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Abstract. This paper is concerned with an initial-boundary value problem

on bounded domains for a one dimensional quasilinear hyperbolic model of

blood flow with viscous damping. It is shown that L∞ entropy weak solu-
tions exist globally in time when the initial data are large, rough and contains

vacuum states. Furthermore, based on entropy principle and the theory of

divergence measure field, it is shown that any L∞ entropy weak solution con-
verges to a constant equilibrium state exponentially fast as time goes to infinity.

The physiological relevance of the theoretical results obtained in this paper is

demonstrated.

1. Introduction. In 2007, approximately 620,000 patients died from cardiovas-
cular diseases, the top killer in the US. Major concern has been hovering around
among researchers and clinicians alike to develop models and methods for the pre-
vention and treatment of cardiovascular diseases. A very important first step in the
research of cardiovascular diseases is to obtain qualitative and quantitative descrip-
tions of the human vascular system. To understand the fundamental mechanisms of
this complex physiological system, mathematical modeling of the human vascular
system was initiated in the 1950’s. Among the commonly used models, the hyper-
bolic PDE model in [1, 4] has attracted considerable attention in recent years. It
is well known that such a model is capable of capturing many complicated physio-
logical phenomena associated with the human vascular system. In particular, this
model has been demonstrated to be useful in fast real-time computations when
quick answers are needed in the cases when the geometry of the patient’s vessel
can be approximated by a straight, narrow compliant wall channel. The majority
of mathematical research conducted on this model has been focusing on numeri-
cal simulations and few rigorous analytical results are available [4, 18, 19]. In the
current paper, we develop a rigorous analytical framework which will further our
understanding of the quantitative and qualitative behavior of the solutions to the
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model and extract more crucial information of the underlying processes. It is urgent
to explore the structure and morphology of blood vessels and the dynamics of the
blood flow in order to develop new therapeutic strategies that target diagnosis and
prevention of cardiovascular diseases such as stroke and heart failure.

Consider the quasilinear hyperbolic PDE model simulating blood flow through
cylindrical sections of the cardiovascular system or through the network of blood
vessel [4] 

At +mx = 0, x ∈ R, t > 0,

mt +
(
α
m2

A

)
x

+
A

ρ
p(A)x = −µm

A

(1)

which describes conservation of mass and balance of axial momentum in terms of
the cross-sectional area A(x, t) and the flow rate m(x, t) = A(x, t)u(x, t), where u
denotes the averaged axial velocity vx(x, r, t) across the cross-section of the vessel
of radius R(x, t):

u(x, t) =
1

R(x, t)2

∫ R(x,t)

0

2rvx(x, r, t)dr.

In system (1), ρ > 0 denotes fluid density which is assumed to be a constant
throughout this paper. α is the ratio of the averaged axial momentum and the
momentum of the averaged flow

α =
1

R2u2

∫ R

0

2rv2xdr

and it easy to derive that α ≥ 1. µ > 0 is proportional to the viscosity of the fluid

µ =
2α

α− 1
ν

where ν is the viscosity of the fluid. Fluid pressure is denoted by p(A). It is through
this term that modeling of vessel wall mechanics comes into play (c.f. [4]). We will
be assuming

p(A) = G0

(( A
Ar

) β
2 − 1

)
where the constants Ar > 0 is the reference cross-sectional area, G0 describes the
stiffness of the vessel wall and β > 0 captures the linearity/nonlinearity of the
stress-strain response. When β = 1, one gets the well-known Law of Laplace. The
case β = 2 captures well the nonlinear pressure-radius relationship observed in
experiments [29]. In this paper, we will consider the general case β > 0.

The model (1) was derived from the three dimensional Navier-Stokes equations
of a viscous, incompressible, Newtonian fluid flow in a cylindrical tube by assuming
axially symmetric flow in a cylindrical tube with elastic walls and with small aspect
ratio (c.f. [1, 2, 3, 4, 6, 12, 13, 27]). For a detailed analysis of the conditions under
which system (1) is a good approximation of the full, three dimensional model, we
refer the readers to [5].

One of the most attracting features of (1) is its ability to describe the propagation
of wave-like solutions, such as pulse generated by heart which is one of the most
important physiological phenomena of the human vascular system. A huge body
of literature is contributed to numerical simulations of this characteristic feature of
the model [2, 3, 4, 5, 6, 12, 13, 27, 29].

Comparing to numerical simulations, breakthrough on analytical studies of the
model has been impeded. Only mild progress has been made in this direction. In a
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recent work, Čanić and Kim [4] showed that, for α = 1, when initial data are small
and smooth, smooth solutions exist globally in time subject to a pulsatile boundary
condition. The most recent findings in this area generalized this result by rigorously
studying the critical thresholds and the influence of the viscous damping on the
solutions to the Cauchy problem of the model with α is close to 1 in [18] with the new
findings: (1) For µ > 0 the class of data that gives rise to smooth solutions is richer
than that for the case µ = 0; and (2) For the physiologically relevant data that give
rise to shock formation, shock formation is delayed in time for the case when µ > 0.
Our own studies (c.f. [19]) contributed to this contemporary body of knowledge by
showing that when initial data are small and smooth, then smooth solutions to an
initial-boundary value problem of the model exist globally in time, and converge to
constant equilibrium states, determined by the initial data, exponentially as time
goes to infinity, in the biologically relevant regime α ≥ 1. Although the work cited
here provides some analytical results that target wellposedness and breakdown of
smooth solutions of the model, detailed quantitative behavior of weak solutions to
the model is completely unknown in the field.

In conservative form, system (1) reads
At +mx = 0,

mt + α
(m2

A

)
x

+ P (A)x = −µm
A
.

(2)

The pressure P (A) is determined by

P (A) ≡ P0A
γ (3)

where

P0 =
βG0

(β + 2)ρA
β/2
r

and γ =
β

2
+ 1 > 1.

System (2) is hyperbolic with two characteristic speeds

λ1 = α
m

A
−
√
α(α− 1)

m2

A2
+ P ′(A), λ2 = α

m

A
+

√
α(α− 1)

m2

A2
+ P ′(A),

and the corresponding right eigenvectors

~r1 = (1, λ1)T, ~r2 = (1, λ2)T.

