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Abstract. This paper concerns with the stability of the orbits for nearly

integrable Hamiltonian systems. Based on Nekehoroshev’s original works in
[14], we present the definition of quasi-effective stability and prove a theorem on

quasi-effective stability under the Rüssmann’s non-degeneracy. Our result gives

a relation between KAM theorem and effective stability. A rapidly converging
iteration procedure with two parameters is designed.

1. Introduction and main result. KAM theory and effective stability are two
important contexts in the area of Hamiltonian dynamical systems. The former is
established by Kolmogorov, Arnold and Moser, in 1954-1963s [7, 1, 13]. The latter is
developed by Nekhoroshev in 1977 [14]. On the one hand, the classical KAM theory
shows that under appropriate non-degeneracy such as the classical non-degeneracy
or Rüssmann’s non-degeneracy of the integrable Hamiltonian, the nearly integrable
systems persist or keep the majority of invariant tori of integrable systems. Hence,
the majority of orbits, which is in the invariant tori, is perpetual stable. On the
other hand, Nekhoroshev’s theorem points out that under the steepness of the
integrable systems the action variables slowly evolve over exponentially long time
interval under sufficiently small Hamiltonian perturbations.

A question is whether there are any relations between the KAM theory and the
effective stability. As is known to all, their similarities are that they can be used
to describe the stability of orbits in the phase space for Hamiltonian systems. A
common condition of them is convexity of the integrable Hamiltonian [9, 17]. In
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1995 Morbidelli and Giorgilli considered a kind of nearly integrable Hamiltonian
systems, and found a connection between KAM theorem and effective stability in
the sense of the diffusion speed [12]. Later on Delshams and Gutiérrez discussed
the similar problem [4]. They investigated the quasiconvex systems, and gave a
common approach to the proofs of KAM and Nekhoroshev’s theorems by applying
Nekhoroshev’s iteration with some modifications.

An interesting topic is that under the conditions of KAM theorem, such as
Rüssmann’s non-degeneracy, one is wondering if there is a Nekhoroshev type result.
In this paper we investigate stability of the orbits in nearly integrable Hamiltonian
systems under Rüssmann’s non-degeneracy and obtain a result about quasi-effective
stability.

Consider a nearly integrable Hamiltonian system in the form

ṗ = −Hq(p, q), q̇ = Hp(p, q) (1)

with the Hamiltonian

H(p, q) = h(p) + fε(p, q), fε(p, q) = εf∗(p, q, ε) (2)

for nonnegative small parameter ε. Here p ∈ D are the action variables, D is
some bounded domain in Rn, while q ∈ Tn are the conjugate angle variables, Tn =
Rn/2πZn is a usual torus. Moreover, all our Hamiltonian functions are assumed to
be real analytic in all arguments. The phase space of system (1) is D×Tn ⊂ D×Rn

with the standard symplectic structure

n∑
j=1

dpj ∧ dqj .

As ε = 0, system (1) is said to be integrable, and its general solution is

p(t) = p0, q(t) = q0 + ω(p0)t (mod2π)

with ω(p0) = hp(p0), which forms an invariant torus Tp0 = {p0} × Tn.
To state our results, we need some concepts. Throughout this paper we use

Euclidean norm and the supremum norm, and denoted by | · | and ‖ · ‖, respec-
tively. For an m × n matrix function A(u) defined on some set D, let ‖A‖ =
supu∈D sup|z|=1 ‖A(u)z‖.
Definition 1. ([14]) System (1) is said to be effective stable in E×Tn, if there exist
positive constants a, b, c and ε0 such that, as 0 ≤ ε ≤ ε0, for all (p0, q0) ∈ E × Tn,
one has |p(t)− p0| ≤ cεb with (p(0), q(0)) = (p0, q0), provided |t| ≤ exp(cε−a). Here
a and b are called stable exponents, T (ε) = exp(cε−a) stable time, R(ε) = cεb stable
radius.

