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Abstract. The high-dimensional linear regression model has attracted much

attention in areas like information technology, biology, chemometrics, econom-

ics, finance and other scientific fields. In this paper, we use smoothing tech-
niques to deal with high-dimensional sparse models via quantile regression with

the nonconvex `p penalty (0 < p < 1). We introduce two kinds of smoothing
functions and give the estimation of approximation by our different smooth-
ing functions. By smoothing the quantile function, we derive two types of

lower bounds for any local solution of the smoothing quantile regression with
the nonconvex `p penalty. Then with the help of `1 regularization, we pro-

pose a smoothing iterative method for the smoothing quantile regression with

the weighted `1 penalty and establish its global convergence, whose efficient
performance is illustrated by the numerical experiments.

2010 Mathematics Subject Classification. Primary: 58F15, 58F17; Secondary: 53C35.
Key words and phrases. High-dimensional linear sparse model, quantile regression, smoothing

function, nonconvex `p penalty, weighted `1 penalty.
The first author is supported by National Natural Science Foundation of China

(11431002,11171018).
∗ Corresponding author: Lingchen Kong.

93

http://dx.doi.org/10.3934/jimo.2016006


94 LIANJUN ZHANG, LINGCHEN KONG, YAN LI AND SHENGLONG ZHOU

1. Introduction. High-dimensional linear regression models have attracted much
attention in areas like information technology, biology, chemometrics, genomic, eco-
nomics, finance, functional magnetic resonance imaging and other scientific fields.
The word “high-dimensional” refers to the situation where the number of unknown
variables is larger than the number of samples in the underlying data. Obviously,
it is almost impossible to tackle such kind of data without additional assumptions.
One natural option is to utilize sparsity, which assumes that only a small number
of unknown variables influence the response vector. Analysis of high-dimensional
data poses many challenges for statisticians and calls for new methods and theories.
For details, see, e.g., [2, 11] and references therein.

Regularization as one popular way to analyze high-dimensional sparse data have
been used for a long time. Since sparse models are becoming increasingly impor-
tant in statistics, machine learning and signal processing, there are a wealth of
researchers working on sparse estimations via `1 or `p regularizations, see, e.g.,
[1, 5, 4, 7, 8, 22, 3, 9, 20, 21]. To be more specific, Aravkin, Kambadur, Lozano [1]
used `1 regularization to solve the high-dimensional sparse linear regression model.
Donoho and Elad [8] studied sparse representation in general dictionaries via `1
penalty. Chen, Xu, Ye [5] derived lower bounds for nonzero entries of local mini-
mizers and also proposed a hybrid orthogonal matching pursuit-smoothing gradient
method. Chen and Zhou [6], Lai and Wang [15] considered the different approxima-
tion of non-Lipschitz continuous ‖x‖pp, and proposed an iterative reweighted `1 and
`2 algorithm to solve this approximation problem, respectively. Lu [17] provided
a unified convergence analysis for a general problem and developed new iterative
reweighted methods.

Quantile regression performs well in the high dimensional sparse model, partic-
ularly in situations where noises are heavy-tailed or heterogeneous [12, 18], which
was introduced by Koenker and Bassett [13]. Quantile regression becomes a popular
and important tool in statistical analysis, which includes the well-known median re-
gression or LAD as a special case. A comprehensive review can be found in Koenker
[14]. Recently, regularized quantile regression has been widely studied. For exam-
ple, Aravkin, Kambadur, Lozano [1] considered quantile regression with `0 and `1
penalties and exploited quantile Huber penalty (a smooth function) to substitute
the quantile loss function and proposed a generalized orthogonal matching pursuit
(OMP) method for variable selection. Fan, Fan and Barut [12] studied the penal-
ized quantile regression with the weighted L1-penalty (WR-Lasso) and designed a
two-step procedure, called adaptive robust Lasso (AR-Lasso). They investigated
the model selection oracle property and establish the asymptotic normality of the
WR-Lasso. Wang et al. [18] considered the nonconvex penalized quantile regression
in the ultra-high dimensional setting and showed that the oracle estimate belongs
to the set of local minima of the nonconvex penalized quantile regression, under
mild assumptions on the error distribution.

Motivated by the arguments to handle the high dimensional sparse model above,
we consider quantile regression with nonconvex `p penalty (0 < p < 1). We first
introduce two sorts of smoothing functions, and give the estimation of approxima-
tion by our different smoothing functions. Then we utilize them to smoothing the
quantile function ρτ (·). Based on that, two lower bounds for nonconvex smoothing
quantile regression are acquired. Moreover, since the nonconvex `p penalty smooth-
ing model is still NP-hard, we take advantage of weighted `1 regularization replac-
ing `p penalty. After that we propose a smoothing iterative method for smoothing
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quantile regression with weighted `1 penalty and establish its global convergence.
Finally, we stimulate two examples to demonstrate the efficiency of the proposed
approach.

The rest of this paper is organised as follows. Section 2 introduces some related
preliminaries about the model and two types of smoothing functions. We then
establish lower bounds theories for smoothing quantile regression with `p(0 < p <
1) penalty in Section 3. Algorithm based on smoothing quantile regression with
weighted `1 penalty and its corresponding convergence is given in Section 4. We
stimulate some numerical experiments in Section 5 and conclude the paper in the
last section.

2. Preliminaries. In this section, we give some notations about the mathemat-
ical model of the high-dimensional linear quantile regression with nonconvex `p
penalty. By smoothing the quantile function and relaxing `p penalty into weighted
`1 penalty, we can give corresponding different models for distinct theoretical and
methodological purposes.

2.1. Models. Consider the high-dimensional linear regression model

y = Xβ + ξ, (1)

where y ∈ Rm is a response vector, X = (x1, x2, · · · , xm)> ∈ Rm×n is a fixed design
matrix, β ∈ Rn is a regression coefficient vector, ξ ∈ Rm is an error (noise) vector
whose components are independently distributed. Here, high-dimensional means
that n > m, namely the number of unknown variables is larger than the number of
samples in the data. As we all known that without any assumption, m� n means
the problem is ill-posed, so we assume that β is sparse (‖β‖0 = k � n) which means
most components of β are zeroes.

