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Abstract. The main aim of this paper is to introduce a mathematical frame-

work to study stochastically evolving networks. More precisely, we provide a

common language and suitable tools to study systematically the probability
distribution of topological characteristics, which, in turn, play a key role in ap-

plications, especially for biological networks. The latter is possible via suitable

definition of a random network process and new results for graph isomorphism,
which, under suitable generic assumptions, can be stated in terms of the graph

walk matrix and computed in polynomial time.

1. Introduction. Dynamics of networks attracted the attention of researchers
from different domains, [2, 3, 14, 17]. The main reason for this success is the
wide applicability of network science, ranging from data networks as internet, to
social networks and biological ones.
The classical approach to random graphs, by Erdos and Reny [10], provides a suit-
able framework to deal with networks with uncertainties and to compute the relative
probabilities for typical topological properties, such as the distribution of number
of arcs per node. However, using simple rules to add a node or an arc to a given
graph with assigned probability, one often obtains time evolving networks whose
probability distribution typically does not match with random graph theory. More-
over, such networks are encountered in many situations as internet, social networks,
biological networks and others [1, 2, 15, 17].

For applications to biological networks, in particular cells signaling networks, the
theory of time evolving networks, representing dynamics of genes over successive
generations (large time scale), must be combined with dynamics on networks of
given quantities, such as proteins and transcription factors concentrations, within
a cell life (small time scale). In this setting, various results were obtained also by
the control community, see for instance [5, 8, 11, 16]. For both time scales, it plays
a key role the the concept of network motifs, see [1]. The latter are topologies of
subnetworks which appear very frequently in real biological networks, opposed to
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their low probabilities in random networks in the sense of Erdos-Renyi. For instance,
focusing on simple subnetworks with three nodes, the Feed-Forward-Loop (FFL) is
more frequent than all other possible subnetworks with three nodes, see [1]. The
FFL motif is linked to specific signaling effects such as sign-sensitive accelerators or
sign sensitive delays, see [13].

Taking the large time scale point of view, we aim at introducing a mathematically
sound framework to deal with stochastically evolving networks. The aim of the
latter is to provide a common language and suitable tools to study systematically
the probability distribution of topological characteristics, which, in turn, play key
roles in applications.

We first introduce integer valued distances for list representation of graphs and
define them over quotient spaces for isomorphism equivalence. Then, we introduce
our definition of random network process (the counterpart of a stochastic process)
and, in particular, of a Brownian network process (briefly BNP). The latter corre-
sponds to equiprobable evolution over graphs at distance one, starting from a single
node. The properties of such process are studied (up to isomorphism equivalence),
showing the lack of symmetry after few steps. More precisely, at third step of the
process, we obtain that the network with four vertices representing a path of length
three is the most probable (with probability equal to 1

2 ). On the other side, the

other two networks, the triangle and the star, have probability 1
4 . Such phenomenon

rapidly gets more involved: at step four the most probable network, a the triangle
with an edge attached to a vertex, has still probability 1

2 , while the other network

have smaller probabilities, with the smallest one equal to 1
28 and corresponding to

the star with five nodes.
Notice that our process differs from preferential attachment models in that our

probabilities of generating a new node or a new arc depends on the graph itself. In
case of constant probabilities, many results on the degree distribution are available,
see for instance [4, 6, 9].

The main difficulty in computing the probability distribution function of BNP,
after several steps, lies in the fact that many isomorphic graphs will appear in the
stochastic evolution. Then we deal with graph isomorphisms, introducing a new
framework to find necessary and sufficient conditions. The main idea is that of a
decomposition of IRn in terms of eigenspaces of the adjacency matrix, which allows,
under suitable assumptions, a statement of isomorphism conditions in terms of the
walk matrix, see Theorem 1. More precisely, we consider main eigenspaces of the
adjacency matrix (that are those not orthogonal to the vector with all entries equal
to 1). Then an adjacency matrix has a simple decomposition if there is at most one
not main eigenspace and all other eigenvalues are simple (or at most one not simple
if there is no not main eigenpace.) Our main result states that cospectral graphs
with simple eigenspace decompositions are isomorphic if and only if they have the
same walk matrix up to permutations.
Since conditions in Theorem 1 are generic and can be translated easily in an algo-
rithm (with polynomial complexity in terms of number of vertices of the graph),
we can write a program and automatically compute the probabilities of BNP (up
to isomorphisms).
Going back to biological networks, we show how the probability of having a trian-
gular subnetwork, which is the base for the FFL motif, rapidly increases during the
stochastic evolution. Since the number of nodes may vary for graphs obtained at a
same step of the BNP, it is not immediate a comparison with Erdos-Renyi theory.
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However, we are able to argue that such probabilities are above those for random
networks, taking into account the average connectivity of graphs produced by BNP.
This represents a first step towards studying systematically network motifs with
our model. We finally point out that a satisfactory theory for biological networks
will necessary include the case of directed graphs and probably connectivity rules
more complex than that of BNP.