Definition 2. An orbit (p(t), q(t)) starting from (p0, q0) of system (1) is said to be
of near-invariant tori on exponentially long time, if there exist positive constants
a, b, c, ε0 and constant d ≥ 0, and the function ω∗∗ defined on E × Tn such that
|p(t) − p0| ≤ cεb and |q(t) − q0 − tω∗∗(p0, q0)| ≤ cεd, provided 0 ≤ ε ≤ ε0 and
|t| ≤ exp(cε−a).

Definition 2 is a notion of stability of orbits. This definition is established by
Morbidelli and Giorgilli [10, 11, 12], and Perry and Wiggins ([15]), and Delshams
and Gutiérrez [4], respectively. They deal with two different cases of invariant tori
of the integrable system. In [15] and [11], the property of near-invariant tori are
expressed in terms of the distance to a given KAM torus. In [10] and [12] and [4],
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the invariant tori are considered only under the frequency vector satisfying the finite
inequalities of small denominators. This paper concerns the above two cases.

Definition 3. System (1) is said to be quasi-effective stable if there exist positive
constants a, b, c, d and ε0 such that, for any ε ∈ (0, ε0], there is an open subset Eε
of D suiting the following

(1) measEε = measD −O(εd).
(2) For all (p0, q0) ∈ Eε × Tn, the orbit (p(t), q(t)) starting from (p0, q0) satisfies

the estimate

|p(t)− p0| ≤ cεb,
provided |t| ≤ exp(cε−a).

Here a and b are called stable exponents of the system, T (ε) = exp(cε−a) stable
time, R(ε) = cεb stable radius.

It directly follows from the above definitions that the effective stability implies
quasi-effective stability.

Let B be a bounded subset of Cn. For a given constant δ > 0, denote B + δ =
{x ∈ Cn : dist(x,B) < δ} and B − δ = {x ∈ B : dist(x, ∂B) > δ}, respectively,
which are used by Arnol’d in [1] . Write Re(B) = B ∩ Rn.

Note that real analytic property of Hamiltonian H(p, q) implies that there exists
a positive constant δ such that it is analytic in (D×Tn)+δ.Moreover, on (D×Tn)+δ,
for ε with 0 ≤ ε ≤ 1,

max{‖p‖, ‖fε‖, ‖h‖, ‖ω‖, ‖ωp‖} ≤
1

2
M (3)

for some positive constant M . Here ω(p) = hp(p). Assume that ω(p) satisfies
Rüssmann’s nondegenerate condition as follows

(H1)

rank

{
ω,
∂αω

∂pα
: ∀α ∈ Zn+, |α| < n− 1

}
= n, ∀p ∈ Re(D + δ), (4)

where Zn+ denotes the subset of Zn with nonnegative integer components;
∂αω
∂pα = ∂|α|ω

∂p
α1
1 ···∂p

αn
n
, |α| = α1 + · · ·+ αn.

Now we describe the main result of this paper.

Theorem A. Under assumption (H1) system (1) is quasi-effective stable.
Recently, many achievements have been made in studying KAM theory and the

effective stability. For examples, Guzzo, Chierchia and Benettin have announced
that they obtained optimal stability exponents under the steepness [6]; Bounemoura
and Fischler make use of geometry of numbers to relate two dual Diophantine
problems which correspond to the situations of KAM and Nekhoroshev theorems,
respectively [2]. For the others, see [3, 5, 8, 19].

The paper is divided into five sections. In section 2 the stickiness of Diophantine
invariant tori is considered and the theorem on property of near-invariant tori is
described. Section 3 proposes an auxiliary proposition which plays a fundamental
role in the proofs of theorems. Finally, the proofs of the theorems are placed in
section 4 and section 5.

2. Stickiness of Diophantine invariant tori. So-called stickiness of an invariant
torus means that all orbits starting near this torus are of near-invariant torus. In
this section we consider the stickiness of Diophantine invariant tori.
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For a given p0 ∈ D, if ω(p0) satisfies the following inequalities

|〈k, ω(p0)〉| ≥ α|k|−τ , ∀k ∈ Zn\{0} (5)

for some positive constants α and τ , then Tp0 is said to be Diophantine.
According to KAM theory there is a nearly identity transformation Φε which

changes Diophantine invariant torus Tp0 of a integrable system into the the invariant
torus Φε(Tp0) of perturbed system (1) (ε is sufficiently small), and Φ0(Tp0) = Tp0 .