To estimate sparse regression coefficient vector β, we propose the quantile re-
gression with `p penalty defined as

min

m∑
i=1

ρτ (yi − x>i β) + µ‖β‖pp, (2)

where quantile τ ∈ (0, 1), quantile loss function is defined as ρτ (x) = (τ−I(x < 0))x

with I(·) being an indicator function, ‖β‖pp =
n∑
i=1

|βi|p with 0 < p < 1, and penalty

parameter µ > 0. Model (2) is nonconvex and nonsmooth. When τ = 1
2 , ρτ (x) is

the so called least absolute deviation (LAD). Thus model (2) reduces to the LAD-`p
model, that is

min ‖y −Xβ‖1 + µ‖β‖pp. (3)

One way to study nonconvex and nonsmooth model is to adopt a smoothing
function to substitute the objective function. In this paper, we use two smoothing
functions to replace the quantile regression, one of which is a generalization of that
in Chen and Zhou [6], another is the quantile Huber penalty as in [1]. We will
interpret some properties of them in the subsequent subsection. Let ρτ (·, δ) be the
smoothing quantile loss function, then model (2) can be smoothed as smoothing
quantile regression with `p penalty

min

m∑
i=1

ρτ (yi − x>i β, δ) + µ‖β‖pp, (4)
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where δ is a smoothing parameter. Based on this model, we can easily drive two
lower bounds similar to Chen, Xu, and Ye [5], see Section 3. However model (4) is
still nonconvex and nonsmooth, and thus it is difficult to solve. Therefore we use
weighted `1 penalty to approximate the `p penalty in (4), which is the following
convex model

min

m∑
i=1

ρτ (yi − x>i β, δ) + µ‖w ◦ β‖1. (5)

Based on this model, we will propose an effective method to pursue the sparse
solution of high dimensional linear regression.

2.2. Smoothing functions. In this part, we first give a definition of smoothing
functions. Then we will introduce two kinds of functions and prove that they are
all smoothing functions of quantile loss function respectively. Smoothing technique
has been studied and used in optimization and variational inequalities. Here we
take the following definition. For more details, see e.g., [10, 16].

Definition 2.1. Let X, Y be two finite dimensional real Euclidean spaces. Let
f : X → Y be a nondifferentiable function. A function fδ : X → Y with a parameter
δ ∈ R+ is called a smoothing function of f if it has the following properties:

(a) fδ is continuously differentiable for any δ ∈ R++;
(b) limδ→0 fδ(x) = f(x) for any x ∈ X, where δ → 0 for any δ ∈ R++.

We say that fδ is a uniformly smooth approach function of f if there is a scalar
K > 0 such that

‖ fδ(x)− f(x) ‖≤ K ‖ δ ‖, ∀δ ∈ R++, ∀x ∈ X. (6)

We now introduce two kinds of smoothing functions and their properties. Then
we will prove that they are smoothing functions of quantile loss function respectively.
The first smoothing function is defined as:

ρτ,1(θ, δ) =


(τ − 1)θ, θ < −δ,
θ2

4δ
+ (τ − 1

2
)θ +

δ

4
, |θ| ≤ δ, (7)

τθ, θ > δ.

Clearly, when τ = 1
2 the function ρ1/2,1(θ, δ) reduces to the smoothing function that

has been extensively exploited, see [6],

ρ1/2,1(θ, δ) =


|θ|/2, |θ| > δ,

θ2

4δ
+
δ

4
, |θ| ≤ δ.

The graphs of quantile loss function and its smoothing function ρτ,1(θ, δ) is plotted
in Figure 1. Every broken dotted line and the smooth active line above it are ρτ (θ)
and its smoothing function ρτ,1(θ, δ) respectively. We distinguish different functions
with different colors when τ and δ are different.
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Figure 1. Function ρτ (θ) and its smoothing relaxation ρτ,1(θ, δ)

Theorem 2.2. For any fixed δ > 0 and τ ∈ (0, 1), the function ρτ,1(yi− x>i β, δ) is
continuously differentiable with respect to β ∈ Rn. Moreover its first order partial
derivative with respect to β is

∇ρτ,1(θi, δ) =


(1− τ)xi, θi < −δ,

−
(
θi
2δ

+

(
τ − 1

2

))
xi, |θi| ≤ δ, (8)

−τxi, θi > δ,

and the second order partial derivative with respect to β is

∇2ρτ,1(θi, δ) =

 xix
>
i

2δ
, |θi| < δ, (9)

0, |θi| > δ,

where θi = yi − x>i β for all i.

Theorem 2.3. The function ρτ,1(θ, δ) is a uniformly smooth approach function
of quantile loss function ρτ (θ).

Proof. From Proposition 2.2 we know that ρτ,1(θ, δ) is continuously differentiable for
any δ ∈ R++. Obviously we have limδ→0 ρτ,1(θ, δ) = ρτ (θ) for any θ ∈ R, δ ∈ R++.
Suppose hτ,1(θ, δ) = ρτ,1(θ, δ)− ρτ (θ), which means

hτ,1(θ, δ) =


θ2

4δ
+
θ

2
+
δ

4
, −δ < θ < 0,

θ2

4δ
− θ

2
+
δ

4
, 0 ≤ θ < δ, (10)

0, otherwise.

When θ ∈ (−δ, 0), according to the Lagrange Mean Value Theorem, for any θ ∈
(−δ, 0), there must be a ξ ∈ (−δ, θ) that satisfies

hτ,1(θ, δ)− hτ,1(−δ, δ)
θ + δ

=
ξ

2δ
+

1

2
,

which means

0 < hτ,1(θ, δ) = (
ξ

2δ
+

1

2
)(θ + δ) ≤ 1

2
δ.

Thus, setting K1 = 1
2 , we have

‖ ρτ,1(θ, δ)− ρτ (θ) ‖≤ K1 ‖ δ ‖
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for any θ ∈ (−δ, 0).
We can also get

‖ ρτ,1(θ, δ)− ρτ (θ) ‖≤ K2 ‖ δ ‖
in the same way when θ ∈ [0, δ). Therefore, takeing K = max{K1,K2}, we obtain

‖ ρτ,1(θ, δ)− ρτ (θ) ‖≤ K ‖ δ ‖
for any θ ∈ R.