2. Basic notations and definitions. For future convenience we introduce the
following notations. We denote by ei, i = 1, . . . , n, the canonical vectors of IRn, by
In the identity n× n matrix, by 1 the vector of IRn filled with 1’s, and by J = 11T

the n× n matrix filled with 1’s.
A graph consists of a set V = {v1, . . . , vn} of n vertices and a set E = {e1, . . . , em}
of m edges where, for j = 1, . . . ,m, the edge ej linking some vertex vj1 to some
vertex vj2 , is denoted by (vj1 , vj2). Different data structures for the representation
of graphs in a computer system are used in practice. We mainly distinguish them
among list and matrix structures. Lists are mainly used to represent and store
large (sparse) graphs while matrices are more suitable for the analysis of graphs’
properties.

2.1. Representation by lists. Among lists we mention

• Adjacency list. An adjacency list is an array of type

((1, {11, . . . , 1k1}), . . . , (n, {n1, . . . , nkn}))

where, for each i = 1, . . . , n, (i, {i1, . . . , ini}) means that there is an edge from
vi to vij , for all j = 1, . . . , ki. Thus, node vi has ki adjacent nodes.

• Incidence list. An incident list is an array containing pairs (ordered if di-
rected) of vertices (that the edge connects) and possibly weight and other
data.

2.2. Representation by matrices.

• Incidence Matrix. The graph is represented by a matrix of size n×m where
the entry i, j is 1 if edge ej starts from vertex vi, −1 if ej ends in vertex vi
and 0 otherwise. If the graph is not directed then entry i, j is either equal to
1, if ej is incident in vi, or to 0, otherwise.

• Adjacency Matrix. The graph is represented by a matrix of size n×n where
the entry i, j is 1 if (vi, vj) is an edge of the graph and 0 otherwise. If there
are k edges from vi to vj than the entry i, j is k.

• Laplacian Matrix. The graph is represented by a matrix D − A where A
is the adjacency matrix and D is the diagonal degree matrix. The diagonal
matrix D has entry i equal to the degree di of the vertex vi: di = eTi A1.

In this paper we only consider connected undirected simple graphs, i.e. an undi-
rected graph that has no loops or multiple edges. A graph is simple if there exist
neither self–loops nor multiple edges. The adjacency matrix A of a simple graph is
then a 0, 1–matrix with 0’s on the diagonal. If in addition the graph is undirected
its adjacency matrix A is symmetric. A graph is connected if for every two vertices
there exists a path connecting them.
We call degree of a vertex the number of edges adjacent to it. The degree vector
of a graph G with adjacency matrix A is given by A1. The ij–th component of
Ak, Ak(i, j), corresponds to the number of paths of lenght k connecting vertex i to
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vertex j and Ak1 is the vector whose i–th component corresponds to the number of
paths of lenght k starting from vertex i.

3. Dynamic of networks. We now go back to representation by lists in order to
define dynamic of graphs.
Given a set A, #[A] indicates the cardinality of A, while ∆ is the set theoretic
symmetric difference, i.e. ∆(A,B) = (A \B)∩ (B \A). The symbol P(A) indicates
the set of subsets of A.

Definition 1. A network is a subset N of N = N × P(N) for which there exists
n ∈ N such that the following holds. Indicating by Π1 and Π2 the projections
on the first and the second component of N we have Π1(N) = {1, . . . , n} and
Π2(N) ⊂ P({1, . . . , n}). n = n(N) is called the cardinality of the network. We
indicate by N ⊂ P(N) the set of networks.

Given a classical network (V,E) given by a finite set of vertices V and of edges
E ⊂ V × V , we obtain easily the representation N(V,E) as follows. Let n be the
cardinality of V then there exists a bijection s : V 7→ {1, . . . , n} (a numbering of
vertices). The base Π1(N) is given by {1, . . . , n}, while for every i ∈ {1, . . . , n}
the fiber satisfies Π2,i(N) = {j : (s−1(i), s−1(j)) ∈ E} where Π2,i is the i-the
component of Π2. Notice that in this way we can represent both directed or not
directed networks.
It is then natural to use the same technique to re-arrange networks. Given a network
N of cardinality n and a bijection s of {1, . . . , n} we define s(N) to be the network
of cardinality n satisfying Π2,i(s(N)) = {j : (s−1(i), s−1(j)) ∈ Π2,i(N)}.
At this point we can define a metric as follows. First for every couple of networks
N1 and N2 we define the distances:

D̄(N1, N2) = |n(N1)− n(N2)|+ D̃(N1, N2),

D̃(N1, N2) =

max{n(N1),n(N2)}∑
i=1

#
[
∆
(
Π2,i(N1),Π2,i(N2)

)]
.

Let us now indicate by Sn the set of permutations over n objects, otherwise stated
the set of bijections of {1, . . . , n}. We define the relation:

Definition 2. We say that N1 is isomorphic to N2 and we write N1 ≡ N2 if there
exists s ∈ Sn(N1) such that s(N1) = N2. We indicate by π≡ the canonical projection
from N to N/ ≡.

It is easy to verify that ≡ is an equivalence relation and that two isomorphic
networks have the same cardinality. We define also a weaker relation:

Definition 3. We say that N1 is edge-isomorphic to N2 and we write N1 ∼ N2 if
there exists s ∈ Smax{n(N1),n(N2)} such that for every i ∈ {1, . . . ,max{n(N1), n(N2)}}
Π2,i(s(N1)) = Π2,i(N2). We indicate by π∼ the canonical projection from N to
N/ ∼.

