm.2011.6.755


756 BEN SCHWEIZER AND MARCO VENERONI

and a problem on Rn in the case of stochastic homogenization problems. The
more abstract characterization of a∗ ∈ Rn×n of (1) can be considered the defining
property of H-convergence, see [21] and [31, Definition 6.4].

The aim of our contribution is to provide a new method of homogenization, which
allows one to conclude from property (1) of the coefficients that uε ⇀ u∗, weakly
in H1(Q), where u∗ is a solution of −∇ · (a∗∇u∗) = f , for arbitrary Q and f .
Our method does not rely on periodicity of the coefficients or a specific stochastic
construction.

As we detail below, the theory of H-convergence provides a simple proof of the
same result. Our aim is to introduce a new and flexible method. A novelty in
our method is the explicit construction of an approximating sequence, in the spirit
of multiscale finite elements [4, 17] and of the heterogeneous multiscale method
[15, 16].

The above problem was treated and solved for periodic coefficients [5, 6, 14, 26,
30], with the method of two-scale convergence [2, 22], with the periodic unfolding
method [10], and in the stochastic case [8, 13, 18, 19]. Regarding homogenization
of other equations we mention [1, 27, 29, 32, 33], regarding a further analysis of
the homogenization limit or the homogenized problem [20, 34]. In the forthcoming
contribution [28], we address the extension of stationary homogenization results to
time-dependent parabolic and hysteresis problems. Recent results typically regard
large coefficients or singular geometries [3, 7], for more abstract approaches see
[23, 24]. Numerical studies are concerned with the construction of fast methods
that resolve the fine scale only on small sub-domains.

Homogenization and discretization. The needle problem approach is inspired
by numerical methods and, more generally, by the principle of representative volume
elements (RVEs). A loose description of such approaches is the following: the
macroscopic domain is discretized with a triangulation as if a homogenized problem
was available. In order to find the effective coefficients in each volume element of
size h, a representative volume element is chosen with diameter large compared to
ε, but small compared to h. The solution of an ε-problem on the RVE provides via
(1) the effective coefficients in the volume element.

The heterogeneous multiscale method follows this idea, convergence results for
the elliptic problem are obtained e.g. in [16]. The authors use an error e(HMM)
which measures how well the homogenized matrix can be recovered by solving prob-
lems on RVEs. Theorem 1.1 of [16] shows that, without any assumptions on the
coefficients, e(HMM) and the grid size control the error of the scheme. Further the-
orems provide the smallness of e(HMM) with appropriate bounds in several cases:
in the periodic case, and in a stochastic case with mixing properties in dimensions
1 and 3.

We show a rigorous result in this spirit: we assume that homogeneous solutions
on simple domains with affine boundary conditions corresponding to slope ξ have
an averaged flux a∗ξ, independent of the domain. Our result is that then a∗ is
the matrix of homogenized coefficients in general boundary value problems. The
needle problem introduces intermediate solutions that can be regarded as the analog
to discrete solutions in the heterogeneous multiscale method. The method has
also similarities with multiscale finite element methods. In equation (23) of [4], a
reference problem similar to ours is used, but the further construction uses Kozlov’s
harmonic coordinates.
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Homogenization as a two-step procedure. We regard the homogenization of
an equation as a two-step procedure: in a first step one has to understand the
behavior of solutions uε that approximate an affine function. These are the functions
that are usually considered in cell problems. For such functions, the constitutive
relation (e.g. between flux aε∇uε and gradient ∇uε) must be investigated and an
averaged constitutive relation for weak limits must be derived. In our case, this
averaged relation is given by the matrix a∗ in (1). In a second step, the data of the
concrete problem are incorporated. One considers no longer simple domains and
homogeneous solutions, but solutions uε to given data Q and f . The aim in this
second step is to show that the averaged constitutive relation defines indeed the
averaged operator A∗. Our contribution regards entirely the second step, our aim
is to assume as little as possible about the first step.

With this aim, we will not even use the weak convergence that was indicated in
(1), but we impose only a property of averages. Our stabilization result provides (1)
as a consequence of the weaker assumption of Definition 1.1. The main difficulty in
the verification of that assumption is to show that the limit of the averages exists
and that it is independent of the simplex. In the context of stochastic coefficients,
these properties can be regarded as an ergodicity and stationarity assumption on
the coefficients. We emphasize that, in the standard stochastic setting, all our
assumptions are satisfied, see Appendix A.

Since our new approach is very general, we believe that it allows furthermore
to perform the second step of the homogenization procedure for more complex
operators such as e.g. hysteresis operators of plasticity equations.

The technique of the needle problem approach. The usual way to perform
step 2 in the above program is to start from solutions of the cell problem and to
construct test-functions. Our aim is not to use cell problem solutions, since they
might not be available. As a replacement, we use solutions to the needle problem.
The needle problem is the original problem with coefficients aε, introducing a side
condition with a triangulation Th: we search for functions uεh that are solutions in
each simplex of Th and that are affine on all faces of the grid Th. The condition
of affine boundary data on each simplex implies that our general assumption on
solutions to affine boundary data of Definition 1.1 is applicable. On the other hand,
for small h, the side condition is not a severe restriction, and we find that uε − uεh
is small. The combination of these two facts allows to conclude the homogenization
result.

The main technical problem in our new method is that we need a div-curl-Lemma
in each simplex of the triangulation. Since in the simplices of the triangulation we do
not have prescribed boundary conditions for uε, the standard div-curl-lemma does
not apply. We will provide a div-curl-lemma under the assumption that the grid is
adapted to the sequence uε. To give a first idea of that property, we observe the
following: Since the sequence ∇uε is bounded in L2(Q), on almost every hyperplane
E through Q, the sequence ∇uε|E is also bounded. This implies that the trace
uε|E is not only controlled in H1/2(E), but also in H1(E). The corresponding
compactness allows to conclude the div-curl-lemma.

The construction of adapted grids is lengthy, we perform it in several steps in
Section 3. The final result is the div-curl-Lemma on fine grids, as presented in
Theorem 1.3. We state it in a general and self-contained way. We hope that it
turns out to be useful in other non-periodic homogenization problems. We note
at this point that, in the case of a scalar elliptic equation, adapted grids can be
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avoided with the help of Meyer’s higher integrability estimate. Our construction of
adapted grids has similarities with that of [11, 12].

Main results. Let Q ⊂ Rn be bounded, open, with Lipschitz boundary, and let the
family of coefficients (aε)ε, with aε ∈ L∞(Q;Rn×n) for ε > 0, satisfy the uniform
ellipticity and boundedness condition

α1|η|2 ≤ aε(x)η · η ≤ α2|η|2, ∀ η ∈ Rn, for a.e.x ∈ Rn, (2)

for constants 0 < α1 < α2. In the next condition we use a simplex T ⊂ Q and, for
ξ ∈ Rn and b ∈ R, the affine function Uξ(x) := ξ · x+ b on T to prescribe boundary
conditions. To these data, we study the unique weak solution uεT,ξ : T → R of the
problem

−∇ · (aε∇uεT,ξ) = 0 in T,

uεT,ξ = Uξ on ∂T.
(3)

In the subsequent definition we use the notation −
∫
A
f := |A|−1

∫
A
f for averages of

an integrable function f on a domain A.

Definition 1.1. We say that the coefficients aε allow averaging of the constitutive
relation with the matrix a∗ ∈ Rn×n if the following is satisfied: for every simplex
T ⊂ Q and every ξ ∈ Rn, b ∈ R, the solutions uεT,ξ of (3) satisfy

lim
ε→0
−
∫
T

aε∇uεT,ξ = a∗ξ . (4)

As mentioned before, the property (4) is satisfied for periodic coefficients aε and
for ergodic stochastic coefficients. Regarding the latter, we mention in Appendix
A a theorem which is derived in [18] and which implies that ergodic stochastic
coefficients allow averaging of the constitutive relation.

It would be slightly more general to write on the right hand side of (4) a general
function a∗(ξ) with a∗ : Rn → Rn. Since the problems are linear in ξ, we actually
know that the limit (if it exists) must also be linear in ξ. The important assumption
is therefore that the limit exists and that it is independent of T .

In order to illustrate our new approach, we prove the following homogenization
theorem.

Theorem 1.2. Let Q ⊂ Rn be an n-dimensional bounded domain with Lipschitz
boundary and n = 2 or n = 3. Let f ∈ L2(Q) be arbitrary and let ψ ∈ H1(Q) be
affine. We assume that the coefficients (aε)ε satisfy the ellipticity relation (2) and
that they allow averaging of the constitutive relation with the matrix a∗ ∈ Rn×n in
the sense of Definition 1.1. Then the sequence (uε)ε of weak solutions of

−∇ · (aε∇uε) = f in Q,

uε = ψ on ∂Q,
(5)

satisfies

uε ⇀ u∗ weakly in H1(Q), (6)

aε∇uε ⇀ a∗∇u∗ weakly in L2(Q), (7)

where u∗ is the weak solution of

−∇ · (a∗∇u∗) = f in Q,

u∗ = ψ on ∂Q.
(8)
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The theorem is given here only for space dimension n = 2 and n = 3. The
needle-problem approach, used in Section 2, is independent of the dimension, but
it uses the adapted grids of Theorem 1.3. The construction of adapted grids is
performed only in the lower dimensional cases n = 2 and n = 3 to avoid involved
notation. We expect that Theorem 1.3 holds in arbitrary space dimension.