By applying the first smoothing function (7), we can achieve the lower bounds
theories for smoothing quantile regression with `p(0 < p < 1) penalty, see the next
part. However when it comes to computing issues, the quantile Huber penalty in
[1] performs better than the first smoothing function (7), so we introduce it here

ρτ,2(θ, δ) =


(τ − 1)θ − δ(1−τ)2

2 , θ ∈ (−∞, (τ − 1)δ),
θ2

2δ
, θ ∈ [(τ − 1)δ, τδ],

τθ − δτ2

2 , θ ∈ (τδ, +∞)

(11)

If we let τ = 1
2 , the function ρ1/2,2(θ, δ) deduces to the following smoothing function:

ρ1/2,2(θ, δ) =


|θ|
2
− δ

4
, |θ| > δ,

θ2

4δ
, |θ| ≤ δ.

Actually, for any δ > 0, function ρτ,2(θ, δ) no longer smooths the quantile function
ρτ (θ). Function ρτ,2(θ, δ) smoothes function %τ (·, δ) which is defined as

%τ (θ, δ) =

{
(τ − 1)θ − δ(1−τ)2

2 , θ ≤ 0,

τθ − δτ2

2 , θ > 0.
(12)

Figure 2 presents us the patterns of ρτ,2(θ, δ) and %τ (θ, δ) under different τ ∈ (0, 1)
and δ > 0. Every pair of dotted line in the same color and the smooth active
line above it are ρτ (θ, δ) and its smoothing function ρτ,2(θ, δ) respectively. We
distinguish different functions with different colors when τ and δ are different.
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Figure 2. Function %τ (θ, δ) and its smoothing relaxation ρτ,2(θ, δ)

Moreover for δ = 0, function %τ (θ, δ) = ρτ (θ), and the following property holds.

Theorem 2.4. For any fixed δ > 0 and τ ∈ (0, 1), we have

argminβ∈Rn

m∑
i=1

ρτ (yi − x>i β) = argminβ∈Rn

m∑
i=1

ρτ,2(yi − x>i β, δ). (13)

This signifies that quantile Huber penalty has the exactly same solution with the
original quantile loss function. Therefore, in order to obtain the optimal solution of
the left side of the equality above, we could take advantage of ρτ,2(·, δ) to substitute
the quantile loss function ρτ (·).

Even though there are some differences between the two smoothing functions (7)
and (11), the quantile Huber penalty can also drive the same lower bounds because
they all have the first and second order partial derivatives which will be used in
Section 3.

Theorem 2.5. For any fixed δ > 0 and τ ∈ (0, 1), the function ρτ,2(yi− x>i β, δ) is
continuously differentiable with respect to β ∈ Rn. Moreover its first order partial
derivative with respect to β is

∇ρτ,2(yi − x>i β, δ) =


(1− τ)xi, θi ∈ (−∞, (τ − 1)δ),

− θiδ xi, θi ∈ [(τ − 1)δ, τδ],
−τxi, θi ∈ (τδ, +∞),

(14)

and the second order partial derivative with respect to β is

∇2ρτ,2(yi − x>i β, δ) =

{
xix
>
i

δ , θi ∈ [(τ − 1)δ, τδ],
0, otherwise,

(15)

where θi = yi − x>i β for all i.

Now we prove that ρτ,2(θ, δ) is a uniformly smooth approach function of ρτ (θ).

Theorem 2.6. The function ρτ,2(θ, δ) is a uniformly smooth approach function
of quantile loss function ρτ (θ).

Proof. From Proposition 2.5 we know that ρτ,2(θ, δ) is continuously differentiable for
any δ ∈ R++. Obviously we have limδ→0 ρτ,2(θ, δ) = ρτ (θ) for any θ ∈ R, δ ∈ R++.
Suppose hτ,2(θ, δ) = ρτ,2(θ, δ)− ρτ (θ), which means

hτ,2(θ, δ) =


− δ(1−τ)2

2 , −∞ < θ < (τ − 1)δ,
θ2

2δ − (τ − 1)θ, (τ − 1)δ ≤ θ < 0,
θ2

2δ − (τ)θ, 0 ≤ θ < τδ,

− δτ
2

2 , τδ ≤ θ < +∞.

(16)

When θ ∈ (−∞, (τ − 1)δ),

| hτ,2(θ, δ) |=| ρτ,2(θ, δ)− ρτ (θ) |=| δ(1− τ)2

2
|≤ δ

2
.

This means taking K1 = 1
2 , for any θ ∈ (−∞, (τ − 1)δ) we all have

| ρτ,2(θ, δ)− ρτ (θ) |≤ K1δ.
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When θ ∈ [(τ − 1)δ, 0), according to the Lagrange Mean Value Theorem, for any
θ ∈ [(τ − 1)δ, 0), there must be a ξ ∈ (θ, 0) that satisfies

| hτ,2(θ, δ)− hτ,2(0, δ) |=| (ξ
δ
− (τ − 1))θ |≤ (1− τ)2δ,

which means taking K2 = (1− τ)2, for any θ ∈ [(τ − 1)δ, 0) we all have

| ρτ,2(θ, δ)− ρτ (θ) |≤ K2δ.

We can also get
‖ ρτ,1(θ, δ)− ρτ (θ) ‖≤ K3 ‖ δ ‖

when θ ∈ [0, τδ) and
‖ ρτ,1(θ, δ)− ρτ (θ) ‖≤ K4 ‖ δ ‖

when θ ∈ [τδ,+∞) in the same way.
Therefore, taking K = max{K1,K2,K3,K4}, we obtain

‖ ρτ,1(θ, δ)− ρτ (θ) ‖≤ K ‖ δ ‖
for any θ ∈ R.

3. Lower bounds of smoothing quantile regression with `p penalty. From
the previous analysis, we drive two types of lower bounds results in this section.
For notational simplicity, we use ρτ (·, δ) to represent both ρτ,1(·, δ) and ρτ,1(·, δ)
and Sτ (·, δ) =

∑m
i=1 ρτ (·, δ), then we can denote the model (4) as

min Sτ (β, δ) + µ‖β‖pp =: Φτ (β). (17)

Before giving the lower bounds for (17), we represent a derivative property about
smoothing functions, which will be given next.

Theorem 3.1. The first and second order partial derivatives of ρτ (yi−x>i β, δ) are
bounded if they exist, namely ‖∇ρτ (yi − x>i β, δ)‖ ≤ max{τ, 1− τ}‖xi‖ ≤ ‖xi‖ and
‖∇2ρτ (yi − x>i β, δ)‖ ≤ ‖xix>i ‖/(2δ).

