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Abstract. Area-preserving maps have been observed to undergo a universal

period-doubling cascade, analogous to the famous Feigenbaum-Coullet-Tresser

period doubling cascade in one-dimensional dynamics. A renormalization ap-
proach has been used by Eckmann, Koch and Wittwer in a computer-assisted

proof of existence of a conservative renormalization fixed point.

Furthermore, it has been shown by Gaidashev, Johnson and Martens that
infinitely renormalizable maps in a neighborhood of this fixed point admit

invariant Cantor sets with vanishing Lyapunov exponents on which dynamics

for any two maps is smoothly conjugate.
This rigidity is a consequence of an interplay between the decay of geometry

and the convergence rate of renormalization towards the fixed point.

In this paper we prove a result which is crucial for a demonstration of
rigidity: that an upper bound on this convergence rate of renormalizations of

infinitely renormalizable maps is sufficiently small.
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Introduction. Following the pioneering discovery of the Feigenbaum-Coullet-
Tresser period doubling universality in unimodal maps, universality — indepen-
dence of the quantifiers of the geometry of orbits and bifurcation cascades in fami-
lies of maps of the choice of a particular family — has been demonstrated to be a
rather generic phenomenon in dynamics.

Universality problems are typically approached via renormalization. In a renor-
malization setting one introduces a renormalization operator on a functional space,
and demonstrates that this operator has a hyperbolic fixed point. This approach
has been very successful in one-dimensional dynamics, and has led to explanation
of universality in unimodal maps, critical circle maps and holomorphic maps with a
Siegel disk. There is, however, at present no complete understanding of universality
in conservative systems, other than in the case of the universality for systems “near
integrability” [1, 2, 24, 25, 26, 12, 27, 23].

Period-doubling renormalization for two-dimensional maps has been extensively
studied in [6, 5, 28]. Specifically, the authors of [5] have considered strongly dissi-
pative Hénon-like maps of the form

F (x, y) = (f(x)− ε(x, y), x), (1)

where f(x) is a unimodal map (subject to some regularity conditions), and ε is
small. Whenever the one-dimensional map f is renormalizable, one can define a
renormalization of F , following [5], as

RdCLM [F ] = H−1 ◦ F ◦ F |U ◦H,

where U is an appropriate neighborhood of the critical value v = (f(0), 0), and H is
an explicit non-linear change of coordinates. [5] demonstrates that the degenerate
map F∗(x, y) = (f∗(x), x), where f∗ is the Feigenbaum-Collet-Tresser fixed point of
one-dimensional renormalization, is a hyperbolic fixed point of RdCLM . Further-
more, according to [5], for any infinitely-renormalizable map of the form (1), there
exists a hierarchical family of “pieces” {Bnσ}, organized by inclusion in a dyadic
tree, such that the set

CF =
⋂
n

⋃
σ

Bnσ

is an attracting Cantor set on which F acts as an adding machine. Compared to
the Feigenbaum-Collet-Tresser one-dimensional renormalization, the new striking
feature of the two dimensional renormalization for highly dissipative maps (1), is
that the restriction of the dynamics to this Cantor set is not rigid. Indeed, if
the average Jacobians of F and G are different, for example, bF < bG, then the
conjugacy F |CF

≈
h G|CG is not smooth, rather it is at best a Hölder continuous

function with a definite upper bound on the Hölder exponent: α ≤ 1
2

(
1 + log bG

log bF

)
<

1.
The theory has been also generalized to other combinatorial types in [19, 20],

and also to three dimensional dissipative Hénon-like maps in [30].
Finally, the authors of [5] show that the geometry of these Cantor sets is rather

particular: the Cantor sets have universal bounded geometry in “most” places, how-
ever there are places in the Cantor set were the geometry is unbounded. Rigidity and
universality as we know from one-dimensional dynamics has a probabilistic nature
for strongly dissipative Hénon like maps. See [29] for a discussion of probabilistic
universality and probabilistic rigidity.
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It turns out that the period-doubling renormalization for area-preserving maps
is very different from the dissipative case.

A universal period-doubling cascade in families of area-preserving maps was ob-
served by several authors in the early 80’s [8, 21, 3, 4, 7, 9]. The existence of a
hyperbolic fixed point for the period-doubling renormalization operator

REKW [F ] = Λ−1F ◦ F ◦ F ◦ ΛF ,

where ΛF (x, u) = (λFx, µFu) is an F -dependent linear change of coordinates, has
been proved with computer-assistance in [10].

We have proved in [15] that infinitely renormalizable maps in a neighborhood of
the fixed point of [10] admit a “stable” Cantor set, that is the set on which the
Lyapunov exponents are zero. We have also shown in the same publication that
the conjugacy of stable dynamics is at least bi-Lipschitz on a submanifold of locally
infinitely renormalizable maps of a finite codimension. Furthermore, [16] improves
this conclusion in the following way.

Rigidity for Area-preserving Maps. The period doubling Cantor sets of area-
preserving maps in the universality class of the Eckmann-Koch-Wittwer renormal-
ization fixed point are smoothly conjugate.

A crucial ingredient of the proof in [16] is a new tight bound on the spectral
radius of the renormalization operator. The goal of the present paper is to prove
this new bound.

We demonstrate that the spectral radius of the action of the derivative DREKW ,
evaluated at the Eckmann-Koch-Wittwer fixed point FEKW , restricted to the tangent
space TFEKW

W of the stable manifold W of the infinitely renormalizable maps, is
equal exactly to the absolute value of the “horizontal” scaling parameter

ρspec
(
DREKW [FEKW ]|TFEKW

W
)

= |λFEKW
| = 0.2488 . . . .

Furthermore, we show that the single eigenvalue λFEKW
in the spectrum of DREKW

[FEKW ] corresponds to an eigenvector, generated by a very specific coordinate change.
To eliminate this irrelevant eigenvalue from the renormalization spectrum, we in-
troduce an F -dependent nonlinear coordinate change SF into the period-doubling
renormalization scheme

Rc[F ] := Λ−1F ◦ S
−1
F ◦ F ◦ F ◦ SF ◦ ΛF ,

compute the spectral radius of the restriction of the spectrum of DRc[F ∗] to its
stable subspace TF∗W at the fixed point F ∗ of Rc, and obtain the following spectral
bound, which is of crucial importance to our proof of rigidity.

Main Theorem.

ρspec (DRc[F ∗]|TF∗W) ≤ 0.1258544921875.

1. Renormalization for area-preserving reversible twist maps. An “area-
preserving map” will mean an exact symplectic diffeomorphism of a subset of R2

onto its image.
Recall, that an area-preserving map that satisfies the twist condition

∂u (πxF (x, u)) 6= 0
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everywhere in its domain of definition can be uniquely specified by a generating
function S: (

x

−S1(x, y)

) F
7→
(

y

S2(x, y)

)
, Si ≡ ∂iS. (2)

Furthermore, we will assume that F is reversible, that is

T ◦ F ◦ T = F−1, where T (x, u) = (x,−u). (3)

For such maps it follows from (2) that

S1(y, x) = S2(x, y) ≡ s(x, y),

and (
x

−s(y, x)

) F
7→
(

y

s(x, y)

)
. (4)

It is this “little” s that will be referred to below as “the generating function”.
The period-doubling phenomenon can be illustrated with the area-preserving

Hénon family (cf. [4]) :

Ha(x, u) = (−u+ 1− ax2, x).