Furthermore, (2) is strictly hyperbolic at the point away from vacuum where the
two characteristics coincide. This simple looking system involves three interacting
mechanisms: nonlinear convection, lower-order dissipation of damping, and reso-
nance due to vacuum. By vacuum in current context we mean A = 0. Because of
the hyperbolicity and nonlinearity of (2), it has been shown in [4, 18] that smooth so-
lutions will break down due to shock formation if the initial data are large or rough.
It is also known that, in the case for α = 1 which reduces (2) to a gas dynamics
type system, if the initial data contain vacuum states, smooth solutions will break
down even before shock formation due to resonance caused by the vacuum (see e.g.
[22, 23, 24]). In addition, although the viscous damping helps prevent development
of singularity when the initial data are small, it destroys the self-similarity of the
system, which is crucial for constructing large solutions. Therefore, when the ini-
tial data are large, rough and contain vacuum, the interaction of these mechanisms
makes the problem physically interesting and mathematically challenging.
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In this paper, we consider (2) on bounded domains with zero flow rate m = 0 on
the boundary. Without loss of generality, we consider the system on interval [0, 1]
supplemented by the initial and boundary conditions{

(m,A)(x, 0) = (m0, A0)(x) ∈ L∞([0, 1]), A0(x) ≥ 0,

m(0, t) = m(1, t) = 0, t ≥ 0.
(4)

We will study the global existence and large-time asymptotic behavior of large
entropy weak solutions (see Definition 2.1) to the initial-boundary value problem
(2)–(4). A real-world physiological scenario that corresponds to the entropy weak
solutions with zero flow rate on the boundary of the domain is the blood flow in an
ischemic area, where blood supply is inadequate due to blockage of the blood vessels
causing irregularity in the shape of the blood vessels and the dynamics of the blood
flow. It is also worthy of mentioning that the blockage of blood flow in patients is
often needed in many surgical procedures. For example, in order to perform certain
types of trauma surgery in the injured area of patients, surgical tubing is applied
to stop bleeding. Therefore, the initial-boundary value problem (2)–(4) describes
the blood flow within the blocked area.

We will first study the case α = 1 and µ > 0. In this case, (2) can be reduced to a
gas dynamics type system with a damping term where A appears in the denomina-
tor. This damping term prevents us from using the arguments in [28] to construct
global weak solutions to (2) if the initial data contain vacuum states. Indeed, in [28],
the authors constructed global entropy weak solutions to the damped compressible
Euler equations in bounded domains based on the Godunov (fractional step) scheme
and the compensated compactness theory. One of the crucial steps in [28] is to ana-
lyze the Riemann invariants associated with the non-homogeneous system in order
to derive the desired uniform L∞ bound of the approximate solutions constructed
via the Godunov scheme. However, with A standing in the denominator in the
second equation of (2) and the possible appearance of vacuum states, the modified
Riemann invariants of (2) have an obvious disadvantage that forces the size of the
discrete time step to be zero. This is an unsurpassable obstacle if one persists to use
the Godunov scheme to construct approximate solutions for (2). We also remark
that, the dissipation term −µmA was excluded from the general scenario considered
in [10], where the Godunov scheme was used to construct global entropy weak solu-
tions to the compressible Euler equations. Therefore, we turn to other methods to
tackle this problem. Among several approaches used to construct large solutions in
hyperbolic conservation/balance laws, we use the method of vanishing viscosity and
the theory of compensated compactness to prove the global existence of entropy
weak solutions to (2)–(4). Such a program has been successfully implemented in
numerous problems in the literature to study the global existence of entropy weak
solutions containing vacuum. We refer the readers to [8, 10, 11, 20, 21] for the gas
dynamics equations, and to [14] for general wave equations.

We then study the long-time behavior of the large entropy weak solutions to
(2)–(4). Based on the entropy principle, we will show that the solutions converge
to a constant state, determined by the initial data, exponentially as time goes to
infinity due to the viscous damping and boundary effects. Since the solutions do
not have any differentiability, the proof starts with the introduction of an anti-
derivative through mass conservation law in order to gain differentiability. Then,
accurate estimation of the so-called entropy inequality, application of the theory of
divergence-measure fields [7], and Poincaré’s inequality will be implemented to the
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energy inequalities to generate a desired estimate leading to the exponential decay
of the solution. An elementary lemma which is due to the convexity of the pressure
P (A) defined in (3) plays an important role in the control of singularity near vac-
uum. The appearance of A in the denominator brings considerable difficulties into
the analysis which distinguishes the problem from the case for fractional damping
and requires more elaboration. It should be pointed out that the long time behav-
ior holds for large rough solutions. Hence, regardless of the wild behavior of the
solution during intermediate time, it will eventually calm down and become stable.
This is one of the remarkable advantages of our results.

The second part of the present paper is contributed to the study of the case
α > 1 and µ > 0, which corresponds to the more physical case. Due to the change
of the intrinsic system structure, the arguments used in the case α = 1 will fail
when α > 1. For large rough solutions to (2), the intrinsic structural change caused
by the value of α is drastic. The main reason is that the explicit expressions of
the so-called Riemann invariants corresponding to the hyperbolic conservation laws
(i.e., (2) with µ = 0) are unknown when α > 1. The Riemann invariants play crucial
roles in the construction of large solutions to (2) and are fundamentally important
in the development of the compensated compactness frameworks in [10, 11, 20,
21]. This structural change indeed brings tremendous difficulty in the analysis
of the global existence of entropy weak solutions to (2). Therefore, we will not
investigate the existence of entropy weak solutions when α > 1 which is beyond
the scope of the present paper. However, we will see in Section 3 that, by re-
calculating the entropy-entropy flux pairs and properly modifying of the definition
of an entropy weak solution, and by assuming the existence of such a solution, the
constant state determined by the initial data is still a global attractor for such a
solution. Therefore, our result presents a general framework for long-time behavior
of entropy weak solutions to (2) with α > 1 and µ > 0, which may be used in other
problems.

The physiological relevance of the theoretical results obtained in this paper is
demonstrated in the following. It is well-known that the blockage of blood flow in
certain area occurs due to illness such as ischemia or due to necessary blockages in
surgical procedures. At the boundary of the blocked area the blood flow velocity
is zero which corresponds to our zero velocity boundary conditions. A question of
practical importance is: how long does it take the blood flow rate in a blocked area
to decrease to a critical level, below which the patient cannot recover? Our result
on the asymptotic behavior provides qualitative answer which helps understanding
the physiological scenarios and developing new and effective therapeutic strategies
dealing with such problems.

The rest of the paper is organized as follows. We study global existence and
asymptotic behavior of entropy weak solutions to (2)–(4) in Section 2 for the case
α = 1, µ > 0. The investigation of (2)–(4) for physiologically reasonable values of
α > 1, will be carried out in Section 3. We will conclude the paper by a discussion
in Section 4.