We let |β| = (|β1|, |β2|, · · · , |βn|)> and sign(β) stands for the signum function
of β. A vector xΩ ∈ Rn denotes the vector equals to x on an index set Ω and
zero elsewhere. For a matrix X ∈ Rm×n, we write Xi·(X·j) as the i-th row (j-th
column) of X, and XΩ ∈ Rm×k as the sub-matrix of X with (XΩ)ij = (X)ij , j ∈ Ω
and (XΩ)ij = 0, otherwise, where k = |Ω| ≤ min{m,n}. λmax(X) is the maximum

eigenvalue of X. The nonzero indices of the true regression vector β̂ ∈ Rn is denoted

as Ω with |Ω| = k, namely Ω = supp(β̂). For any z ∈ Rk, define

ρ̃τ (z) =


∇ρτ (y1 − (XΩ)>1·z, δ)
∇ρτ (y2 − (XΩ)>2·z, δ)

...
∇ρτ (ym − (XΩ)>m·z, δ)

 ∈ Rm,

Aρτ =


∇2ρτ (y1 − (XΩ)>1·z, δ)a

>
1

∇2ρτ (y2 − (XΩ)>2·z, δ)a
>
2

...
∇2ρτ (ym − (XΩ)>m·z, δ)a

>
m

 ∈ Rm×k, z ∈ Rk,

where ai = (XΩ)i·, i = 1, 2, · · · ,m and cj = (XΩ)·j , j = 1, 2, · · · , k.
Inspired by those in [5], we now drive two theorems about the lower bounds using

the first and second optimal conditions. Since Φτ (β) = Sτ (β, δ) + µ‖β‖pp ≥ µ‖β‖pp,
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the the objective function is bounded below and Φτ (β)→∞ if µ‖β‖pp →∞. So the
local solutions set of (17) defined as B is nonempty and bounded. Let b be some
positive constant such that for any z ∈ Rk,

‖(XΩ)> · ρ̃τ (z)‖ ≤ b. (18)

Remark 1. In practice, we can choose b = m‖XΩ‖·maxi=1,2,··· ,m ‖(XΩ)i·‖, because

‖(XΩ)> · ρ̃τ (z)‖ ≤ ‖(XΩ)>‖‖ρ̃τ (z)‖ ≤ m‖XΩ‖ max
i=1,2,··· ,m

‖(XΩ)i·‖. (19)

Theorem 3.2. (The first order bound) Let L =
(
µp
b

) 1
1−p . Then for any β̂ ∈ B, we

have

β̂i ∈ (−L,L) ⇒ β̂i = 0, i = 1, 2, ..., n. (20)

Proof. For any β̂ ∈ B with ‖β̂‖0 = k. Without loss of generality, we assume that

β̂ = (β̂1, β̂2, ...β̂k, 0, ..., 0)>. Let ẑ = (β̂1, β̂2, ...β̂k)>. Define a function Ψτ (z) by

Ψτ (z) := Sτ (yi − a>i z, δ) + µ‖z‖pp. (21)

Then we have

Φτ (β̂) = Sτ (yi − x>i β̂, δ) + µ‖β̂‖pp = Sτ (yi − a>i ẑ, δ) + µ‖ẑ‖pp = Ψτ (ẑ). (22)

Since | ẑi |> 0, i = 1, 2, ..., k, Ψτ (z) is continuously differentiable at ẑ. Moreover

Ψτ (ẑ) = Φτ (β̂) ≤ min{Φτ (β) | βi, i = k + 1, ..., n} = min{Ψτ (z) | z ∈ Rk} (23)

holds in a neighborhood of β̂, so we find that ẑ must be a local minimizer of function
Ψτ (z). Hence the first order necessary condition for Ψτ (z) holds at ẑ. This gives

(XΩ)>ρ̃τ (ẑ) + µp(| ẑ |p−1 sign(ẑ)) = 0. (24)

Therefore, we obtain

µp‖ẑ‖p−1
p−1 = ‖(XΩ)>ρτ (ẑ)‖ ≤ b, (25)

which implies

b ≥ µp‖ẑ‖p−1
p−1 > µpmin{| ẑi |p−1}, i = 1, ..., k. (26)

Noting that 0 < p < 1, we get

min {| ẑi |, i = 1, ..., k} ≥
(µp
b

) 1
1−p

= L. (27)

Since β̂ ∈ B is chosen arbitrarily, we can claim that for any β̂ ∈ B, its nonzero

components are no less than L. In other words, if β̂i ∈ (−L,L), then β̂i = 0 for
i = 1, 2, ..., n.

We next develop another lower bound by using the second order necessary opti-
mality condition.

Theorem 3.3. (The second order bound) Let Li =

(
2δµp(1− p)
‖ ci ‖22

) 1
2−p

,

i = 1, 2, · · · , n. We have

β̂i ∈ (−Li, Li) ⇒ β̂i = 0, i = 1, 2, ..., n. (28)
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Proof. Similar to the proof of Theorem 3.2, (23) is still holds at ẑ, which leads to
the matrix

(XΩ)>Aρτ + µp(p− 1)diag(| ẑ |p−2) (29)

to be positive semi-definite when the second order necessary optimality condition
holds. That is

e>i (XΩ)>Aρτ ei + µp(p− 1) | ẑi |p−2≥ 0, (30)

for any i = 1, 2, · · · , k, so

1

2δ
‖ci‖22 ≥ µp(1− p) | ẑi |p−2, (31)

which manifests

| ẑi |≥
(

2δµp(1− p)
‖ci‖22

) 1
2−p

= Li, i = 1, 2, · · · , k. (32)

Since β̂ ∈ B is chosen arbitrarily, we can claim that for any β̂ ∈ B, its nonzero

components are no less than L. In other words, if β̂i ∈ (−Li, Li), then β̂i = 0 for
i = 1, 2, · · · , n.

From the above results, we can see that model (17) wouldn’t get very small
nonzero components in any local solution. This can been seen a kind of variable
selecting procedure.