Theorem B. If ω(p0) satisfies (5), then there is ε0 > 0 such that as 0 < ε ≤ ε0,
there exits a neighborhood Oε of p0 satisfying that for any (p∗, q∗) ∈ Oε × Tn, the
orbit (p(t), q(t)) starting from (p∗, q∗) of system (1) is of near-invariant torus.

3. An auxiliary proposition. We first construct a rapidly converging iteration
scheme with two small parameters. This design is important to prove theorems.
Notice that we only need finite iterations in the proof of theorems. Hence, instead
of the Diophantine condition, we employ another weaker condition. Take a fixed
p0 ∈ D and a given sufficiently small positive constant κ. Define two integers L(κ)
and J(κ) depending on κ,

L(κ) =

[
8

3κ
log

(
64

κ

(
16n

eκ

)n)]
+ 1,

J(κ) =

[
δ

8κ

]
, (6)

where [ · ] denotes the integer part of a real number. Let

O(p0, ε) = {p ∈ D : |p− p0| < K1

√
ε},

O(0, 1) = {p ∈ Rn : |p| ≤ K1}

for some constant K1 > 0. For the sake of convenience, by c1, c2, · · · , denote the
positive constants depending only on M,n,K1 and τ .

We continue to assume

(H2) For constants α > 0 and τ > 0, ω(p0) suits the inequalities

|〈k, ω(p0)〉| ≥ α|k|−τ (7)

for any k ∈ Zn with 0 < |k| ≤ L(κ).

Proposition 1. Assume (H2). Then there is a positive constant ε0 depending on
M, n, K1, τ, δ, α and κ such that, for all ε with 0 ≤ ε ≤ ε0, the following statements
hold.

1) There exists a transformation Φ∗ and a near-identity transformation Ψ of
coordinates, defined on O(0, 1)× Tn, to reduce Hamiltonian (2) to the form

H ◦ Φ∗ ◦Ψ = N∗ +
√
εf∗∗

with

N∗(p, ε) = 〈ω(p0), p〉+O(
√
ε),

ω∗(p, ε) =
∂N∗
∂p

(p, ε) = ω(p0) +O(
√
ε),

‖f∗∗‖ ≤ c1
√
ε exp

(
−c2
κ

)
.
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2) For all (p(0), q(0)) ∈ O∗(p0, ε)× Tn, there is a torus

p̂(t) = p(0), q̂(t) = q(0) + ω∗∗(p0, p(0), q(0), ε)t (mod2π), t ∈ R

with

ω∗∗(p0, p(0), q(0), ε) = ω(p0) +O(
√
ε),

such that the orbit (p(t), q(t)) starting from (p(0), q(0)) of (1) to satisfy the
estimates

|p(t)− p̂(t)| ≤ c3κ
√
ε,

|q(t)− q̂(t)| ≤ c4κ,

provided |t| ≤ c1 exp
( c2

4κ

)
.

To prove Proposition 1 we introduce a coordinate transformation Φ∗ : (O(0, 1)×
Tn) + δ → (O(p0, ε)× Tn) + δ,

p = p0 +
√
εP, q = Q.

Under this transformation the Hamiltonian is reduced to the form

Ĥ(P,Q) =
H(p, q)√

ε

=
h(p0)√

ε
+ 〈ω(p0), P 〉+O(

√
εP 2) +

√
εf∗(p0 +

√
εP,Q, ε).

Without loss of generality, let h(p0) = 0, and write ε =
√
ε, ω0 = ω(p0) and

f0(P,Q, p0, ε) = O(P 2) + f∗(p0 + εP,Q, ε2).