It is easy to verify that ∼ is an equivalence relation and that two edge-isomorphic
networks may have different cardinality. However two edge-isomorphic networks
may different in cardinality only for the presence of vertices not connected to any
other vertex.
Define now the functions:

d̄(N1, N2) = inf
s1∈Sn(N1),s2∈Sn(N2)

D̄(s1(N1), s2(N2)).
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d̃(N1, N2) = inf
s1∈Sn(N1),s2∈Sn(N2)

D̃(s1(N1), s2(N2)).

Proposition 1. The functions D̄ : N ×N 7→ N and D̃ : N ×N 7→ N are pseudo-
metrics on N. The function d̄ is a metric on N/ ≡ and the function d̃ is a metric
on N/ ∼.

Proof. Clearly D̄(N,N) = D̃(N,N) = 0 for every N ∈ N. Symmetry is obvious,
while triangular inequality follows from the general fact:

∆(A,C) ⊂ ∆(A,B) ∪∆(B,C).

Now if d̃(N1, N2) = 0 then there exists s ∈ Smax{n(N1),n(N2) such that for every i ∈
{1, . . . ,max{n(N1), n(N2)}} one has #

[
∆
(
Π2,i(N1),Π2,i(N2)

)]
. Therefore N1 ∼

N2.
Similarly if d̄(N1, N2) = 0 then the two networks have the same cardinality and are
isomorphic.

Remark 1. Let us further explain the meaning of the distances d̄ and d̃.
The metric d̄ measures the difference in cardinalities of set of vertices plus the
maximal distance of representation by lists up to isomorphisms. In particular, two
graphs may have distance zero if and only if they are isomorphic in classical sense.
Moreover, two graphs with different number of vertices have at least distance one.
Such minimal distance is realized for instance by adding an isolated vertex to any
graph.
On the other side the metric d̃ computes just the distance of representation by lists
without summing the difference in vertices cardinality. As a result, non isomorphic
graphs (in classical sense) may still have distance zero, thus coincide in the set
N/ ∼. This is the case for a graph G and the one obtained adding to G any
number of isolated vertices.

3.1. Random network processes.

Definition 4. Given a probability space (Ω, P,F) a random network is measurable
function X : Ω 7→ N for the discrete topology on N .
A random network process is a map X : N × Ω 7→ N such that, for every t ∈ N,
X(t, ·) is a random network.
A Brownian network process is a random network process B : N × Ω 7→ N such
that:

• B(0) ≡ {(1, ∅)} ∈ N ;
• B(t+1, ω) is obtained from B(t, ω) adding one edge among vertices of B(t, ω)

or adding one edge beween the vertex n(B(t, ω)) + 1 and a vertex of B(t, ω).
Clearly d̄(B(t, ω), B(t+ 1, ω)) = 1 almost surely.

• the probability P (B(t + 1, ω) = X) is the same for every X ∈ BD̃(B(t, ω))

(the ball of radius one for the psuedo-metric D̃).

This well defined an almost surely unique process. Moreover, such process satis-
fies:

E
[
D̃2(B(n+ 1), X(n))

]
= 1.

We are interested in networks up to isomorphic equivalence, thus in the process:

B̄(t, ω) = π≡(B(t, ω)) = π∼(B(t, ω)),

which we call the equivalence Brownian network process (EBNP) briefly.
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Figure 1. Representation of N ∗4 .

4. Probability computation of dynamic networks. We now addres the prob-
lem of computing probabilities of graphs generated by a Brownian newtork process.

4.1. The set N/ ≡ and the process B̄. Let us now study the set N/ ≡.
More precisely we start studying the following set N ∗i = {N ∈ N/ ≡: n(N) =
i,N connected, N has no self-loop}. Notice that at step i a EBNP takes values
in ∪j≤iN ∗i , thus the characterization of N ∗i gives information on EBNP. Also for
applications to biological, data and social networks this is the interesting case.
Let us start characterizing N ∗i for small values of i.
i=1. N = {(1, ∅)}, thus #(N ∗1 ) = 1.
i=2. N = {(1, {2}), (2, {1})} thus #(N ∗2 ) = 1.
i=3. N = {(1, {2}), (2, {1, 3}), (3, {2})} or N is fully connected (i.e. has all possible
edges), thus #(N ∗3 ) = 2.
i=4. See Figure 1, thus #(N ∗4 ) = 6.
Notice that we can proceed by induction adding one vertex and edges to elements

of N ∗n to obtain elements of N ∗n+1. Now EBNP adds one edge at each step so in
fact it is convenient to classify subclasses of N ∗n having the same number of edges.
In fact different elements of the same equivalence class for ≡ must have the same
number of edges, therefore we define:

N ∗i,m = {N ∈ N ∗i : N has m edges}.