By an approximation argument, the condition f ∈ L2(Q) can easily be relaxed
to f ∈ H−1(Q). The above theorem is stated for an affine boundary condition ψ.
A general Dirichlet condition with ψ ∈ H1(Q) can also be treated, we restrict to
the affine case for ease of notation. We note that the boundary condition u∗ = ψ
on ∂Q is automatically satisfied for H1(Q)-weak limits u∗. Therefore, we only have
to verify the elliptic relation of (8) in the interior of Q.

Our method does not exploit the scalar character of the equation and we ex-
pect that the proof extends to the vector valued case. Furthermore, the effective
coefficient may also depend on the slow variable, a∗ = a∗(x). In such a situation
we would assume (1) with a∗(x) instead of (4). The needle problem approach can
provide homogenization result also in this case.

Theorem 1.2 in the light of H-convergence. A powerful abstract method for the
derivation of non-periodic homogenization results has been developed in [21] with
the notion of H-convergence, for which we refer also to the recent monograph [31].
The definition of H-convergence of coefficients aε to a matrix field a∗ as in [31,
Definition 6.4] is closely related to property (1). The compactness result of [21]
(compare [31, Theorem 6.5]) can be used to show our Theorem 1.2 along the fol-
lowing lines. For a subsequence, the coefficients aε H-converge to some matrix field
and by assumption (4) the limit must be a∗. In particular, the whole sequence aε

H-converges to a∗. The H-convergence of the coefficients implies Theorem 1.2.
At this point we emphasize once more that our main goal is not to prove Theorem

1.2, but to introduce a new method of homogenization.

The needle problem method. Our method is based on a discretization of Q. The
discretization introduces a mesh Th, the parameter h stands for the mesh-size.
Given the triangulation, we consider two auxiliary problems. The first problem is
the standard finite element discretization of the homogenized problem (8) with a
solution Uh, introduced in Subsection 2.1. The solution Uh is used additionally in
(20) to substitute the given right hand side f with an equivalent jump condition
across the interfaces of the mesh.

The second auxiliary problem is the needle problem and we refer to Subsection
2.2 for its definition. Solutions are denoted as uεh, these functions are affine on the
interfaces introduced by Th, and they solve −∇ · (aε∇uεh) = 0 in the simplices.
These conditions help to conclude uεh ⇀ Uh weakly in H1(Q), for ε → 0. The
homogenization program follows the scheme

uεh
L. 2.8−→
ε

Uh

ε, h

xyP. 2.5 h

yL. 2.1

uε u∗

(9)

The diagram illustrates the following results: limh→0 limε→0 ‖uε − uεh‖H1(Q) = 0

of Proposition 2.5, the weak-H1(Q) convergence uεh ⇀ Uh for ε → 0 of Lemma
2.8, and Uh ⇀ u∗ in H1(Q) for h → 0 of Lemma 2.1. The combination of these
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results provides, since h is arbitrary, the weak-H1(Q) convergence uε ⇀ u∗. In the
diagram, the arrow on the right is a standard result for finite element discretizations.
The arrow on the left is done by energy methods and reflects the testing procedure
in common homogenization approaches; our new div-curl lemma is used here. The
arrow on top is based on the averaging assumption of Definition 1.1. It involves a
stabilization result, namely that indeed ∇uε and aε∇uε converge weakly in L2(Q)
to piece-wise constant functions as in (1).

We will prove Theorem 1.2 with the needle problem idea in Section 2. The
procedure will be rather elementary, but we use Theorem 1.3 in Proposition 2.5.
Theorem 1.3 is shown in Section 3.

Adapted grids and a div-curl Theorem. We consider bounded Lipschitz (not nec-
essarily polygonal) domains Q ⊂ Rn in two or three space dimensions. Since our
technique is based on the homogeneous solutions on simplices, we want to intro-
duce a triangulation of the domain. To be precise, we use, for arbitrary h > 0, a
polygonal domain Qh ⊂ Q and a triangulation with the properties

Th := {Tk}k∈Λh
is a triangulation of Qh, diam(Tk) < h ∀Tk ∈ Th,

Qh has the property that x ∈ Q,dist(x, ∂Q) ≥ h implies x ∈ Qh ,
(10)

where Tk are disjoint open simplices and Λh is a finite set of indices. We always
assume that the sequence of meshes is regular in the sense of [9], section 3.1.

Much of the effort of this contribution is devoted to the construction of grids as
above with additional properties regarding a fixed sequence of functions. The result
of Section 3 is the following.

Theorem 1.3. Let Q ⊂ Rn, n = 2 or n = 3 be a bounded Lipschitz domain, (uε)ε
be a sequence of functions with

uε ⇀ u weakly in H1(Q) for ε→ 0.

Let h > 0 be arbitrary. Then there exists an adapted grid, i.e. Qh ⊂ Q and a
triangulation Th of Qh with the properties (10), such that the following compensated
compactness result holds.

For every sequence (qε)ε in L2(Q,Rn) satisfying

qε ⇀ q weakly in L2(Q), (11)

fε := ∇ · qε → f strongly in H−1(T ), for all T ∈ Th (12)

holds

lim
ε→0

∫
Qh

qε · ∇uε dx =

∫
Qh

q · ∇u dx. (13)

Let us describe assumption (12) more precisely. For a fixed simplex T , we con-
sider the distribution fε := ∇ · qε : H1

0 (T ) → R, a linear form that acts on test-
functions with vanishing boundary values. For this reason, assumption (12) contains
no information on the divergence of qε along the boundary of the simplex T . The
crucial point in the formulation of the theorem is therefore the choice of an ap-
propriate grid Th. If Th is chosen such that the sequence uε has good regularity
properties on all boundary pieces ∂T , then this additional information on uε can
compensate for the lack of information on qε.



THE NEEDLE APPROACH TO HOMOGENIZATION 761

2. The needle problem approach on adapted grids.

2.1. Discretization and the solution Uh. For arbitrary h > 0 we want to dis-
cretize Q with simplices. Since Q is, in general, not a polygonal domain, we dis-
cretize only a smaller, polygonal domain Qh ⊂ Q as described in (10). For this
triangulation, we consider the finite element space of continuous and piecewise lin-
ear functions with vanishing boundary values,

Yh :=
{
φ ∈ H1

0 (Q) : φ|Tk is affine ∀Tk ∈ Th, φ ≡ 0 on Q \Qh
}
.

With the matrix a∗ ∈ Rn×n of Definition 1.1, with f ∈ L2(Q) and the affine
boundary condition ψ, we consider the following approximate problem.

Find Uh ∈ ψ + Yh with

∫
Q

(a∗∇Uh) · ∇φ =

∫
Q

fφ, ∀φ ∈ Yh. (14)

The following comparison is a standard observation for finite element approxima-
tions.

Lemma 2.1 (Comparison of Uh and u∗). There exists a unique solution Uh of (14).
For an affine boundary condition ψ there holds

Uh ⇀ u∗ in H1(Q) (15)

for h→ 0, where u∗ is the solution of (8).

Proof. Existence and uniqueness of solutions Uh together with uniform estimates
in H1(Q) follow from the Lax-Milgram theorem, applied in the space Yh. Weak
convergence of a subsequence follows by compactness. The unique characterization
of the limit is a consequence of the fact that the L2-orthogonal projections Ph :
H1

0 (Q) → Yh ⊂ H1
0 (Q) satisfy Ph(φ) → φ for h → 0, strongly in H1(Q), for all

φ ∈ H1
0 (Q).

Our next aim is to transform the right hand side f into jump conditions across
edges of the grid Th. We will extract the relevant information on jumps from the
finite element solution Uh of system (14). We denote the set of interior interfaces
by Γh and the interface of two simplices Tk and Tj by Γkj ,

Γh :=

(⋃
k

∂Tk

)
\∂Qh =

⋃
k<j

Γkj , Γkj := T k ∩ T j .

We furthermore use the notation ν(k) for the outer normal to Tk on ∂Tk. For a

function f ∈ L2(Q;Rn), such that f |Tk has a trace on ∂Tk for all k, the jump across
Γkj is defined as

JfKkj := f |Tk · ν(k) + f |Tj · ν(j) =
(
f |Tk − f |Tj

)
· ν(k).

By definition, there holds JfKkj = JfKjk. We consider the jump as a scalar function

on Γh. With the solution Uh of (14), we define gh : Γh → R as the function

gh|Γkj := Ja∗∇UhKkj . (16)

The gradients ∇Uh are constant in each simplex Tk, hence gh : Γh → R is constant
on each interface Γkj .
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Remark 1. The finite element solution Uh was defined in (14) with f . We can
equivalently characterize Uh with gh as the unique solution of

Uh ∈ ψ + Yh, with Ja∗∇UhKkj = gh|Γkj ∀k < j. (17)

Problem (17) is equivalent to problem (14). This is a consequence of the fact that
the jump conditions determine piecewise affine functions uniquely: for all U, V ∈ Yh

J∇UKkj = J∇V Kkj , ∀ k 6= j implies U ≡ V.