Then

Ĥ(P,Q) = 〈ω0, P 〉+ εf0(P,Q, p0, ε), (8)

and (P,Q) is defined on (O(0, 1)× Tn) + δ. Obviously, by (3) we have

|f0(P,Q, p0, ε)| < c5 (9)

on ((O(0, 1)× Tn) + δ)×D × [0, 1].

Rewrite Ĥ, P and Q as H, p and q, and omit the parameters p0 and ε in the
arguments of f0. Thus, Hamiltonian system (1) is changed into

ṗ = −Hq(p, q), q̇ = Hp(p, q)

with Hamiltonian

H(p, q) = 〈ω0, p〉+ εf0(p, q). (10)

Here ω0 suits inequality (7).
For a real analytic function f , its Fourier’s expansion is

f(p, q) =
∑
k∈Zn

fke
i〈k,q〉.

Let

f̄(p) = f0(p),

[f ]L(p, q) =
∑

k∈Zn, 0<|k|≤L

fk(p)ei〈k,q〉,

RLf(p, q) =
∑

k∈Zn, k|>L

fk(p)ei〈k,q〉.
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We need the following lemmas.

Lemma 1. ([16, 18]) Assume that ω0 satisfies the condition (7). Then the homo-
logical equation

〈ω0, Sq〉+ [f ]L(p, q) = 0

has only one real analytic solution S with S̄ = 0. Moreover, for any σ with 0 < σ < δ,

‖S‖D0−σ ≤
c6
αστ
‖[f ]L‖D0 .

Here D0 = (O(0, 1)× Tn) + δ.

Lemma 2. ([1]) Assume f(q) to be real analytic in Tn + δ. Then, as 0 < 2σ0 < ν
and σ0 + ν < δ < 1, on Tn + (δ − σ0 − ν) one has

‖RLl‖ <
(

2n

e

)n ‖l‖
σn+1
0

e−Lν . (11)

Proof of Proposition 1. Consider Hamiltonian (10). Let

Dk = (O(0, 1)× Tn) + (δ − 4kκ), k = 0, 1, 2, · · · , J(κ).

Simply write Φ0 = Φ∗, H0 = H and N0(p, ε) = 〈ω0, p〉. Assume that under jth step
Hamiltonian (10) is changed into the form

Hj(p, q) = Nj(p, ε) + εfj(p, q), (12)

Nj(p, q) = 〈ω0, p〉+ Ñj(p, ε), (13)

Ñj(p, ε) =

j−1∑
i=0

f̄j(p, ε), (14)

|fj | ≤
1

2j+1
M, (15)

defined on Dj .
We introduce a symplectic transformation Φj+1 : Dj+1 → Dj by Φj+1 = φ1j+1.

Here φtj+1 is the flow of the Hamiltonian system

d

dt
φtj+1 = ε

(
0 −Idn

Idn 0

)
∇Sj(φtj+1), (16)

where Sj will later be determined by equation (24). By applying Taylor’s formula,
we have

Hj+1(p, q) = Hj ◦ Φj+1(p, q)

= Nj ◦ Φj+1(p, q) + εfj ◦ Φj+1(p, q)

= Nj(p, q) + ε{Nj , Sj}+ ε2
∫ 1

0

(1− t){{Nj , Sj}, Sj} ◦ φtj+1dt

+εfj(p, q) + ε2
∫ 1

0

{fj , Sj} ◦ φtj+1dt

= Nj(p, ε) + εf̄j(p, ε)

+ε2
∫ 1

0

(1− t){{Nj , Sj}, Sj} ◦ φtj+1dt
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+εRLfj(p, q)

+ε{Ñj , Sj}

+ε2
∫ 1

0

{fj , Sj} ◦ φtj+1dt

+ε({N0, Sj}+ [fj ]L).

