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Abstract. A flow composed of two populations of pedestrians moving in
different directions is modeled by a two-dimensional system of convection-

diffusion equations. An efficient simulation of the two-dimensional model is

obtained by a finite-volume scheme combined with a fully adaptive multireso-
lution strategy. Numerical tests show the flow behavior in various settings of

initial and boundary conditions, where different species move in countercurrent

or perpendicular directions. The equations are characterized as hyperbolic-
elliptic degenerate, with an elliptic region in the phase space, which in one

space dimension is known to produce oscillation waves. When the initial data
are chosen inside the elliptic region, a spatial segregation of the populations

leads to pattern formation. The entries of the diffusion-matrix determine the

stability of the model and the shape of the patterns.

1. Introduction. In the description and modeling of pedestrian behavior it is com-
mon sense to apply a rough classification by distinguishing between microscopic and
macroscopic models [18]. Macroscopic models focus on the balancing relationships
of particle (i. e. pedestrian) density, flow intensity and flow speed etc. In mi-
croscopic models, pedestrians are considered as individual objects interacting with
each other, while in macroscopic models, pedestrian behavior is analyzed in terms
of more global properties of a continuous stream. For a detailed overview of both
vehicular and pedestrian traffic and the main modeling and simulation approaches,
we refer to [25].
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The modeling of pedestrian flows using macroscopic approaches has received
several contributions in the last decade [8, 10, 27, 30, 39, 45]. In particular, it has
been observed that in dense pedestrian crowds, pedestrians behave quite similarly
to gas particles. This was one important reason to model pedestrian flows by
fluid physical models from gas or fluid dynamics. Most of the research in the
macroscopic area of pedestrian simulation is, therefore, focussed on the discussion
and development of general partial differential equations, one- and two-dimensional
in space, based on physical principles like mass, momentum and energy balance.
Social and physical force models resulting from microscopic modeling are included
as outer force terms in only a few papers. In [24], e.g., two-dimensional density and
pressure fields were illustrated, which were mostly obtained by collecting results of
microscopic social force models.

With some heuristic assumptions, different models have been derived based on
the Boltzmann equation and conservation laws ([31], [35], e.g.). These models can
be considered as special cases of the continuity or density equation and the mo-
mentum/velocity equation. To derive the classical Euler equation (without viscous
terms) it is necessary to assume that the velocity distribution is approximately
equal to the equilibrium/Gaussian distribution. Approaches based on the Navier-
Stokes equation can be derived without the equilibrium assumption. The equations
differ from classical fluid or gas dynamic equations mostly by the source term in
the momentum equation to describe social and physical forces acting on and by
pedestrians. A comprehensive overview of macroscopic models of pedestrian flows
is given in [25].

On the other hand, there exists a large number of microscopic approaches based
on ordinary differential equations, cellular automata or graph theory. We refer
again to [25]. Among these models, cellular automata are very prominent since
they use intuitive physical assumptions and are quickly implemented. They have
been adapted to both vehicular traffic ([19], e.g.) and pedestrian dynamics ([13],
e.g.). An approach described in [15] will be used in future work of the present
context. The advantage of cellular automata and similar discrete models is that
they are very flexible in engineering ad-hoc assumptions. In addition, they allow
agent (person or car) tracking rather than only counting densities.

A new hybrid approach [16, 40] describes a combined microscopic and macro-
scopic modeling in a multiscale framework using a measure-theoretic approach.
The crowd velocity is composed as a sum of a macro-scale desired velocity and a
micro-scale interaction velocity that accounts for an explicit local control in a small
neighborhood. A control mechanism considers a local movement that is based on
the situation in a small neighborhood and is directed away from a center of mass
or, similarly, towards a so-called inverse center of mass.

The idea of considering traffic flow in the context of continuum mechanics was
first formulated in the Lighthill-Whitham-Richards (LWR) model [35, 41], where
traffic dynamics are described by the scalar one-dimensional conservation law

ut + f(u)x = 0. (1)

The unknown variable u = u(x, t) denotes a locally averaged car-density assigned
at each time t and each position x. The flux function

f(u) = auV (u)

encapsulates the model assumptions concerning the average velocity of cars. Here,
a is a constant that corresponds to the maximum velocity and V = V (u) is a
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normalized density-dependent velocity function. As a simple and early example of
this function we mention Greenshield’s model

V (u) = 1− (u/umax)n (2)

with n > 0 and umax ∈ (0, 1). Among the first generalizations of the scalar LWR
model is the two-phase traffic-flow model proposed by Bick and Newell [9]

ut + (u(1− u− βv))x = 0, vt + (−v(1− βu− v))x = 0, (3)

with β > 0, which describes the flow in opposite directions that are mutually
affected. In more general multiphase traffic-flow models, the unknown variables
represent several phases corresponding to different lanes or car types [4].