The remark indicates that the right hand side f has been transformed into the
jump condition gh. This is even more clear with the observation that, for all φ ∈ Yh,∫

Q

fφ =

∫
Q

a∗∇Uh · ∇φ =
∑
k

∫
∂Tk

(a∗∇Uh · ν(k))φ

=
∑
k<j

∫
Γkj

Ja∗∇UhKkjφ =

∫
Γh

ghφ,
(18)

since a∗∇Uh is constant in each Tk. Considering only functions φ ∈ Yh, we have
therefore equivalently replaced f ∈ L2(Q) by ghHn−1|Γh ∈ H−1(Q).

2.2. Approximation property of the needle problem. Until now, we consid-
ered the original problem with solution uε and a discrete problem with solution Uh.
The needle problem lies in between: we search for a function uεh which solves the
original problem in each simplex, but we demand that it is affine on all interfaces.
The above transformation of f into jump conditions gh is made in order to reduce
the problem to harmonic solutions in each simplex. In the subsequent definition we
assume that a discretization of Qh ⊂ Q is given as in (10).

Definition 2.2 (The needle problem). We are given a Lipschitz domain Q ⊂ Rn,
a triangulation Th of Qh ⊂ Q with interior interfaces Γh, and a piecewise affine
function ψ prescribing a boundary condition. We introduce the function space

Nh :=
{
φ ∈ H1

0 (Q) : φ|∂Tk is affine for all Tk ∈ Th, φ ≡ 0 on Q \Qh
}
.

For a given function gh : Γh → R, the needle problem is to find uεh ∈ ψ +Nh such
that ∫

Q

aε∇uεh · ∇φ =

∫
Γh

ghφ ∀φ ∈ Nh . (19)

We observe that, for gh ∈ L2(Γh,R), the trace theorem implies ghHn−1|Γh ∈
H−1(Q). In particular, in that case, the Lax-Milgram theorem is applicable and
yields the unique existence of a solution uεh ∈ ψ +Nh of the needle problem.

A formulation of (19) on single simplices is as follows: we search for uεh ∈ ψ+Nh
with

−∇ · (aε∇uεh) = 0 in Tk, ∀Tk ∈ Th ,∫
Γh

(Jaε∇uεhK− gh)φ = 0 ∀φ ∈ Nh.
(20)

Indeed, from equation (20) we calculate for φ ∈ Nh∫
Q

aε∇uεh · ∇φ =
∑
k

∫
Tk

aε∇uεh · ∇φ =

∫
Γh

Jaε∇uεhKφ =

∫
Γh

ghφ.

A similar calculation shows that every solution of (19) solves (20).
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The name needle problem is chosen for the following reason. We think of a two-
dimensional domain Q and of functions u : Q → R, which we consider as height
functions that describe a two-dimensional surface above Q. In the needle problem
we search for a surface that minimizes the Dirichlet energy corresponding to aε,
but we want the surface to contain a straight segment above each Γkj . We imagine
the surface like a soap-film containing thin needles which force the free boundary
to follow straight segments at certain places.

Definition 2.3. We introduce projections Fh : Nh → Yh ⊂ Nh as follows: a
function u ∈ Nh (which is piecewise affine on edges) is mapped to the piecewise
affine extension of the values of u on edges. More precisely, Fh(u) : Q → R is the
function

Fh(u) ∈ Yh, Fh(u)|Γh = u|Γh . (21)

We use the construction also in affine spaces and define Fψ
h : ψ +Nh → ψ + Yh as

Fψ
h (u) := ψ + Fh(u− ψ).

Some useful properties of the projections Fh are collected in Lemma 2.4 below.
At this point, we want to observe the following consequence of the above construc-
tions: for solutions uεh of the needle problem and arbitrary φ ∈ Nh holds∫

Q

aε∇uεh · ∇φ
(19)
=

∫
Γh

ghφ
(21)
=

∫
Γh

ghFh(φ)
(18)
=

∫
Q

fFh(φ). (22)

This shows once more that the needle problem (19) can be regarded as a variant of
the original problem with right hand side f in the space Nh.

Lemma 2.4. We study the projections Fh : Nh → Yh ⊂ Nh of Definition 2.3.

These projections and their affine counterparts Fψ
h have the following properties.

1. ∇Fh(u)(x) = −
∫
Tk

∇u for x ∈ Tk.

2. Let uε ∈ Nh, uε ⇀ u weakly in H1(Q) for fixed h > 0. Then

Fh(uε) ⇀
ε

Fh(u), weakly in H1(Q).

3. Let uh ∈ Nh, uh ⇀ u weakly in H1(Q) for h→ 0. Then

Fh(uh) ⇀
h
u, weakly in H1(Q).

Proof. Concerning property 1, we first note that∇Fh(u) is indeed a constant vector
in each simplex. The claim follows from the following calculation for a direction ej ,
j = 1, ..., n, and a simplex Tk with exterior normal ν,

−
∫
Tk

∂jFh(u) =
1

|Tk|

∫
∂Tk

Fh(u) ej · ν =
1

|Tk|

∫
∂Tk

u ej · ν = −
∫
Tk

∂ju .

For property 2 we note that the projection is bounded in H1(Q). Indeed, for
u ∈ Nh, by Poincaré’s and Jensen’s inequalities

‖Fh(u)‖2H1(Q) ≤ C‖∇Fh(u)‖2L2(Q) = C
∑
k

∫
Tk

∣∣∣∣−∫
Tk

∇u
∣∣∣∣2 ≤ C ∫

Q

|∇u|2.

In particular, for sequences uε ∈ Nh, uε ⇀ u weakly in H1(Q) for ε → 0, we
find a subsequence of Fh(uε) which converges weakly in H1(Q) to a limit F ∈ Yh.
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We used here that Yh is weakly closed in H1(Q). We can identify the limit to be
F = Fh(u) by noting that, for all Tk ∈ Th and all x ∈ Tk

∇Fh(uε)(x) = −
∫
Tk

∇uε →
ε
−
∫
Tk

∇u = ∇Fh(u)(x).

In order to show property 3, let Nh 3 uh ⇀ u weakly in H1(Q). As noted above,
the sequence Fh(uh) is also bounded in H1(Q). We can thus find a subsequence
such that Fhl(uhl) ⇀ F in H1(Q).

In order to identify the limit as F = u, we choose an arbitrary test-function
φ ∈ C∞c (Q;Rn). By density of the piecewise constant functions in L2, we find a
sequence (φh) of piecewise constant functions with φh → φ strongly in L2(Q;Rn).
We compute∣∣∣∣∫

Q

∇Fh(uh) · φ−
∫
Q

∇u · φ
∣∣∣∣

=

∣∣∣∣∫
Q

∇Fh(uh) · φh +

∫
Q

∇Fh(uh) · (φ− φh)−
∫
Q

∇u · φ
∣∣∣∣

≤
∣∣∣∣∫
Q

∇uh · φh −
∫
Q

∇u · φ
∣∣∣∣+ ‖∇Fh(uh)‖L2‖φ− φh‖L2 .

The first term on the right-hand side converges to zero since ∇uh ⇀ ∇u weakly
and φh → φ strongly in L2(Q;Rn), the second term vanishes by boundedness of the
first factor and strong convergence of φh. We can therefore conclude F = u.

The definition of Fψ
h implies that properties remain valid on affine subspaces.

Our next aim is to compare the original solution uε with the needle problem
solution uεh. This comparison is provided with the following Proposition.

Proposition 2.5 (Comparison of uεh and uε). Let coefficients aε ∈ L∞(Q;Rn×n),
n = 2 or n = 3, satisfy the ellipticity (2) and let ψ be an affine function. Let
uε ∈ H1(Q) be the weak solution of the original problem (5), and let uεh ∈ ψ +Nh
be solutions to the needle problem (19) with gh of (16). Furthermore, we assume
that the grids Th are adapted grids for (uε)ε, such that the assertion of Theorem
1.3 holds. Then

lim
h→0

lim
ε→0
‖uεh − uε‖H1(Q) = 0. (23)

The idea of the proof is to use (uε−uεh) as a test-function for the original problem
(5) and in the needle problem (19), and to take the difference. We note that this
test function satisfies a homogeneous Dirichlet condition. By ellipticity of aε, the
result provides an upper bound for ‖uε − uεh‖2H1(T ). It remains to show that the

upper bound vanishes in the limit as ε→ 0 and then h→ 0.

Proof. All solution sequences of the proposition are bounded in H1(Q). This allows
to choose a subsequence and limit functions such that, as ε→ 0,

uε ⇀ u, uεh ⇀ uh weakly in H1(Q), (24)

∇uεh ⇀ ∇uh, qεh := aε∇uεh ⇀ qh weakly in L2(Q). (25)

We note that the distributional divergence of qεh vanishes in each simplex Tk by
(20).

Since the needle problem does not allow to use uε as a test function, we must
apply a projection. We use the L2(Q)-orthogonal projection Ph : L2(Q) → Yh ⊂
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L2(Q) and the affine counterpart Pψh : L2(Q) → ψ + Yh defined by Pψh (u) :=
ψ + Ph(u− ψ). As a consequence of (24), we have the strong convergence uε → u

in L2(Q), and hence also Pψh (uε) → Pψh (u) in L2(Q). Since Pψh maps into a space
of finite dimension, the convergence is in all norms, in particular, as ε→ 0, also

Pψh (uε)→ Pψh (u) in H1(Q).