Denote

Ñj+1 = Ñj + εf̄j , (17)

Nj+1 = Nj + εf̄j , (18)

f1j+1 = ε

∫ 1

0

(1− t){{Nj , Sj}, Sj} ◦ φtj+1dt, (19)

f2j+1 = RLfj , (20)

f3j+1 = {Ñj , Sj}, (21)

f4j+1 = ε

∫ 1

0

{fj , Sj} ◦ φtj+1dt, (22)

fj+1 = f1j+1 + f2j+1 + f3j+1 + f4j+1. (23)

To determine transformation Φj+1 we choose Sj satisfying

{N0, Sj}+ [fj ]L = 0. (24)

It follows that under transformation Φj+1 Hamiltonian Hj is reduced to the form

Hj+1 = Hj ◦ Φj+1 = Nj+1 + εfj+1. (25)

Inductively, by (3), (9), (15) and (17), one has

‖Ñj‖ ≤ ε
j−1∑
i=0

1

2i+1
M ≤Mε (26)

on Dj .
Take

σ0 =
1

8
κ, ν =

3

8
κ.

Thus, by Lemma 2 and the definition of L(κ), on Dj − 1
2κ,

‖f2j+1‖Dj− 1
2κ

= ‖RLfj‖Dj− 1
2κ
≤
(

2n

e

)n ‖fj‖
σn+1
0

e−Lν ≤ 1

8
‖fj‖Dj .

Hence,

‖f2j+1‖Dj+1 ≤ ‖f2j+1‖Dj− 1
2κ
≤ 1

8
‖fj‖Dj , (27)

‖∇RLfj‖Dj−κ ≤
1

4κ
‖fj‖Dj . (28)

On the basis of (27) and Cauchy’s formula, we derive

‖[fj ]L‖Dj− 1
2κ
≤ ‖f̄j‖Dj + ‖RLfj‖Dj− 1

2κ
+ ‖fj‖Dj ≤ 3‖fj‖Dj . (29)
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Let (Pt, Qt) = φtj+1(p, q). By applying (24), (29), Lemma 1 and Cauchy’s for-
mula, for all (Pt, Qt) ∈ Dj − 2κ with 0 ≤ t ≤ 1, we have

|(p, q)− (Pt, Qt)| ≤ ε‖∇Sj(Pt, Qt)‖Dj−2κ

≤ 2ε

κ
‖Sj(Pt, Qt)‖Dj− 3

2κ

≤ 2c6ε

ακτ+1
‖[fj ]‖Dj− 1

2κ

≤ 6c6ε

ακτ+1
‖fj‖Dj

≤ 6c6ε

ακτ+1

1

2j+1
M

≤ 1

2j+1
κ

< κ, (30)

provided ε satisfies

6c6ε

ακτ+1
≤ κ. (A)

By the geometric lemma in [1], φ−tj+1(Dj − 2κ) ⊃ Dj − 3κ, and φ−tj+1 is a diffeo-

morphism defined on Dj+1. This shows that φtj+1(Dj+1) ⊂ Dj .
If ε satisfies

3c6Mε

ακτ+2
≤ 1

8
, (B)

then, by Lemma 1, Cauchy’s formula, (16) and (26), we obtain

‖f3j+1‖Dj−2κ = ‖{Ñj , Sj}‖Dj−2κ

≤

∥∥∥∥∥∂Ñj∂p

∥∥∥∥∥
Dj−2κ

∥∥∥∥∂Sj∂q
∥∥∥∥
Dj−2κ

≤ 1

κ2
‖Ñj‖Dj‖Sj‖Dj− 3

2κ

≤ Mε

κ2
· c6
ακτ
‖[fj ]L‖Dj− 1

2κ

≤ 3c6Mε

ακτ+2
‖fj‖Dj

≤ 1

8
‖fj‖Dj .

