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Abstract. We consider a nonlocal traffic flow model with Arrhenius look-

ahead dynamics. We provide a complete local theory and give the blowup
alternative of solutions to the conservation law with a nonlocal flux. We show

that the finite time blowup of solutions must occur at the level of the first order
derivative of the solution. Furthermore, we prove that finite time singularities

do occur for several types of physical initial data by analyzing the solutions

on different characteristic lines. These results are new and are consistent with
the blowups observed in previous numerical simulations on the nonlocal traffic

flow model [6].

1. Introduction. Traffic management has become a key quality of life issue for
national, state and local authorities across the world. The energy, environmental
and economic crises many of our citizens are experiencing is motivating the scien-
tific community to engage in research aimed at addressing the negative impacts of
traffic congestion towards achieving sustainable mobility goals. Tremendous efforts
have been devoted to model traffic congestion [1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 14, 15,
16, 17]. There are many important approaches to the modeling of traffic phenom-
ena: microscopic models, mesoscopic models and macroscopic models. Macroscopic
models describe traffic phenomena through parameters which characterize collective
traffic properties.

Consider the following macroscopic traffic flow model with a nonlocal flux{
∂tu+ ∂x(u(1− u)e−J◦u) = 0, in (t, x) ∈ R+ × R,
u(0, x) = u0(x), x ∈ R

(1.1)

where the function u(t, x) represents the density of traffic flow, the kernel J acts
only on the spatial variable x:

(J ◦ u)(t, x) =

∫ ∞
x

J(y − x)u(t, y)dy
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and

J(r) =

{
J0
γ , if 0 ≤ r ≤ γ

0, otherwise

is an anisotropic short range inter-vehicle interaction potential, γ > 0 is proportional
to the look-ahead distance and J0 > 0 is the interaction strength. We suppress the
dependence of J on γ and J0 for simplicity of notation.

The nonlocal traffic flow model (1.1) based on stochastic microscopic dynamics
with Arrhenius look-ahead dynamics was derived in [16]. It takes into account
interactions of every vehicle with other vehicles ahead. Numerical simulations in
[6] indicated that, when γ > 0, there are shock formations in finite time in the
solutions to (1.1) which corresponds to congestion formation in traffic flow.

When the look-ahead distance γ → +∞, the global flux in (1.1) becomes a
non-global one u(1− u). The model (1.1) is then reduced to the classical Lightwill-
Whitham-Richards(LWR) model [11, 15]

∂tu+ ∂x(u(1− u)) = 0, in (t, x) ∈ R+ × R. (1.2)

If, on the other hand, γ → 0, then the global flux in (1.1) is again reduced to a
non-global one u(1 − u)exp(−J0u) where exp(−J0u) is a slow down factor in the
limiting low visibility. This flux is concave if J0 < 3 and changes concavity when
J0 ≥ 3. It is well-known that the LWR model (1.2) can describe the formation of
shock waves in traffic flow.

In the current paper, we consider the case 0 < γ < +∞ and normalize the look-
ahead distance γ to be 1 for simplicity of presentation. We also take the interaction
strength J0 to be 1. Our goal is to study the finite time blow up of the solutions
to the nonlocal model (1.1). Indeed, it is shown that the finite time blow up must
occur at the level of the first order derivative of the solution and all Lp, 1 ≤ p ≤ ∞
norms of the solution remain finite near the blowup time. This suggests that the
finite time blow up is a shock wave. Despite the nonlocal nature of the problem, we
identify several scenarios of blowups for physical initial data. The list is certainly
not exhaustive, nevertheless it is consistent with the blowups observed in numerical
simulations in [6, 16]. Our results confirm that there are finite time blowup in the
nonlocal model (1.1).

The outline of the paper is the following. In Section 2, we prove the local well-
posedness and regularity of solutions to the model (1.1) by establishing the a priori
estimates and by considering the mollified problems of (1.1). We also establish the
blowup alternative which quantifies the nature of blowup, and prove an interesting
maximum principle which shows that the L∞ norm of the solution cannot increase
in time. Section 3 is devoted to the study of the finite time singularities formation in
solutions to (1.1). Various finite time singularities scenarios are analyzed by using
method of characteristics. In Section 4, we give some concluding remarks.

2. Local wellposedness and regularity. In this section, we study the local well-
posedness and regularity of solutions to the nonlocal model (1.1).