We can now start the computations. For some α0 > 0 that combines the ellip-
ticity constant α1 > 0 and the constant from Poincaré’s inequality, we find

α0‖uε − uεh‖2H1(Q) ≤
∫
Q

aε∇(uε − uεh) · ∇(uε − uεh)

=

∫
Q

aε∇uε · ∇(uε − uεh)−
∫
Q

aε∇uεh · ∇(uε − uεh)

(5)
=

∫
Q

f (uε − uεh)−
∫
Q

aε∇uεh · ∇(uε − Pψh (uε))−
∫
Q

aε∇uεh · ∇(Pψh (uε)− uεh)

(22)
=

∫
Q

f (uε − uεh)−
∫
Q

aε∇uεh · ∇(uε − Pψh (uε))−
∫
Q

f Fh(Pψh (uε)− uεh)

=

∫
Q

f (uε − Pψh (uε)) +

∫
Q

f (Fψ
h (uεh)− uεh)−

∫
Q

qεh · ∇(uε − Pψh (uε)).

In the last line we only re-ordered terms and used Fψ
h ◦P

ψ
h (uε) = Pψh (uε). Our aim

is to show that the right hand side vanishes as ε→ 0, and then h→ 0. Concerning
the first integral we have

lim
h→0

lim
ε→0

∫
Q

f (uε − Pψh (uε)) = lim
h→0

∫
Q

f (u− Pψh (u)) = 0.

In order to treat the second integral we select a subsequence h → 0 such that
uh ⇀ ũ for h → 0, weakly in H1(Q) for some limit ũ. This allows to use Lemma
2.4, first property 2 together with (24), and then property 3. We find

lim
ε→0

∫
Q

f (Fh(uεh)− uεh) =

∫
Q

f (Fh(uh)− uh)→ 0 for h→ 0.

Concerning the third integral, we must use a div-curl lemma. The integrand is

the product of the functions qεh = aε∇uεh ⇀ qh in L2(Q), and of ∇(uε−Pψh (uε)) ⇀

∇(u − Pψh (u)) weakly in L2(Q), both convergences for ε → 0. On the other hand,
we treat the product of a weakly convergent sequence qεh satisfying ∇ · qεh = 0 with
a weakly convergent sequence of gradients. The grid is adapted to the sequence
uε, such that the assertion of the div-curl Theorem 1.3 can be used. Relation (13)
allows to calculate the limit

lim
ε→0

∫
Q

qεh · ∇(uε − Pψh (uε)) = lim
ε→0

∫
Qh

qεh · ∇(uε − Pψh (uε))

=

∫
Qh

qh · ∇(u− Pψh (u)).

We now use that qh is bounded in L2(Q) and Pψh (u) → u converges strongly in
H1(Q) to conclude

lim
h→0

lim
ε→0

∫
Q

qεh · ∇(uε − Pψh (uε)) = lim
h→0

∫
Q

qh · ∇(u− Pψh (u)) = 0.
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This implies smallness of the third integral and verifies the claim of the
proposition.

We note that, at this point, we have already verified the smallness conditions re-
garding vertical arrows in the diagram of (9), namely limh→0 limε→0 ‖uε−uεh‖H1(Q)

= 0 of the above Proposition, and Uh ⇀
h
u∗ in H1(Q) in Lemma 2.1. We empha-

size that we used one non-trivial ingredient: the fact that the triangulation can be
chosen adapted to the sequence uε and the corresponding div-curl Theorem 1.3.

2.3. Stabilization result and proof of Theorem 1.2. To conclude the diagram
of (9), it remains to check the horizontal arrow. We want to verify for the needle
problem solution uεh and the finite elements solution Uh the weak H1-convergence
uεh ⇀ε

Uh. This convergence result is quite straightforward once that we know, using

the notation of Definition 1.1, the L2-convergence ∇uε ⇀ ξ and aε∇uε ⇀ a∗ξ for
some ξ in each triangle. The important point here is that the weak limits are
constant functions; we refer to this fact as stabilization. The verification of the
stabilization is the main purpose of this section. The conclusion of Theorem 1.2 is
then performed easily with Lemma 2.8.

As a preparation, we observe that the averaging property (4) extends to sequences
of affine boundary conditions.

Lemma 2.6. Let the coefficients aε allow averaging of the constitutive relation
with the matrix a∗. Then, for every simplex T ⊂ Q and every sequence Uξε(x) =
ξε · x+ bε → Uξ(x) = ξ · x+ b, the solutions uεT,ξε of

−∇ · (aε∇uεT,ξε) = 0 in T,

uεT,ξε = Uξε on ∂T,
(26)

satisfy

lim
ε→0
−
∫
T

aε∇uεT,ξε = a∗ξ. (27)

Proof. It suffices to compare uεT,ξε and uεT,ξ. For the solutions uεT,ξ, the averages

converge as in (27) by the averaging property (4). On the other hand, the difference
uε − ũε is small in H1(T ). This smallness follows by linearity and ellipticity of the
equation.

Proposition 2.7 (Stabilization). Let the coefficients aε ∈ L∞(Q;Rn×n) satisfy (2)
and allow averaging with matrix a∗ in the sense of Definition 1.1. Let T ⊂ Rn be a
simplex, Uξ(x) = ξ ·x+ b an affine function, and uε a sequence of weak solutions of

−∇ · (aε∇uε) = 0 in T,
uε = Uξ on ∂T.

(28)

We denote the limits of functions and fluxes by u and q, i.e. we assume

uε ⇀ u weakly in H1(T,R),

qε := aε∇uε ⇀ q weakly in L2(T ;Rn).

Then u is affine and q is constant. More precisely, there holds

∇u ≡ ξ in T, (29)

q ≡ a∗ξ in T. (30)
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Proof. In this proof, we consider sequences uε on a fixed simplex T . The simplex
T now plays the role of the arbitrary domain Q of Subsection 2.2, and our aim is
to use the results obtained so far. We fix a sequence h ↘ 0. We choose polygonal
domains Th ⊂ T and triangulations of Th,

Sh := {Sk}k∈Λh
be a triangulation of Th,

where Sk are simplices such that max{diam(Sk)| k ∈ Λh} < h and Th ⊂ T as
in (10). By Theorem 1.3 we may assume that, for all h, the subdivision Sh is an
adapted grid for uε and that the div-curl property (13) holds.

Let (uεh)ε be a subsequence of solutions of the needle problem (19) on T with
vanishing jump conditions g ≡ 0 and with boundary condition ψ = Uξ. We select
a subsequence ε → 0 and limit functions uh such that, for all h in the sequence,
uεh ⇀ uh for ε→ 0, weakly in H1(T ). We note that all functions uεh, and thus also
uh, are affine on all ∂Sk. The needle problem comparison result of Proposition 2.5
yields ‖u− uh‖2H1 ≤ lim supε→0 ‖uε − uεh‖2H1 ≤ η(h)→ 0 for h→ 0.

Proof of relation (29). Corresponding to the needle problem solution uεh, we con-

sider the piecewise affine functions ūεh := Fψ
h (uεh), and (after selection of a weakly

convergent subsequence) their weak limits ūh ∈ H1(T ). We use the abbreviations
ξεk := ∇ūεh|Sk → ∇ūh|Sk =: ξk. For fixed h, we consider a test-function φ in the
corresponding needle space: φ is continuous on T̄ , vanishes on T \ Th, and is piece-
wise affine on every simplex Sk. We calculate, exploiting that ∇φ is constant on
each simplex Sk, for ε→ 0,

0
(19)
=

∫
T

aε∇uεh∇φ =
∑
k

∫
Sk

aε∇uεh∇φ
(27)→

∑
k

∫
Sk

a∗ξk∇φ =

∫
T

a∗∇ūh∇φ .

We conclude that ūh is a finite element solution of −∇ · (a∗∇ūh) = 0 with affine
boundary condition Uξ, which implies ūh = Uξ. Property 2 of Lemma 2.4 implies

ūεh = Fψ
h (uεh) ⇀ Fψ

h (uh) in H1, hence Uξ = ūh = Fψ
h (uh). The convergence

uh → u in H1(T ) from the needle problem estimate allows to conclude, using

property 3 of Lemma 2.4, Fψ
h (uh) ⇀ u in H1 for h → 0, and hence u = Uξ. This

shows (29).

Proof of relation (30). We consider, after selection of a subsequence, the limiting
fluxes qε = aε∇uε ⇀ q and qεh := aε∇uεh ⇀ qh, with weak convergence in L2(T ) for
ε→ 0. Lower semi-continuity of the norm and the estimate for the needle problem of
Proposition 2.5 yields limh→0 ‖q−qh‖L2 ≤ limh→0 lim infε→0 ‖aε∇uε−aε∇uεh‖L2 =
0. Our aim is to show q ≡ a∗ξ.