4. Algorithm for smoothing quantile regression. Even though there are lower
bounds for smoothing quantile regression with `p penalty, it is still NP-hard. In-
spired by the approximation

‖xk‖pp ≈
n∑
i=1

1(
|xki |+ ε

)1−p |xi| =:

n∑
i=1

w̃i(x
k)|xi|

where xk is the result generated in the k-th iteration and sufficient small smooth-
ing factor ε > 0, we take advantage of a weighted `1 minimization instead of `p
regularization directly. In this section we mainly analyze the convex model

min Sτ (β, δ) + µ‖w ◦ β‖1, (33)

where Sτ (·, δ) =
∑m
i=1 ρτ,2(·, δ). We will see that quantile Huber penalty perform

better than ρτ,1(·, δ) in numerical experiments, so we let Sτ (β, δ) represents the sum
of quantile Huber penalty functions.

With better comprehending the structure of the algorithm, we define several
notations.

Ω(β, δ) :=
{
i ∈ {1, 2, · · · , n}

∣∣∣ (τ − 1)δ ≤ yi − x>i β ≤ τδ
}
, (34)

Csn :=
{
S ⊂ {1, 2, · · · , n}

∣∣∣ |S| = s
}
, (35)

Mτ,ε(β, α, δ) := Sτ (α, δ) + 〈∇βSτ (α, δ), β − α〉+
Lα + ε

2
‖β − α‖22, (36)
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where ε > 0 is sufficiently small, ∇βSτ (α, δ) =
∑m
i=1∇ρτ

(
yi − x>i α, δ

)
(if it is not

ambiguous, we shortly write ∇Sτ (α, δ) = ∇βSτ (α, δ)) and

Lα ≥λmax

(
∇2Sτ (βk, δ)

)
=

1

δ
λmax

 ∑
i∈Ω(α,δ)

xix
>
i

 =
1

δ
λmax

 ∑
i∈Ω(α,δ)

xix
>
i

 .
(37)

Now we give the iterative formula to pursue the sparse solution of (33). Initialize
β0, we update βk+1 as

βk+1 = argminβ∈Rn Mτ,ε(β, β
k, δ) + µ‖w ◦ β‖1. (38)

Before proving the convergence of our proposed algorithm, we first give a property
of Mτ,ε(β, α, δ) +µ‖w ◦β‖1 which is the majorized function of Sτ (β, δ) +µ‖w ◦β‖1.

Theorem 4.1. If β̂ is a global minimizer of Mτ,ε(β, α, δ) + µ‖w ◦ β‖1 for any

fixed τ ∈ (0, 1), δ, µ, ε > 0, w, α ∈ Rn and Lα ≥ λmax(
∑n
i=1 xix

T
i ), then β̂ can be

analytically expressed by

β̂ = sign(β̃) ◦max

{
|β̃| − µ

Lα + ε
w, 0

}
,

where β̃ = α−∇Sτ (α, δ)/(Lα + ε).

Proof. Since function Sτ (β, δ) is smooth with respect to β on Rn when fixing δ > 0,
we acquire the majorized function from its second Taylor expansion at α whose
formula is as follows:

Sτ (β, δ) =

m∑
i=1

ρτ (yi − x>i β, δ)

= Sτ (α, δ) + 〈∇Sτ (α, δ), β − α〉+
1

2
(β − α)>∇2Sτ (α, δ)(β − α)

+o(‖β − α‖22)

≤ Sτ (α, δ) + 〈∇Sτ (α, δ), β − α〉+
Lα + ε

2
‖β − α‖22

= Mτ,ε(β, α, δ),

where Lα ≥ λmax

(
∇2Sτ (α, δ)

)
. Henceforth, for any β 6= α ∈ Rn, we have

Mτ,ε(β, α, δ) > Sτ (β, δ) and Mτ,ε(β, β, δ) = Sτ (β, δ),

which means that Mτ,ε(β, α, δ) is a majorization of Sτ (β, δ). Using this majorization
function, for given τ ∈ (0, 1) and δ > 0, we start with an initial iteration β0 and
update βk by solving

βk+1 = argminβ∈Rn Mτ,ε(β, β
k, δ) + µ‖w ◦ β‖1 (39)

= argminβ∈Rn 〈∇Sτ (βk, δ)β〉+
Lk + ε

2
‖β − βk‖22 + µ‖w ◦ β‖1,

where Lk ≥ λmax

(∑n
i=1 xix

T
i )
)
,∇Sτ (βk, δ) =

∑m
i=1∇ρτ

(
yi − x>i βk, δ

)
, which is

equivalent to

βk+1 = argminβ∈Rn
Lk + ε

2
‖β − β̃k‖22 + µ‖w ◦ β‖1

= sign(β̃k) ◦max

{
|β̃k| − µ

Lk + ε
w, 0

}
, (40)
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where
β̃k := βk −∇Sτ (βk, δ)/(Lk + ε).

Then the proposition 4.1 holds.

Based on the proposition above, the following theorem establishes the relation-
ship of the optimal solutions between the model (33) and the problem

min
{
Mτ,ε(β, β̂, δ) + µ‖w ◦ β‖1

}
.

Theorem 4.2. Let τ ∈ (0, 1), δ, ε, µ > 0 and w be given. If β̂ is a global minimizer

of (33), then β̂ is also the global minimizer of Mτ,ε(β, β̂, δ) + µ‖w ◦ β‖1.

Proof. For given β̂ ∈ Rn, since Mτ,ε(·, η̂, δ) is the majorization of Sτ (·, δ), we have

Mτ,ε(β, β̂, δ) + µ‖w ◦ β‖1 ≥ Sτ (β, δ) + µ‖w ◦ β‖1
≥ Sτ (β̂, δ) + µ‖w ◦ β̂‖1
= Mτ,ε(β̂, β̂, δ) + µ‖w ◦ β̂‖1,

where the second inequality holds due to the fact that β̂ is a global minimizer of

Sτ (β, δ) + µ‖w ◦ β‖1, and the last equality is also derived from Mτ,ε(·, β̂, δ) being
the majorization of Sτ (·, δ).

Then we can built the necessary and sufficient condition, that is the fixed point
equation, of the optimal solution of (33) from above theorem and proposition.

Theorem 4.3. Let τ ∈ (0, 1), δ, ε, µ > 0 and w be given. Then β̂ is a global

minimizer of (33) if and only if β̂ satisfies the following fixed point equation

β̂ = sign(β̃) ◦max

{
|β̃| − µ

L̂+ ε
w, 0

}
,

where β̃ = β̂ −∇Sτ (β̂, δ)/(L̂+ ε).