Theorem 2.1. Let u0 ∈ Hm and m ≥ 2 is an integer. Then there exists T =
T (‖u0‖Hm) > 0 and a unique solution u to (1.1) such that u ∈ C([0, T ), Hm) ∩
C1([0, T ), Hm−1).

Proof of Theorem 2.1. The argument is a variation of the standard energy esti-
mates. To simplify the presentation, we shall only present the proof for m = 2.
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The case m ≥ 3 is only slightly more complicated with some necessary changes in
numerology.

We first carry out the a priori estimates1 At the end of the proof, we sketch the
standard mollification and contraction arguments. For clarity of presentation, we
divide the proof into several steps.

Step 1. L2
x estimate. Multiplying both sides of (1.1) by u and integrating by

parts, we obtain

1

2

d

dt
‖u(t, ·)‖22 =

∫
R
u(1− u)uxe

−J◦udx

= −
∫
R

(
1

2
u2 − 1

3
u3)∂xe

−J◦udx

=

∫
R

(
1

2
u2(t, x)− 1

3
u3(t, x))e−J◦u(u(t, x+ 1)− u(t, x))dx

where in the last equality we have used

(J ◦ u)(t, x) =

∫ x+1

x

u(t, y)dy. (2.1)

By using again (2.1), we have

‖e−J◦u‖∞ . e‖u‖∞ .

Therefore ∣∣∣∣ ddt‖u(t, ·)‖22
∣∣∣∣ . e‖u(t,·)‖∞‖u(t, ·)‖∞(1 + ‖u(t, ·)‖∞)‖u(t, ·)‖22. (2.2)

Here and below the notation A ∼ B means that A will be estimated in the same
way as B.

Step 2. H2
x estimate. In a similar way in getting the L2

x estimate, by direct
calculations, we have∣∣∣∣ ddt‖∂2xu(t, ·)‖22

∣∣∣∣ . ∣∣∣∣∫
R
∂3x(u(1− u))∂2xue

−J◦udx

∣∣∣∣ (2.3)

+

∣∣∣∣∫
R
∂2x(u(1− u))∂2xu∂xe

−J◦udx

∣∣∣∣ (2.4)

+

∣∣∣∣∫
R
∂x(u(1− u))∂2xu∂

2
xe
−J◦udx

∣∣∣∣ (2.5)

+

∣∣∣∣∫
R
u(1− u)∂2xu∂

3
xe
−J◦udx

∣∣∣∣ . (2.6)

We need derivative estimates of the term e−J◦u. By (2.1), we have

∂x(e−J◦u) ∼ e−J◦u(u(t, x+ 1)− u(t, x))

∼ e−J◦uu. (2.7)

By the translation invariance of the Sobolev norms, it is clear that the term
e−J◦uu(t, x + 1) will satisfy similar estimates as the term e−J◦uu(t, x), therefore

1Actually the a priori estimates presented here also hold true in more general situations such as
∂tu+∂x(f(u) exp(−J ◦u)) = 0, where f is a smooth function satisfying f(0) = 0. The results also

hold true when J is a linear interation potential. We thank the anonymous referees for pointing
these out.



684 DONG LI AND TONG LI

we only need to write them symbolically as e−J◦uu in (2.7). By using this conven-
tion and avoiding cumbersome notations, we write

∂2x(e−J◦u) ∼ e−J◦uu2 + e−J◦u∂xu, (2.8)

∂3x(e−J◦u) ∼ e−J◦u(u3 + u∂xu+ ∂xxu). (2.9)

These expressions are quite useful for the estimates below.
We now estimate (2.3). By simple integration by parts and (2.7), we get

(2.3) .

∣∣∣∣∫
R

(∂2xu)2∂x(ue−J◦u)dx

∣∣∣∣
+

∣∣∣∣∫
R

(∂2xu)2∂xe
−J◦udx

∣∣∣∣
+

∣∣∣∣∫
R
∂xu(∂2xu)2e−J◦udx

∣∣∣∣
. ‖∂2xu‖22e‖u‖∞

(
‖∂xu‖∞ + ‖u‖∞ + ‖u‖2∞

)
.

For (2.4), we use (2.7) and get

(2.4) .