We use an arbitrary function ψ ∈ C1
c (T ), which we approximate by functions

ψh : T → R that vanish on T \ Th and are piece-wise constant in each simplex
Sk ⊂ T (for the triangulation corresponding to h), with ψh → ψ strongly in L2(T )
for h → 0. We use once more Lemma 2.6 in each Sk, where uεh satisfies affine
boundary conditions with slope ξεk → ξ. We calculate, for ε→ 0,∫

T

qhψh ←
∫
T

aε∇uεhψh =
∑
k

∫
Sk

(aε∇uεh)ψh →
∑
k

∫
Sk

a∗ξψh =

∫
T

a∗ξψh .

The strong L2-convergences qh → q and ψh → ψ yield q ≡ a∗ξ, since ψ was
arbitrary. This concludes the proof of Proposition 2.7.

The result of the above proposition remains valid for a convergent sequence of
affine boundary conditions. We note this direct consequence for later use.
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Corollary 1. Let the coefficients aε satisfy (2) and allow averaging with matrix a∗

in the sense of Definition 1.1. We study a simplex T and a convergent sequence of
affine functions Uξε(x) = ξε · x+ bε → Uξ(x) = ξ · x+ b. Then, the solutions (wε)
of

−∇ · (aε∇wε) = 0 in T
wε = Uξε on ∂T

satisfy

∇wε ⇀ ξ weakly in L2(T ),

aε∇wε ⇀ a∗ξ weakly in L2(T,Rn).

Proof. We use the solutions uε of

−∇ · (aε∇uε) = 0 in T
uε = Uξ on ∂T

as studied in Proposition 2.7. In view of that proposition, it suffices to derive
smallness in H1(T ) of uε − wε. We multiply the equation for uε − wε with (uε −
Uξ)− (wε − Uξε), which vanishes on the boundary ∂T . By Hölder’s inequality and
uniform ellipticity of aε, there exists C > 0 such that

‖uε − wε‖2H1(T ) ≤ C‖Uξ − Uξε‖
2
H1(T ) → 0.

This yields the claim.

The subsequent lemma shows the missing convergence in the diagram of (9). It
hence concludes the proof of Theorem 1.2.

Lemma 2.8 (Comparison of needle problem and discretized problem). Let the
domain Q, coefficients aε, f and ψ be as in Theorem 1.2. Let h > 0 be fixed, Uh
the solution of the auxiliary problem (14) and gh as in (16). Let uεh be the solution
of the needle problem (19). Then, as ε→ 0,

uεh ⇀ Uh weakly in H1(Q,R),

aε∇uεh ⇀ a∗∇Uh weakly in L2(Q,Rn).

Proof. Let uεh be the solution of (19) and let uh be any H1(Q)-weak limit point of
(uεh)ε, as ε→ 0. As solutions of the needle problem, the functions uεh are affine on
the boundaries of each simplex. For fixed h and fixed simplex Tk, we denote the

corresponding affine function by U
(k)
ξεk

, and find further subsequences ε → 0 such

that these functions converge for each simplex to affine functions U
(k)
ξk

. Corollary 1
implies, for all Tk ∈ Th, as ε→ 0,

∇uεh ⇀ ξk weakly in L2(Tk),

aε∇uεh ⇀ a∗ξk weakly in L2(Tk).

In particular, uh ∈ Yh. We now use an arbitrary test-function φ ∈ Yh and use the
needle problem characterization (22) to find, for ε→ 0,∫

Q

fφ =

∫
Q

aε∇uεh · ∇φ→
∫
Q

a∗∇uh · ∇φ.

By uniqueness of solutions of the discrete problem (14), we find uh = Uh and have
thus verified the claim.
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3. Adapted grids. This section is devoted to the proof of Theorem 1.3. We
consider an n-dimensional domain Ω and a fixed family of functions uk : Ω → R,
bounded in H1(Ω). Since we will treat integrals over objects of different dimensions,
we write Lm and Hm for the m-dimensional Lebesgue- and Hausdorff-measure. Our
boundedness assumption on the sequence uk is then written as∫

Ω

|uk(z)|2 dLn(z) +

∫
Ω

|∇uk(z)|2 dLn(z) ≤ C0 ∀ k ∈ N, (31)

for some C0 > 0. Our interest in this section is to find (many) simplices contained
in Ω, such that, loosely speaking, ∇uk is L2-bounded on the faces. Such a bound-
edness implies compactness of the boundary values in H1/2 and allows to construct
extensions of the boundary values that are strongly convergent in H1. The fact that
on almost all (n− 1)-dimensional hyperplanes the functions ∇uk are L2-bounded is
a consequence of Fubini’s theorem.

In the construction of strongly convergent extensions we must be careful in the
treatment of the (n − 2)-dimensional edges of the simplices, the boundaries of the
(n− 1)-dimensional faces. In order to treat these boundaries, we demand addition-
ally that the averages of |∇uk|2 over small neighborhoods of edges are bounded. To
make such a property precise, we use a sequence of positive numbers δk → 0, these
numbers will be radii of small balls or cylinders.

3.1. Adapted grids in two dimensions. This subsection is devoted to the con-
struction of adapted grids for the case n = 2. Some concepts are independent of the
dimension and are treated here for general dimension as a preparation for n = 3.
We always assume that we are given a sequence of positive numbers δk → 0 and a
sequence of functions uk : Ω→ R satisfying (31).

Definition 3.1 (Points of typical average). Let Ω ⊂ Rn be an open domain, δk → 0,
and (uk)k be a sequence in H1(Ω). We say that x ∈ Ω is a point of typical average
for (δk)k and (uk)k if the following holds. There exists a subsequence kj →∞ and
real numbers cx and Mx such that

−
∫
Bδkj

(x)

|∇ukj (z)|2 dLn(z) ≤Mx ∀ kj (32)

ckjx := −
∫
Bδkj

(x)

ukj (z) dLn(z) → cx for kj →∞. (33)

We say that (kj)j is a good subsequence for the point x when (32) and (33) are
satisfied along this subsequence for some cx and Mx.

Since uk is not defined outside Ω, we use the convention that integrals
∫
B

denote

integrals
∫
B∩Ω

. Since Ω is open, the balls Bδk(x) are contained in Ω for large k.
We note that a point of typical average is similar to a Lebesgue point — but the

point has good properties for a whole sequence of functions.

Lemma 3.2 (Many points of typical average). Let Ω ⊂ Rn be an open domain,
δk → 0, and (uk)k be a bounded sequence in H1(Ω). Then almost every point x ∈ Ω
is a point of typical average for (δk)k and (uk)k.

Proof. For x ∈ Ω and k ∈ N we set

F (k, x) := −
∫
Bδk (x)

|uk|2 + |∇uk|2 . (34)
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As a first step of the proof we verify the following.
Claim 1. For arbitrary ϑ > 0 there exists a small exceptional set E ⊂ Ω of

Lebesgue measure |E| ≤ ϑ with the property

∀x ∈ Ω \ E ∃ subsequence (kj)j : F (kj , x) is bounded. (35)

Once that Claim 1 is verified, the assertion of the lemma follows easily. Indeed,
since the set E has arbitrarily small measure, for almost every x ∈ Ω the bound-
edness of F (k, x) along a subsequence is satisfied. This shows (32) and, because of

|uk| ≤ 1 + |uk|2, it proves also the boundedness of the c
kj
x in (33) for almost every

point along an appropriate subsequence. By boundedness of c
kj
x , taking a further

subsequence, we find additionally a limit value cx and the convergence as claimed in
(33). This shows that almost every point is a point of typical average and concludes
the proof of the lemma.

In order to verify Claim 1, we fix an arbitrary ϑ > 0. For a contradiction
argument we assume that there exists a (large) exceptional set E ⊂ Ω of measure
|E| > ϑ, consisting of points x such F (kj , x) is unbounded along every subsequence
(kj)j . In order to derive a contradiction we fix a constant M ∈ R with M >
3n+1C0/ϑ, where C0 is the H1(Ω)-bound of the sequence uk. Let now x ∈ E be
arbitrary. Since along all subsequences kj the values F (kj , x) are unbounded, there
exists K(x) ∈ N such that

F (k, x) ≥M for all k ≥ K(x). (36)

We choose with K(x) := 1 + max{k ∈ N|F (k, x) < M} the minimal K(x) with this
property. With this choice, K : Ω → N is lower semi-continuous, as can be seen
with a brief contradiction argument: assume that for a sequence xj → x0 there
exists k̄ ∈ N such that K(xj)→ k̄ < K(x0). Then F (k̄, xj) ≥M and F (k̄, x0) < M
for all sufficiently large j, a contradiction to continuity of x 7→ F (x, k̄). The lower
semi-continuity of K implies, in particular, that K is (Borel-)measurable.