Hence,

‖f3j+1‖Dj+1
≤ ‖f3j+1‖Dj−2κ ≤

1

8
‖fj‖Dj , (31)

‖∇f3j+1‖Dj−3κ ≤
1

κ
‖f3j+1‖Dj−2κ ≤

1

8κ
‖fj‖Dj . (32)

Similarly, as ε satisfies the inequality

3c6Mε

ακτ+2
≤ 1

8
, (C)
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we derive

‖f4j+1‖Dj+1
≤ ε‖{fj , Sj}φtj+1‖Dj+1

≤ ε‖{fj , Sj}‖Dj−3κ
≤ ε

κ2
‖fj‖Dj−2κ‖Sj‖Dj−2κ

≤ c6ε

ακτ+2
‖fj‖Dj−2κ‖[fj ]‖2Dj−κ

≤ 1

2j+1

3c6ε

ακτ+2
M‖fj‖Dj

≤ 1

8
‖fj‖Dj−3κ (33)

for all t ∈ [0, 1].
Now we estimate f1j+1. Note that

{Nj , Sj} = {Ñj , Sj}+ {N0, Sj} = f3j+1 − [fj ]L,

which implies that

{fj + (1− t){Nj , Sj}, Sj} = {(1− t)f3j+1 + t[fj ]L + f̄j +RLfj , Sj} (34)

from (24). Hence, by employing the conclusion φtj+1Dj+1 ⊂ Dj − 3κ, Cauchy’s
formula, (31), (33), (29), (27), (28), (32) and Lemma 1, we derive

‖f1j+1‖Dj+1
≤ ε(‖∇f3j+1‖Dj−3κ + ‖∇[fj ]L‖Dj−3κ + ‖∇f̄j‖Dj−3κ

+‖∇RLfj‖Dj−3κ)‖∇Sj‖Dj−3κ

≤ ε

κ2
(
1

8
‖fj‖Dj + ‖[fj ]L‖Dj−2κ + ‖f̄j‖Dj−2κ +

1

4
‖fj‖Dj )‖Sj‖Dj−2κ

≤ ε

κ2

(
3

8
‖fj‖Dj + 3‖fj‖Dj + ‖fj‖Dj

)
· 3c6
ακτ
‖[fj ]‖Dj−κ

≤ 105c6εM

8ακτ+2
‖fj‖Dj

≤ 1

8
‖fj‖Dj , (35)

provided

105c6εM

8ακτ+2
≤ 1

8
. (D)

Hence, from (23), (27), (31), (33) and (35), it follows that

‖fj+1‖Dj+1 ≤ ‖f1j+1‖Dj+1 + ‖f2j+1‖Dj+1 + ‖f3j+1‖Dj+1 + ‖f4j+1‖Dj+1

≤ 1

2
‖fj‖Dj

≤ 1

2j+2
M. (36)

Put Ψ = Φ1 ◦ · · · ◦ΦJ . Then Ψ : DJ → D0 and Dj ⊃ D∗∗ = (O(0, 1)×Tn) +
1

2
δ.

Denote Ψ(r, θ) = (p, q). It leads

HJ(r, θ) = Ĥ ◦Ψ(r, θ) = NJ(r, ε) + εfJ(r, θ) (37)
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with

‖ÑJ‖D∗∗ ≤ Mε, (38)

‖fJ‖D∗∗ ≤ 1

2J+1
M = c1 exp

(
−c2
κ

)
. (39)

where c1 =
1

2
M and c2 =

log 2

12
δ.

The Hamiltonian system with (37) is the following

ṙ = −ε∂fJ
∂θ

, (40)

θ̇ = ω0 +
∂ÑJ
∂r

+ ε
∂fJ
∂r

. (41)

Take D∗ = (O(0, 1)× Tn) +
1

4
δ. By Cauchy’s formula one has

max

{∥∥∥∥∂fL∂r
∥∥∥∥
D∗

,

∥∥∥∥∂fL∂θ
∥∥∥∥
D∗

}
≤ 4

δ
‖fL‖D∗∗ . (42)

Thus, for any (r(0), θ(0)) ∈ O(0, 1)× Tn, as |t| ≤ exp
( c2

2κ

)
, it follows that

|r(t)− r(0)| ≤ c7ε exp
(
− c2

2κ

)
. (43)

Denote

ω∗(r, ε) = ω0 +
∂ÑJ
∂p

(r, ε).