∣∣∣∣∫
R

(∂2xu)2(1− u)∂x(e−J◦u)dx

∣∣∣∣
+

∣∣∣∣∫
R

(∂2xu)2u∂x(e−J◦u)dx

∣∣∣∣
+

∣∣∣∣∫
R

(∂xu)2∂2xu∂x(e−J◦u)dx

∣∣∣∣
. ‖∂2xu‖22e‖u‖∞‖u‖∞(1 + ‖u‖∞)

+ e‖u‖∞‖u‖∞‖∂2xu‖2‖∂xu‖∞‖∂xu‖2
. ‖u‖2H2e‖u‖∞‖u‖∞(1 + ‖u‖∞ + ‖∂xu‖∞).

For (2.5), we use (2.8) to give us

(2.5) . e‖u‖∞‖∂2xu‖2‖∂xu‖2(‖u‖2∞ + ‖∂xu‖∞)(1 + ‖u‖∞)

. e‖u‖∞‖u‖2H2(1 + ‖u‖∞)(‖u‖2∞ + ‖∂xu‖∞).

Finally, we use (2.9) to estimate (2.6) as

(2.6) . e‖u‖∞‖∂2xu‖2‖u‖∞(1 + ‖u‖∞)

(‖∂2xu‖2 + ‖u‖2‖u‖2∞ + ‖∂xu‖2‖u‖∞)

. e‖u‖∞‖u‖2H2(1 + ‖u‖∞)4.

Collecting all the estimates, we obtain∣∣∣∣ ddt‖∂2xu(t, ·)‖22
∣∣∣∣

.e‖u(t,·)‖∞‖u(t, ·)‖2H2

(
‖∂xu(t, ·)‖∞(1 + ‖u(t, ·)‖∞) + (1 + ‖u(t, ·)‖∞)4

)
. (2.10)
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Adding together (2.2) and (2.10), we get∣∣∣∣ ddt‖u(t, ·)‖2H2

∣∣∣∣
.e‖u(t)‖∞‖u(t, ·)‖2H2

(
‖∂xu(t, ·)‖∞(1 + ‖u(t, ·)‖∞) + (1 + ‖u(t, ·)‖∞)4

)
(2.11)

here and in the rest of the paper we adopt the following equivalent definition of H2

norm ‖f‖H2 =
√
‖f‖2L2 + ‖ d2dx2 f‖2L2 for any f ∈ H2.

Step 3. A priori H2 bound. By (2.11) and using the Sobolev embedding
H1(R) ↪→ L∞(R), we obtain∣∣∣∣ ddt‖u(t, ·)‖H2

∣∣∣∣ ≤ C1e
C2‖u(t,·)‖H2

where C1 and C2 are absolute constants. Rewrite the above inequality as∣∣∣∣ ddte−C2‖u(t,·)‖H2

∣∣∣∣ ≤ C1C2, (2.12)

and integrate over the time interval [0, t] for t ≤ T to obtain

e−C2‖u(t,·)‖H2 ≥ e−C2‖u0‖H2 − C1C2t, ∀ 0 ≤ t ≤ T.

Now if we choose T > 0 such that

C1C2T ≤
1

2
e−C2‖u0‖H2 ,

then for all t ≤ T ,

e−C2‖u(t,·)‖H2 ≥ 1

2
e−C2‖u0‖H2 .

Therefore

sup
0≤t≤T

‖u(t, ·)‖H2 ≤ ‖u0‖H2 +
ln 2

C2
.

This is the a priori H2 bound that we needed.
Step 4. Mollification and contraction. We use the Littlewood-Paley projectors

which is introduced now. Let φ(·) be an even C∞ function supported in the ball
{ξ ∈ R : |ξ| ≤ 11

10} and equal to 1 on the ball {ξ ∈ R : |ξ| ≤ 1}. For each dyadic
number N > 0 and any f ∈ S′(R) (here S′(R) denotes the space of tempered
distributions on R), we introduce the standard Littlewood-Paley projectors P≤N
and PN by

P̂≤Nf(ξ) = φ(ξ/N)f̂(ξ),

P̂Nf(ξ) = ψ(ξ/N)f̂(ξ) = (φ(ξ/N)− φ(2ξ/N))f̂(ξ).