We now consider the measurable sets

EN := {x ∈ E : K(x) ≤ N},

such that

E =
⋃
N∈N

EN , EN+1 ⊃ EN , and hence |E| = lim
N→∞

|EN |. (37)

By hypothesis we have |E| > ϑ, thus we find N ∈ N with |EN | > ϑ/2. By measur-

ability of EN , there exists a compact set ẼN satisfying

ẼN ⊂ EN , |ẼN | >
ϑ

3
. (38)

Corresponding to the covering

ẼN ⊂
⋃

x∈ẼN

BδN (x)

we find a finite sub-covering by compactness of ẼN . We can apply an elementary
covering lemma (see, e.g., [25], Lemma 7.3) to select a finite set of points (xm)m
such that

ẼN ⊂
⋃
m

B3δN (xm), BδN (xm1
) ∩BδN (xm2

) = ∅, for all m1 6= m2 . (39)
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Up to choosing a new, possibly bigger, value for N , it is not restrictive to assume
that d(ẼN , ∂Ω) > 1/N, so that BδN (xm) ⊂ Ω. Recalling the H1-boundedness (31)
of the sequence, we can now calculate with k = N

C0 ≥
∫

Ω

{
|uk|2 + |∇uk|2

}
≥
∫
⋃
m BδN (xm)

{
|uk|2 + |∇uk|2

}
(39)
=
∑
m

∫
BδN (xm)

{
|uk|2 + |∇uk|2

} (36)

≥
∑
m

|BδN (xm)|M

≥

∣∣∣∣∣⋃
m

B3δN (xm)

∣∣∣∣∣M3n (39)

≥ |ẼN |
M

3n

(38)

≥ M
ϑ

3n+1
> C0,

where we used M > 3n+1C0/ϑ in the last step. This provides the desired contradic-

tion. We exploited in the above calculation that xm ∈ ẼN ⊂ EN implies inequality
(36) for k = N .

We next study conditions for segments. For points x, y ∈ Rn we use the notation
[x, y] := {θx + (1 − θ)y : θ ∈ [0, 1]} and refer to [x, y] as the segment to the pair
(x, y). Loosely speaking, we want to show that, for most segments Γ ⊂ Ω, the
sequence of gradients ∇uk|Γ is bounded in L2(Γ).

Let us start with a general comment on the construction. With uk as above,
the L2(Ω)-function ∇uk is specified almost everywhere, hence the values of the
function on segments Γ are specified almost everywhere on the segment, at least for
almost every segment. In this sense, we can consider integrals of the gradient over
segments.

Later on, we want to relate the gradient to traces. For n = 2, given a segment Γ,
we consider the H1/2(Γ)-functions uk|Γ and their distributional (tangential) gradi-
ents ∇τuk|Γ. For smooth functions, these coincide with the projection of ∇uk to the
tangential space of the segment Γ. With smooth test-functions and an integration
over families of parallel segments one can verify that the two constructions yield
the same function ∇τuk|Γ for almost all segments Γ.

Definition 3.3 (Typical segments). For Ω ⊂ Rn open, given a sequence δk → 0
and a bounded sequence (uk)k ∈ H1(Ω), we say that a segment Γ = [x, y] is a
typical segment if the following holds: There exists a subsequence kj → ∞ and a
constant MΓ > 0 such that

‖ukj |Γ‖2L2(Γ) + ‖∇τukj |Γ‖2L2(Γ) ≤MΓ. (40)

We furthermore demand that the end-points x and y are points of typical average
and that the subsequence (kj)j is a good subsequence for x and for y.

A subsequence (kj)j with the above properties is called a good subsequence for
the segment Γ.

Lemma 3.4 (Many typical segments). Let Ω ⊂ Rn be a convex domain, δk → 0,
and let (uk)k ⊂ H1(Ω) be a bounded sequence. Then, for almost every x ∈ Ω, there
is a good set Gx ⊂ Ω of full measure |Gx| = |Ω|, such that for all y ∈ Gx the segment
[x, y] is a typical segment according to Definition 3.3.

Proof. Let us first observe that almost every x ∈ Ω is a point of typical average by
Lemma 3.2. We fix such a point x and the subsequence δkj and apply the Lemma
again. We find that almost every y ∈ Ω is a point of typical average. This provides,
in particular, a good subsequence for both x and y.



772 BEN SCHWEIZER AND MARCO VENERONI

We additionally have to verify that almost every segment (chosen in the described
way) satisfies (40). We abbreviate the integrands as fk(x) := |uk|2(x)+|∇uk|2(x), a
sequence of non-negative functions that are defined almost everywhere. The family
fk satisfies

∫
Ω
fk ≤ C0. With the diameter diam(Ω) of Ω we calculate for segments∫

Ω

∫
Ω

∫
[x,y]

fk(z) dH1(z) dy dx

≤ diam(Ω)

∫
Ω

∫
Ω

∫ 1

0

fk(θx+ (1− θ)y) dθ dy dx

= diam(Ω)

∫ 1/2

0

∫
Ω

{∫
Ω

fk(θx+ (1− θ)y) dy

}
dx dθ

+ diam(Ω)

∫ 1

1/2

∫
Ω

{∫
Ω

fk(θx+ (1− θ)y) dx

}
dy dθ

≤ diam(Ω)

∫ 1/2

0

∫
Ω

2nC0 dx dθ + diam(Ω)

∫ 1

1/2

∫
Ω

2nC0 dx dθ

= diam(Ω)|Ω|2nC0,

where, in the last inequality, we used the change of variables y 7→ θx + (1 − θ)y
for the first integral, and the change of variables x 7→ θx+ (1− θ)y for the second
integral. This calculation provides that the family of maps

F k : Ω× Ω→ R, (x, y) 7→
∫

[x,y]

fk(z) dH1(z)

is bounded by some constant C1 > 0 in L1(Ω × Ω). Let E ⊂ Ω × Ω be the
(exceptional) set of pairs (x, y) such that there is no subsequence (kj)j and no
constant MΓ with F kj ((x, y)) ≤MΓ. Let M > 0 be arbitrary. We consider the sets
EN := {(x, y) ∈ Ω× Ω : F k((x, y)) ≥M ∀k ≥ N}. These sets satisfy E ⊂

⋃
N EN ,

EN+1 ⊃ EN , and |EN | ≤ C1/M , hence also |E| ≤ C1/M . Since M was arbitrary,
this shows that E has measure 0.

For triangles T ⊂ R2 with three typical segments as sides, we can now show the
main tool for the compensated compactness result.

Proposition 3.5 (Strongly convergent extensions in R2). Let Ω ⊂ R2 be a convex
domain, δk → 0 be fixed, and let (uk)k ⊂ H1(Ω) be a bounded sequence. Let T be
a triangle, given by a triple (x1, x2, x3), such that all segments [xl, xm], l 6= m, are
typical segments for uk, and let (kj)j be a good subsequence for the three segments.
Then there exists a family of functions vkj ∈ H1(T ) and a limit function v ∈ H1(T )
such that

vkj = ukj on ∂T, (41)

vkj → v strongly in H1(T ). (42)

Proof. In the proof, in order to avoid the subscript of kj , we assume that the whole
sequence k is a good subsequence for uk. Let T be a triangle as described, our aim
is to construct the extensions vk on the basis of the fact that (32), (33), and (40)
are satisfied for the nodes and the sides.

Without loss of generality, we can assume in the sequel that ckxl = cxl = 0 for

all k and l = 1, 2, 3, where ckxl and cxl are the averages around nodes xl as in (33).
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Indeed, in the general case, we replace uk by ũk = uk − αk, where αk is the affine
function satisfying

ckxl = −
∫
Bδk (xl)

αk(z) dL2(z). (43)

Since the sequences ckxl converge in R, the functions αk converge strongly in H1(Ω).
If ṽk is the strongly converging sequence for ũk as in the thesis of Proposition 3.5,
we can set vk := ṽk + αk.

Let φk ∈ C∞(R2, [0, 1]) be a sequence of cut-off functions with

suppφk ⊂
3⋃
l=1

Bδk(xl), φk(ξ) ≡ 1 on

3⋃
l=1

Bδk/2(xl), ‖∇φk‖ ≤
3

δk
. (44)

We set ψk := 1− φk and write uk = ukφk + ukψk. The idea of the proof is to show
that ukψk admits a strongly convergent extension with the help of a compact ex-
tension operator E : H1

0 ([xi, xl])→ H1(T ). Concerning an extension of (ukφk)|∂T ,
we will show that the family ukφk itself vanishes strongly in H1(T ).

Claim 1. We treat one of the sides, Γ = [xi, xl]. Our aim is to show that there
exists C > 0 such that

‖(ukψk)|Γ‖H1(Γ) ≤ C. (45)

For δ > 0, a set B ⊂ Rn, let Bδ := δB = {x ∈ Rn : x/δ ∈ B}. By a simple rescaling
argument applied to the classical trace and Poincaré inequalities, for all bounded
open sets B ⊂ Rn with Lipschitz boundary, there exists a constant K = K(B) such
that

δ

∫
∂Bδ

|u|2 +

∫
Bδ

|u|2 ≤ δ2K

∫
Bδ

|∇u|2, (46)

for all δ > 0 and for all functions u ∈ H1(Bδ) such that
∫
Bδ
u = 0. The same

estimate holds when the boundary integral over ∂Bδ is replaced by an integral over
another (n− 1)-dimensional submanifold δS, S ⊂ B.

We now consider the left hand side in (45). Regarding the L2-norm we note
that ‖(ukψk)|Γ‖L2(Γ) ≤ ‖uk|Γ‖L2(Γ) ≤ C, holds by (40). Regarding the gradient,
we compute

∇τ (ukψk) = ψk∇τuk + uk∇τψk, (47)

and note that
‖ψk∇τuk‖L2(Γ) ≤ ‖∇τuk‖L2(Γ) ≤ C, (48)

again by (40). For the other term we find, using (44),

‖uk∇τψk‖2L2(Γ) ≤
3∑
l=1

‖uk∇τψk‖2L2(Bδk (xl)∩Γ) ≤
9

δ2
k

3∑
l=1

∫
Bδk (xl)∩Γ

|uk|2dH1 .