2. L∞ entropy weak solutions (α = 1, µ > 0). In this section, we study the
existence and the global existence and asymptotic behavior of the L∞ entropy
weak solutions to (2)–(4) with α = 1 and µ > 0 for large, rough initial data
containing vacuum. Allowing the presence of vacuum state in the initial data makes
the problem physically interesting and mathematically challenging.
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Since we are interested in the solutions to (2) for fixed values of P0 > 0 and
µ > 0, without loss of generality, we take P0 = 1

γ and µ > 0 throughout this

section. Hence, we consider
At +mx = 0,

mt +
(m2

A

)
x

+ P (A)x = −µm
A

(5)

for x ∈ [0, 1], t > 0, with the initial and boundary conditions

m|x=0 = m|x=1 = 0, t ≥ 0,

(A,m)(x, 0) = (A0,m0)(x) ∈ L∞([0, 1]),

0 ≤ A0(x) ≤M, |m0(x)| ≤MA0(x), x ∈ [0, 1],∫ 1

0

A0(x)dx = Ā > 0

(6)

for some constant M > 0 and we define u0 = m0/A0, where the last condition is
imposed to avoid the trivial case A ≡ 0.

We now give the definition of weak solutions to (5)–(6).

Definition 2.1. For every T > 0, we define an L∞ weak solution to (5)–(6) to be
a pair of bounded measurable functions ~v(x, t) =

(
A(x, t),m(x, t)

)
satisfying the

following pair of integral identities:∫ T

0

∫ 1

0

(Aψt +mψx) dx dt+

∫ 1

0

A0ψ|t=0dx = 0,

∫ T

0

∫ 1

0

(
mψt +

(m2

A
+ P (A)

)
ψx − µ

m

A
ψ

)
dx dt+

∫ 1

0

m0ψ|t=0dx = 0

for all ψ ∈ C∞(IT ) satisfying ψ(x, T ) = 0 for 0 ≤ x ≤ 1 and ψ(0, t) = ψ(1, t) = 0
for t ≥ 0, where IT = (0, 1)× (0, T ), and m

A is bounded when A→ 0. Moreover, the
initial and boundary conditions in (6) are satisfied in the sense of trace and section
as defined in [14].

An interesting feature of nonlinear hyperbolic conservation/balance laws is that
when weak solution is considered, the uniqueness is usually lost. In order to select
the physically relevant solutions, one often imposes entropy admissible conditions.
We now define the entropy and entropy flux pairs.

Definition 2.2. A pair of mappings η : R2 → R and q : R2 → R is called an

entropy-entropy flux pair for the hyperbolic system of balance laws ~vt + ~f(~v)x =
~g(~v) (v ∈ R2) if it satisfies the following equation

∇q = ∇η∇~f.

Let η̃(A,m/A) = η(A,m). If η̃(0, u) = 0, then η is called a weak entropy. Among
all entropies, the most natural entropy is the so-called mechanical energy

ηe(A,m) =
m2

2A
+

Aγ

γ(γ − 1)

which plays a very important role in getting estimates from entropy dissipation. It
is easy to check that ηe is a weak and convex entropy. Using Definition 2.2, we now
give the definition of L∞ entropy weak solutions to (5)–(6).
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Definition 2.3. The weak solution ~v(x, t) =
(
A(x, t),m(x, t)

)
defined in Definition

2.1 is said to be entropy admissible if for any convex entropy η and the associated
entropy flux q, the following entropy inequality holds

ηt + qx + ηmµ
m

A
≤ 0 (7)

in the sense of distribution.

The following two theorems are the main results of this section. The first theorem
gives the global existence of L∞ entropy weak solutions to (5)–(6).

Theorem 2.4. Suppose that the initial data (A0,m0) ∈ L∞([0, 1]) satisfy the con-
ditions

0 ≤ A0(x) ≤M, A0 6≡ 0, |m0(x)| ≤MA0(x)

for some positive constant M . Then, for γ > 1, the initial-boundary value problem
(5)–(6) has a global entropy admissible weak solution (A(x, t),m(x, t)), as defined
in Definitions 2.1–2.3, satisfying the following estimates:

0 ≤ A(x, t) ≤ C1, |m(x, t)| ≤ C1A(x, t) a.e. in [0, 1]× [0,+∞)

for a constant C1 > 0 which is independent of time.

Concerning the long-time behavior of the solution obtained in Theorem 2.4, we
have

Theorem 2.5. Suppose

∫ 1

0

A0(x)dx = Ā > 0. Let (A,m) be any L∞ entropy weak

solution to (5)–(6) defined in Definitions 2.1–2.3, satisfying the estimates

0 ≤ A(x, t) ≤ C1 <∞, |m(x, t)| ≤ C1A(x, t), a.e. in [0, 1]× [0,+∞)

for some time-independent constant C1 > 0. Then, there exist constants C2, δ > 0
depending on γ, Ā, C1, and initial data such that∥∥(A− Ā,m)(·, t)

∥∥2
L2([0,1])

≤ C2e
−δt as t→∞.

The proof of Theorem 2.4 is in the spirit of [8, 11, 14]. We construct the ap-
proximate solutions of (5)–(6) by the method of vanishing viscosity. The uniform
ε-independent upper bound and the ε, T -dependent lower bound of the approxi-
mate solutions are established by using the invariant region theory [9, 25] and the
arguments in [8, 11] respectively, which lead to the global existence of smooth ap-
proximations for any fixed diffusion rate ε > 0. The compensated compactness
frameworks established in [10, 11, 20, 21] are then applied to the sequence of ap-
proximate solutions to obtain the strong convergence of the approximate solutions
in order to get a global weak entropy solution to (5)–(6). The initial and boundary
conditions are satisfied in the sense of trace and section which are clearly stated in
[14], see also [15, 28, 30], and we will omit the details.

In the proof of Theorem 2.5, an elementary lemma, which is due to the convex-
ity of the pressure P (A) defined in (3), plays an important role in the control of
singularities near a vacuum state. Due to the roughness of the solution, elementary
energy estimates cannot be performed in this situation. Instead, we will start the
proof with defining an anti-derivative through the mass conservation in order to
gain differentiability. The first step of energy estimate will be carried out on the
equation satisfied by the anti-derivative, which is a nonlinear wave equation with
source terms. Then the entropy inequality satisfied by the weak solution will be
implemented in order to deal with nonlinearities in the resulting energy inequality
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obtained from the first step. Although the initial and boundary conditions are sat-
isfied in the weak sense, the theory of divergence measure fields [7] guarantees the
eligibility of the calculations. Finally, Poincaré’s inequality on bounded domains
will be utilized to yield the exponential decay of the solution.

2.1. Global existence.
There are several approaches to construct entropy weak solutions to (5)–(6). Our

proof is based on the approach of viscosity approximation as in [8, 11]. To construct
global L∞ entropy weak solutions to (5), the following program is to be carried out:

• Construct smooth approximate solutions via viscous perturbations of the hy-
perbolic system and obtain a uniform ε-independent L∞ upper bound and a
(ε, T )-dependent lower bound of the sequence of approximate solutions, to get
global smooth solutions to the viscous equations.