For each dyadic N > 0, we consider the mollified problem of (1.1){
∂tu

(N) + ∂xP≤N

(
P≤Nu

(N)(1− P≤Nu(N))e−J◦u
(N)
)

= 0,

u(N)(0, x) = u0(x).
(2.13)

By standard ordinary differential equation theory in Banach spaces (cf. Theorem
3.1 of [10]) and the a priori estimates established in Step 2, one can show that for
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some T = T (‖u0‖H2) > 0, there exists a unique solution u(N) ∈ C([0, T ], H2) to
(2.13). Furthermore

sup
N≥1

sup
0≤t≤T

‖u(N)(t, ·)‖H2 ≤ C(‖u0‖H2) (2.14)

where C(‖u0‖H2) denotes a constant depending only on ‖u0‖H2 .
By a direct calculation similar to the one leading to the a priori estimates in Step

2 and shrinking T = T (‖u0‖H2) further if necessary, we have that the sequence
{u(N)} is Cauchy in the space C([0, T ], L2). Interpolating this with the bound
(2.14), we obtain that {u(N)} is also Cauchy in the space C([0, T ], H1). Hence we
have that {u(N)} has a limit u ∈ C([0, T ], H1)∩L∞((0, T ), H1) which solves (1.1).
We still have to show that u ∈ C([0, T ], H2). Since u is weakly continuous on H1

(i.e. let 〈, 〉 denote the inner product on H2, then the pairing 〈u(t, ·), φ(·)〉 for any
φ ∈ H2 is a continuous function of t), it suffices for us to show the norm continuity,
i.e. that ‖u(t, ·)‖H2 is continuous in t. By using a similar estimate leading to (2.12),
we have for any 0 ≤ t1, t2 ≤ T ,∣∣∣e−C3‖u(t1,·)‖H2 − e−C3‖u(t2,·)‖H2

∣∣∣ ≤ C4|t1 − t2|

where C3, C4 are absolute constants. Hence the norm continuity follows.
Concluding from the above four steps, we obtain the desired classical solution

u ∈ C([0, T ], H2) to (1.1) for some T = T (‖u0‖H2) > 0.

The proof of Theorem 2.1 actually yields more information about the local solu-
tion. The following corollary is immediate.

Corollary 2.2 (Blowup alternative). Let u0 ∈ Hm and m ≥ 2 is an integer.
Let u be the corresponding maximal-lifespan solution obtained in Theorem 2.1 with
lifespan [0, T ). Then only one of the following occur

• T = +∞ and u is a global solution;
• 0 < T <∞ and

lim
τ→T

∫ τ

0

e‖u(t,·)‖∞
(
‖∂xu(t, ·)‖∞(1 + ‖u(t, ·)‖∞) + (1 + ‖u(t, ·)‖∞)4

)
dt = +∞.

(2.15)

In particular, we have

lim sup
t→T

(‖u(t, ·)‖∞ + ‖∂xu(t, ·)‖∞) = +∞. (2.16)

Proof. This follows from the proof of Theorem 2.1. For simplicity we take m = 2,
the case m > 2 is only more complicated in numerology. Let u be the maximal-
lifespan solution and assume its lifespan is [0, T ) with T < ∞. It suffices for us to
recycle the bound (2.11). The Gronwall argument then gives (2.15). The assertion
(2.16) is an immediate consequence of (2.15).

In the theory of traffic flow, the function u(t, x) represents the density which is
normalized to the interval [0, 1], i.e., typically, we have 0 ≤ u ≤ 1. The following
lemma justifies this fact.

Lemma 2.3 (A priori L∞ bound). Let u0 ∈ Hm and m ≥ 2 is an integer. Assume
that 0 ≤ u0(x) ≤ 1 for all x ∈ R. Let u be the corresponding maximal-lifespan
solution obtained in Theorem 2.1 with lifespan [0, T ). Then we have

0 ≤ u(t, x) ≤ 1, ∀x ∈ R, 0 ≤ t < T.
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Proof. This follows from the method of characteristics. We first show that u(t, x) ≥
0. Define the following family of characteristics lines:{

d
dtX(t, α) =

(
(1− u)e−J◦u

)
(t,X(t, α)),

X(0, α) = α ∈ R.

These characteristic lines are well-defined for all 0 ≤ t < T since u ∈ C([0, T ), H2)
and the function (1 − u)e−J◦u is Lipschitz and in fact is bounded in C1. We have
that for all 0 ≤ t < T , X(t, ·) is a diffeomorphism from R to R. Furthermore

d

dt
u(t,X(t, α)) = −

(
∂x((1− u)e−J◦u)

)
(t,X(t, α))u(t,X(t, α)).