Thus,

|ω∗(r(t), ε)− ω∗(r(0), ε)| ≤ c8ε|r(t)− r(0)|

≤ c9ε exp
(
− c2

2κ

)
(44)

on O(0, 1)× Tn. It follows from (41), (39), (44) and Cauchy’s formula that

|θ(t)− ω∗(r(0), ε)t− θ(0)| ≤ c10ε exp
(
− c2

4κ

)
, (45)

provided |t| ≤ exp
( c2

4κ

)
.

Obviously, inequality (D) implies (A), (B) and (C). Let

ε0(α, κ) = min

{
max{ε : ε ≥ 0 and ε satisfies (D)}, 1

2

}
,

that is,

ε0(α, κ) = min

{
ακτ+2

105c6M
,

1

2

}
.

Without loss of generality, take

ε0(α, κ) =
ακτ+2

105c6M
. (46)

Write ε0 = ε20. Let (p(t), q(t)) be a solution starting from (p(0), q(0)) ∈ O(p0, ε)×Tn
of system (1). Then (P (t), Q(t)) is a solution with P (0) ∈ O(0, 1), of the system
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with Hamiltonian (8). By (r, θ) we denote a new coordinate variables under the
change Ψ. By (30),

|(P,Q)− (r, θ)| = |Ψ(r, θ)− (r, θ)| ≤
J∑
j=0

1

2j+1
κ < κ, (47)

which and (43) imply that, as |t| ≤ exp
( c2

4κ

)
,

|P (t)− P (0)| ≤ |P (t)− r(t)|+ |P (0)− r(0)|+ |r(t)− r(0)|

≤ 2κ+ c7ε exp
(
− c2

2κ

)
≤ c11κ; (48)

|Q(t)− ω∗(r(0), ε)t−Q(0)| ≤ |Q(t)− θ(t)|+ |θ(t)− ω∗(r(0), ε)t− θ(0)|
+|Q(0)− θ(0)|

≤ 2κ+ c10ε exp
(
− c2

4κ

)
≤ c12κ. (49)

Note that Φ∗(P,Q) = (p, q), that is,

p = p0 +
√
εP, q = Q.

Hence,

(r(0), θ(0)) = Ψ−1(P (0), Q(0)) = Ψ−1
(
p(0)− p0√

ε
, q(0)

)
. (50)

We use P to denote the operator which projects the phase on the space of action
variables. From (50), it follows that

r(0) = P ◦Ψ−1
(
p(0)− p0√

ε
, q(0)

)
.

Let

ω∗∗(p0, p(0), q(0), ε) = ω∗

(
P ◦Ψ−1

(
p(0)− p0√

ε
, q(0)

)
,
√
ε

)
. (51)

Choose the torus as follows,

p̂(t) = p(0), q̂(t) = q(0) + ω∗∗(p0, p(0), q(0), ε)t (mod2π), t ∈ R.

Combining (48), (49) and the transformation Φ∗, the proof of Proposition 1 is
finished.

4. Proof of Theorem B. In order to prove Theorem B, we regard κ as a function
in ε. Choose

κ = ε
1
τ+3 = ε

1
2(τ+3) .

By applying (46) and the definition of ε0, we obtain

ε0(α) =

(
α

105Mc6

)2(τ+3)

.

Take

Oε = O(p0, ε).

According to Proposition 1 and its proof, as 0 < ε ≤ ε0(α), for all (p(0), q(0)) ∈
Oε ×Tn, there exists a torus {(p̂(t), q̂(t))} with frequency ω∗∗(p0, p(0), q(0), ε) such
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that the orbit (p(t), q(t)) starting from (p(0), q(0)) of (1) to satisfy the following
inequalities

|p(t)− p̂(t)| ≤ c3ε
1
2+

1
2(τ+3) ,

|q(t)− q̂(t)| ≤ c4ε
1

2(τ+3) ,

provided |t| ≤ c1 exp
(c2

4
ε−

1
2(τ+3)

)
. The proof of Theorem B is completed.

5. Proof of Theorem A. Now we prove Theorem A. To this end we regard κ and
α as a function in ε, respectively, in this section. Simply, let

α = κ = ε
1

2(τ+4) . (52)

By using (46) we determine

ε0 =

(
1

105Mc6

)2(τ+4)

.