Maps Ha have a fixed point ((−1 +
√

1 + a)/a, (−1 +
√

1 + a)/a) which is stable
(elliptic) for −1 < a < 3. When a1 = 3 this fixed point becomes hyperbolic: the
eigenvalues of the linearization of the map at the fixed point bifurcate through
−1 and become real. At the same time a stable orbit of period two is “born”
with Ha(x±, x∓) = (x∓, x±), x± = (1 ±

√
a− 3)/a. This orbit, in turn, becomes

hyperbolic at a2 = 4, giving birth to a period 4 stable orbit. Generally, there exists
a sequence of parameter values ak, at which the orbit of period 2k−1 turns unstable,
while at the same time a stable orbit of period 2k is born (passes from C2 to R2).
The parameter values ak accumulate on some a∞. The crucial observation is that
the accumulation rate

lim
k→∞

ak − ak−1
ak+1 − ak

= 8.721... (5)

is universal for a large class of families, not necessarily Hénon.
Furthermore, the 2k periodic orbits scale asymptotically with two scaling param-

eters

λ = −0.249 . . . , µ = 0.061 . . . (6)

To explain how orbits scale with λ and µ we will follow [4]. Consider an interval
(ak, ak+1) of parameter values in a “typical” family Fa. For any value α ∈ (ak, ak+1)
the map Fα possesses a stable periodic orbit of period 2k. We fix some αk within

the interval (ak, ak+1) in some consistent way; for instance, by requiring that DF 2k

αk

at a point in the stable 2k-periodic orbit is conjugate, via a diffeomorphism Hk, to a
rotation with some fixed rotation number r. Let p′k be some unstable periodic point
in the 2k−1-periodic orbit, and let pk be the further of the two stable 2k-periodic
points that bifurcated from p′k. Denote with dk = |p′k−pk|, the distance between pk
and p′k. The new elliptic point pk is surrounded by (infinitesimal) invariant ellipses;
let ck be the distance between pk and p′k in the direction of the minor semi-axis of
an invariant ellipse surrounding pk, see Figure 1. Then,

1

λ
= − lim

k→∞

dk
dk+1

,
λ

µ
= − lim

k→∞

ρk
ρk+1

,
1

λ2
= lim
k→∞

ck
ck+1

,
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Figure 1. The geometry of the period doubling. pk is the further
elliptic point that has bifurcated from the hyperbolic point p′k.

where ρk is the ratio of the smaller and larger eigenvalues of DHk(pk) 1

This universality can be explained rigorously if one shows that the renormaliza-
tion operator

REKW [F ] = Λ−1F ◦ F ◦ F ◦ ΛF , (7)

where ΛF is some F -dependent coordinate transformation, has a fixed point, and
the derivative of this operator is hyperbolic at this fixed point.

It has been argued in [7] that ΛF is a diagonal linear transformation. Further-
more, such ΛF has been used in [9] and [10] in a computer assisted proof of existence
of a reversible renormalization fixed point FEKW and hyperbolicity of the operator
REKW .

We will now derive an equation for the generating function of the renormalized
map Λ−1F ◦ F ◦ F ◦ ΛF .

Applying a reversible F twice we get(
x′

−s(Z, x′)

) F
7→
(

Z

s(x′, Z)

)
=

(
Z

−s(y′, Z)

) F
7→
(

y′

s(Z, y′)

)
.

According to [7] ΛF can be chosen to be a linear diagonal transformation:

ΛF (x, u) = (λx, µu).

We, therefore, set (x′, y′) = (λx, λy), Z(λx, λy) = z(x, y) to obtain:(
x

− 1
µs(z, λx)

)
ΛF
7→
(

λx

−s(z, λx)

) F ◦ F
7→

(
λy

s(z, λy)

) Λ−1
F
7→

(
y

1
µs(z, λy)

)
, (8)

where z(x, y) solves

s(λx, z(x, y)) + s(λy, z(x, y)) = 0. (9)

If the solution of (9) is unique, then z(x, y) = z(y, x), and it follows from (8)
that the generating function of the renormalized F is given by

s̃(x, y) = µ−1s(z(x, y), λy). (10)

One can fix a set of normalization conditions for s̃ and z which serve to determine
scalings λ and µ as functions of s. For example, the normalization s(1, 0) = 0 is

1 Derivatives with respect to elements of the functional space, typically s, will be denoted D,
ex. DREKW , while derivatives of maps from C2 to C2 will be denoted D, as it has been done here:
DHk.
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reproduced for s̃ as long as z(1, 0) = z(0, 1) = 1. In particular, this implies that

s(Z(λ, 0), 0) = 0,

which serves as an equation for λ. Furthermore, the condition ∂1s(1, 0) = 1 is
reproduced as long as µ = ∂1z(1, 0).

We will now summarize the above discussion in the following definition of the
renormalization operator acting on generating functions originally due to the au-
thors of [9] and [10]:

Definition 1.1. Define the prerenormalization of s as

PEKW [s] = s ◦G[s], (11)

where

0 = s(x, Z(x, y)) + s(y, Z(x, y)), (12)

G[s](x, y) = (Z(x, y), y). (13)

The renormalization of s will be defined as

REKW [s] =
1

µ
PEKW [s] ◦ λ, (14)

where

λ(x, y) = (λx, λy), PEKW [s](λ, 0) = 0 and µ = λ ∂1PEKW [s](λ, 0).

Definition 1.2. The Banach space of functions s(x, y) =
∑∞
i,j=0 cij(x−β)i(y−β)j ,

analytic on a bi-disk

Dρ(β) = {(x, y) ∈ C2 : |x− β| < ρ, |y − β| < ρ},
for which the norm

‖s‖ρ =

∞∑
i,j=0

|cij |ρi+j

is finite, will be referred to as Aβ(ρ).
Aβs (ρ) will denote its symmetric subspace {s ∈ Aβ(ρ) : s1(x, y) = s1(y, x)}.
We will use the simplified notation A(ρ) and As(ρ) for A0(ρ) and A0

s(ρ), respec-
tively.

As we have already mentioned, the following has been proved with the help of a
computer in [9] and [10]:

Theorem 1. There exist a polynomial s0.5 ∈ A0.5
s (ρ) and a ball B%(s0.5) ⊂ A0.5

s (ρ),
% = 6.0× 10−7, ρ = 1.6, such that the operator REKW is well-defined and analytic on
B%(s0.5).

Furthermore, its derivative DREKW |B%(s0.5) is a compact linear operator, and has
exactly two eigenvalues

δ1 = 8.721..., and δ2 =
1

λ∗

of modulus larger than 1, while

spec(DREKW |B%(s0.5)) \ {δ1, δ2} ⊂ {z ∈ C : |z| ≤ ν},
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where
ν < 0.85. (15)

Finally, there is an sEKW ∈ B%(s0.5) such that

REKW [sEKW ] = sEKW .

The scalings λ∗ and µ∗ corresponding to the fixed point sEKW satisfy

λ∗ ∈ [−0.24887681,−0.24887376], µ∗ ∈ [0.061107811, 0.061112465]. (16)

Remark 1.3. The bound (15) is not sharp. In fact, a bound on the largest ei-
genvalue of DREKW (sEKW ), restricted to the tangent space of the stable manifold, is
expected to be quite smaller.

The size of the neighborhood in Aβs (ρ) where the operator REKW is well-defined,
analytic and compact has been improved in [13]. Here, we will cite a somewhat
different version of the result of [13] which suits the present discussion (in particular,
in the Theorem below some parameter, like ρ in Aβs (ρ), are different from those
used in [13]). We would like to emphasize that all parameters and bounds used and
reported in the Theorem below, and, indeed, throughout the paper, are numbers
representable on the computer.

Theorem 2. There exists a polynomial s0 ∈ A(ρ), ρ = 1.75, such that the
following holds.
i) The operator REKW is well-defined and analytic in BR(s0) ⊂ A(ρ) with

R = 0.00426483154296875.

ii) For all s ∈ BR(s0) with real Taylor coefficients, the scalings λ = λ[s] and µ = µ[s]
satisfy

0.0000253506004810333 ≤ µ ≤ 0.121036529541016,

−0.27569580078125 ≤ λ ≤ −0.222587585449219.

iii) The operator REKW is compact in BR(s0) ⊂ A(ρ), with REKW [s] ∈ A(ρ′), ρ′ =
1.0699996948242188ρ.