• Show that ηt(~v
ε)+qx(~vε) is compact in H−1loc and apply the div-curl lemma in

[26] to reduce the Young measure associated with the flux function to Dirac
measure, to conclude that the sequence converges strongly in the L∞ topology.

The first bullet can be accomplished by applying standard theory on parabolic
equations together with the invariant region theory [9, 25]. When γ > 1, the
compensated compactness frameworks established in [10, 11, 20, 21] are sufficient
to conclude the second bullet.

Step 1. Construction of approximate solutions and L∞ bounds. Following the
general procedure of vanishing viscosity in [8, 11, 14], let us consider the artificial
viscous approximation to the original hyperbolic system (5)

Aεt +mε
x = εAεxx,

mε
t +

( (mε)2

Aε

)
x

+ P (Aε)x = −µm
ε

Aε
+ εmε

xx

(8)

where x ∈ [0, 1], t > 0 and ε > 0, with the initial and boundary conditions:
mε|x=0 = mε|x=1 = 0,

Aεx|x=0 = Aεx|x=1 = 0;

(Aε,mε)(x, 0) = (Aε0,m
ε
0)(x)

(9)

where the initial data satisfy

Aε0 = Bε0 + ε, Bε0 ∈ C∞0 ([0, 1]), 0 ≤ Bε0(x) ≤ ‖A0‖L∞ ,
mε

0 = Aε0u
ε
0, uε0 ∈ C∞0 ([0, 1]), |uε0(x)| ≤ ‖u0‖L∞

(10)

and Bε0 converges to A0 in the weak∗ topology of L∞([0, 1]) and uε0 converges to
u0 in the strong topology of L2([0, 1]) as ε → 0. We remark that, the parabolic
boundary conditions in (9) are compatible with the hyperbolic boundary condition
(4) according to [14], and (4) will be recovered in the limiting process as ε →
0. Under this setting, it holds that (Aε0,m

ε
0) converges to (A0,m0) in the weak∗

topology of L∞([0, 1]) as ε→ 0.
The corresponding Riemann invariants of the hyperbolic system associated with

(8) are

wε =
mε

Aε
+

(Aε)θ

θ
, zε =

mε

Aε
− (Aε)θ

θ
, where θ =

γ − 1

2
.

Due to the dissipative structure of (8) and the theory of invariant region by Chueh,
Conley and Smoller [9] and Proposition 4.2 by Marcati and Rubino [25], the set

Σ = {(Aε,mε) | 0 ≤ wε − zε, zε ≥ zε0, wε ≤ wε0}
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is an invariant region for (8).
From the invariant region Σ, we derive

0 ≤ Aε(x, t) ≤M1, |mε(x, t)| ≤M1A
ε(x, t) (11)

for some constant M1 > 0 independent of ε. Hence, the uniform ε-independent L∞

upper bound of the approximate solutions is achieved.
The local smooth solutions of (8)–(9) was obtained in [8]. In order to extend

any local smooth solution of (8)–(9) to a global one, we need to show that Aε is
bounded away from zero, i.e.,

Aε(x, t) ≥ δ(ε, T ) > 0, ∀(x, t) ∈ (0, 1)× (0, T ) (12)

where T > 0 is the lifespan of any local smooth solution, and δ(ε, T ) > 0 is a
constant depending on ε and T .

The proof of (12) is in the spirit of [8]. Consider

Aεt + (Aεuε)x = εAεxx (13)

where uε(x, t) is a known function (local smooth solution to the approximate prob-
lem) satisfying |uε(x, t)| ≤ M1, see (11). Multiplying (13) by v′(Aε) with v(Aε) =
1/Aε we obtain

vt − εvxx = (uεv)x + v′′(Aε)(AεuAεx − ε(Aεx)2). (14)

Notice that the last term on the RHS of (14) satisfies

v′′(Aε)(AεuAεx − ε(Aεx)2) = 2(Aε)−3(AεuAεx − ε(Aεx)2) ≤ (uε)2

2Aεε
=
v(uε)2

2ε
.

Then it holds that

vt − εvxx ≤ (uεv)x +
v(uε)2

2ε
.

By the comparison principle, we know that the solution to (14) is dominated by the
solution to the following initial-boundary value problem with homogeneous Neu-
mann boundary conditions

gt − εgxx = (uεg)x +
g(uε)2

2ε
,

g(x, 0) = v(Aε0(x)),

gx|x=0 = gx|x=1 = 0.

(15)

Therefore, to show (12), all we have to do is to prove that

g(x, t) ≤ N(ε, T ), ∀ (x, t) ∈ [0, 1]× [0, T ] (16)

for some positive constant N(ε, T ) depending on ε and T .
In view of the initial condition (10), we know that 0 < g(x, 0) = v(Aε0(x)) ≤ 1/ε.

From local existence results of (15), we know that there must be a t0 ∈ (0, T ], such
that

sup
0≤t≤t0

‖g(·, t)‖L∞(0,1) ≤ 3/ε. (17)
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Following the arguments in Section 4 of [8], we consider the operator L in Gτ =
L∞([t0, t0 + τ ]× [0, 1]), with t0 + τ ≤ T , given by

L(h) =Kε(·, t− t0) ∗ g̃(·, t0) +

∫ t

t0

Kε(·, t− s) ∗ h̃(ūε)2

2ε
(·, s)ds

−
∫ t

t0

∂xK
ε(·, t− s) ∗ (ūεh̃)(·, s)ds

where Kε is the fundamental solution of the heat equation wt = εwxx, that is

Kε(x, t) =
1√

4πεt
e−

x2

4εt , ‖Kε‖1 = 1, ‖Kε
x‖1 =

1√
πεt

where ξ̃ denotes the even, periodic (with period 2) extension of a function ξ : [0, 1]→
R satisfying ξx|x=0 = ξx|x=1 = 0, that is

ξ̃(x) = ξ(x), 0 ≤ x ≤ 1,

ξ̃(−x) = ξ̃(x), x ∈ R,

ξ̃(x+ 2n) = ξ̃(x), x ∈ R, n ∈ Z

and ξ̄ denotes the odd, periodic (with period 2) extension of a function ξ : [0, 1]→ R
satisfying ξ|x=0 = ξ|x=1 = 0, that is

ξ̄(x) = ξ(x), 0 ≤ x ≤ 1,

ξ̄(−x) = −ξ̄(x), x ∈ R,
ξ̄(x+ 2n) = ξ̄(x), x ∈ R, n ∈ Z.

The operator L is a contraction mapping in Gτ if

2 max
{M2

1

2
,

2M1√
π
, 1
}√τ

ε
< 1

where M1 is a constant such that |uε| ≤M1. Now we take

τ0 =
ε

9M̄2
> 0 (18)

where

M̄ = 2 max
{M2

1

2
,

2M1√
π
, 1
}
.