Simulation models for vehicular traffic have a more or less one-dimensional char-
acter as cars move in lanes on streets allowing cross-directional flow only at distinct
crossing points. In contrast, pedestrian flow allows a genuine spatial structure:
pedestrian movement can be directed principally to any direction and it is strongly
influenced by human behavior. Therefore, simulation models for pedestrian traffic
are two- (or even three-)dimensional.

A well known problem which has been thoroughly studied in particular by mi-
croscopical models is the escape or evacuation problem, where the task is to model
escape panic( [23], e.g.). In an escape situation, all individuals de facto try to reach
the same destination. Therefore, escape problems can be formally considered as
single destination problems which can be modeled by a unique pedestrian stream.
The modeling of multi-destination problems characterized by at least two distinct
pedestrian streams remains a specifically difficult and not yet deeply investigated
challenge, in particular if one assumes that each stream has its own, unique target
direction. Both microscopic and macroscopic approaches are suitable.

In this paper, we will follow a macroscopic approach. A generalization of (1) to
two-dimensional multiple-species pedestrian flow is proposed in [28]. It is based on
mass equations having the form

ut + f(u)x + g(u)y = 0,

where f and g are the fluxes in x and y directions, respectively. The emphasis
in [28] was on a first modeling and justification of pedestrians’ motion by continuum
theory. It treated a specific situation with a preliminary use of numerical methods
that were adapted to a specific example, but did not elaborate the dynamics of the
phase-separation phenomenon.

In the present paper, we develop a multiphase model using two-dimensional
convection-diffusion systems by modifying the above equation. The intention is to
show that this approach is well suited for the description and simulation of various
aspects of pedestrian traffic, especially in the case of crossings of multiple streams.
We attack a twofold task. On the one hand, we intend to relate some mathemat-
ical properties resulting from continuum theory to phenomenological properties of
pedestrian movement in specific situations. On the other hand, we start to develop
a robust simulation model. Concerning the latter task, this paper has to be consid-
ered as a first step to a more general simulation model which is under development.
We start with a purely macroscopic approach and investigate up to which extent
aspects of pedestrian flow can be adequately modeled in the above context. The
limitations of purely macroscopic models we can expect are due to the fact that
pedestrians are not ‘infinitely small’ gas molecules and are not compressible. They
require a minimal physical space, the range of possible values for the walking speed
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is restricted and, most important, their movements are also strongly influenced by
individual behavior and individual decisions. As a consequence, macroscopic mod-
els have to be complemented by additional elements. This will be the subject of
the further development. This aspect is principally known. As examples for such
approaches we mention [16, 40] or [42, 43].

One of the aims of this paper is to put pedestrian flow in the context of existing
lines of continuum theory with similar phenomenological properties. The focus is
on numerical issues in that context, studies of the separation behavior in ideal-
ized test situations and, in particular, on the elliptic-hyperbolic type behavior of
the underlying equations. In some specific situations, crowds, where two groups of
pedestrians move in opposite directions, can have a phenomenological behavior sim-
ilar to bidisperse suspensions in which one solid species is heavier than the fluid and
the other lighter. In experiments with bidisperse suspensions at low concentrations
(corresponding to the hyperbolic region in the continuum approach), the two species
move by each other with little interference, which is also typical of light pedestrian-
flow in opposite directions. At higher concentrations, the suspension separates into
upward- and downward-moving streams [11]. This corresponds to the change in the
system of equations from hyperbolic to elliptic. The striking agreement between
the theoretical and experimental results for bidisperse suspensions [11] offers hope
that a similar result may occur for opposing streams of pedestrians in appropriate
situations.

For the numerical simulation, we use a finite-volume scheme ([44], e.g.). For
the simulation of traffic flow modeled by spatially one-dimensional systems of con-
servation laws, high-resolution methods deliver satisfactorily accurate results [46].
In the numerical experiments we use the local Lax-Friedrichs flux, which falls into
the class of central numerical fluxes and keeps the robustness and simplicity of the
Lax-Friedrichs flux, but gains a sharper resolution by the use of a local estimation
of the maximum wave-speeds [34]. The sharp interfaces that occur during phase
separation in multiphase crowd models are resolved with help of a fully adaptive
multiresolution scheme.