Definition 1.4. The set of reversible twist maps F of the form (4) with s ∈ B%(s̃) ⊂
Aβs (ρ) will be referred to as Fβ,ρ% (s̃):

Fβ,ρ% (s̃) =
{
F : (x,−s(y, x)) 7→ (y, s(x, y))| s ∈ B%(s̃) ⊂ Aβs (ρ)

}
. (17)

We will also use the notation

Fρ% (s̃) ≡ F0,ρ
% (s̃).

We will finish our introduction into period-doubling for area-preserving maps
with a summary of properties of the fixed point map. In [14] we have described the
domain of analyticity of maps in some neighborhood of the fixed point. Additional
properties of the domain are studied in [22]. Before we state the results of [14], we
will fix a notation for spaces of functions analytic on a subset of C2.

Definition 1.5. Denote O2(D) the Banach space of maps F : D 7→ C2, analytic
on an open simply connected set D ⊂ C2, continuous on ∂D, equipped with a finite
max supremum norm ‖ · ‖D:

‖F‖D = max

{
sup

(x,u)∈D
|F1(x, u)|, sup

(x,u)∈D
|F2(x, u)|

}
.
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The Banach space of functions y : A 7→ C, analytic on an open simply connected
set A ⊂ C2, continuous on ∂A, equipped with a finite supremum norm ‖ · ‖A will
be denoted O1(A): ‖y‖D = sup(x,u)∈D |y(x, u)|.

If D is a bidisk Dρ ⊂ C2 for some ρ, then we use the notation

‖ · ‖ρ ≡ ‖ · ‖Dρ .

The next Theorem describes the analyticity domains for maps in a neighbor-
hood of the Eckmann-Koch-Wittwer fixed point map, and those for functions in a
neighborhood of the Eckmann-Koch-Wittwer fixed point generating function. The
Theorem has been proved in two different versions: one for the space A0.5

s (1.6) (the
functional space in the original paper [10]), the other for the space As(1.75) — the
space in which we will obtain a bound on the renormalization spectral radius in
the stable manifold in this paper. To state the Theorem in a compact form, we
introduce the following notation:

ρ0.5 = 1.6, ρ0 = 1.75, %0.5 = 6.0× 10−7, %0 = 5.79833984375× 10−4,

while s0.5 (as in Theorem 1) and s0 will denoted the approximate renormalization
fixed points in spaces A0.5

s (1.6) and As(1.75), respectively.

Theorem 3. There exists a polynomial sβ such that the following holds for all

F ∈ Fβ,ρβ%β (sβ), β = 0.5 or β = 0.
i) There exists a simply connected open set D = D(β, %β , ρβ) ⊂ C2 such that the
map F is in O2(D).

ii) There exist simply connected open sets D̃ = D̃(β, %β , ρβ) ⊂ D, such that D̃ ∩ R2

is a non-empty simply connected open set, and such that for every (x, u) ∈ D̃ and
s ∈ B%β (sβ) ⊂ Aβs (ρβ), the equation

0 = u+ s(y, x) (18)

has a unique solution y[s](x, u) ∈ O1(D̃). The map

S : s 7→ y[s] (19)

is analytic as a map from B%β (sβ) to O1(D̃).

Furthermore, for every x ∈ πxD̃, there is a function U ∈ O1(Dρβ (β)), that
satisfies

y[s](x, U(x, v)) = v.

The map

Y : y[s] 7→ U

is analytic as a map from O1(Dρβ (β)) to B%β (sβ).

Remark 1.6. It is not too hard to see that the subsets Fβ,ρβ%β (sβ), β = 0 or 0.5,

are analytic Banach submanifolds of the spaces O2(D̃(β, %β , ρβ)). Indeed, the map

I : s 7→ (y[s], s ◦ h[s]) , (20)

where y[s](x, u) is the solution of the equation (18), and h[s](x, u) = (x, y[s](x, u)),

is analytic as a map from B%β (sβ) to O2(D̃(β, %β , ρβ) according to Theorem 3, and
has an analytic inverse

I−1 : F 7→ πuF ◦ g[F ], (21)
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on I(B%β (sβ)), where g[F ](x, y) = (x, U(x, y)), and U is as in Theorem 3. Further-
more, the derivative of the map S, defined in (19),

DS[s]v(x, y) = − v(y, x)

s1(y, x)
, v ∈ TsB%β (sβ),

is injective, which also implies injectivity of the derivative of I. Thus I is an analytic
embedding, which implies the claim.

We are now ready to give a definition of the Eckmann-Koch-Wittwer renormal-
ization operator for maps of the subset of a plane. Notice, that the condition
PEKW [s](λ, 0) = 0 from Definition 1.1 is equivalent to

F (F (λ,−s(z(λ, 0), λ))) = (0, 0),

or, using the reversibility

λ = πxF (F (0, 0)).

On the other hand,

−s(z(y(x, u), x), x) = −PEKW [s](y(x, u), x) = u,

and

∂uPEKW [s](y(x, u), x) = PEKW [s]1(y(x, u), x)y2(x, u)

= PEKW [s]1(y(x, u), x) πx(F ◦ F )2(x, u) = −1,

then

PEKW [s]1(λ, 0) πx(F ◦ F )2(0, 0) = −1,

and

µ =
−λ

πx(F ◦ F )2(0, 0)
.

Definition 1.7. We will refer to the composition F ◦ F as the prerenormalization
of F , whenever this composition is defined:

PEKW [F ] = F ◦ F. (22)

Set

REKW [F ] = Λ−1 ◦ PEKW [F ] ◦ Λ,

where

Λ(x, u) = (λx, µu), λ = πxPEKW [F ](0, 0), µ =
−λ

πxPEKW [F ]2(0, 0)
,

whenever these operations are defined. REKW [F ] will be called the (EKW-)renormali-
zation of F .

Remark 1.8. Suppose that for some choice of β, %β and ρβ , the operator REKW and
the analytic embedding map I, described in Remark 1.6, are well-defined on some
B%β (sβ) ⊂ Aβs (ρβ). Then,

REKW = I ◦ REKW ◦ I−1

on Fβ,ρβ%β (sβ).
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2. Statement of main results. Consider the coordinate transformation

St(x, u) =

(
x+ tx2,

u

1 + 2tx

)
, S−1t (y, v) =

(√
1 + 4ty − 1

2t
, v
√

1 + 4ty

)
, (23)

for t ∈ C, |t| < 4/(ρ+ |β|) (recall Definition 1.2).
We will now introduce two renormalization operators, one - on the generating

functions, and one - on the maps, which incorporates the coordinate change St as
an additional coordinate transformation.

Definition 2.1. Given c ∈ R, set, formally,

Pc[s](x, y) = (1 + 2tcy)s(G(ξtc(x, y))), and Rc[s] = µ−1Pc[s] ◦ λ,
with G is as in (13), and

ξt(x, y) = (x+ tx2, y + ty2), tc[s] =
1

4

c− (s ◦G)(0,3)

(s ◦G)(0,2)
, (24)

where λ and µ solve the following equations:

Pc[s](λ[s], 0) = 0, µ[s] = λ[s]∂1Pc[s](λ[s], 0). (25)

Definition 2.2. Given c ∈ R, set, formally,

Pc[F ] = S−1tc ◦ F ◦ F ◦ Stc , Rc[F ] = Λ−1F ◦ Pc[F ] ◦ ΛF , (26)

where Stc is as in (23), ΛF (x, u) = (λ[F ]x, µ[F ]u), and

tc[F ]=
1

4

c− (πu(F ◦ F ))(0,3)

(πu(F ◦ F ))(0,2)
, λ[F ]=πxPc[F ](0, 0), µ[F ]=

−λ[F ]

πxPc[F ]2(0, 0)
.

We are now ready to state our main theorem. Below, and through the paper,
s(i,j) stands for the (i, j)-th component of a Taylor series expansion of an analytic
function of two variables.