Consider the problem (15) on [0, t0 + τ0]. Let

G(t0) = sup
0≤t≤t0

‖g(·, t)‖L∞(0,1).

Then from (17), we have

G(t0) ≤ 3

ε
. (19)

We now show that there exists a constant N(t0, τ0) > G(t0) such that, if h ∈ Gτ0
and satisfies

‖h(·, t)‖L∞(0,1) ≤ N(t0, τ0), 0 ≤ t ≤ t0 + τ0, (20)
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then L(h) also satisfies the same estimate. Indeed,

‖L(h)(·, t)‖L∞(0,1) ≤ G(t0) +
M2

1

2
N(t0, τ0)

τ0
ε

+
2M1√
π
N(t0, τ0)

√
τ0
ε

≤ G(t0) + M̄N(t0, τ0)

√
τ0
ε

= G(t0) +
1

3
N(t0, τ0)

where we have used (18). Therefore, we conclude that the assertion (20) is true by
choosing

N(t0, τ0) = 3G(t0).

Since L is a contraction mapping in Gτ0 , the estimate (20) must also hold for its
fixed point. It is easy to see that its fixed point is the solution of equation (15).

Next, observe that the constant M̄ is independent of ε and τ0. Then, by a
bootstrap argument one can show that

‖g(·, t)‖L∞ ≤ 3nG(t0), ∀ 0 ≤ t ≤ T

where n = dT−t0τ0
e. Recalling (19), we then have

‖g(·, t)‖L∞ ≤
3n+1

ε
, ∀ 0 ≤ t ≤ T

which implies that

Aε(x, t) =
1

v(x, t)
≥ 1

g(x, t)
≥ ε

3n+1
> 0, (x, t) ∈ [0, 1]× [0, T ].

Thus by choosing δ(ε, T ) = ε
3n+1 , (12) is proved.

This, together with (11), gives

0 < Aε(x, t) ≤M1, |mε(x, t)| ≤M1A
ε(x, t). (21)

The global existence of smooth solutions to (8)–(9) follows from the above local
existence result and the a priori estimate (21). This completes the first step.

Step 2. H−1loc compactness and strong convergence. In order to obtain global
solutions to (5), it suffices to show the strong convergence of the sequence of ap-
proximate solutions (Aε,mε) as ε → 0, extracting to a subsequence if necessary.
However, with the uniform L∞ estimate of the approximate solutions in hand, one
can only guarantee the convergence in the weak∗ topology, which is insufficient to
handle the nonlinear terms in (5). One then applies the compensated compactness
frameworks established in [10, 11, 20, 21] for the gas dynamics equations to conclude
that there exist functions (A,m)(x, t) ∈ L∞((0, 1)× (0,∞)) such that

(Aε,mε)→ (A,m) a.e. in (0, 1)× (0,∞) as ε→ 0,

and satisfy (c.f. (21))

0 ≤ A(x, t) ≤M1, |m(x, t)| ≤M1A(x, t), a.e. in (0, 1)× (0,∞).

One also defines u(x, t) = m(x, t)/A(x, t) a.e.. It is straightforward to verify that
(A,m) is a weak solution to the original system (5) and satisfies the entropy inequal-
ity (7) in the sense of distribution. Furthermore, the solution satisfies the initial
and boundary conditions in the sense of trace and section, see [14, 15, 28, 30]. This
completes the proof of Theorem 2.4.
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2.2. Long-time behavior. We now study the long-time behavior of the entropy
weak solution obtained in Theorem 2.4. The following lemma will play an important
role in controlling the singularity of the solution near a vacuum state (c.f. [16, 28]).

Lemma 2.6. Let 0 ≤ A ≤ Λ < ∞ and 0 < a < Ā < ∞. Then there are positive
constants C3, C4, C5 depending only on Λ, a and Ā such that

(1) C3(A− Ā)2 ≤ P (A)− P (Ā)− P ′(Ā)(A− Ā);

(2) C4(A− Ā)2 ≤
[
P (A)− P (Ā)

]
(A− Ā);

(3) P (A)− P (Ā)− P ′(Ā)(A− Ā) ≤ C5

[
P (A)− P (Ā)

]
(A− Ā)

where P is defined in (3).

The lemma is easily proved by using the convexity of P and Ā > a > 0.
We now turn to the proof of Theorem 2.5. The proof follows closely the corre-

sponding one in [28], carried out for a different damping term. We separate the
proof into several steps.

Step 1. Definition of an anti-derivative and reformulation. Since (A,m) is
conjectured to converge to (Ā, 0), we set

w = A− Ā
which satisfy 

wt +mx = 0,

mt +

(
m2

A

)
x

+
[
P (A)− P (Ā)

]
x

+ µ
m

A
= 0

(22)

where x ∈ [0, 1], t > 0, and ∫ 1

0

w(x, t)dx = 0.

Define anti-derivative

y = −
∫ x

0

w(σ, t)dσ

which implies that

yx = −w = Ā−A, yt = m. (23)

Since ∫ 1

0

A(x, t)dx =

∫ 1

0

A0(x)dx = Ā

we have

y(0) = y(1) = 0.

Therefore the second equation of (22) turns into

ytt +

(
y2t
A

)
x

+
[
P (A)− P (Ā)

]
x

+ µ
yt
A

= 0. (24)

We shall work on (24) in what follows.
Step 2. Preliminary estimates. Taking L2 inner product of (24) with y, we have

d

dt

(∫ 1

0

ytydx

)
−
∫ 1

0

y2t dx+

∫ 1

0

[
P (A)− P (Ā)

]
(A− Ā)dx

=

∫ 1

0

y2t
A
yxdx− µ

∫ 1

0

yyt
A
dx.
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Since by the definition of entropy weak solutions, Definitions 2.1–2.3, A, u = m/A,
m = yt ∈ L∞[0, 1] and yx = Ā−A, we have

d

dt

(∫ 1

0

ytydx

)
+

∫ 1

0

[
P (A)− P (Ā)

]
(A− Ā)dx =

∫ 1

0

y2t
Ā

A
dx−µ

∫ 1

0

yyt
A
dx. (25)

Since 0 ≤ A ≤ C1, the first term on the RHS of (25) is estimated in the following∫ 1

0

y2t
Ā

A
dx =

∫ 1

0

y2t
ĀA

A2
dx ≤

∫ 1

0

ĀC1
y2t
A2

dx. (26)

The second term on the RHS of (25) is estimated by Cauchy-Schwartz inequality
as ∣∣∣∣−µ∫ 1

0

yyt
A
dx

∣∣∣∣ ≤ µ2

C4

∫ 1

0

y2t
A2

dx+
C4

4

∫ 1

0

y2dx, (27)

where C4 is given in Lemma 2.6.
Combining (25)–(27), we then have

d

dt

(∫ 1

0

ytydx

)
+

∫ 1

0

[
P (A)− P (Ā)

]
(A− Ā)dx

≤
∫ 1

0

(
ĀC1 +

µ2

C4

)
y2t
A2

dx+
C4

4

∫ 1

0

y2dx.