Proof. Necessity: Since β̂ is a global minimizer of (33), it also is the global mini-

mizer of Mτ,ε(β, β̂, δ)+µ‖w◦β‖1 from Theorem 4.2. Then by Proposition 4.1 (with

α = β̂), β̂ satisfies the fixed point equation. Sufficiency: Due to the convexity of
(33), its global minimizer is its stationary point β∗ which contents

〈∇Sτ (β∗, δ) + µw ◦ sign(β∗), β − β∗〉 ≥ 0, ∀ β ∈ Rn.
From the fixed point function, we have

β̂ = sign(β̃) ◦max

{
|β̃| − µ

L̂+ ε
w, 0

}
= argminβ∈Rn Mτ,ε(β, β̂, δ) + µ‖w ◦ β‖1

= argminβ∈Rn
L̂+ ε

2
‖β − β̃‖22 + µ‖w ◦ β‖1. (41)

Similarly, (41) is convex and thus its global minimizer is its stationary point β̂
satisfying 〈

(L̂+ ε)(β̂ − β̃) + µw ◦ sign(β̂), β − β̂
〉
≥ 0, ∀ β ∈ Rn,

which is also equivalent to〈
∇ϕτ (β̂, δ) + µw ◦ sign(β̂), β − β̂

〉
≥ 0, ∀ β ∈ Rn,
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because of β̃ = β̂ −∇Sτ (β̂, δ)/(L̂+ ε). Therefor β̂ is also the stationary point (also
a global minimizer) of (33). Overall the whole proof is achieved.

Now we are ready to prove the convergence of the proposed algorithm .

Theorem 4.4. For given τ ∈ (0, 1), δ, ε, µ > 0 and w, let {βk} be the sequence
generated by (40) and Φτ (β, δ) = {Sτ (β, δ) + µ‖w ◦ β‖1}, then

(A) Φτ (βk, δ) is monotonically non-increasing and converges to Φτ (β̂, δ), where β̂
is any accumulation point of {βk};

(B) {βk} is asymptotically regular, namely, limk→∞
∥∥βk+1 − βk

∥∥
2

= 0;

(C) {βk} converges to the global minimizer of problem (33).

Proof. (A) Since Mτ,ε(·, η̂, δ) is the majorization of Sτ (·, δ), it suffices to

Φτ (βk+1, δ) = Sτ (βk+1, δ) + µ‖w ◦ βk+1‖1
≤ Mτ,ε(β

k+1, βk, δ) + µ‖w ◦ βk+1‖1
≤ Mτ,ε(β

k, βk, δ) + µ‖w ◦ βk‖1
= Φτ (βk, δ),

which signifies that {Φτ (βk, δ)} is monotonically non-increasing. The second in-
equality derives from βk+1 = argminβ∈Rn Mτ,ε(β, β

k, δ)+µ‖w◦β‖1. As {Φτ (βk, δ)}
is bounded from below, {Φτ (βk, δ)} converges to a constant Φ̂. From {βk} ⊂{
β | Φτ (β, δ) ≤ Φτ (β0, δ)

}
which is bounded, it yields that {βk} is also bounded,

and thus {βk} has at least one accumulation point. Let β̂ be an accumulation point
of {βk}. By the continuity of Φτ (β, δ) and the convergence of {Φτ (βk, δ)}, we get

{Φτ (βk, δ)} → Φ̂ = Φτ (β̂, δ) as k →∞.
(B) Through simply computing, we have

Φτ (βk, δ)− Φτ (βk+1, δ)

= Sτ (βk, δ) + µ‖w ◦ βk‖1 − Sτ (βk+1, δ) + µ‖w ◦ βk+1‖1
= Mτ,ε(β

k, βk, δ) + µ‖w ◦ βk‖1 − Sτ (βk+1, δ) + µ‖w ◦ βk+1‖1
≥ Mτ,ε(β

k+1, βk, δ) + µ‖w ◦ βk+1‖1 − Sτ (βk+1, δ) + µ‖w ◦ βk+1‖1 (42)

= Mτ,ε(β
k+1, βk, δ)− Sτ (βk+1, δ)

= Sτ (βk, δ) + 〈∇Sτ (βk, δ), βk+1 − βk〉+
Lk + ε

2
‖βk+1 − βk‖22

−Sτ (βk, δ)− 〈∇Sτ (βk, δ), βk+1 − βk〉

−1

2
(βk+1 − βk)>∇2Sτ (βk, δ)(βk+1 − βk)− o(‖βk+1 − βk‖22)

=
ε

2
‖βk+1 − βk‖22 +

1

2
(βk+1 − βk)>

(
LkI −∇2Sτ (βk, δ)

)
(βk+1 − βk)

−o(‖βk+1 − βk‖22)

≥ ε

2
‖βk+1 − βk‖22,

where the first inequality derives from βk+1 = argminβ∈Rn Mτ,ε(β, β
k, δ) + µ‖w ◦

β‖1. The forth equality is from the Taylor expansion of Sτ (βk+1, δ) at point βk,
and the last inequality holds due to Lk ≥ λmax

(∑n
i=1 xix

T
i )
)

which suffices to

LkI −∇2Sτ (βk, δ) � LkI −
∑n
i=1 xix

T
i � 0.
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Henceforth, for given ε > 0 and any positive integer N ,

N∑
k=0

‖βk+1 − βk‖22 ≤
2

ε

N∑
k=0

(
Φτ (βk, δ)− Φτ (βk+1, δ)

)
≤ 2

ε
Φτ (β0, δ),

which implies that
∑∞
k=0 ‖βk+1 − βk‖22 < ∞ and thus limk→∞ ‖βk+1 − βk‖2 = 0,

that is {βk} is asymptotically regular.

(C) Let
{
βkj
}

be a convergent subsequence of
{
βkj
}

and β̂ be its limit point,
i.e.