Main Theorem. (Existence and Spectral properties). There exists a polynomial

s0 : C2 7→ C, such that

i) The operators REKW and Rc0 , where c0 = (s0 ◦G[s0])(0,3), are well-defined,

analytic and compact in B%0(s0) ⊂ As(ρ), with

ρ = 1.75, %0 = 5.79833984375× 10−4.

ii) There exists a function s∗ ∈ Br(s0) ⊂ As(ρ) with

r = 6.0× 10−12,

such that

Rc0 [s∗] = s∗.

iii) The linear operator DRc0 [s∗] has two eigenvalues outside of the unit circle:

8.72021484375 ≤ δ1 ≤ 8.72216796875, δ2 =
1

λ∗
,

where

−0.248875313689 ≤ λ∗ ≤ −0.248886108398438.

iv) The complement of these two eigenvalues in the spectrum is compactly con-
tained in the unit disk:

spec(DRc0 [s∗]) \ {δ1, δ2} ⊂ {z ∈ C : |z| ≤ 0.1258544921875 ≡ ν}.
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The Main Theorem implies that there exist codimension 2 local stable manifolds
WRc0 (s∗) ⊂ As(1.75), such that the contraction rate in WRc0 (s∗) is bounded from
above by ν:

‖Rnc0 [s]−Rnc0 [s̃]‖ρ = O(νn)

for any two s and s̃ in WRc0 (s∗).

Definition 2.3. (Infinitely renormalizable maps). The set of reversible twist maps
of the form (4) such that s ∈ WRc0 (s∗) ⊂ As(1.75) will be denoted W , and referred
to as infinitely renormalizable maps.

Naturally, these sets are invariant under renormalization if % is sufficiently small.
Notice, that, among other things, this Theorem restates the result about exis-

tence of the Eckmann-Koch-Wittwer fixed point and renormalization hyperbolicity
of Theorem 1 in a setting of a different functional space. We do not prove that the
fixed point s∗, after a small adjustment corresponding to the coordinate change St,
coincides with sEKW from Theorem 1, although the computer bounds on these two
fixed points differ by a tiny amount on any bi-disk contained in the intersection of
their domains.

The fact that the operator Rc0 as in (26) contains an additional coordinate change
does not cause a problem: conceptually, period-doubling renormalization of a map
is its second iterate conjugated by a coordinate change, which does not have to be
necessarily linear.

3. Coordinate changes and renormalization eigenvalues. Let D and D̃ be
as in the Theorem 3. Consider the action of the operator

R∗[F ] = Λ−1∗ ◦ F ◦ F ◦ Λ∗ (27)

on O2(D), where

Λ∗(x, u) = (λ∗x, µ∗u),

with λ∗ and µ∗ being the fixed scaling parameters corresponding to the Collet-
Eckmann-Koch as in Theorem 1.

According to Theorem 1 this operator is analytic and compact on the subset
F0.5,1.6
% (s0.5), % = 6.0 × 10−7, of O2(D), and has a fixed point FEKW . In this paper,

we will prove the existence of a fixed point s∗ of the operator REKW in a Banach
space different from that in Theorem 1. Therefore, we will state most of our results
concerning the spectra of renormalization operators for general spaces Aβs (ρ) and

sets Fβ,ρβ%β (s∗), under the hypotheses of existence of a fixed point s∗, and analyticity
and compactness of the operators in some neighborhood of the fixed point. Later, a
specific choice of parameters β, ρ and % will be made, and the hypotheses - verified.

Let S = id + σ be a coordinate transformation of the domain D of maps F ,
satisfying

DS ◦ F = DS.

In particular, these transformations preserve the subset of area-preserving maps.
Notice, that

(id+ εσ)−1 ◦F ◦ (id+ εσ) = F + ε (−σ ◦ F +DF · σ) +O(ε2) ≡ F + εhF,σ +O(ε2).

Suppose that the operator R∗ has a fixed point F ∗ in some neighborhood B ⊂
O2(D), on which R∗ is analytic and compact. Consider the action DR∗[F ]hF,σ of
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the derivative of this operator.

DR∗[F ]hF,σ = ∂ε
(
Λ−1∗ ◦(F + εhF,σ)◦(F + εhF,σ)◦Λ∗

)
|ε=0

= ∂ε
(
Λ−1∗ ◦(id+ εσ)−1◦F ◦F ◦(id+ εσ

)
◦Λ∗|ε=0

= Λ−1∗ · [−σ ◦ F ◦ F +D(F ◦ F ) · σ] ◦ Λ∗

= Λ−1∗ · hF◦F,σ ◦ Λ∗. (28)

Specifically, if F = F ∗, one gets

DR∗[F ∗]hF∗,σ = hF∗,τ , τ = Λ−1∗ · σ ◦ Λ∗,

and clearly, hF∗,σ is an eigenvector, if τ = κσ, of eigenvalue κ. In particular,

κ = λi∗µ
j
∗, i ≥ 0, j ≥ 0

is an eigenvalue of multiplicity (at least) 2 with eigenvectors hF∗,σ generated by

σ1
i,j(x, u) = (xi+1uj , 0), σ2

i,j(x, u) = (0, xiuj+1), (29)

while

κ = µj∗λ
−1
∗ , j ≥ 0, and κ = λi∗µ

−1
∗ , i ≥ 0,

are each eigenvalues of multiplicity (at least) 1, generated by

σ1
−1,j(x, u) = (uj , 0), and σ2

i,−1(x, u) = (0, xi), (30)

respectively.
We will denote Sσt , Sσ0 = Id, the coordinate transformation generated by a

function σ as in (29)-(30).

In particular, the coordinate transformations S
σi0,0
t , i = 1, 2, correspond to the

rescalings of the coordinates x and u. The next Lemma is a specification to our
case of the well-known fact that rescalings correspond to the eigenvalue 1. We will
omit its lengthy proof (which we have, nevertheless carried out in detail).

Lemma 3.1. Suppose that there are β, %, ρ, λ∗, µ∗ and a function s∗ ∈ Aβs (ρ) such
that the operator REKW is analytic and compact as maps from Fβ,ρ% (s∗) to O2(D),
and

REKW [F ∗] = R∗[F
∗] = F ∗,

where F ∗ is generated by s∗.
Then, there exists a neighborhood B(F ∗) ⊂ Fβ,ρ% (s∗), in which R∗ is analytic and

compact, and

spec(DR∗[F ∗]|TF∗B(F∗)) = spec(DREKW [F ∗]|TF∗Fβ,ρ% (s∗)) ∪ {1}.

4. Analyticity and compactness of renormalization. We will quote a version
of a lemma from [13] which we will require to demonstrate analyticity and compact-
ness of the operator Rc. The proof of the Lemma is computer-assisted. Notice, the
parameters that enter the Lemma are different from those used in [13]. As before,
the reported numbers are representable on a computer.

Lemma 4.1. For all s ∈ BR(s0), where

R = 5.47321968732772541× 10−3,

and s0 is as in Theorem 2, the prerenormalization PEKW [s] is well-defined and analytic
function on the set

Dr ≡ Dr(0) = {(x, y) ∈ C2 : |x| < r, |y| < r}, r = 0.51853174082497335,



SPECTRAL PROPERTIES OF RENORMALIZATION 3663

with
‖Z‖r ≤ 1.63160151494042404.

We will now demonstrate analyticity and compactness of the modified renor-
malization operator Rc, defined in 2.1, in a functional space, different from that
used in [10], specifically, in the space As(1.75). It is in this space that we will
eventually compute a bound on the spectral radius of the action of the modified
renormalization operator on infinitely renormalizable maps.