From the connectdness property we have N ∗i,m is empty for every m < i−1. On the
other side the maximum number of edges is i−1+(i−2)+· · ·+1 = i(i−1)/2 = M(i).
i=3. M(3) = 3. N ∗3,2 has the only element {(1, {2}), (2, {1, 3}), (3, {2})} while N ∗3,3
has only the fully connected element.
i=4. M(4) = 6. Each N ∗4,m for m = 3, 4 has two elements, respectively those of the
first and second row of Figure 1. While N ∗4,m for m = 5, 6 has a unique element,
respectively that on the left and right of last row of Figure 1.
Let us now go back to EBNP. At time t = 3 EBNP takes values in:

N ∗3,2 ∪N ∗4,3.
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Is it equidistributed? The answer is no. To understand this let us explicitely
construct B(t) and B̄(t) for t = 0, 1, 2, 3. We have:

P
(
B(1) = {(1, {2}), (2, {1})}

)
=

P
(
B̄(1) = {(1, {2}), (2, {1})}

)
= 1,

P
(
B(2) = {(1, {2}), (2, {1, 3}), (3, {2})}

)
=

P
(
B(2) = {(1, {2, 3}), (2, {1}), (3, {1})}

)
= 1

2 ,
P
(
B̄(2) = {(1, {2}), (2, {1, 3}), (3, {2})}

)
= 1.

Now we have to construct B(3) by adding one edge to one of the two possible
networks, namely {(1, {2}), (2, {1, 3}), (3, {2})} and {(1, {2, 3}), (2, {1}), (3, {1})},
giving equal probability to all cases. Starting from {(1, {2}), (2, {1, 3}), (3, {2})} we
get:

P (B(3) = {(1, {2, 3}), (2, {1, 3}), (3, {1, 2})}
)

= 1
8 ,

P (B(3) = {(1, {2, 4}), (2, {1, 3}), (3, {2}), (4, {1})}
)

= 1
8 ,

P (B(3) = {(1, {2}), (2, {1, 3, 4}), (3, {2}), (4, {2})}
)

= 1
8 ,

P (B(3) = {(1, {2}), (2, {1, 3}), (3, {2, 4}), (4, {3})}
)

= 1
8 .

While starting from {(1, {2, 3}), (2, {1}), (3, {1})} we get:

P (B(3) = {(1, {2, 3}), (2, {1, 3}), (3, {1, 2})}
)

= 1
8 ,

P (B(3) = {(1, {2, 3}), (2, {1}), (3, {1, 4}), (4, {3})}
)

= 1
8 ,

P (B(3) = {(1, {2, 3, 4}), (2, {1}), (3, {1}), (4, {1})}
)

= 1
8 ,

P (B(3) = {(1, {2, 3}), (2, {1, 4}), (3, {1}), (4, {2})}
)

= 1
8 .

From which we easily obtain:

P (B̄(3) = {(1, {2, 3}), (2, {1, 3}), (3, {1, 2})}
)

= 1
4 ,

P (B̄(3) = {(1, {2}), (2, {1, 3}), (3, {2, 4}), (4, {3})}
)

= 1
2 ,

P (B̄(3) = {(1, {2, 3, 4}), (2, {1}), (3, {1}), (4, {1})}
)

= 1
4 .

The process seems like a diffusion with a peak on a specific graph and then other
graphs with less probability in a symmetric situation. However, if we continue with
this analysis we get the following (after straightforward computations) the following
probability table for B̄(4):

{(1, {2, 3}), (2, {1, 3}), (3, {1, 2, 4}), (4, {3}) P = 1
2
,

{(1, {2, 3, 4}), (2, {1, 5}), (3, {1}), (4, {1}), (5, {2})} P = 1
4
,

{(1, {2}), (2, {1, 3}), (3, {2, 4}), (4, {3, 5}), (5, {4})} P = 1
7
,

{(1, {2, 4}), (2, {1, 3}), (3, {2, 4}), (4, {1, 3})} P = 1
14
,

{(1, {2, 3, 4, 5}), (2, {1}), (3, {1}), (4, {1}), (5, {1})} P = 1
28
,

and now symmetry is completely distroyed!
Finally, after lengthy but straightforward computations we get that B̄(5) is dis-
tributed over 12 different graphs and the most probable graph is

{(1, {2}), (2, {1, 3, 4}), (3, {2, 4}), (4, {2, 3, 5}), (5, {4})}

with probability 52/231 ∼ 0, 225.
It remains the main open question:

Q Is it possible to compute the probability distribution of B̄(t)?
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5. Decomposition by eigenspaces. We first recall some known facts from linear
algebra.
Consider a n×n symmetric matrix A with real entries. Then it has real eigenvalues,
the algebraic multiplicity is equal to the geometric multiplicity of each eigenvalue
and eigenspaces relative to different eigenvalues are orthogonal. Let us denote by
λ1 > . . . > λd the distinct eigenvalues of A with multiplicity µ1, . . . , µd, by E(λi)
the eigenspace of dimension µi, relative to the eigenvalue λi. If an eigenspace E(λ)
has {x1, . . . ,xµ} as an orthonormal basis then

P (λ) = x1x
T
1 + · · ·+ xµxTµ

represents the orthogonal projection of IRn onto E(λ) with respect to the canonical
orthonormal basis of IRn. Alternatively one can write

P (λ) = E(λ)E(λ)T ,

where E(λ) is the n×µ matrix whose j–th column is given by the j–th vector, xj , of
the basis of E(λ). Shortly we will say that E(λ) is the matrix corresponding to the
subspace E(λ). Notice that for another choice of orthonormal basis {x′1 . . . ,x′µ},
with corresponding matrix E′(λ), we have E(λ) = E′(λ)Q, for some orthogonal
matrix Q of dimension µ× µ and

P (λ) = E(λ)E(λ)T = E′(λ)QQTE′(λ)T = E′(λ)E′(λ)T .