With (46), exploiting ckxl = 0, we can calculate

1

δ2
k

∫
Bδk (xl)∩Γ

|uk|2 ≤
K

δk

∫
Bδk (xl)

|∇uk|2 = δkK |B1(0)| −
∫
Bδk (xl)

|∇uk|2 ≤ CKδk,

where we used (32) in the last inequality, exploiting that xl is a point of typical
average. This concludes the proof of (45).

Claim 2. We now construct a strongly convergent extension of ukψk. Using
affine coordinate transformations, it is sufficient to show the following: Let Γ be the
horizontal segment Γ = [(0, 0), (π, 0)] ≡ [0, π] ⊂ R2, let ` > 0 be given and let R be
the rectangle (0, π)× (0, `). Let wk ∈ H1(Γ) be a bounded sequence with wk ≡ 0 in
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δk/2-neighborhoods of the end-points of Γ. Then there exist extensions wk : R→ R
with wk ≡ 0 on ∂R \ Γ and a limit function w such that

wk → w strongly in H1(R). (49)

We sketch a proof for this extension result with a Fourier expansion argument. In
order to take Fourier series, we extend the domain with Γ̃ = (0, 2π) to R̃ = Γ̃×(0, `)

and take the odd extension of wk|Γ to Γ̃, which is bounded in H1(Γ̃). Once we have

constructed a 2π-periodic, odd extension w̃k : R̃→ R, the restriction to wk = w̃k|R
is the desired function which vanishes on lateral boundaries.

Performing all calculations on the original domains we write

wk|Γ(s) =
∑
m∈Z

akme
ims,

which satisfies, using an appropriate equivalent norm,

‖(ukψk)|Γ‖2H1(Γ) =
∑
m∈Z
|akm|2 |m|2 ≤ C. (50)

The harmonic extension (wk)|Γ to R = Γ× (0, `) is then

wk(s, t) :=
∑
m∈Z

akme
imse−mt.

This sequence is bounded in H1(Γ× (0, `)), as can be shown by a direct calculation.
We choose a subsequence k → ∞ such that all coefficients akm converge. The
corresponding formal limit function is w,

w(s, t) :=
∑
m∈Z

ame
imse−mt, where am = lim

k→∞
akm. (51)

We claim that the strong convergence wk → w in H1(Γ× (0, `)) holds. We compute
for an arbitrary N ∈ N∫ π

0

∫ `

0

|∇wk(s, t)−∇w(s, t)|2 ds dt ≤ C
∫ π

0

∫ `

0

∑
m∈Z
|akm − am|2|m|2e−2mtds dt

≤ C
∑
m∈Z
|akm − am|2|m|2

1

|m|

≤ C
∑
|m|≤N

|akm − am|2|m|+
C

N

(
‖wk‖2H1 + ‖w‖2H1

)
≤ C

∑
|m|≤N

|akm − am|2|m|+
C

N
.

Passing to the limit as k →∞, owing to (51), we find

lim
k→∞

‖∇wk −∇w‖2L2(Γ×(0,`)) ≤
C

N
.

Since N ∈ N was arbitrary, this concludes the proof of (49). Multiplication of all
wk and of w with a cut-off function provides additionally vanishing boundary values
at the upper boundary (0, π)× {`}.

Claim 3. We finally claim that the extensions ukφk of (ukφk)|∂T converges
strongly to 0 in H1(T ). Indeed, we can compute

∇(ukφk) = φk∇uk + uk∇φk, (52)
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and use (32) to find∫
Bδk (xl)

|∇uk|2|φk|2 dL2 ≤
∫
Bδk (xl)

|∇uk|2 dL2 ≤ CMlδ
2
k.

For the term uk∇φk we use (44), the Poincaré inequality (46), and (32),∫
Bδk (xl)

|uk|2|∇φk|2 ≤
9

δ2
k

∫
Bδk (xl)

|uk|2 ≤ 9K

∫
Bδk (xl)

|∇uk|2 ≤ CMlδ
2
k.

This yields the thesis of Claim 3 and concludes the proof of the proposition.

We wish to emphasize that the extension of wk|Γ with a Fourier series exploits
that wk vanishes in the nodes. It was in order to cut out the corners in the above
proof that we introduced the notion of a point of typical average.

As a preparation for the three-dimensional case we make a remark on another
possible extension. We will use such an improved extension in the next subsection
in order to extend the two-dimensional extension further into the third dimension.

Lemma 3.6. The extensions vkj of Proposition 3.5 can be chosen such that all
segments Γ = [xi, xl], i 6= l, are also typical segments for vkj , and such that vkj
satisfies additionally, for some number MΓ > 0

−
∫
Bδkj

(Γ)

|∇vkj (z)|2 dL2(z) ≤MΓ ∀j ∈ N. (53)

Proof. We analyze the construction of the last proof. One part of the extended
function vk is ukφk. For these contributions, the boundedness (53) was actually
shown in Claim 3.

The extension of wk|(0,π) to functions wk on R = (0, π) × (0, `) was performed
with Fourier series. The construction can be altered by using the original function
wk|(0,π) in a δk-strip and then the extension of the above proof, i.e.

w̃k(s, t) =

{
wk(s, 0) if t < δk

wk(s, t− δk) else.

With this choice, in Bδk(Γ), the values |∇w̃k(x)| are bounded by multiples of cor-
responding point-values of |∇τwk|Γ| and |wk|Γ|. These are bounded by (50).

One easily verifies that the segment Γ is a typical segment also for vk.

Definition 3.7 (Adapted grid for n = 2). Let Q ⊂ R2 be a bounded Lipschitz
domain, (uk)k a bounded sequence in H1(Q), h > 0 fixed and δk ↘ 0. We say that
a family Th = {Ti}i∈Λh of triangles is an adapted grid for (uk)k if the boundaries
of all triangles are typical segments according to Definition 3.3. We furthermore
require that one subsequence (kj)j is a good subsequence for all segments.

The above observations on points of typical average, on typical segments, and on
strongly convergent extensions allow to prove Theorem 1.3 in the two-dimensional
case. We remark that the proof for the three-dimensional case will be almost iden-
tical.

Proof of Theorem 1.3 for n = 2. Existence of adapted grids. Denoting the sequences
with a subscript k, we are given the family uk and want to construct an adapted
grid for uk. We fix the sequence δk = 1/k. The grid can be chosen by subsequently
adding grid-points and by subsequently passing to subsequences. Every node x is
chosen as a point of typical average and such that almost every segment with x
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as an end-point is a typical segment. Since almost every x has both properties by
Lemmas 3.2 and 3.4, we can construct a grid to prescribed h > 0 in this way.

Compensated compactness. Our aim is to verify the convergence (13). It suffices
to show this convergence for each single triangle. Let therefore T be one triangle of
the grid and note that, by assumption, there holds

qk ⇀ q weakly in L2(T ), (54)

fk := ∇ · qk → f strongly in H−1(T ). (55)

Since T is a triangle with typical sides as described in Proposition 3.5, we can use the
strongly H1(T )-convergent extension vk of the boundary values of uk of Proposition
3.5, vk → v in H1(T ). The boundary values are always expressed through the trace
theorem, hence, by definition of identical traces, we have∫

T

qk · ∇uk +

∫
T

∇ · qkuk =

∫
T

qk · ∇vk +

∫
T

∇ · qkvk .

We can therefore calculate∫
T

qk · ∇uk =

∫
T

qk · ∇vk − 〈fk, uk − vk〉H−1,H1
0
→
∫
T

q · ∇v − 〈f, u− v〉H−1,H1
0
.

We use here the weak L2-convergence of qk and the strong L2-convergence of ∇vk.
In the term containing f , we use the weak H1

0 -convergence uk− vk → u− v and the
strong H−1-convergence fk → f .

Performing the above interpretation of identical boundary values again for u and
v instead of uk and vk provides∫

T

qk · ∇uk →
∫
T

q · ∇v − 〈f, u− v〉H−1,H1
0

=

∫
T

q · ∇u,

and thus

lim
k→∞

∫
T

qk · ∇uk dx =

∫
T

q · ∇u dx, (56)

which provides (13).

3.2. Adapted grids in three dimensions. We are again given a sequence uk ∈
H1(Ω), now with Ω ⊂ R3 an open domain. Our aim is to show that almost all
simplices S contained in Ω are “typical” in the sense that uk|∂S has a strongly
convergent extension for a subsequence (kj)j . Since objects of different dimen-
sions appear in the sequel, we find it convenient to indicate the dimension with
a superscript. We will typically use Γ1 for segments, E2 for planes, and S3 for
three-dimensional simplices.

In two space dimensions, we considered typical segments and points of typical
average. Regarding segments we demanded boundedness of uk on the segment,
regarding points, we demanded more, namely a boundedness property in a neigh-
borhood. Transferring these concepts to three space dimensions, we will demand
that uk is bounded on triangles T 2, and that averages of uk are bounded in neigh-
borhood of segments Γ1. We therefore introduce below segments of typical average,
which have stronger requirements than typical segments.