Since u(0, X(0, α)) = u0(α) ≥ 0 for any α ∈ R, we conclude that u(t,X(t, α)) ≥ 0
for all α ∈ R, 0 ≤ t < T . Since X(t, ·) has a smooth inverse, we obtain u(t, x) ≥ 0
for all x ∈ R and 0 ≤ t < T .

Next we show that u(t, x) ≤ 1. Define v = 1−u. Then for v we have the equation{
∂tv − ∂x

(
v(1− v)e−1eJ◦v

)
= 0,

v(0, x) = v0(x) = 1− u0(x).

Define the characteristic lines{
d
dtY (t, α) = −

(
(1− v)e−1eJ◦v

)
(t, Y (t, α)),

Y (0, α) = α ∈ R.

Furthermore

d

dt
v(t, Y (t, α)) =

(
∂x((1− v)e−1eJ◦v)

)
(t, Y (t, α))v(t, Y (t, α)).

Since v0(x) = 1 − u0(x) ≥ 0 for all x ∈ R, thus v(t, Y (t, α)) ≥ 0 and consequently
u(t, x) ≤ 1 for all x ∈ R, 0 ≤ t < T .

Lemma 2.3 can be slightly strengthened. The following lemma shows that if for
some constant 0 < M ≤ 1, the initial data 0 ≤ u0(x) ≤ M , for any x ∈ R, then
the inequality 0 ≤ u(t, x) ≤ M holds for all t. While the proof of Lemma 2.3 is
Lagrangian (based on method of characteristics), the proof of Lemma 2.4 will be
Eulerian.

Lemma 2.4 (A priori L∞ bound, another version). Let u0 ∈ Hm and m ≥ 2 is an
integer. Let u be the corresponding maximal-lifespan solution obtained in Theorem
2.1 with lifespan [0, T ). Assume that 0 ≤ u0(x) ≤ M and 0 < M ≤ 1. Then for
any 0 ≤ t < T , we have

0 ≤ u(t, x) ≤M, ∀x ∈ R.

Proof of Lemma 2.4. Let T1 < T be such that T1 < ∞. We first prove the lemma
on [0, T1] and then use the arbitrariness of T1 to conclude the proof. Let 0 < ε < 1
and define

w(t, x) = e−εtu(t, x), ∀ 0 ≤ t ≤ T1, x ∈ R.
We suppress the dependence of w on ε for simplicity of notation. We first show that
there exists some point (t0, x0) ∈ [0, T1]× R such that

w(t0, x0) = sup
0≤t≤T1
x∈R

w(t, x) = M1 > 0. (2.17)
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Here M1 is finite since u ∈ C([0, T1], Hm) with m ≥ 2. Indeed suppose that
supremum is not attained, then there exists (tn, xn) ∈ [0, T1] × R with |xn| → ∞,
such that

w(tn, xn)→M1, n→∞.

But this then contradicts to the fact that w ∈ L2
tL

2
x([0, T1]×R) since ∂tw and ∇w

are uniformly bounded (one can construct disjoint balls of size O(1) around each
(tn, xn) so that w & M1/2 in each ball). Hence (2.17) holds. Now we assert that
t0 = 0. Indeed if 0 < t0 ≤ T1, then

∂tw(t, x)
∣∣∣
(t,x)=(t0,x0)

≥ 0.

On the other hand, we have

∂tw(t, x)
∣∣∣
(t,x)=(t0,x0)

= −εM1 + e−εt0(∂tu)(t0, x0)

= −εM1 − (1− 2u(t0, x0))(∂xw)(t0, x0)e−(J◦u)(t0,x0)

− u(t0, x0)(1− u(t0, x0))e−(J◦u)(t0,x0)(M1 − w(t0, x0 + 1))

≤ −εM1 < 0

where in the last inequality we have used the facts that ∂xw(t0, x0) = 0, w ≤ M1

and that 0 ≤ u ≤ 1 . The above computation shows that the maximum cannot
occur at 0 < t0 ≤ T1 and therefore we have t0 = 0 which gives

u(t, x)e−εt ≤M, ∀ 0 ≤ t ≤ T1, x ∈ R.

Taking ε→ 0 and letting T1 be arbitrary immediately yield the lemma .