Hence P (λ) is invariant by orthogonal change of basis. Moreover P (λ)2 = P (λ) =
P (λ)T and P (λi)P (λj) = 0 for two eigenvalues λi 6= λj . The spectral decomposition
of A is given by

A = λ1P (λ1) + · · ·+ λdP (λd).

For the spectral decomposition, since, P (λi)P (λj) = 0 for λi 6= λj , it holds:

Ai = λi1P (λ1) + · · ·+ λidP (λd). (1)

A permutation matrix π of order n is a n× n matrix obtained by permuting the
rows of an identity matrix according to some permutation σ of the numbers 1 to n.
Every row and column therefore contains precisely a single 1 with 0’s everywhere
else. In particular if j = σ(i) then πi,j = 1. To any permutation σ there corresponds
to unique permutation matrix π. A permutation matrix is nonsingular, and the
determinant is always ±1. In addition, a permutation matrix satisfies ππT = I.

Let G1 and G2 be two graphs, with set of vertices V1 and V2 of cardinality n, set
of edges E1 and E2 of cardinality m. We also denote by A1 and A2 the adjacency
matrices of G1 and G2 respectively. G1 and G2 are said to be cospectral if their
adjacency matrices have the same spectra. G1 and G2 are isomorphic if there exists
a permutation σ of the vertices such that (i, j) ∈ E2 if and only if (σ(i), σ(j)) ∈ E1.
Then G1 and G2 are isomorphic if and only if there exists π, permutation matrix,
such that A1 = πTA2π.

5.1. Eigenspace decomposition of IRn.

Definition 5. An eigenspace is called main if it is not orthogonal to the vector 1,
otherwise we call it not main.

A main eigenspace E(λ) with corresponding P (λ) is characterized by the following
condition:

P (λ)1 6= 0.
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Proposition 2. For a main eigenspace E(λ) of dimension µ > 1, we can choose
an orthonormal basis given by y,x1 . . . ,xµ−1 with yT 1 = ‖P (λ)1‖ and xTi 1 = 0 for
all i = 1, . . . , µ− 1.

Proof. Let E(λ) be a matrix corresponding to an orthonormal basis for E(λ). Let

α =
E(λ)T 1

‖E(λ)T 1‖
,

y = E(λ)α

and xj = E(λ)βj , j = 1, . . . , µ−1, for some β1, . . . , βµ−1 ∈ IRµ such that {y,x1, . . . ,
xµ−1} is an orthonormal basis for E(λ). Now

yT 1 = αTE(λ)T 1 =
1TE(λ)E(λ)T 1

‖E(λ)T 1‖
= ‖E(λ)T 1‖.

Since ‖E(λ)T 1‖2 = 1TE(λ)E(λ)T 1 = 1TP (λ)1 = 1TP (λ)21 = ‖P (λ)1‖2, we get

yT 1 = ‖E(λ)T 1‖ = ‖P (λ)1‖.

Moreover, by construction,

0 = xTj y = xTj E(λ)α = xTj E(λ)
E(λ)T 1

‖E(λ)T 1‖
=

1

‖E(λ)T 1‖
xTj P (λ)1.

On the other hand

P (λ)xj = E(λ)E(λ)TE(λ)βj = E(λ)βj = xj .

Then

0 = xTj y =
1

‖E(λ)T 1‖
xTj P (λ)1 =

1

‖E(λ)T 1‖
xTj 1,

that is xTj 1 = 0 for all j = 1, . . . , µ− 1.

Each not main eigenspace E(λ) has a basis of µ orthonormal vectors which are
orthogonal to 1. Each main eigenspace E(λ) has a basis of µ orthormal vectors of
which all but one are orthogonal to 1.

Definition 6. Consider a n × n symmetric matrix A with real entries and let
λ1 > . . . > λd be the distinct eigenvalues of A with multiplicity µ1, . . . , µd. The
largest eigenvalue λ1 is called the index of G. By the Perron-Frobenius therem,
there exists a corresponding eigenvector whose entries are all non-negative. The
index is a simple eigenvalue (µ1 = 1) if and only if G is connected. The unique
positive unit eigenvector corresponding to the index of a connected graph is called
the principal eigenvector.

Definition 7. Let E(λi) be the eigenspace of dimension µi relative to the eigenvalue
λi. We denote by J the set of indices j ∈ {1, . . . ,m} such that E(λj) is main
and by K the set of indices k ∈ {1, . . . ,m} such that E(λk) is not main. Clearly
J∪K = {1, . . . ,m}. Let Y be the space spanned by the set of vectors {y(λj), j ∈ J},
one for each main eigenspace, not orthogonal to 1. For all j ∈ J we call y(λj) the
main eigenvector.

With definition 7 we have decomposed IRn in the direct sum

IRn =
⊕
j∈J

E(λj)⊕
⊕
k∈K

E(λk) (2)
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For each j ∈ J we choose a orthonormal basis for E(λj) as in proposition 2 and
denote by E(λj) the corresponding matrix and by Pj = E(λj)E(λj)

T . Analogously,
for each k ∈ K we choose a orthonormal basis for E(λk) and denote by E(λk) the
corresponding matrix and by Pk = E(λk)E(λk)T . With this notation, the spectral
decomposition of A can be rewritten as:

A =
∑
j∈J

λjPj +
∑
k∈K

λkPk

and, analogously to equation (1), we have:

Ai =
∑
j∈J

λijPj +
∑
k∈K

λikPk. (3)

Remark. The above spectral decomposition of A does not depend on the choice of
orthonormal basis for E(λj) and E(λj) but only on the decomposition of IRn given
in (2).