(28)

By splitting the second term on the LHS of (28) into two parts and using Lemma
2.6 (2), we have

C4

2

∫ 1

0

(A− Ā)2dx+
1

2

∫ 1

0

[
P (A)− P (Ā)

]
(A− Ā)dx

≤
∫ 1

0

[
P (A)− P (Ā)

]
(A− Ā)dx.

(29)

Since y(0) = y(1) = 0 and yx = Ā−A, by Poincaré’s inequality, we have

C4

2

∫ 1

0

y2dx ≤ C4

2

∫ 1

0

(A− Ā)2dx. (30)

Plugging (30) into (29), we have

C4

2

∫ 1

0

y2dx+
1

2

∫ 1

0

[
P (A)− P (Ā)

]
(A− Ā)dx

≤
∫ 1

0

[
P (A)− P (Ā)

]
(A− Ā)dx,

(31)

which, together with (28), gives

d

dt

(∫ 1

0

ytydx

)
+
C4

4

∫ 1

0

y2dx+
1

2

∫ 1

0

[
P (A)− P (Ā)

]
(A− Ā)dx

≤
∫ 1

0

(
ĀC1 +

µ2

C4

)
y2t
A2

dx.

(32)

Step 3. Estimates derived from entropy dissipation. In order to deal with the
nonlinearity on the RHS of (32), we now use the entropy inequality (7), rather than
the usual energy method. Let

ηe =
m2

2A
+
P (A)

γ − 1
, qe =

m3

2A2
+
Aγ−1m

γ − 1
(33)
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be the mechanical energy and the related flux. We define

η∗ = ηe −
1

γ − 1
P ′(Ā)(A− Ā)− 1

γ − 1
P (Ā).

Thus, by the definition of entropy weak solutions, (ηe, qe) satisfies the entropy
inequality (7) in the sense of distribution. Then it holds

η∗,t +
1

γ − 1
[P ′(Ā)(A− Ā)]t + qe,x + µ

m2

A2
≤ 0

in the sense of distribution.
Since Ā is a constant, we get

η∗,t +
P ′(Ā)

γ − 1
(A− Ā)t + qe,x + µ

m2

A2
≤ 0.

By the conservation of mass and theory of divergence-measure fields [7], we have

d

dt

(∫ 1

0

η∗dx

)
+ µ

∫ 1

0

m2

A2
dx ≤ 0,

i.e.,

d

dt

(∫ 1

0

η∗dx

)
+ µ

∫ 1

0

y2t
A2

dx ≤ 0. (34)

Choosing

K = max

{
2C1,

γ − 1

C3
,

(
ĀC1 +

µ2

C4
+ 1

)
µ−1

}
and adding (32) to (34)×K, we have

d

dt

(∫ 1

0

(Kη∗ + yyt)dx

)
+
C4

4

∫ 1

0

y2dx

+
1

2

∫ 1

0

[
P (A)− P (Ā)

]
(A− Ā)dx+

∫ 1

0

(
Kµ− ĀC1 −

µ2

C4

)
y2t
A2

dx ≤ 0.

(35)

Step 4. Exponential decay estimates. Our next goal is to compare the terms
inside the temporal derivative with ‖yt‖2L2 and ‖A − Ā‖2L2 , and with the diffusion
terms in order to show the exponential decay of the solution.

Clearly, by using the definition of η∗, Lemma 2.6 (1), (23), and the upper bound
of A, we have

∫ 1

0

(Kη∗ + yyt)dx ≥
∫ 1

0

(
K

2C1
y2t + yyt +

KC3

γ − 1
(A− Ā)2

)
dx.
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By the definition of the constant K and the Poincaré’s inequality, we have∫ 1

0

(
K

2C1
y2t + yyt +

KC3

γ − 1
(A− Ā)2

)
dx

=

∫ 1

0

(
K

4C1
y2t +

K

4C1
y2t + yyt +

KC3

2(γ − 1)
(A− Ā)2 +

KC3

2(γ − 1)
(A− Ā)2

)
dx

≥
∫ 1

0

(
K

4C1
y2t +

1

2
y2t + yyt +

KC3

2(γ − 1)
y2 +

KC3

2(γ − 1)
(A− Ā)2

)
dx

≥
∫ 1

0

(
K

4C1
y2t +

1

2
y2t + yyt +

1

2
y2 +

KC3

2(γ − 1)
(A− Ā)2

)
dx

=

∫ 1

0

(
K

4C1
y2t +

1

2
(yt + y)2 +

KC3

2(γ − 1)
(A− Ā)2

)
dx.

Therefore, we have∫ 1

0

(Kη∗ + yyt)dx ≥
∫ 1

0

(
K

4C1
y2t +

1

2
(yt + y)2 +

KC3

2(γ − 1)
(A− Ā)2

)
dx. (36)

On the other hand, Lemma 2.6 (3) implies∫ 1

0

K

γ − 1

[
P (A)− P (Ā)− P ′(Ā)(A− Ā)

]
dx

≤ C5K

γ − 1

∫ 1

0

[
P (A)− P (Ā)

]
(A− Ā)dx.

Moreover, since∫ 1

0

(
K

2A
y2t + yyt

)
dx ≤

∫ 1

0

(
C1K

2A2
y2t +

1

2
y2 +

1

2
y2t

)
dx

≤
∫ 1

0

(
C1K

2A2
y2t +

1

2
y2 +

C2
1

2A2
y2t

)
dx

=

∫ 1

0

(
C1(K + C1)

2

y2t
A2

+
1

2
y2
)
dx,

we have ∫ 1

0

(Kη∗ + yyt) dx

≤C6

(∫ 1

0

y2dx+

∫ 1

0

[
P (A)− P (Ā)

]
(A− Ā)dx+

∫ 1

0

y2t
A2

dx

)
≤C6

C7

(
C4

4

∫ 1

0

y2dx+
1

2

∫ 1

0

[
P (A)− P (Ā)

]
(A− Ā)dx

+

∫ 1

0

(
Kµ− ĀC1 −

µ2

C4

)
y2t
A2

dx

)
(37)

where

C6 = max

{
C5K

γ − 1
,
C1(K + C1)

2
,

1

2

}
,

C7 = min

{
C4

4
,

1

2
,

(
Kµ− ĀC1 −

µ2

C4

)}
.
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Let C8 = C7/C6. We then get from (37) that

C8

∫ 1

0

(Kη∗ + yyt) dx ≤
(
C4

4

∫ 1

0

y2dx+
1

2

∫ 1

0

[
P (A)− P (Ā)

]
(A− Ā)dx

+

∫ 1

0

(
Kµ− ĀC1 −

µ2

C4

)
y2t
A2

dx

)
which, together with (35), implies that

d

dt

∫ 1

0

(Kη∗ + yyt) dx+ C8

∫ 1

0

(Kη∗ + yyt) dx ≤ 0.