Corollary 2.2 in conjunction with Lemma 2.3 gives us the following useful

Corollary 2.5 (Blowup alternative, physical initial data). Let u0 ∈ Hm and m ≥ 2
is an integer. Assume 0 ≤ u0(x) ≤ 1 for all x ∈ R. Let u be the corresponding
maximal-lifespan solution obtained in Theorem 2.1 with lifespan [0, T ). Then only
one of the following occurs

• T = +∞ and u is a global solution;
• 0 < T <∞ and

lim
τ→T

∫ τ

0

‖∂xu(t, ·)‖∞dt = +∞. (2.18)

In particular, we have

lim sup
t→T

‖∂xu(t, ·)‖∞ = +∞. (2.19)

Proof. By Lemma 2.3, we have 0 ≤ u(t, x) ≤ 1 for all 0 ≤ t < T . By (2.15), for any
τ < T , we have∫ τ

0

e‖u(t,·)‖∞
(
‖∂xu(t, ·)‖∞(1 + ‖u(t, ·)‖∞) + (1 + ‖u(t, ·)‖∞)4

)
dt

.
∫ τ

0

‖∂xu(t, ·)‖∞dt.

Hence (2.18) follows. The assertion (2.19) is obvious.
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Remark 2.6. We should stress that for physical data, 0 ≤ u0(x) ≤ 1, for all x ∈ R,
if the blowup happens at t = T , then it must occur at the level of the first order
derivative of the solution and all Lp, 1 ≤ p ≤ ∞ norms of the solution remain finite
near the blowup time T . Indeed by Lemma 2.3,

lim sup
t→T

‖u(t, ·)‖∞ ≤ 1.

By L1-conservation, we have

‖u(t, ·)‖1 = ‖u0‖1, ∀ 0 ≤ t < T.

Hence by interpolation, we have for all 1 ≤ p ≤ ∞,

lim sup
t→T

‖u(t, ·)‖p ≤ C

for some constant C > 0. The analysis suggests that the blowup is a shock wave.

3. Finite time singularities. In this section we prove that finite time singularities
do occur for several types of physical initial data. The arguments are primarily
based on comparisons of the speed of characteristic lines. Despite the nonlocal
nature of the problem, we nail down several scenarios of blowups of solutions for
physical initial data. The list is not exhaustive, nevertheless it is consistent with
the blowups observed in numerical simulations in [6, 16]. Our results confirm that
there will be blowup in finite time in the nonlocal model.

Theorem 3.1 (Existence of finite time blowups, scenario 1: collision with 0 or 1).
Let u0 ∈ Hm(R) and m ≥ 2 is an integer. Assume that 0 ≤ u0(x) ≤ 1 for all x ∈ R.
If there exist two points −∞ < α1 < α2 < ∞, such that u0(α1) = 0 < u0(α2) = 1,
then u must blow up at some finite time 0 < T <∞, i.e.,

lim sup
t→T

‖∂xu(t, ·)‖∞ = +∞. (3.1)

Moreover, all the Lp, 1 ≤ p ≤ ∞ norms of u remain finite as t→ T ,

lim sup
t→T

‖u(t, ·)‖p <∞, ∀ 1 ≤ p ≤ ∞. (3.2)

Proof of Theorem 3.1. We only need to prove the existence of finite time blowups.
The assertions (3.1) and (3.2) follow directly from Corollary 2.5 and Remark 2.6.

To prove existence of singularities, we shall argue by contradiction. We assume
that the corresponding maximal-lifespan solution u is global. We shall demonstrate
that the characteristic lines emanating from the points α1 < α2 (with different
definitions of characteristic lines) will eventually collide and a contradiction will be
derived there. The contradiction shows that the solution is not a global solution.
According to Corollary 2.5 and Remark (2.6), the solution must develop singularity
at a finite time (3.1).

We first consider the characteristic line starting at the point α1. Define{
d
dtX1(t) =

(
(1− u)e−J◦u

)
(t,X1(t)),

X1(0) = α1.
(3.3)
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Clearly X1(t) is globally well-defined since u is global and the driving term (1 −
u)e−J◦u is Lipschitz. By a direct calculation, we have

d
dtu(t,X1(t)) = −u(t,X1(t))

(
∂x

(
(1− u)e−J◦u

))
(t,X1(t)),

u(0, X1(0)) = u0(α1) = 0.

Hence u(t,X1(t)) ≡ 0 for all t ≥ 0. Plugging this into (3.3), we obtain

d

dt
X1(t) ≥ e−‖u(t,·)‖∞ ≥ e−1, ∀ t ≥ 0

where we have used Lemma 2.3. Therefore

X1(t) ≥ α1 + e−1t, ∀ t ≥ 0. (3.4)

Next we consider the characteristic line starting at the point (0, α2). However, we
shall use a different form of characteristic line than that starting at (0, α1). Define
v(t, x) = 1− u(t, x), then for v(t, x) we have the equation{

∂tv − ∂x
(
v(1− v)e−1eJ◦v

)
= 0,

v(0, x) = 1− u0(x).