5.2. The walk matrix.

Definition 8. The walk matrix of a graph G with adjacency matrix A is the matrix

W (A) = [1|A1|A21| · · · |An−11]

whose i–th column is given by Ai−11.

W (A) is called walk matrix because its (i, j)–th component describes the number
of paths of lenght j − 1 starting from vertex vi. Next proposition restate a known
result (see e.g. [12])

Proposition 3. The rank of W (A) is given by the cardinality |J | of J and the space
spanned coincides with Y.

Proof. Let J = {j1, . . . , j|J|} ⊂ {1, . . . , d}, mj = y(λj)
T 1 = ‖P (λj)1‖, for j ∈ J , D

the diagonal matrix with diagonal elements Dii = mji , V the Vandermond matrix

V =


1 λj1 · · · λn−1j1

1 λj2 · · · λn−1j2
...

...
...

1 λj|J| · · · λn−1j|J|

 .
of dimension |J | × n and

Y =
[
y(λj1)| · · · |y(λj|J|)

]
the matrix whose i–th column is given by the main eigenvector y(λji) ∈ Y. Notice
that, V is full row rank, i.e. equal to |J |, because λj , j ∈ J are all distinct. We
show that

W (A) = Y DV.
The i–th column of Y DV is given by multiplying

Y D =
[
mj1y(λj1)| · · · |mj|J|y(λj|J|)

]
by the i–t colum of V. Hence for i = 1, . . . , n, the i–th column of Y DV is∑

j∈J
mjy(λj)λ

i−1
j ,
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and for i = 1, i–th column of Y DV is∑
j∈J

mjy(λj).

On the other hand by equation (3), for i = 1, . . . , n− 1, we have

Ai1 =
∑
j∈J

λijPj1 +
∑
k∈K

λikPk1

and, since Pk1 = E(λk)E(λk)T 1 = 0 and Pj1 = y(λj)y(λj)
T 1 = mjy(λj),

Ai1 =
∑
j∈J

λijPj1 =
∑
j∈J

λijmjy(λj).

Then the i+ 1–th column of W (A) coincides with the i+ 1–th column of Y DV, for
all i = 1, . . . , n− 1.

It remains to show that the first column of Y DV is equal to the first column of
W (A), that is

Y D1 =
∑
j∈J

mjy(λj) = 1

Now 1 ∈ Y, because Ek, k ∈ K, is orthogonal to 1. Then we can write 1 =∑
l∈J αly(λl) for some coefficients α1, . . . , α|J|. Moroever, y(λj1)T y(λj2) = 0 for

all λj1 6= λj2 and y(λj)
T y(λj) = 1. Hence∑
j∈J mjy(λj) =

∑
j∈J y(λj)y(λj)

T 1 =∑
j∈J y(λj)y(λj)

T
∑
l∈J αly(λl) =∑

j∈J αjy(λj) = 1.

Finally, 1 = Y D1, thus

W (A) = Y DV.
From this expression we get that rank(W (A)) = rank(Y ) = |J |. Consider now a
x ∈ IRn. Then xTW (A) = 0 if and only if xTY DV = 0. Since DV is full row
rank, we have that xTW (A) = 0 if and only if xTY = 0. Since the left null space is
the orthogonal complement to the column space, we have that the column space of
W (A) coincide with the column space of Y .

6. Isomorphism problem.

Definition 9. Let G1 and G2 be two cospectral graphs with adjacency matrices
A1 and A2 and walk matrices W (A1) and W (A2) respectively. For i = 1, 2, let the
eigenspaces of Gi be Ei(λj) and Ei(λk), for j ∈ Ji, k ∈ Ki and h ∈ Hi. Consider the
following:
H One of the following is satisfied

H.1: K1 = K2 = ∅ µj = 1 for all j ∈ J .
H.2: K1 = K2 = ∅ µj = 1 for all but one j ∈ J .
H.3: K1 = K2 = K with cardinality |K| = 1 and µj = 1 for all j ∈ J .

If the pair of graphs G1 and G2 satisfy H then we say that G1, G2 have simple
equdimensional eigenspace decomposition.

Notice that if H.1 holds then all eigenspaces are main. In addition G1 and G2

have n different eigenvalues with multiplicity 1. If H.2 holds then all eigenspaces
are main. In addition G1 and G2 have |J | different eigenvalues of which |J |−1 with
multiplicity 1 and one with multiplicity n − |J | + 1. If finally H.3 holds then all
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but one eigenspaces are main. The main eigenspaces have dimension 1 and the non
main eigenspace has dimension n− |J |.

Theorem 1. Let G1 and G2 be two cospectral graphs with adjacency matrices A1

and A2 and walk matrices W (A1) and W (A2) respectively. For i = 1, 2, let the
eigenspaces of Gi be yi(λj), Ei(λk),Fi(λh) for j ∈ Ji, k ∈ Ki and h ∈ Hi. Assume
that G1 and G2 have simple equidimensional eigenspace decomposition. Then G1

and G2 are isomorphic with A1 = πTA2π if and only if W (A1) = πTW (A2).