Proposition 4.2. There exists a polynomial s0 ∈ BR(s0) ⊂ As(1.75), where R and
s0 are as in Theorem 2, such that the operators Rc, c ∈ [c0 − δ, c0 + δ],

c0 = (s0 ◦G[s0])(0,3) and δ = 1.068115234375× 10−4,

are well-defined and analytic as maps from B%0(s0), %0 = 5.79833984375× 10−4, to
As(1.75).

Furthermore, the operators Rc are compact in BR(s0) ⊂ A(ρ), with Rc[s] ∈
A(ρ′), ρ′ = 1.0699996948242188ρ.

Proof. The polynomial s0 has been computed as a high order numerical approxi-
mation of a fixed point s∗ of REKW .

First, we get a computer bound on tc as in Definition 2.1 for all s ∈ B%0(s0) and
c ∈ [c0 − δ, c0 + δ]:

|t| ≤ 2.1095979213715× 10−6. (31)

The condition of the hypothesis that s∗ ∈ Bδ(s0) is specifically required to be able
to compute this estimate.

Notice that according to Definition 2.1 and Theorem 2, the maps s 7→ t and,
hence, s 7→ ξt are analytic on a larger neighborhood BR(s0) of analyticity of REKW .
According to Theorem 2 and Lemma 4.1, the prerenormalization PEKW is also analytic
as a map from BR(s0) to As(r), r = 0.516235055482147608. We verify that for all
s ∈ Bδ(s0) and t as in (31) the following holds:

{ξt(x, y) : (x, y) ∈ Dr′} b Dr, r′ = |λ−|ρ, (32)

where λ− = −0.27569580078125 is the lower bound from Theorem 2. Furthermore,

1 > 2|t|ρ
with t as in (31). Therefore, the map s 7→ P[s] is analytic on Bδ(s0).

Since the inclusion of sets (32) is compact, Rc[s] has an analytic extension to
a neighborhood of D1.75, Rc[s] ∈ As(ρ′), ρ′ > 1.75. Compactness of the map
s 7→ Rc[s] now follows from the fact that the inclusions of spaces As(ρ′) ⊂ As(ρ) is
compact.

5. Strong contraction on the stable manifold.

Lemma 5.1. Suppose that β, % and ρ are such that the operator

R∗[s] =
1

µ∗
PEKW [s] ◦ λ∗

has a fixed point s∗ ∈ B% ⊂ Aβs (ρ), and R∗ is analytic and compact as a map from
B% to Aβs (ρ).

Then, the number λ∗ is an eigenvalue of DR∗[s∗], and the eigenspace of λ∗
contains the eigenvector

ψs∗(x, y) = s∗1(x, y)x2 + s∗2(x, y)y2 + 2s∗(x, y)y. (33)
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Proof. Consider the coordinate transformation (23),

Sε(x, u) =

(
x+ εx2,

u

1 + 2εx

)
= (x, u) + εσ1

1,0(x, u)− 2εσ2
1,0(x, u) +O(ε2), (34)

S−1ε (y, v) =

(√
1 + 4εy − 1

2ε
, v
√

1 + 4εy

)
, (35)

for real ε, |ε| < 4/(ρ+ |β|) (recall Definition 1.2).
Let s ∈ Aβs (ρ) be the generating function for some F , then the following demon-

strates that S−1ε ◦ F ◦ Sε is reversible, area-preserving and generated by

ŝ(x, y) = s(x+ εx2, y + εy2)(1 + 2εy) :

(
x

−s(y + εy2, x+ εx2)(1 + 2εx)

)
Sε
7→

(
x+ εx2

−s(y + εy2, x+ εx2)

)
=

(
x′

−s(y′, x′)

)
F
7→

(
y′

s(x′, y′)

)
=

(
y + εy2

s(x+ εx2, y + εy2)

)
S−1
ε
7→

(
y

s(x+ εx2, y + εy2)(1 + 2εy)

)
.

Next,

ŝ(x, y) = s(x, y) + εs1(x, y)x2 + εs2(x, y)y2 + ε2s(x, y)y +O(ε2).

We will demonstrate that

ψs∗(x, y) = s∗1(x, y)x2 + s∗2(x, y)y2 + 2s∗(x, y)y.

is an eigenvector of DR∗[s∗] of the eigenvalue λ∗. Notice, that

∂1ψs = ∂1ψs ◦ I, I(x, y) = (y, x),

and therefore, the function s+ εψs ∈ Aβs (ρ).
Consider the midpoint equation

0 = O(ε2) + s(x, Z(x, y) + εDZ[s]ψs(x, y)) + s(y, Z(x, y) + εDZ[s]ψs(x, y))

+ εψs(x, Z(x, y)) + εψs(y, Z(x, y))

for the generating function s+ εψs. We get that

DZ[s]ψs(x, y) = −ψs(x, Z(x, y)) + ψs(y, Z(x, y))

s2(x, Z(x, y)) + s2(y, Z(x, y))
,
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and

DPEKW [s]ψs(x, y) = s1(Z(x, y), y)DZ[s]ψs(x, y) + ψs(Z(x, y), y)

=−2s1(Z(x, y), y)
s(x, Z(x, y))Z + s(y, Z(x, y))Z

s2(x, Z(x, y)) + s2(y, Z(x, y))

−s1(Z(x, y), y)
s2(x, Z(x, y))Z(x, y)2 + s2(y, Z(x, y))Z(x, y)2

s2(x, Z(x, y)) + s2(y, Z(x, y))

+s1(Z(x, y), y)Z(x, y)2

−s1(Z(x, y), y)
s1(y, Z(x, y))y2

s2(x, Z(x, y)) + s2(y, Z(x, y))
+ s2(Z(x, y), y)y2

−s1(Z(x, y), y)
s1(x, Z(x, y))x2

s2(x, Z(x, y)) + s2(y, Z(x, y))

+2s(Z(x, y), y)y

The terms on line 2 add up to zero (the numerator is equal to zero because of the
midpoint equation), and so do those on lines 3 and 4. We can also use the equalities

s2(x, Z(x, y)) + s2(y, Z(x, y)) = −s1(y, Z(x, y))

Z2(x, y)

∂2PEKW [s](x, y) = s2(Z(x, y), y) + s1(Z(x, y), y)Z2(x, y)

(the first one being the midpoint equation differentiated with respect to y) to reduce
the 5-th line to ∂2PEKW [s](x, y)y2. The 6-th line reduces to ∂1PEKW [s](x, y)x2 after we
use the midpoint equation differentiated with respect to x:

s2(x, Z(x, y) + s2(y, Z(x, y) = −s1(x, Z(x, y))

Z1(x, y)
.

To summarize,

DPEKWψs(x, y) = ∂1PEKW [s](x, y)x2 + ∂2PEKW [s](x, y)y2 + 2PEKW [s](x, y)y

= ψPEKW [s](x, y). (36)

Finally, we use the fact that

λ∗∂iPEKW [s](λ∗x, λ∗y) = ∂i (P[s](λ∗x, λ∗y))

to get
DR∗[s∗]ψs∗ = λ∗ψs∗ .

The Lemma below, whose elementary proof we will omit, shows that λ∗ is also
in the spectrum of DR∗[F ∗]:

Lemma 5.2. Suppose that β, % and ρ are such that s∗ ∈ Aβs (ρ) is a fixed point of
the operators R∗ and REKW , and the operators R∗ and REKW are analytic and compact
as a map from B%(s∗) to Aβs (ρ). Also, suppose that the map I, described in Remark
1.6, is a well-defined analytic embedding on B%(s∗). Then,

spec
(

(DR∗[F ∗]) |TF∗Fβ,ρ% (s∗)

)
= spec (DR∗[s∗]) and

spec
(

(DREKW [F ∗]) |TF∗Fβ,ρ% (s∗)

)
= spec (DREKW [s∗]) ,

in particular,

λ∗ ∈ spec (DR∗[F ∗]) and λ∗ ∈ spec (DREKW [s∗]) .
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The convergence rate in the stable manifold of the renormalization operator
plays a crucial role in demonstrating rigidity. It turns out that the eigenvalue
λ∗ is the largest eigenvalues in the stable subspace of DREKW [F ∗], or equivalently
DREKW [s∗]. However, it’s value |λ∗| ≈ 0.2488 is not small enough to ensure rigidity.
At the same time, the eigenspace of the eigenvalue λ∗ is, in the terminology of
the renormalization theory, irrelevant to dynamics (the associated eigenvector is
generated by a coordinate transformation). We, therefore, would like to eliminate
this eigenvalue via an appropriate coordinate change, as described above.