βkj → β̂, as kj →∞. (43)

Since ∇Sτ (α, δ) is continuously differential, combining with the limitation above,
one can immediately derive

β̃kj = βkj − ∇Sτ (βkj , δ)

Lkj + ε
−→ β̂ −∇Sτ (β̂, δ)

L∗ + ε
=: β̃, as kj −→∞, (44)

where L̂ ≥ λmax

(∑n
i=1 xix

T
x

)
. Then the limitation (43) and the asymptotical reg-

ularity of
{
βk
}

imply

‖βkj+1 − β̂‖2 ≤ ‖βkj+1 − βkj‖2 + ‖βkj − β̂‖2 −→ 0, as kj −→∞, (45)

which guarantees that
{
βkj+1

}
also converges to β̂. On the other side, by (40) and

(44), we have

βkj+1 = sign(β̃kj ) ◦max
{
|β̃kj | − µ

Lkj + ε
w, 0

}
−→ sign(β̃) ◦max

{
|β̃| − µ

L̂+ ε
w, 0

}
, as kj −→∞,

which manifests β̂ = sign(β̃) ◦max
{
|β̃| − µ

L̂+ε
w, 0

}
. Finally, β̂ is the global mini-

mizer of (33) from Theorem 4.3. Since (33) is strongly convex, β̂ is unique. So {βk}
converges to the global minimizer of (33).

To solve the model (33), we now present the algorithm framework of modified
iterative reweighted `1 minimization (MIRL1) in Table 1.

Table 1. The framework of MIRL1 .

Modified iterative reweighted `1 minimization (MIRL1)

Initialize τ, γ ∈ (0, 1), δ1 > 0, ε > 0, β0, w1,M, µ1;

For t = 1 :M

Initialize βt,1 = βt−1;

While ‖βt,k+1 − βt,k‖2 ≥ µtmax
{
1, ‖βt,k‖2

}
Compute Lt,k ≥ 1

2δt
min

{
λmax

(∑
Ω(βt,k,δ>) xix

>
i

)
, λmax(XX

>)
}
;

Compute β̃t,k = βt,k −∇Sτ (βt,k, δt)/(Lt,k + ε);

Compute βt,k+1 = sign
(
β̃t,k

)
◦max

{
|β̃t,k| − µt

Lt,k+ε
wt, 0

}
.

End

Update δt+1 = γδt and βt = βt,k+1;

Update wt+1 from βt−1 and βt based on (46), (47) and (48);

End
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Based on the existing way of giving the weight [21], we introduce it to value the
w whose the t-th iteration wt is updated by

T t = argmax|T |=st,T⊆{1,··· ,n} ‖h
t
T ‖1, t = 1, 2, · · · (46)

wti =


[
|hti|+ ε

maxj /∈T t |htj |

]q−1

, i ∈ T t, (47)

1 , i /∈ T t,
where

ht = βt − βt−1, st = |supp(βt)| (48)

and 0 < q ≤ 1, ε > 0 is sufficiently small. One can easily find that T t coincides with
the indices of the st largest entries of |ht|. See [21] for more details.

Theorem 4.5. The inter loops of MIRL1 are convergent, that is, for each t, the
sequence of {βt,k} globally converges to

βt = argminβ∈Rn Mτ,ε(β, β
t−1, δ) + µt‖wt ◦ β‖1.

5. Numerical experiments. In this section, the numerical experiments are pre-
sented to demonstrate the performance of the proposed approach. From our experi-
ence, we know that quantile Huber penalty performs better than the first smoothing
function. So we adopt quantile Huber penalty in our numerical experiments. We
will take advantage of smoothing functions ρτ (·, δ) to relax the regression quantiles
function ρτ (·) under selecting different quantiles parameter τ .

5.1. Example I: Simulated experiment. In the simulation we considered linear
model,

y = Xβ + ξ

with sample matrix X = (x1, x2, · · · , xm)> ∈ Rm×n being from Gaussian matrices,
and E(ξ) = 0, Var(ξ) = σ2. We here let ξ obeys the Normal distribution and the
Log-normal distribution which is one of heavy-tailed distributions. We first design
the true regression quantiles estimator β∗ from the generated measurements X. We
randomly generate 20 samples. For each data set, the random matrix X and vector
y are generated by the following MATLAB codes:

b = randperm(n), β∗ = zeros(n, 1),

β∗(b(1 : s)) = randn(s, 1), X = randn(m,n),

y1 = Xβ∗ + σ ∗ randn(0, 1), y2 = Xβ∗ + σ ∗ lognrnd(0, 1, n, 1),

where the sparsity s of the true regression quantiles estimator β∗ is always settled
as s = 1%× n. The parameter σ will be taken as σ = 0.01 or 0.25.

By exploiting method MIRL1 to compute the approximately optimal solution,

we denote it as β̂. In Table 2, we compare the estimation errors ‖β̂ − β∗‖2, the

prediction errors 1√
m
‖ Xβ̂ − Xβ∗ ‖2, the CPU time, and we add to another two

types of errors which are

FPR :=
Card

{
j : β∗j 6= 0 & β̂j = 0

}
Card

{
j : β̂j = 0

} , TPR :=
Card

{
j : β∗j 6= 0 & β̂j 6= 0

}
Card

{
j : β̂j 6= 0

} ,

where FPR stands for the false positive rate, which means the rate of significant
variables that are unselected over the whole zero entries, and TPR denotes the true
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positive rate, which implies the ratio of significant variables that are selected over
the entire none zero elements. It is worth mentioning that the smaller FPR and the
larger TPR is, the better our approach would perform.

Table 2. n = 512,m = 128.

τ Noise ‖β̂ − β∗‖2 1√
m
‖Xβ̂ −Xβ∗‖2 FPR TPR Time(s)

0.1
N(0, σ2) 0.0063 0.0078 0 1.0000 2.7474

LN(0, σ2) 0.0146 0.0177 0 0.9429 3.0230

0.3
N(0, σ2) 0.0067 0.0091 0 1.0000 2.4950

LN(0, σ2) 0.0167 0.0209 0 0.8762 2.2424

0.5
N(0, σ2) 0.0082 0.0097 0 1.0000 2.2793

LN(0, σ2) 0.0175 0.0201 0 0.8563 2.1709

0.7
N(0, σ2) 0.0069 0.0093 0 1.0000 2.4489

LN(0, σ2) 0.0208 0.0258 0 0.8028 2.4478

0.9
N(0, σ2) 0.0062 0.0077 0 1.0000 2.6616

LN(0, σ2) 0.0243 0.0299 0 0.6254 2.7624

Table 3. n = 1024,m = 256.