Proof. Assume first that G1 and G2 are isomorphic. Then, for each i = 0, . . . , n−1,
the i–th column of W (A1) is

W (A1)i = Ai−11 1 = πTAi−12 π1 = πTAi−12 1 = πTW (A2)i.

Hence W (A1) = πTW (A2).
Assume now that W (A1) = πTW (A2) for some permutation matrix π. Then, for

all i = 1, . . . , n − 1, A1A
i−1
1 1 = Ai11 = πTAi21 = πTA2ππ

TAi−12 1 = πTA2πA
i−1
1 1,

hence

(A1 − πTA2π)Ai−11 1 = 0.

In matrix form we get

(A1 − πTA2π)W (A1) = 0. (4)

Now G1 and G2 have simple equidimensional eigenspace decomposition. Assume
that condition H.1 is satisfied. It follows that W (A1) is full rank and, from equation
(4),

A1 − πTA2π = 0,

i.e. G1 and G2 are isomorphic.
Assume now that condition H.3 is satisfied. For all x ∈ E1(λk), k ∈ K we have

that xTW (A1) = 0, i.e. x ∈ ker(W (A1)T ). On the other hand, since W (A1) =
πTW (A2), we have:

xTW (A1) = xTπTW (A2)

Then πx ∈ kerW (A2), i.e

x ∈ E1(λk)⇐⇒ πx ∈ E2(λk). (5)

From W (A1) = πTW (A2), we also get

Y1D1V = W (A1) = πTW (A2) = πTY2D2V.

Then, since V is full rank,

Y1D1 = πTY2D2

and, being D1, D2 diagonal matrices,

y1(λj) = απTy2(λj), j ∈ J,

for some α ∈ IR. For i = 1, 2 and j ∈ J , ‖yi(λj)‖ = 1, then it must be α = ±1,
thus

y1(λj) = ±πTy2(λj), j ∈ J, (6)

Recall that, under H.3, the spectral decomposition of the adjacency matrix of
A1 is:

A1 =
∑
j∈J

λjy(λj)y1(λj)
T +

∑
k∈K

λkE1(λk)E1(λk)T
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Then, by conditions (6 and 5) we write:

A1 =
∑
j∈J λjπ

Ty2(λj)y2(λj)
Tπ+∑

k∈K1
λkπ

TE2(λk)E2(λk)Tπ =

πT
(∑

j∈J λjy2(λj)y2(λj)
T+∑

k∈K1
λkE2(λk)E2(λk)T

)
π =

πTA2π.

If condition H.2 is satisfied, we let j0 ∈ J be the only index of J such that µj0 > 1.
We denote by E(λj0) the vector space generated by the vectors of E(λj0) orthogonal
to 1 (see construction in the proof of proposition 2) and apply the same arguments
of case H.3 with E(λj0) in place of E(λk).

Figure 2. EBNP for n = 1, 2, 3 and 4.
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7. Average properties of dynamic graphs. Using the results on graph iso-
morphis from Section 6, we implemented a program to automatically generate the
graphs produced by the EBNP and compute the relative probabilities. We report
the results for the first steps, namely for n = 2, 3, 4 in Figure 2, for n = 5 in Figure
3 and for n = 6 in Figures 4 and 5.

Figure 3. EBNP for n = 5.

As explained in the Introduction, the emergence of typical network motifs is
one of the main phenomena in real biological networks. Focusing on triangular
subnetworks, like the FFL motif, we measure the presence of such subnetworks in
probability terms for the EBNP. We report below obtained results about the number
of edges and probabilities to have a triangular subnetwork.
m=2. We obtain only one graph with n = 3 vertices. There are no graphs with
triangles.
m=3. We obtain one graph with n = 3 vertices (with p = 0.25) and two graphs
with n = 4 vertices (one with p = 0.25 and one with with p = 0.50), for a total of
3 graphs. There is only one graph (with p = 0.25) containing one triangle.
m=4. We obtain two graphs with n = 4 vertices and three graphs with n = 5
vertices. There is only one graph (with p = 0.5) containing one triangle.
m=5. We obtain one graph with n = 4 vertices, five graphs with n = 5 vertices
and six graphs with 6 vertices, for a total of twelve graphs. There are four graphs
(with total p = 0.673) containing at least one triangle.
m=6. We obtain one graph with n = 4 vertices, five graphs with n = 5 vertices,
13 graphs with 6 vertices and 11 graphs with 7 vertices, for a total of 30 graphs.
There are 12 graphs (with total p = 0.793) containing at least one triangle.
m=7. We obtain 4 graphs with n = 5 vertices, 19 graphs with n = 6 vertices, 33
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Figure 4. EBNP for n = 6 part I.

graphs with n = 7 vertices and 23 graphs with n = 8 vertices, for a total of 79
graphs. There are 38 graphs (with total p = 0.872) containing at least one triangle.
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Figure 5. EBNP for n = 6 part II.