Hence, we have ∫ 1

0

(Kη∗ + yyt) dx ≤ C9 exp{−C8t}.

By virtue of (36), we finally get∫ 1

0

(
m2 + (A− Ā)2

)
dx ≤ C10 exp{−C8t}.

This completes the proof of Theorem 2.5.

3. The case α > 1 and µ > 0. This section is dedicated to the study of the
case α > 1 and µ > 0. Physically speaking, this case is more realistic compared
with (5). From the mathematical point of view, this case is significantly different
from (5) due to the following reasons. When α > 1, the Riemann invariants change
expressions (in fact, the explicit expressions of the Riemann invariants are still
unknown), which brings tremendous difficulties in the analysis of global existence
of entropy weak solutions. Moreover, the functions (ηe, qe) given in (33) are no
longer an entropy-entropy flux pair for (5) when α > 1. Hence, one has to seek new
entropy-entropy flux pairs in order to study the long-time behavior of L∞ entropy
weak solutions.

We consider the following initial-boundary value problem:
At +mx = 0,

mt + α
(m2

A

)
x

+ P (A)x = −µm
A

(38)

where x ∈ [0, 1], t > 0 and

m|x=0 = m|x=1 = 0;

(A,m)(x, 0) = (A0,m0)(x) ∈ L∞([0, 1]),

0 < N0 ≤ A0(x) ≤ N1, |m0(x)| ≤ N1A0(x),∫ 1

0

A0(x)dx = A∗ > 0

(39)

where α > 1 and µ > 0. Notice that we require A0(x) to be bounded away from
zero in this case.

When α > 1, the framework given in Section 2 is no longer valid for (38). First,
it has been demonstrated in [18] that if α > 1 is close to 1, then the associated
Riemann invariants of (38) take the form

wα>1 = wα=1 +O(α− 1)
u

A
, zα>1 = zα=1 +O(α− 1)

u

A
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where wα=1 and zα=1 are the Riemann invariants associated with (5). We remark
that the explicit expressions of wα=1 and zα=1 play crucial roles in the invariant
region theory and the compensated compactness frameworks established in [9] and
[10, 11, 20, 21] respectively. The arguments therein depend strongly on the analysis
of the structure of the region enclosed by the curves determined by wα=1 and
zα=1 in the phase plane. When the expressions of the Riemann invariants change,
especially, when the explicit expressions of the Riemann invariants are unknown, we
are uncertain whether the invariant region theory and the compensated compactness
frameworks still work or not. The slight difference in (38) indeed brings tremendous
difficulty in the analysis of L∞ entropy weak solutions. Therefore, we will not
investigate the existence of entropy weak solutions of the system (38) in the present
paper. Our goal is to establish a general framework of long-time behavior of such
solutions assuming their existence.

Second, since the functions given in (33) are no longer an entropy-entropy flux
pair for (38), we construct the entropy-entropy flux pairs for (38)

(η(i)e , q(i)e ) =

(
m2

2Adi
+

Aγ−di+1

(γ − di)(γ − di + 1)
,

α

1 + di

m3

A1+di
+
Aγ−di

γ − di
m

)
, (40)

where i = 1, 2 and

d1 =
4α− 1 +

√
16α2 − 16α+ 1

2
> 1, d2 =

4α− 1−
√

16α2 − 16α+ 1

2
< 1. (41)

Furthermore, by direct calculation one can show that η
(2)
e is a convex entropy uni-

versally, while the convexity of η
(1)
e depends on the range of the solution. We

remark that, when α = 1, (η
(2)
e , q

(2)
e ) reduces to the usual mechanical energy and

its associated flux, i.e., (33).
We shall use the new entropy-entropy flux pairs to redefine the entropy weak

solutions to (38). Since η
(2)
e is a convex entropy, it is natural to define the L∞

entropy weak solutions to (38)–(39) in a similar fashion as in Definitions 2.1–2.3 as
follows.

Definition 3.1. A pair of bounded measurable functions ~v(x, t) =
(
A(x, t),m(x, t)

)
satisfying

0 < Λ1 ≤ A(x, t) ≤ Λ2, |m(x, t)| ≤ Λ2A(x, t), 0 < Λ1 ≤ Λ2 (42)

is said to be an L∞ entropy weak solution to (38)–(39) if the two equations in (38)
are satisfied in the sense of distribution and the initial and boundary conditions
are satisfied in the sense of trace and section. Moreover, the following entropy
inequality holds

η
(2)
e,t + q(2)e,x + µ

m

A
∂mη

(2)
e ≤ 0

in the sense of distribution, where η
(2)
e is given in (40).

Before stating our result, we need to redevelop Lemma 2.6 for the new entropy

η
(2)
e . For this purpose, let

R(A) =
Aγ−d2+1

(γ − d2)(γ − d2 + 1)
.

Then we have
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Lemma 3.2. Let 0 ≤ A ≤ Λ̄ < ∞ and 0 < b < A∗ < ∞. There are positive
constants D1, D2 depending only on Λ̄, b, γ, d2 and A∗ such that

(1) R(A)−R(A∗)−R′(A∗)(A−A∗) ≤ D1

[
P (A)− P (A∗)

]
(A−A∗),

(2) D2(A−A∗)2 ≤ R(A)−R(A∗)−R′(A∗)(A−A∗)

where P (A) = Aγ/γ.

Proof. Consider

Γ(A) =
2γ

Ad2∗ (γ − d2 + 1)

[
P (A)− P (A∗)

]
(A−A∗)

−
[
R(A)−R(A∗)−R′(A∗)(A−A∗)

]
.

Clearly, Γ(A) is continuous for A ≥ 0. Since

Γ(0) =
Aγ−d2+1
∗

γ − d2 + 1
> 0,

there exists h ∈ (0, Λ̄) such that

Γ(A) >
1

2
Γ(0) > 0, for A ∈ [0, h].

For Λ̄ ≥ A > h > 0, we see that

P ′(h)(A−A∗)2 ≤
[
P (A)− P (A∗)

]
(A−A∗)

and

R(A)−R(A∗)−R′(A∗)(A−A∗) ≤


R′′(h)

2
(A−A∗)2, d2 < γ ≤ d2 + 1,

R′′(Λ̄)

2
(A−A∗)2, γ > d2 + 1.

Choosing

D1 = max

{
γ

A∗
,
R′′(h)

2P ′(h)
,
R′′(Λ̄)

2P ′(h)

}
,

we thus have

R(A)−R(A∗)−R′(A∗)(A−A∗) ≤ D1

[
P (A)− P (A∗)

]
(A−A∗).