Definition 3.8 (Segments of typical average and typical triangles). Let n = 3 and
Γ1 = [x, y] ⊂ Ω be a segment, contained in a two-dimensional plane E2 ⊂ R3. We
say that Γ1 is a segment of typical average for (uk)k, δk → 0 and E2, if, along a
subsequence (kj)j , the family ukj |E2 is an H1(E2 ∩ Ω)-bounded sequence and if
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1. The segment Γ1 is a typical segment in E2 for ukj |E2 and δkj according to
Definition 3.3.

2. For a constant M0 > 0, holds

−
∫
Bδkj

(Γ1)∩Ω

|ukj (z)|2 + |∇ukj (z)|2 dL3(z) ≤M0, (57)

−
∫
Bδkj

(Γ1)∩E2

|ukj (z)|2 + |∇ukj (z)|2 dL2(z) ≤M0. (58)

We say that a triangle T 2 ⊂ R3 is a typical triangle, if the three sides are segments
of typical average for the plane E2 containing T 2, for a single subsequence (kj)j .

We note that, by definition of a typical triangle, for some M0 > 0,

‖ukj |T 2‖2L2(T 2) + ‖∇τukj |T 2‖2L2(T 2) ≤M0. (59)

Lemma 3.9 (Many typical triangles). Let Ω ⊂ R3 be a convex domain, δk → 0
be fixed, and (uk)k be an H1(Ω)-bounded sequence. Then, successively chosen, for
almost all x1 ∈ Ω, for almost all x2 ∈ Ω, for almost all x3 ∈ Ω, the triangle T 2

given by (x1, x2, x3) is a typical triangle.

Sketch of proof. For almost every plane E2 defined by (x1, x2, x3), the family uk|E2

is bounded in H1(E2). This follows from Fubini’s theorem, arguing as in Lemma
3.4.

Let E2 be such a plane. Then, by Lemma 3.4, applied with n = 2, almost all
segments in E2 are typical segments in E2. This provides the property of item 1.

It remains to check properties (57) and (58) of item 2 for almost every choice of
(x1, x2, x3). Let 0 6= γ ∈ R3 be an arbitrary vector such that Γx := [x, x+γ] defines
a segment in R3 for every x ∈ R3. With fixed γ, we now consider

fk : R3 → R, fk(x) =

∫
(x+Rγ)∩Ω

|uk|2 + |∇uk|2.

Let F 2 ⊂ R3 be an arbitrary plane orthogonal to γ. We consider the restriction
fk : F 2 → R, which is a bounded family in L1(F 2). Arguing as in the proof of
Lemma 3.2, we conclude that for almost all x ∈ F 2, the δk-averages of fk are
bounded. This implies (57).

The estimate (58) follows in the same way when we choose a line F 1 ⊂ E2, which
is orthogonal to γ.

Lemma 3.10 (Strongly convergent extensions in R3). Let Ω ⊂ R3, δk ↘ 0, and
let (uk)k be a bounded sequence in H1(Ω). Let S3 ⊂ Ω be a simplex such that the
four sides T 2

m, m = 1, 2, 3, 4, are typical triangles. Then there exists a subsequence
(kj)j and extensions vkj ∈ H1(S3) of the boundary values ukj |∂S3 such that, for a

limit function v ∈ H1(S3),

vkj = ukj on ∂S3, (60)

vkj → v strongly in H1(S3). (61)

Proof. Once more, we assume that the original sequence is a good sequence and
omit in the proof the subscript of kj .

Step 1. Modification of uk to ũk with vanishing values along the edges. Our first
aim is to modify uk such that we only have to treat functions that vanish on the
edges Γ1

i , i = 1, ..., 6. To this end we note that, since every side T 2
m, m = 1, ..., 4,
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is a typical triangle, we may use the two-dimensional result of Proposition 3.5 on
each face. This provides extensions wk : T 2

m → R with wk|Γ1
i

= uk|Γ1
i

that are

strongly convergent in H1(T 2
m). With a rotation of the functions wk around Γ1

i ,
using additionally linear transformations and cut-off functions, we can construct
extensions

w̃k : S3 → R, w̃k|T 2
m

= wk, w̃k strongly convergent in H1(S3).

The last property follows from the strong convergence of wk in H1(T 2
m). By Lemma

3.6, we can achieve that each edge Γ1
i is a segment with typical averages not only for

the sequence uk, but also for the sequence w̃k (compare Definition 3.8 and estimate
(53), which remains valid after the extension by rotation).

We now consider the modified sequence of functions ũk := uk−w̃k. This sequence
has vanishing values on all edges Γ1

i . Since the sequences w̃k converges strongly in
H1(S3), it is sufficient to show for ũk the existence of a strongly H1(S3)-convergent
subsequence. It is important to note that our construction guarantees that the
edges Γ1

i are segments of typical averages also for the sequence ũk.

Step 2. Extension of ũk. We treat one of the faces T 2, let Γ1 ⊂ ∂T 2 be one
edge. We use a family of smooth cut-off functions φk : R3 → [0, 1] with supp(φk) ⊂
Bδk(Γ1) and ‖∇φk‖∞ ≤ C/δk, such that φk ≡ 1 on Bδk/2(Γ1) ⊂ R3. Analogous to
Proposition 3.5, we want to extend the trace [(1−φk)ũk]|T 2 as a harmonic function
to S3. We calculate∫

T 2

|∇τ [(1− φk)ũk]|2 dL2 ≤ C 1

δ2
k

∫
Bδk (Γ1)∩T 2

|ũk|2 dL2 + C

∫
T 2

|∇τ ũk|2 dL2.

The last integral is bounded by (59). For the other integral on the right hand side
we use the boundedness of the gradient in Bδk(Γ1) ∩ T 2 and Poincaré’s inequality,
exploiting ũk ≡ 0 on Γ1. We find that [(1 − φk)ũk]|T 2 is a bounded sequence in
H1(T 2), which vanishes in a neighborhood of the boundary. This allows to extend
the function harmonically to S3 with vanishing values on ∂S3 \ T 2. As calculated
for Proposition 3.5, the harmonic extension has a strongly H1(S3)-convergent sub-
sequence.

It remains to verify the smallness in H1(S3) of the functions φkũk. We calculate∫
S3

|∇(φkũk)|2 dL3 ≤ C 1

δ2
k

∫
Bδk (Γ1)∩S3

|ũk|2 dL3 + C

∫
S3

|φk|2|∇ũk|2 dL3

≤ C−
∫
Bδk (Γ1)∩S3

|ũk|2 dL3 + Cδ2
k−
∫
Bδk (Γ1)∩S3

|∇ũk|2 dL3 → 0.

The convergence to 0 of the second term is an immediate consequence of the bound-
edness of the integral, which follows from property (57) of segments with typical
averages. For the first term we use once more Poincaré’s inequality: the gradients
are bounded on planes and in space by (58) and (57), the vanishing values ũk ≡ 0
on Γ1 imply smallness of averages in the neighborhood.

As in two space dimensions, Theorem 1.3 for three space dimensions is based on
the fact that, for every grid-size h > 0, we can choose an adapted grid to h and a
given sequence uk.

Definition 3.11 (Adapted grid in three dimensions). Let Q ⊂ R3 be a bounded
domain and let (uk)k be a bounded sequence in H1(Q). We say that a subdivision
Th = {Si}i∈Λh of Qh ⊂ Q in simplices Si is an adapted grid for (uk)k if all sides T 2

m
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of the simplices are typical triangles with one single subsequence (kj)j according to
Definition 3.8.

Proof of Theorem 1.3 for n = 3. Existence of adapted grids. The three-dimensional
Lemmata on typical triangles imply that for a given family uk and given h > 0 an
adapted grid for uk can be constructed by subsequently adding grid-points.

Compensated compactness. The statement of the compensated compactness is
shown as in the two-dimensional case.

Appendix A. Ergodic homogenization cell problem. In [18], a probability
space setting is introduced to treat homogenization of stochastic coefficients. The
authors use dynamical systems Tx/ε : ω → Tx/ε(ω) on the probability space (ΩP ,P)
to construct stochastic coefficients aε(x) = ã(x/ε;ω). Under ergodicity assump-
tions, they obtain the following result on solutions of cell problems.

Theorem A.1. Under ergodicity assumptions, for some matrix a∗ ∈ Rn×n, the
following holds. For P-almost every ω and coefficients ã(y) = ã(y;ω) there exists
ψk(.;ω) : Rn → Rn solving

∇y · (ã(y)ψk(y)) = 0 on Rn, (62)

curl ψk = 0 on Rn, (63)

such that the average of ψk is ek and the average of ã ·ψk is a∗ · ek, in the following
sense: For every subset K ⊂ Rn holds

ψk(./ε;ω) ⇀ ek in L2(K), (64)

ã(./ε;ω)ψk(./ε;ω) ⇀ a∗ · ek in L2(K). (65)

From Theorem A.1 one easily deduces the property of Definition 1.1. In particu-
lar, stochastic coefficients as constructed in [18] allow averaging of the constitutive
relation.
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