Let us now compare such probabilities with random graphs in the sense of Erdos-
Renyi. Typically a random graph is defined as an equiprobable graph for fixed num-
bers of vertices and edges or a graph obtained having assigned the same probability
to each possible edge. In particular, the number of vertices is fixed for a random
graph.
For the EBNP the number of vertices is not constant at each step. Already at
step three the number of vertices is either 3 or 4, while at step seven the number
of vertices ranges from 5 to 8. To produce comparable situations, we thus have to
define an average number of vertices. In the same way it is interesting measuring an
average connectivity. For doing so, we simply set the average of any quantity to be
computed according to the probabilities assigned by EBNP. A direct computation
gives the following averages: B̄(1) has 2 vertices and connectivity 1, B̄(2) has 3
vertices and connectivity 2

3 , B̄(3) has 15
4 edges and connectivity 13

16 , while B̄(4) has
124
28 and connectivity 64

70 . It is easy to see that the connectivity tends to 1 as the
number of steps increases.
Now to compare with the case of Erdos-Renyi we proceed as follows. We assume
that a random graph has number of edges, vertices and thus connectivity computed
according to the probability assigned by EBNP. Then it is possible to compute
the probability of having a triangular network using the averaged quantities. For
simplicity, we restrict to two cases: for random graphs corresponding to B̄(4) we
have a probability of ∼ 0.29 of having a triangular network, while for B̄(7) such
probability raises to ∼ 0.54. These numbers are definitely below those computed
above which are, respectively, 1

2 for B̄(4) and ∼ 0.87 for B̄(7).

8. Conclusion. We introduced a new mathematical framework to model stochastic
networks, i.e. graphs which evolve in time according to given probabilistic growth
rules. Such processes are encountered in a number of applications such as in bio-
logical networks. In particular we defined new metrics for graphs and considered
processes which are defined up to isomorphisms of graphs.
The resulting processes are on one side very natural, thus called Brownian network
processes, and on the other side fairly complicate, loosing symmetry after few steps.
Then new results for graph isomorphisms are provided, which allows to compute
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probabilities of such processes. The latter are used for a first comparison with ran-
dom graphs, in terms of probability of typical subnetworks, called network motifs
and playing a key role in biological networks.
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[10] P. Erdős and A. Renyi, On random graphs, Publ. Math. Debrecen, 6 (1959), 290–297.

[11] M. Farina, R. Findeisen, E. Bullinger, S. Bittanti, F. Allgower and P. Wellstead, Results
towards identifiability properties of biochemical reaction networks, in “Proceedings of the

45th IEEE Conference on Decision & Control,” San Diego, CA, USA, December 13–15, (2006),
2104–2109.

[12] E. M. Hagos, Some results on graph spectra, Linear Algebra Appl., 356 (2002), 103–111.

[13] S. Mangan and U. Alon, Structure and function of the feed-forward loop network motif ,
PNAS, 100 (2003), 11980–11985.

[14] M. E. J. Newman, The structure and functions of complex networks, SIAM Review, 45

(2003), 167–256.
[15] B. O. Palsson, “Systems Biology–Properties of Reconstructed Networks,” Cambridge Univer-

sity Press, Cambridge, 2006.

[16] E. D. Sontag, Molecular systems biology and control, Europ. J. of Control, 11 (2005), 396–435.
[17] D. J. Watts and S. H. Strogatz, Collective dynamics of ’small-world’ networks, Nature, 393

(1998), 440–442.

Received March 2011; revised September 2011.

E-mail address: marigo@camden.rutgers.edu

E-mail address: piccoli@camden.rutgers.edu

http://www.ams.org/mathscinet-getitem?mr=MR2259607&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2091634&return=pdf
http://dx.doi.org/10.1126/science.286.5439.509
http://dx.doi.org/10.1119/1.1538577
http://www.ams.org/mathscinet-getitem?mr=MR1974912&return=pdf
http://dx.doi.org/10.3166/ejc.8.343-359
http://dx.doi.org/10.3166/ejc.8.343-359
http://www.ams.org/mathscinet-getitem?mr=MR1966545&return=pdf
http://dx.doi.org/10.1002/rsa.10084
http://www.ams.org/mathscinet-getitem?mr=MR1324340&return=pdf
http://dx.doi.org/10.1038/msb4100204
http://dx.doi.org/10.1038/msb4100204
http://www.ams.org/mathscinet-getitem?mr=MR2271734&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR0120167&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1944680&return=pdf
http://dx.doi.org/10.1016/S0024-3795(02)00324-5
http://dx.doi.org/10.1073/pnas.2133841100
http://www.ams.org/mathscinet-getitem?mr=MR2010377&return=pdf
http://dx.doi.org/10.1137/S003614450342480
http://www.ams.org/mathscinet-getitem?mr=MR2201569&return=pdf
http://dx.doi.org/10.1038/30918
mailto:marigo@camden.rutgers.edu
mailto:piccoli@camden.rutgers.edu

	1. Introduction
	2. Basic notations and definitions
	2.1. Representation by lists
	2.2. Representation by matrices

	3. Dynamic of networks
	3.1. Random network processes

	4. Probability computation of dynamic networks
	4.1. The set N/ and the process 

	5. Decomposition by eigenspaces
	5.1. Eigenspace decomposition of IRn
	5.2. The walk matrix

	6. Isomorphism problem
	7. Average properties of dynamic graphs
	8. Conclusion
	REFERENCES