However, first we would like to identify the eigenvector corresponding to the
eigenvalue λ∗ for the operator REKW . This vector turns out to be different from ψs∗ .

Lemma 5.3. Suppose that β, % and ρ are such that the operator REKW has a fixed
point s∗ ∈ Aβs (ρ), and REKW is analytic and compact as a map from B%(s∗) to Aβs (ρ).
Also, suppose that the map I, described in Remark 1.6, is a well-defined analytic
embedding on B%(s∗).

Then, the number λ∗ is an eigenvalue of DREKW [s∗], and the eigenspace of λ∗
contains the eigenvector

ψEKW

s∗ = ψs∗ + ψ̃, (37)

where

ψ̃(x, y) = s∗(x, y)− (s∗1(x, y)x+ s∗2(x, y)y).

Proof. Notice, that ψ̃ is of the form

ψ̃ = ψu − ψx, (38)

where

ψx(x, y) = s∗1(x, y)x+ s∗2(x, y)y

is the eigenvector of DR∗[s∗] corresponding to the rescaling of the variables x and
y, while

ψu(x, y) = s∗(x, y)

is the eigenvector corresponding to the rescaling of s. ψx(x, y) and ψu(x, y) corre-
spond to the eigenvectors hF∗,σ1

0,0
and hF∗,σ2

0,0
, respectively, of DR0[F ∗].

Recall, that hF∗,σ1
0,0

and hF∗,σ2
0,0

are eigenvectors of DR0[F ∗], with eigenvalue 1,

and eigenvectors of DREKW [F ∗] with eigenvalue 0.
By Lemma 5.1 ψs∗ is an eigenvector of DR∗, the corresponding eigenvector of

DR∗ is hF∗,σ̂, where σ̂ = σ1
1,0 − 2σ2

1,0. Thus, ψs∗ + ψ̃ corresponds to the vector

hEKW

λ∗ := hF∗,σ̂ − hF∗,σ1
0,0

+ hF∗,σ2
0,0
. (39)

To finish the proof, it suffices to prove that

DREKWh
EKW

λ∗ = λ∗h
EKW

λ∗ .

A straightforward computation (which is a part of the proof of Lemma 3.1) gives
that DREKW [F ∗]hEKW

λ∗
= DREKW [F ∗]hF∗,σ̂. Therefore,

DREKW [F ∗]hEKW

λ∗ = DR∗[F ∗]hF∗,σ̂ + (Dt[F ∗]hF∗,σ̂))hF∗,σ1
0,0

+ (Dr[F ∗]hF∗,σ̂)hF∗,σ2
0,0

= λ∗hF∗,σ̂ + (Dt[F ∗]hF∗,σ̂)hF∗,σ1
0,0

+ (Dr[F ∗]hF∗,σ̂)hF∗,σ2
0,0

The result follows if

Dt[F ∗]hF∗,σ̂ = −λ∗ and Dr[F ∗]hF∗,σ̂ = λ∗.
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Indeed, going through the calculations as in the proof of Lemma 3.1 we have
that, if h = hF∗,σ1

1,0
, then

DPEKW [F ∗]h(x, u) =

= (−(πxPEKW[F ∗](x, u))2 + πxPEKW [F ∗]1(x, u)x2, πuPEKW [F ∗]1(x, u)x2),

πxDPEKW [F ∗]h(0, 0) = −(πxPEKW [F ∗](0, 0))2 = −λ2∗,
Dt[F ∗]h = −λ∗,
Dr[F ∗]h = −λ∗ + 2πxPEKW [F ∗](0, 0) = λ∗.

Here and below the subscript 1 or 2 denotes the partial derivative with respect to
the corresponding argument.

If h = hF∗,σ2
1,0

, then

DPEKW [F ∗]h(x, u) =

= (πxPEKW [F ∗]2(x, u)xu,−πxPEKW [F ∗](x, u)πuPEKW [F ∗](x, u) + πuPEKW [F ∗]2(x, u)xu),

πxDPEKW [F ∗]h(0, 0) = 0

Dt[F ∗]h = 0

Dr[F ∗]h = 0 +
λ∗ (πxPEKW [F ∗]2,2(0, 0)0 + πxPEKW [F ∗]2(0, 0)0)

µ∗ (πx(F ∗ ◦ F ∗)2(0, 0))
2 = 0.

Recall, that according to Lemma 5.2, λ∗ is an eigenvalue of DR∗[F ∗] of multi-
plicity at least 1. According to Lemma 3.1, λ∗ is in the spectrum of DREKW [F ∗] and
in the spectrum of DREKW [s∗].

Proposition 5.4. ( Elimination of an eigenvalue). Suppose that β, ρ, % and the

neighborhood B%(s∗) ⊂ Aβs (ρ) satisfy the hypothesis of Lemma 5.2. Furthermore,
suppose that the operator Rc∗ , c∗ = (s∗ ◦G)(0,3), is analytic and compact in B%(s∗).

Set

C =
1

2

c∗

PEKW [s∗]0,2
.

Then

spec(DREKW [s∗]) \ {λ∗,−λ∗(1− C)} ⊂ spec(DRc∗ [s∗]),
and ψEKW

s∗ is an eigenvector of DRc∗ [s∗] associated with the eigenvalue λ∗C.
In addition,

spec(DRc∗ [s∗]) ⊂ spec(DREKW [s∗]) ∪ {λ∗C},
and if λ∗ /∈ spec(DRc∗ [s∗]), then λ∗ has multiplicity 1 in spec(DREKW [s∗]).

Proof. According to Proposition 4.2, under the hypothesis of the Lemma 5.2, REKW

and Rc∗ are analytic and compact as operators from B%(s∗) to As(1.75).
Recall, that ψEKWs∗ is an eigenvector of DREKW [s∗] corresponding to the eigen-

value λ∗.
We consider the action of DRc∗ [s∗] on a vector ψ. First, notice the difference

between the definition of λ in (1.1)

s(G(λ, 0)) = 0,

and in Definition 2.1

s(G(λ+ tλ2, 0)) = 0
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(we will use the notation λEKW below to emphasize the difference). This implies that
if DλEKW [s]ψ is an action of the derivative of λEKW [s] on a vector ψ, then

Dλ[s∗]ψ = DλEKW [s∗]ψ − λ2∗Dtc∗ [s∗]ψ

is that of the derivative of λ[s].
Similarly,

DµEKW [s∗]ψ=
[
∂1(s∗ ◦G)(λ∗, 0) + λ∗∂

2
1(s∗ ◦G)(λ∗, 0)

]
DλEKW [s∗]ψ

+ λ∗∂1(DPEKW [s∗]ψ)(λ∗, 0),

Dµ[s∗]ψ=
[
∂1(s∗◦G)(λ∗, 0)+λ∗∂

2
1(s∗◦G)(λ∗, 0)

]
Dλ[s∗]ψ+λ∗∂1(DPEKW [s∗]ψ)(λ∗, 0)

+ λ3
∗∂

2
1(s∗ ◦G)(λ∗, 0)Dtc∗ [s∗]ψ

=DµEKW [s∗]ψ − ∂1PEKW [s∗](λ∗, 0)λ2
∗Dtc∗ [s∗]ψ

=DµEKW [s∗]ψ − λ∗µ∗Dtc∗ [s∗]ψ.