We have organized the remainder of this paper as follows. In Section 2 we give
two short resumés on the mathematical background of the subsequent discussion
related to continuum theoretical aspects and the context of the intended simula-
tion model. Section 3 outlines the model for the interaction between two species of
pedestrians. Section 4 provides a description of the finite-volume method and the
multiresolution analysis employed in the numerical approximation. Section 5 con-
tains several numerical examples that exhibit some of the predicted features of the
model, and finally we draw some conclusions and possible extensions in Section 6.

2. Modeling and simulation context. In order to improve the motivation of the
considered simulation model we briefly outline (a) the context of mixed hyperbolic-
elliptic systems and (b) the context in which the intended simulation model will be
developed.

2.1. Mixed systems and elliptic regions. A special property of the Bick-Newell
model (3) is that its phase space contains an elliptic region. An elliptic state in the
solution space is a state where the Jacobian matrix of the vector-valued flux function
has complex eigenvalues. The set of all elliptic points forms the elliptic region. This
contribution promotes a physical interpretation of the formal property of elliptic
regions. It is argued that, in a two-dimensional setting, the elliptic degeneracy of
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the system can trigger spatial phase separation. Therefore, crowd models can be
considered to give a prototype physical explanation of mixed systems. To put this
in an appropriate context, a short resumé on mixed hyperbolic-elliptic systems is
given in this subsection.

Hyperbolic-elliptic systems were first studied for porous-media flow in [3], where
a series of Riemann problems are solved numerically by a finite-difference scheme.
The choice of initial data in the form of two distinct states inside the elliptic region
leads to a transition from one state to the other via two loops around the elliptic
region. See [2, 37] for more recent descriptions of multiphase flow described by
mixed hyperbolic-elliptic systems occurring in porous media. Solutions of Riemann
problems with a quadratic flux function corresponding to an idealized porous-media
flow model have been classified in [26]. The effect of changing the diffusion matrix
on the solution of Riemann problems has been studied in [14, 29]. In [36] the effect
of a regularization with a viscosity matrix on an instability related to the elliptic
region is examined. For a general overview of mixed hyperbolic-elliptic systems,
their appearance and applications, see [20, 32, 33].

In [21], the solution is confined to the elliptic region in order to study the phenom-
enon of ‘oscillation waves’ in more detail. When the constant initial data inside the
elliptic region are perturbed in a few points, the finite-difference scheme produces
oscillation waves. These oscillation waves satisfy the Rankine-Hugoniot condition in
an average sense and thus can be formally interpreted as measure-valued solutions.
There is a tendency for the solution to avoid the elliptic region, i.e., initial data
inside move rapidly towards the boundaries and even exit the region. In two space
dimensions, this avoidance tendency might lead to fingering effects and pattern
formation.

In dispersed particle flow, there is experimental evidence of phase-separation
behavior (such as forming channels) that can be related to the elliptic region. A
characterization of a series of models for polydisperse suspensions with respect to
the appearance of elliptic regions has been carried out [11]. This study is continued
in [6], where, for a specific model, oscillation waves are simulated and it is shown how
the shape of the elliptic region can be controlled by the choice of model parameters.
A combination of classical and oscillation waves can be generated when one Riemann
state is chosen inside the elliptic region and the other outside. However, when the
Riemann data are chosen outside the elliptic region, they do not enter but seem to
avoid it. Rather, when perturbed constant data are chosen inside the elliptic region,
which is not tangent to all axes of the phase space of permitted solution values, the
solution escapes the elliptic region and a non-oscillatory stationary state is formed.

2.2. Towards a simulation model for pedestrian flow. In Euler/Navier-Stokes
based models, we are faced with the undesirable side effect that momentum conser-
vation has to be considered, which contradicts somewhat pedestrian behavior which
is influenced by individual decisions at least as long as there is physical space for
movement. The subsequently developed, more simple convection-diffusion approach
allows us to circumvent this problem.