Define X2(t) by the following{
d
dtX2(t) = −

(
(1− v)e−1eJ◦v

)
(t,X2(t)),

X2(0) = α2.
(3.5)

By using the regularity of v and u, it is not difficult to check that X2(t) are
globally well-defined. By a direct computation, we have

d
dtv(t,X2(t)) = v(t,X2(t))

(
∂x

(
(1− v)e−1eJ◦v

))
(t,X2(t)),

v(0, X2(0)) = 1− u0(α2) = 0.

Hence v(t,X2(t)) ≡ 0 for all t ≥ 0. Plugging this into (3.5), we obtain

d

dt
X2(t) ≤ −e−1, ∀ t ≥ 0

where we have used again Lemma 2.3. Integrating in the time variable, we get

X2(t) ≤ α2 − e−1t, ∀ t ≥ 0. (3.6)

We are now ready to arrive at a contradiction. By (3.4), (3.6) and the assumption
that α1 < α2, we conclude that there must exist some t0 > 0 such that X1(t0) =
X2(t0) = x0. But then by using the definition of characteristic lines, we have that
0 = u(t0, X1(t0)) = u(t0, x0) and 1 = u(t0, X2(t0)) = u(t0, x0), which is obviously a
contradiction.

Theorem 3.1 is consistent with the finite time blowups observed in numerical
simulations in [6, 16]. The proof of Theorem 3.1 also indicates that the finite
time singularity is a shock wave. Are there initial data which does not satisfies
the condition in Theorem 3.1 but still may develop finite time singularities? The
following theorem shows that indeed there exist blowups in this class of data at the
expense of some slope conditions.

We now introduce
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Definition 3.2 (Slope condition). We say a function f : R→ R satisfies the slope
condition if there exist two points −∞ < α1 < α2 < ∞ and a number λ > 1 such
that the following inequalities hold:

2f(α2)(1− λ−1)− 2f(α1)(λ− 1) ≥ e(α2 − α1), (3.7)

f(α1) ≤ 1

2λ
, (3.8)

f(α2) ≥ 1

2
λ, (3.9)

f(α2) 6= f(α1)λ2. (3.10)

When such points α1 < α2 and number λ > 1 exist, we say that f satisfies the slope
condition with respect to points α1 < α2 and parameter λ > 1.

Remark 3.3. It is fairly easy to construct functions which satisfy the slope condi-
tion. For example, we can fix the constant λ > 1, and let 0 ≤ y1 ≤ 1

2λ ≤
1
2λ ≤ y2

and y2 6= λ2y1. Then choose numbers α1 < α2 with the difference α2 − α1 so small
such that

2(
y2
λ
− y1)(λ− 1) ≥ e(α2 − α1).

It is then easy to choose a function f which passes through the two points (α1, y1),
(α2, y2). Such a function satisfies the slope condition by construction.

We now establish the second scenario of blowups under the above slope condition.

Theorem 3.4 (Existence of finite time blowups, scenario 2: collision under the slope
condition). Let u0 ∈ Hm(R), m ≥ 2 is an integer. Assume that 0 ≤ u0(x) ≤ 1
for all x ∈ R. Suppose u0 satisfies the slope conditions (3.7)–(3.10) with respect
to some points α1 < α2 and some parameter λ > 1. Denote the corresponding
maximal-lifespan solution as u = u(t, x). Then u must blow up at some time T ,
i.e.,

lim sup
t→T

‖∂xu(t, ·)‖∞ = +∞ (3.11)

where 0 < T < log λ.
Moreover, all the Lp, 1 ≤ p ≤ ∞ norms of u remain finite as t→ T ,

lim sup
t→T

‖u(t, ·)‖p <∞, ∀ 1 ≤ p ≤ ∞. (3.12)

Proof of Theorem 3.4. It suffices for us to prove the existence of blowup. The as-
sertions (3.11) and (3.12) follow from Corollary 2.5 and Remark 2.6.