Therefore,

DRc∗ [s∗]ψ = DREKW [s∗]ψ + 2λ∗ (Dtc∗ [s∗]ψ) s∗πy +
1

µ∗
(∇PEKW [s∗] · (Dξtψ)) ◦ λ∗

− Dtc∗ [s∗]ψ
λ2
∗

µ∗
∇PEKW [s∗] ◦ λ∗ · (πx, πy) + λ∗Dtc∗ [s∗]ψs∗

= DREKW [s∗]ψ − λ∗ (Dtc∗ [s∗]ψ)∇s∗ · (πx, πy)

+ λ∗ (Dtc∗ [s∗]ψ) s∗ + λ∗ (Dtc∗ [s∗]ψ)ψs∗

= DREKW [s∗]ψ + λ∗ (Dtc∗ [s∗]ψ)ψEKW

s∗ (40)

Now, let ψ be an eigenvector of DREKW [s∗] of eigenvalue κ 6= λ∗ (that is, ψ 6=
ψEKWs∗ ). Consider the action of DRc∗ [s∗] on ψ + aψEKWs∗ .

DRc∗ [s∗](ψ + aψEKWs∗ ) = κψ + λ∗
(
Dtc[s∗](ψ + aψEKWs∗ )

)
ψEKWs∗ .

Below we use the notation introduced in (38). In the following calculation we
use (36) and

Dtc[s∗]ψEKW

s∗ = Dtc[s∗](ψs∗ + ψu − ψx)

= −1

4

(DPEKW [s∗](ψs∗+ψu−ψx))0,3
PEKW [s∗]0,2

−1

4

(DPEKW [s∗](ψs∗+ψu−ψx))0,2 (c−PEKW [s∗]0,3)

(PEKW [s∗]0,2)
2

= −1

4

(
ψPEKW [s∗] + PEKW [s∗]−∇PEKW [s∗] · (πx, πy)

)
0,3

PEKW [s∗]0,2

−1

4

(
ψPEKW [s∗] + PEKW [s∗]−∇PEKW [s∗] · (πx, πy)

)
0,2

(c− PEKW [s∗]0,3)

(PEKW [s∗]0,2)
2
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= −1

4

(∂2PEKW [s∗])0,1 + 2 (PEKW [s∗])0,2
PEKW [s∗]0,2

− 1

4

(PEKW [s∗])0,3 − (∂2PEKW [s∗])0,2
PEKW [s∗]0,2

−1

4

(
(∂2PEKW [s∗])0,0 + 2 (PEKW [s∗])0,1

)
(c− PEKW [s∗]0,3)

(PEKW [s∗]0,2)
2

−1

4

(
(PEKW [s∗])0,2 − (∂2PEKW [s∗])0,1

)
(c− PEKW [s∗]0,3)

(PEKW [s∗]0,2)
2

= −1 +
1

2

c∗

PEKW [s∗]0,2
− 1

4

(
3PEKW [s∗]0,1
PEKW [s∗]0,2

− 1

)
c− c∗

PEKW [s∗]0,2
= −1 + C.

Denote d ≡ Dtc[s∗]ψ, then

DRc∗ [s∗](ψ + aψEKWs∗ ) = κψ + λ∗(d+ a(−1 + C))ψEKWs∗

= κ

(
ψ +

λ∗
κ

(d+ a(−1 + C))ψEKWs∗

)
,

and we see that the equation

a =
λ∗
κ

(d+ a(−1 + C))

has a unique solution a if

κ 6= λ∗(−1 + C). (41)

For such κ, the vector

ψ +
λ∗d

κ− λ∗(C − 1)
ψEKWs∗

is an eigenvector of DRc∗ [s∗] associated with the eigenvalue κ.
On the other hand if ψ = ψEKW

s∗ , then

DRc∗ [s∗]ψEKW

s∗ = λ∗ψ
EKW

s∗ + λ∗(−1 + C)ψEKWs∗ = λCψEKW

s∗ .

Remark 5.5. A computer estimate of C for all s ∈ B%0(s0) demonstrates that
|λ∗C| < 0.00124359130859375, i.e. the eigenvalue corresponding to ψEKW

s∗ is almost
eliminated.

At the same time, our computer estimates on the spectrum in the proof of the
Main Theorem demonstrate that −λ∗(1− C) is not en eigenvalue of DREKW [s∗].

So far we were not able to make any claims about the multiplicity of the eigen-
value λ∗ in the spectrum of DREKW [s∗]. However, we will demonstrate in Section 6
that it is indeed equal to 1.

6. Spectral properties of Rc. Proof of main theorem. We will now describe
our computer-assisted proof of the Main Theorem.

To implement the operator DRc∗ [s∗] on the computer, we would have to know
bounds on c∗. This is certainly possible, but unnecessary: for the purposes of
proving rigidity, it suffices to work with an operator Rc where c is close to c∗. At
the same time, using an exact representable value of c in a computer assisted proof,



3670 DENIS GAIDASHEV AND TOMAS JOHNSON

as opposed to using an interval bound on c∗, greatly reduces sizes of error bounds
in the proof.

We choose the following value of c:

c0 = (s0 ◦G[s0])(0,3) ,

where s0 is our polynomial approximation for the fixed point.
The operator Rc0 differs from Rc∗ only in the “tiny amount” by which the

eigendirection ψEKW

s∗ is “eliminated”. As long as the spectral radius of the operator
DRc0 is sufficiently small, neither the difference between c0 and c∗, nor the difference
between the spectra of DRc0 and DRc∗ plays an especially important role in our
rigidity proof in [16].

We will now describe a rigorous computer upper bound on the spectrum of the
operator DRc0 [s∗].

Proof of part ii) of Main Theorem.
Step 1). Recall the Definition 1.2 of the Banach subspace As(ρ) of A(ρ). We
will now choose a new bases {ψi,j} in As(ρ). Given s ∈ As(ρ) we write its Taylor
expansion in the form

s(x, y) =
∑

(i,j)∈I

si,jψi,j(x, y),

where ψi,j ∈ As(ρ):

ψ̃i,j(x, y) = xi+1yj , i = −1, j ≥ 0,

ψ̃i,j(x, y) = xi+1yj +
i+ 1

j + 1
xj+1yi, i > −1, j ≥ i,

ψi,j =
ψ̃i,j

‖ψ̃i,j‖ρ
, i ≥ −1, j ≥ max{0, i},

and the index set I of these basis vectors is defined as

I = {(i, j) ∈ Z2 : i ≥ −1, j ≥ max{0, i}}.

Denote Ãs(ρ) the set of all sequences

s̃ =

si,j : si,j ∈ C,
∑

(i,j)∈I

|si,j | <∞

 .

Equipped with the l1-norm

|s|1 =
∑

(i,j)∈I

|si,j |, (42)

Ãs(ρ) is a Banach space, which is isomorphic to As(ρ). Clearly, the isomorphism

J : As(ρ) 7→ Ãs(ρ) is an isometry:

‖ · ‖ρ = | · |1.
We divide the set I in three disjoint parts:

I1 = {(i, j) ∈ I : i+ j < N},
I2 = {(i, j) ∈ I : N ≤ i+ j < M},
I3 = {(i, j) ∈ I : i+ j ≥M},

with
N = 22, M = 60.
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We will denote the cardinality of the first set as D(N), the cardinality of I1 ∪ I2 as
D(M).

We assign a single index to vectors ψi,j , (i, j) ∈ I1 ∪ I2, as follows:

k(−1, 0) = 1, k(−1, 1) = 2, . . . , k(−1,M) = M + 1, k(0, 0) = M + 2,

k(0, 1) = M + 3, . . . , k

([
M − 1

2

]
,M − 1−

[
M − 1

2

])
= D(M).

This correspondence (i, j) 7→ k is one-to-one, we will, therefore, also use the notation
(i(k), j(k)).

For any s ∈ As(ρ), we define the following projections on the subspaces of the

linear subspace ED(N) spanned by {ψk}D(N)
k=1 .