The multiphase approach will enable us to model each of two or more pedestrian
streams as a separate phase. One of the fundamental problems in using continuous
macroscopic approaches derived from flow models is that gases or liquids merge by
diffusion or build vortices and similar structures which are accompanied by direction
changes that are not necessarily typical for pedestrian movement. In the present
context, we consider in particular the problem of two or more pedestrian streams,
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each having a specific destination, which intersect and continue to their destination
after crossing. In addition, we assume that all pedestrians remain in their stream,
i.e. that phase change after crossing does not occur.

Obviously, purely macroscopic approaches derived from flow models become more
realistic for high densities. With decreasing densities, the ‘discrete’ aspects of
pedestrian movement become more significant. As a consequence, it is favorable
to complete simulation models for pedestrian movement in (not only) our context
by elements describing both local individual interaction and tactical instruments to
keep or resume the way to the intended final destination. As a first step, however,
we study the benefits and limitations of a purely macroscopic approach (without
the above additions) in the present paper by presenting the model framework and
a series of numerical examples.

3. Two-species pedestrian model. The two-dimensional pedestrian-flow model
describing the spatial interaction of two species of pedestrians is formulated as the
system of two convection-diffusion equations

ut + ∂xf1(u, v;x, y) + ∂yg1(u, v;x, y) = ∇ ·
(
b11(u, v)∇u)

)
+∇ ·

(
b12(u, v)∇v)

)
,

vt + ∂xf2(u, v;x, y) + ∂yg2(u, v;x, y) = ∇ ·
(
b21(u, v)∇u)

)
+∇ ·

(
b22(u, v)∇v)

)
,

(4)

in ΩT = Ω × (0, T ), where u, v denote the densities of the two distinct pedestrian
species in the spatial domain Ω ⊂ R2. The model can be extended to more than
two phases.

In the parabolic part, the functions b11(u, v), b22(u, v) account for self-diffusion,
whereas the functions b12(u, v), b21(u, v) represent a cross-diffusion that can be
interpreted as an avoidance strategy of the respective other species. Such a tendency
away from regions occupied by the other species is known for epidemic models, where
a susceptible population avoids the infected population [1, 7]. When the diffusion
terms are small, the equations are dominated by convection, and thus they need a
careful discretization. The presence of the position (x, y) in the fluxes f, g allows
the species movement to depend on location. This permits us to design a location-
dependent direction which applies, e.g., when targeting an exit. With the notation

u =

(
u
v

)
, f(u;x) =

(
f1(u, v;x, y)
f2(u, v;x, y)

)
,

g(u;x) =

(
g1(u, v;x, y)
g2(u, v;x, y)

)
, b(u) =

(
b11(u, v) b12(u, v)
b21(u, v) b22(u, v)

)
,

the system (4) is written in compact form as

d

dt
u + ∂xf(u;x) + ∂yg(u;x) = ∇ ·

(
b(u)∇u

)
. (5)

In generalizing the LWR model to two space dimensions, the main issue is to de-
termine the directions of the flow. Pedestrian flow in two space dimensions follows
the same physical principles as in its reduction to one space dimension. The main
difference is that the total flux of a species, which describes the overall movement, is
distributed to the directions. Before splitting the flux components into directions,
we must define the total flux, which is the flux in the direction of principal move-
ment. Let h1(u, v), h2(u, v) denote the total fluxes for species 1 and 2, respectively.
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These total fluxes are then distributed in the x and y directions. If the fluxes are
singly directed, the two-dimensional system (4) reduces to the one-dimensional one

ut + ∂xh1(u, v) = ∂x
(
b11(u, v)∂xu)

)
+ ∂x

(
b12(u, v)∂xv)

)
,

vt + ∂xh2(u, v) = ∂x
(
b21(u, v)∂xu)

)
+ ∂x

(
b22(u, v)∂xv)

)
.

The total fluxes are specified for each species as in the one-dimensional setting by

h1(u, v) = a1uV (u, v), h2(u, v) = a2vV (u, v),

with ai > 0, i = 1, 2. More compactly, we have

h(u) =

(
h1(u, v)
h2(u, v)

)
=

(
a1u
a2v

)
V (u, v). (6)

The velocity function V (u, v) follows the suggestions for scalar equations, e.g.

V (u) = 1− ‖u‖1, i.e, V (u, v) = 1− u− v,

which is an extension of Greenshield’s model (2) with n = 1 and umax = 1. Obvi-
ously, other choices are admissible. A parameter choice a1 = 1, a2 = −1 reduces
in one space dimension to the Bick-Newell model (3) with β = 1. In the multi-
dimensional setting, the different flow directions are not expressed by the sign, but
by a direction matrix.