Define

Dε = {p ∈ D : |〈k, ω(p)〉| ≥ α|k|−τ , for all 0 6= k ∈ Zn}.
Here τ > n(n− 1). This condition is a requirement of the measure estimate. Let

Dτ
α,k = {y ∈ D : |〈k, ω(y)〉| ≤ α|k|−τ},

Dτ
α =

⋃
06=k∈Zn

Dτ
α,k.

By assumption (H1) and Lemma 2.1 in [20], one has

meas(Dτ
α,k) = O

(
α

1
n |k|−

τ+1
n

)
,

meas(Dτ
α) = O(α

1
n ).

Define

Dε = D −Dτ
α,

D∗ =
⋃
ε>0

Dε.

Then, by KAM theory, measDε = measD−O(α
1
n ), and D∗ is a set of full measure

in Rn, for any τ > n(n− 1).
For any p0 ∈ D∗, let

α(p0) = max{α : 0 < α ≤ 1 and |〈k, ω(p0)〉| ≥ α|k|−τ for all 0 6= k ∈ Zn},
ε(p0) = min{α(p0)2(τ+4), ε0}.

Write Oε(p0) = O(p0, ε). If 0 < ε ≤ ε(p0), from Proposition 1, it follows that for all

(p(0), q(0)) ∈ Oε(p0)× Tn, as |t| ≤ c1 exp
(c2

4
ε−

1
2(τ+4)

)
,

|p(t)− p(0)| ≤ c3ε
1
2+

1
2(τ+4) .

For any ε ∈ (0, ε0], define

Eε =
⋃

p0∈{p∈D∗:ε(p)≥ε}

Oε(p0). (53)

This is an open subset ofD, and measEε = measD−O
(
ε

1
2n(τ+4)

)
and lim

ε→0+
Eε = D∗.
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For any given (p(0), q(0)) ∈ Eε × Tn, by (53), there are p0 ∈ D∗ and a constant
ε(p0) ≥ ε satisfying p(0) ∈ Oε(p0). By applying Proposition 1 to p0 and Oε(p0), we
derive that the orbit (p(t), q(t)) starting from (p(0), q(0)) satisfying the estimate

|p(t)− p(0)| ≤ c3ε
1
2+

1
2(τ+4) ,

provided |t| ≤ c1 exp
(c2

4
ε−

1
2(τ+4)

)
. The proof of Theorem A is completed.

In the proof of Theorem A, the choices of κ and α may be an another form. More
precisely, let

α = εη, κ = ει and η + 2ι(τ + 2) + χ =
1

2
(54)

for given positive constants η, ι and χ. By using (46), we obtain

ε0(η, ι, χ) =

(
1

105Mc6

) 1
χ

. (55)

Similar to the proof of Theorem A, we could obtain that, as 0 < ε ≤ min{ε(y0),
ε0(η, ι, χ)}, for all (p(0), q(0)) ∈ Oε × Tn, the orbit (p(t), q(t)) starting from (p(0),
q(0)) is of near-invariant torus, and p(t) and t satisfy the estimates with exponents
1
2 + ι and ι. Hence, from (54), the stable exponents of system (1) can be chose as
1
2 + 1

2(τ+2) − ε∗1 and 1
2(τ+2) − ε∗1, where ε∗1 is an arbitrary small positive number.

Now consider Diophantine exponent τ . Under Rüssmann’s non-degenerate con-
dition, τ can be took as τ > n(n − 1) due to the estimate of the measure. Com-
bining the above analysis the stable exponents of system (1) can be chose as
1
2 + 1

2n2−2n+4 − ε∗2 and 1
2n2−2n+4 − ε∗2, where ε∗2 is an arbitrary small positive

number.
In a similar way, if system (1) satisfies the classical non-degeneracy, that is,

hpp 6= 0,

then the stable exponents can be chose as 1
2 + 1

2n+2 − ε∗3 and 1
2n+2 − ε∗3, where ε∗3

is an arbitrary small positive number.
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