Πks = si(k),j(k)ψk, ΠED(N)
s =

∑
m≤D(N)

Πms.

Fix
c0 = (s0 ◦G[s0])0,3,

where s0 is some good numerical approximation of the fixed point. Denote for
brevity Lsc ≡ DRc[s]. We can now write a matrix representation of the finite-
dimensional linear operator

ΠED(N)
Ls0c0ΠED(N)

as
Dn,m = ΠmLs0c0ψn.

Step 2). We compute a set of eigenvectors ek of the matrixD numerically, and form
a D(N)×D(N) matrix A whose columns are the numerically computed eigenvectors
ek. We would now like to find a rigorous bound B on the inverse B of A.

Let B0 be an approximate inverse of A. Consider the operator C in the Banach

space of all D(N) ×D(N) matrices (isomorphic to RD(N)2) equipped with the l1-
norm, given by

C[B] = (A+ I)B − I.
Notice, that if B is a fixed point of C then AB = I. Consider a “Newton map” for
C:

N [z] = z + C[B0 −B0z]−B0 +B0z.

If z is a fixed point of N , then B0 −B0z is a fixed point of C. Furthermore,

DN [z] = I−AB0

is constant. We therefore, estimate l1 matrix norms

‖N [0]‖1 ≤≡ ε, ‖I−AB0‖1 ≤≡ L,
and obtain via the Contraction Mapping Principle, that the inverse of A is contained
in the l1 δ-neighborhood of B0, with

δ = ‖B0‖1
ε

1− L
.

Step 3). Define the linear operator

A = AΠED(N)

⊕(
I−ΠED(N)

)
,

and its inverse
B = BΠED(N)

⊕(
I−ΠED(N)

)
.
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Consider the action of the operator Lsc0 in the new basis

[e1, e2, . . . , eD(N)] ≡ [ψ1, ψ2, . . . , ψD(N)]A, and ek ≡ ψk for k > D(N). (43)

To be specific, we consider a new Banach space Âs(ρ): the space of all functions

s =
∑
k

ckek,

analytic on a bi-disk Dρ, for which the norm

‖s‖1 =
∑
k

|ck|

is finite. For any s ∈ Âs(ρ), we define the following projections on the basis vectors.

Pis = ciei, P>ks =

(
I−

k∑
i=1

Pi

)
s. (44)

Clearly, the Banach spaces As(ρ) and Âs(ρ) are isomorphic, while the norms
‖ ·‖ρ and ‖ ·‖1 are equivalent. We can use (43) to compute the equivalence constant
α in

α‖ · ‖1 ≥ ‖ · ‖ρ = | · |1
(recall, norms ‖ · ‖ρ and | · |1, defined in (42) are equal):

|s|1 ≤ ‖A‖1
∑

1≤k≤D(N)

|ck|+
∑

i>D(N)

|ci| ≤ α‖s‖1,

where α = max{‖A‖1, 1}. The constant has been rigorously evaluated on the com-
puter:

α ≤ 49.435546875. (45)

The operator Lsc0 is “almost” diagonal in this new basis for all s ∈ Br(s0) ⊂ As(ρ)
with

r = 6.0× 10−12.

We proceed to quantify this claim.

‖P2Lsc0e1‖1 ≤ 5.19007444381714× 10−4 , ‖P1Lsc0e2‖1 ≤ 1.76560133695602× 10−4,
‖P>2Lsc0e1‖1 ≤ 3.5819411277771× 10−3, ‖P>2Lsc0e2‖1 ≤ 1.49521231651306× 10−3,
‖P1Lsc0P>2‖1≤ 1.22539699077606× 10−4, ‖P2Lsc0P>2‖1≤ 8.2328915596008310−5,

for all s ∈ Br(s0) ⊂ As(ρ).
Next, we adjust the basis by an almost diagonal near identity linear operator

M = M(s): [ê1, ê2, . . .] ≡ [e1, e2, . . .]M, so that the operator Lsc0 would be block-
diagonal in the new basis:

Lsc0 = δ1(s)P̂1

⊕
δ2(s)P̂2

⊕
Ysc0 ,

where P̂i and P̂>k are defined similarly to (44) for the new basis êi, and Ysc0 =

P̂>2Lsc0 P̂>2. We have estimated

‖Ysc0‖1 < 0.1258544921875. (46)

for all s ∈ Br(s0). This is also an upper bound on the norm of the operator
P>2Lsc0P>2 for all s ∈ Br(s0).

Step 4). We will now demonstrate existence of a fixed point s∗ in Br(s0) ∈ As(ρ),
of the operator Rc0 , where

c0 = (s0 ◦G[s0])0,3.
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We will use the Contraction Mapping Principle in the following form. Define the
following linear operator on Âs(ρ)

M ≡ [I−K]
−1
, where Kh ≡ δ̂1P1h+ δ̂2P2h,

and δ̂1 and δ̂2 are defined via

P1Ls0c0e1 = δ̂1e1, P2Ls0c0e2 = δ̂2e2.

Consider the operator

N [h] = h+Rc0 [s0 +Mh]− (s0 +Mh)

on Âs(ρ). The operator N is analytic on B‖M‖−1
1 α−1r(0), where α is the norm

equivalence constant (45), and

‖M‖1 = max

{∣∣∣∣ 1

1− δ̂1

∣∣∣∣ , ∣∣∣∣ 1

1− δ̂2

∣∣∣∣ , 1} = 1.

Notice, that if h∗ is a fixed point of N , then s0 +Mh∗ is a fixed point of Rc0 . The
norm of the derivative of the operator N is bounded from above by a number close
to the norm of Ysc0 , indeed,

DN [h] = I +DRc0 [s0 +Mh] ·M −M =
[
M−1 +DRc0 [s0 +Mh]− I

]
·M

= [I−K +DRc0 [s0 +Mh]− I] ·M = [DRc0 [s0 +Mh]−K] ·M
which implies that

‖DN [h]‖1 ≤ ‖Lsc0 −K‖1‖M‖1 = ‖Lsc0 −K‖1,
here s = s0 + Mh. The last norm is close to (46). We have found a conservative
estimate on ‖DN [h]‖1 for all h ∈ Bα−1r(0):

‖DN [h]‖1 =: L ≤ 0.15625.

At the same time

‖N [0]‖1 = ‖Rc0 [s0]− s0‖1 =: ε ≤ 4.9560546875× 10−16.

We can now see that the hypothesis of the Contraction Mapping Principle is indeed
verified:

ε ≤ 4.9560546875× 10−16 < 1.015625× 10−13 < (1− L)α−1r,

and therefore, the neighborhood Bε/(1−L)(0) ⊂ B0.005α−1r(0) contains a fixed point
h∗ of N , i.e. the neighborhood B0.005r(s0) ⊂ Br(s0) ⊂ As(ρ) contains a fixed point
s∗ = s0 +Mh∗ of Rc0 .

We quote here for reference purposes the bounds on the values of the scalings
λ[s∗] and µ[s∗]:

λ[s∗] = [−0.248875288734817765,−0.248875288702286711], (47)

µ[s∗] = [0.0611101382055370338, 0.0611101382190655586]. (48)

Step 5). Notice, that in general,

(s∗ ◦G[s∗])0,3 6= c0,

therefore
tc0 [s∗] 6= 0.

However, tc0 [s∗] is a small number which we have estimated to be

|tc0 [s∗]| < 7.89560771750566329× 10−12. (49)
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Consider the map F ∗ generated by s∗. Recall that by Theorem 3, there exists a
simply connected open set D such that F ∗c0 ∈ O2(D). The fixed point equation for
the map F ∗c0 is as follows:

Λ−1F∗c0
◦ S−1tc0 [s∗] ◦ F

∗
c0 ◦ F

∗
c0 ◦ Stc0 [s∗] ◦ ΛF∗c0 = F ∗c0 .

2
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