τ Noise ‖β̂ − β∗‖2 1√
m
‖Xβ̂ −Xβ∗‖2 FPR TPR Time(s)

0.1
N(0, σ2) 0.0069 0.0091 0 1.0000 13.3403

LN(0, σ2) 0.0194 0.0257 0 0.9818 15.4523

0.3
N(0, σ2) 0.0070 0.0093 0 1.0000 10.1645

LN(0, σ2) 0.0193 0.0244 0 1.0000 11.2862

0.5
N(0, σ2) 0.0076 0.0096 0 1.0000 11.4844

LN(0, σ2) 0.0201 0.0252 0 1.0000 11.0627

0.7
N(0, σ2) 0.0074 0.0097 0 1.0000 12.2611

LN(0, σ2) 0.0206 0.0264 0 0.9818 12.3306

0.9
N(0, σ2) 0.0070 0.0093 0 1.0000 13.6169

LN(0, σ2) 0.0226 0.0286 0 0.9538 14.1217

Table 2 and Table 3 are the numerical results recording the average of estimation

error ‖β̂ − β∗‖2, the prediction error 1√
m
‖Xβ̂ − Xβ∗‖2, FPR and TPR over 100

simulations under several τ and CPU times when n = 512 or n = 1024 respectively.
As indicated in Tables 2 and 3, the most significant character is that the values
of FPR are all as small as zeros and the values of TPR are all almost equal ones
(particularly for the Normal distributed case) respectively, which signifies that all
significant variables are selected and insignificant ones basically are not chosen. As
for the errors, it is not difficult to see that the two types of errors derived from
Normal distribution are far smaller than that stemmed from Log-normal distri-
bution. More specifically, for the Log-normal distribution when τ is close to 0.1
with relatively low error, the model performs much better, seeing Figure 3 for more
visualized clarity.
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Figure 3. Errors for different τ , n, and noise in Example 1

5.2. Example II: Toeplitz correlation matrix. The second modified example
is from [19], which aims at considering the estimator β∗ = (3, ..., 3, 0, ..., 0)>, with s
(being taken s = 1%n) none zero entries 3 in β∗. In the simulation study, each row of
the design matrix X is generated by N(0,Σ) distribution with Toeplitz correlation
matrix Σij = (1/2)|i−j|, i.e., xi ∼ Σ1/2N(0, 1), i = 1, 2, ..., n; and then normalize
the columns of X such that each column has L2 norm

√
n. We use two noise

patterns: (a) N(0, σ2)-normal noise, (b) LN(0, σ2)-lognormal noise. Corresponding
MATLAB cades are:

y1 = Xβ∗ + σ ∗ randn(0, 1),

y2 = Xβ∗ + σ ∗ lognrnd(0, 1, n, 1).

Table 4. n = 512,m = 128.

τ Noise ‖β̂ − β∗‖2 1√
m
‖Xβ̂ −Xβ∗‖2 FPR TPR Time(s)

0.1
N(0, σ2) 0.0071 0.0096 0 1.0000 3.3895

LN(0, σ2) 0.0185 0.0242 0 1.0000 2.5908

0.3
N(0, σ2) 0.0071 0.0098 0 1.0000 2.6341

LN(0, σ2) 0.0189 0.0246 0 1.0000 2.1094

0.5
N(0, σ2) 0.0071 0.0094 0 1.0000 1.7425

LN(0, σ2) 0.0184 0.0224 0 1.0000 1.3525

0.7
N(0, σ2) 0.0070 0.0095 0 1.0000 1.6148

LN(0, σ2) 0.0196 0.0249 0 0.9667 1.3640

0.9
N(0, σ2) 0.0072 0.0095 0 1.0000 2.3751

LN(0, σ2) 0.0186 0.0227 0 1.0000 2.8742

Table 4 and Table 5 are the numerical results recording the average of estimation

error ‖β̂ − β∗‖2, the prediction error 1√
m
‖Xβ̂ − Xβ∗‖2, FPR and TPR over 100
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Table 5. n = 1024,m = 256.

τ Noise ‖β̂ − β∗‖2 1√
m
‖Xβ̂ −Xβ∗‖2 FPR TPR Time(s)

0.1
N(0, σ2) 0.0071 0.0096 0 1.0000 17.5535

LN(0, σ2) 0.0186 0.0246 0 1.0000 13.5658

0.3
N(0, σ2) 0.0074 0.0093 0 1.0000 13.3480

LN(0, σ2) 0.0196 0.0261 0 1.0000 8.8331

0.5
N(0, σ2) 0.0076 0.0094 0 1.0000 9.8347

LN(0, σ2) 0.0183 0.0241 0 1.0000 7.6007

0.7
N(0, σ2) 0.0069 0.0093 0 1.0000 13.6823

LN(0, σ2) 0.0200 0.0272 0 1.0000 7.9791

0.9
N(0, σ2) 0.0072 0.0094 0 1.0000 18.5440

LN(0, σ2) 0.0184 0.0249 0 1.0000 14.3975

simulations under several τ and CPU times when n = 512 or n = 1024 respectively.
As shown in Tables 4 and 5, the most significant character is that the values of FPR
are all as small as zeros and the values of TPR are all almost equal ones (particularly
for the Normal distributed case) respectively, which signifies that all significant
variables are selected and insignificant ones basically are not chosen. As for the
errors, it is not difficult to see that the two types of errors derived from Normal
distribution are far smaller than that stemmed from Log-normal distribution. One
can also see Figure 4 for more visualized clarity.
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Figure 4. Errors for different τ , n, and noise in Example 2

6. Conclusion. In this paper we considered the high-dimensional linear regression
model with assumption of sparsity. We introduced the quantile regression with the
nonconvex `p penalty (0 < p < 1) for the high-dimensional linear sparse model.
Since it is a nonconvex and nonsmooth NP-hard problem, we used smoothing tech-
niques to deal with it. More specifically, we first introduced a definition of smoothing
functions. Then we gave two smoothing functions to alter the quantile loss function.
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One smoothing function is a generalization of the smoothing function in [6] which
is a smoothing of absolute value function. The other smoothing function is called
quantile Huber penalty. We also gave the estimation of approximation by our differ-
ent smoothing functions through Theorem 2.3 and Theorem 2.6. Then, we derived
two types of lower bounds for any local solution of the smoothing model with the
help of `p regularization . Moreover, with the help of weighted `1 regularization, we
proposed a smoothing iterative method for the smoothing quantile regression and
established its global convergence. Finally, we reported the numerical experiments
which illustrate the efficient performance of our method.
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