We shall again argue by contradiction. Assume that the corresponding maximal-
lifespan solution u is a global solution. We shall show that a collision of character-
istics must occur on or before t1 = log λ and a contradiction is derived there. The
contradiction shows that u is not a global solution. According to Corollary 2.5 and
Remark (2.6), the solution must develop finite time singularity there (3.11).

Define the characteristic lines2{
d
dtX(t, α) =

(
(1− 2u)e−J◦u

)
(t,X(t, α)),

X(0, α) = α ∈ R.
(3.13)

2Actually the characteristics defined by (3.13) can also be used to give an alternative proof of
Theorem 3.1 and the idea is essentially the same.
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It is not difficult to check that X(t, α) are well-defined on the maximal lifespan of
u.

By a direct calculation, we have{
d
dtu(t,X(t, α)) =

(
u(1− u)e−J◦u

)
(t,X(t, α))

(
u(t,X(t, α))− u(t,X(t, α) + 1)

)
,

u(0, X(0, α)) = u0(α).

Since 0 ≤ u ≤ 1, we get∣∣∣((1− u)e−J◦u
)

(t,X(t, α))(u(t,X(t, α))− u(t,X(t, α) + 1))
∣∣∣ ≤ 1.

By a Gronwall argument, we then obtain that for t ≥ 0,

u0(α)e−t ≤ u(t,X(t, α)) ≤ u0(α)et. (3.14)

Now we shall invoke the slope conditions (3.7)–(3.10) with respect to points
α1 < α2 and parameter λ = et1 > 1 where t1 = log λ.

Consider first the characteristic starting at the point α1. For any 0 ≤ t ≤ t1, we
have by (3.8)

u0(α1)et ≤ 1

2
.

Therefore by (3.13) and (3.14),{
d
dtX(t, α1) ≥ (1− 2u0(α1)et)e−1 > 0,

u(t,X(t, α1)) ≤ u0(α1)et, ∀ 0 ≤ t ≤ t1.
(3.15)

Next consider the characteristic line starting at the point α2. By (3.9), we have

u0(α2)e−t ≥ 1

2
, ∀ 0 ≤ t ≤ t1.

Hence by (3.13) and (3.14),{
d
dtX(t, α2) ≤ (1− 2u0(α2)e−t)e−1 < 0,

u(t,X(t, α2)) ≥ u0(α2)e−t, ∀ 0 ≤ t ≤ t1.
(3.16)

Collecting the estimates (3.15), (3.16) and integrating in time, we obtain for any
0 ≤ t ≤ t1,

X(t, α1)−X(t, α2) ≥ α1 − α2 +

∫ t

0

(1− 2u0(α1)es)e−1ds

−
∫ t

0

(1− 2u0(α2)e−s)e−1ds

≥ α1 − α2 + 2e−1u0(α2)(1− e−t)− 2e−1u0(α1)(et − 1)

=: F (t).

By using (3.8) and (3.9), it is not difficult to check that

F ′(t) = 2e−1
(
u0(α2)e−t − u0(α1)et

)
≥ 0, ∀ 0 ≤ t ≤ t1.

By (3.7), we have

X(t1, α1)−X(t1, α2) ≥ 0.
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Therefore there must exist some t2 with 0 < t2 ≤ t1 such that

X(t2, α1) = X(t2, α2) = x2.

This shows that characteristic lines emanating from α1 and α2 must collide at time
t = t2.

But by (3.14) and (3.8)–(3.9), we have

u(t, x2) = u(t,X(t2, α1)) ≤ u0(α1)et1 ≤ 1

2
,

u(t, x2) = u(t,X(t2, α2)) ≥ u0(α2)e−t1 ≥ 1

2
.

Hence the equality

u0(α2) = u0(α1)e2t1 = u0(α1)λ2

must hold. But this contradicts to (3.10). Hence we have arrived at the desired
contradiction. Consequently a shock must occur on or before t1 = log λ.

4. Concluding remarks. We studied the finite time blow up of the solutions to
the nonlocal model (1.1). Indeed, it is shown that the finite time blow up must
occur at the level of the first order derivative of the solution. This suggests that the
finite time blow up is a shock wave. Despite the nonlocal nature of the problem, we
identify several scenarios of blowups for physical initial data. The list is certainly
not exhaustive, nevertheless it is consistent with the blowups observed in numerical
simulations in [6, 16]. Our results confirm that there are finite time blowup in the
nonlocal model (1.1). We will investigate the finite time blow up of solutions for
more initial data in the the future.
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