The second inequality can be found in [16]. This completes the proof of Lemma
3.2.

We then have the following main results of this section.

Theorem 3.3. Let (A,m) be any L∞ entropy weak solution of the initial-boundary
value problem (38)–(39) defined in Definition 3.1. Then, there exist constants
D3, δ > 0 depending on γ,A∗,Λ1,Λ2, α, µ, and initial data such that∥∥(A−A∗, m)(·, t)∥∥2L2([0,1])

≤ D3e
−δt. (43)

Proof. The proof is in the spirit of the proof of Theorem 2.5. We only give a sketch
here.

Following the arguments in the first step of the proof of Theorem 2.5, we arrive
at

ytt + α
(m2

A

)
x

+
[
P (A)− P (A∗)

]
x

+ µ
yt
A

= 0. (44)
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Taking L2 inner product of (44) with y, we have

d

dt

∫ 1

0

ytydx−
∫ 1

0

y2t dx+

∫ 1

0

[
P (A)− P (A∗)

]
(A−A∗)dx

=α

∫ 1

0

m2

A
yxdx− µ

∫ 1

0

yyt
A
dx

which gives, by the definition of yx

d

dt

∫ 1

0

ytydx+ (α− 1)

∫ 1

0

y2t dx+

∫ 1

0

[
P (A)− P (A∗)

]
(A−A∗)dx

=

∫ 1

0

y2t
αA∗
A

dx− µ
∫ 1

0

yyt
A
dx.

(45)

Since A ≤ Λ2, for the first term on the RHS of (45), we have∫ 1

0

y2t
αA∗
A

dx =

∫ 1

0

y2t
αA∗A

d2

A1+d2
dx

≤ αA∗Λd22
∫ 1

0

y2t
A1+d2

dx.

(46)

Since d2 < 1 and 0 < Λ1 ≤ A, we have∣∣∣∣− µ∫ 1

0

yyt
A
dx

∣∣∣∣ = µ

∣∣∣∣ ∫ 1

0

yytA
d2−1

2

A
1+d2

2

dx

∣∣∣∣
≤ µΛ

d2−1
2

1

∣∣∣∣ ∫ 1

0

yyt

A
1+d2

2

dx

∣∣∣∣
≤ µ2Λd2−11

C4

∫ 1

0

y2t
A1+d2

dx+
C4

4

∫ 1

0

y2dx

(47)

where C4 is given in Lemma 2.6.
Combining (45)–(47), we then have

d

dt

∫ 1

0

ytydx+ (α− 1)

∫ 1

0

y2t dx+

∫ 1

0

[
P (A)− P (A∗)

]
(A−A∗)dx

≤
(
αA∗Λ

d2
2 +

µ2Λd2−11

C4

)∫ 1

0

y2t
A1+d2

dx+
C4

4

∫ 1

0

y2dx.

(48)

Following the arguments in (29)–(32), we then have

d

dt

∫ 1

0

ytydx+
C4

4

∫ 1

0

y2dx+ (α− 1)

∫ 1

0

y2t dx

+
1

2

∫ 1

0

[
P (A)− P (A∗)

]
(A−A∗)dx

≤
(
αA∗Λ

d2
2 +

µ2Λd2−11

C4

)∫ 1

0

y2t
A1+d2

dx.

(49)

Let

η∗ = η(2)e −
1

γ − 1
R(A∗)−

1

γ − 1
R′(A∗)(A−A∗).

Then, similar to (34), we have

d

dt

∫ 1

0

η∗dx+

∫ 1

0

y2t
A1+d2

dx ≤ 0. (50)



644 TONG LI AND KUN ZHAO

By combining (49) and (50) and following the arguments in the proof of Theorem
2.5, one can deduce (43). We omit the details here. This completes the proof of
Theorem 3.3.

Remark When the solution contains vacuum states, the situation becomes so-
phisticated. The framework of long-time behavior will be destroyed by the energy

estimate (47) since d2 < 1 and A
d2−1

2 cannot be controlled when A → 0. On the
other hand, we calculate

det(D2η(1)e ) =
d1(1− d1)

2
m2A−2d1−2 +Aγ−2d1−1.

It is easy to see that when d1 > 1, det(D2η
(1)
e ) may change sign if one still considers

the usual range of such kind of solutions given by 0 ≤ A(x, t) ≤ C and |m(x, t)| ≤
CA(x, t). Therefore, η

(1)
e may not be utilized to define such solutions. However, it

is interesting to observe that if one considers such a solution satisfying

0 ≤ A(x, t) ≤ Λ3, |m(x, t)| ≤
√

2√
d1(d1 − 1)

A
γ+1
2 , (51)

then it is straightforward to check that η
(1)
e is convex within the above range.

Moreover, Lemma 3.2 is still valid for η
(1)
e if one requires γ > d1. And Theorem 3.3

still holds in this situation.

4. Discussion. Inspired by the relationship between the damped compressible Eu-
ler equations and the porous medium equation (c.f. [16, 17, 28]), we expect that
the solution A(x, t) to (1) will be captured by a porous medium-type equation and
m = Au should obey the classical Darcy’s Law for large time. The porous medium-
type equation and Darcy’s Law in our case take the form

At = Q(A)xx, x ∈ [0, 1], t > 0,

m = −Q(A)x, x ∈ [0, 1], t > 0,

A(x, 0) = A0(x), x ∈ [0, 1],

Qx|x=0 = Qx|x=1 = 0, t ≥ 0

(52)

where the function Q(A) is determined through the relation: Q′(A) = AP ′(A). In
the case of bounded domains, using the arguments in [28, 31], one can show that
A converges to a constant, which is its average over the domain, exponentially as
time goes to infinity, and m goes to zero exponentially in time. The proof is based
on either a dynamical system approach (ω-limit) or the energy method. Therefore,
solutions to (1) and (52) converge to each other exponentially in time as time goes
to infinity provided that the two systems carry the same initial mass.

It is interesting to study the Cauchy problem and the half-line problem of (1)
and to investigate the propagation and stability of its asymptotic profiles, such as
diffusion waves. Since the diffusion waves have explicit expressions in terms of the
spatial and temporal variables, once the convergence of general solutions of the
model to these profiles is investigated and explored in detail, it is expected that
the knowledge will help to understand the evolution of general solutions of the
model and to capture the detailed morphological behavior of blood vessels and the
dynamical aspect of the blood flow, which in turn will contribute to the detection
of physiological problems in real-world applications. Motivated by the studies in
gas dynamics (c.f. [16, 17]), we expect that the solution to (1) shall be captured by
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the nonlinear diffusion wave generated by the porous medium equation when time
goes to infinity. We leave the investigation for the future.
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