The fluxes f , g in (5) are composed by a total flux h and a direction contribution,
which distributes the total local flow of a species as

f1(u, v;x, y) = h1(u, v)dx
1(x, y), g1(u, v;x, y) = h1(u, v)dy

1(x, y),

f2(u, v;x, y) = h2(u, v)dx
2(x, y), g2(u, v;x, y) = h2(u, v)dy

2(x, y).
(7)

The directions can be formally put into a direction matrix

D =

(
dx

1(x, y) dy
1(x, y)

dx
2(x, y) dy

2(x, y)

)
=

(
d1(x)
d2(x)

)
=
(
dx(x) | dy(x)

)
,

where the subscripts (1 or 2) denote the species and the superscripts (x or y)
denote the direction component. The direction matrix combines components for
both species and directions. E.g., dy1(x, y) denotes that fraction of the flux of species
1 that flows in the y direction. The direction matrix can be decomposed either by
species with the row vectors d1(x), d2(x) or by directions with the column vectors
dx(x), dy(x).

Allocating (7) by the vector-valued fluxes f , g, using the specification of the total
fluxes (6) gives

f(u, v;x, y) =

(
a1uV (u, v)dx

1(x, y)
a2vV (u, v)dx

2(x, y)

)
, g(u, v;x, y) =

(
a1uV (u, v)dy

1(x, y)
a2vV (u, v)dy

2(x, y)

)
.

The discretization via numerical fluxes is based on this definition of the vector-
valued fluxes. Denoting component-wise multiplication by ⊗, we can write com-
pactly

f(u;x) = h(u)⊗ dx(x), g(u;x) = h(u)⊗ dy(x). (8)

The direction for each species has to be normalized in order to satisfy

‖(f1, g1)(u, v;x, y)‖2 = |h1(u, v)|, ‖(f2, g2)(u, v;x, y)‖2 = |h2(u, v)|,
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for all u, v, x, y i.e., the magnitude of the flux for one species (even if distributed
in various directions) is determined by its total flux. This normalization is accom-
plished by prescribing that the direction vectors

d1(x) =
(
dx

1(x, y) dy
1(x, y)

)
, d2(x) =

(
dx

2(x, y) dy
2(x, y)

)
,

satisfy

‖d1(x)‖2 = 1, ‖d2(x)‖2 = 1 for all x ∈ Ω. (9)

The model of Hughes [28] specifies the directions employing the potentials φ, ψ
associated with phases 1 and 2, respectively, as

dx
1(x, y) =

φx
‖∇φ‖2

, dy
1(x, y) =

φy
‖∇φ‖2

, dx
2(x, y) =

ψx
‖∇ψ‖2

, dy
2(x, y) =

ψy
‖∇ψ‖2

,

where the gradient norms

‖∇φ‖2 =
√
φ2
x + φ2

y, ‖∇ψ‖2 =
√
ψ2
x + ψ2

y

ensure that (9) holds. In a generalization of the model, the directions could also
depend on the pedestrian concentrations u and v.

4. Finite volume formulation. This section deals with the formulation of a fully
adaptive multiresolution scheme for numerically solving the convection diffusion
system (4). Given the convection-dominated nature of the underlying problem,
space-adaptive methods represent an adequate tool for accurately capturing the
wave fronts at a reduced computational cost.

Let T 0 ⊂ · · · T ` · · · ⊂ T H be a family of nested admissible rectangular meshes,
that is, partitions of Ω formed by control volumes K` (open rectangles of maxi-
mum diameter hK`) and constrained by the condition that the segment joining the
centers of two neighboring control volumes xK` and xL` must be orthogonal to the
corresponding interface σ = σ(K`, L`). By E(K`), Eint(K

`) we denote the set of
edges of K`, and its restriction to boundary edges. We denote by E`int and E`ext the
sets of all edges in the interior of T ` and lying on the boundary ∂Ω, respectively.
For each cell L` neighbor to K`, d(K`, L`) denotes the distance between xK` and
xL` .

4.1. A finite-volume formulation. In order to define the discrete marching for-
mula for (4), we choose an admissible discretization of ΩT consisting of an admissible
mesh T ` of Ω and a time-step size ∆t > 0. We may choose N > 0 as the smallest
integer such that N∆t ≥ T , and set tn := n∆t for n ∈ {0, . . . , N}.

We denote the cell averages of u and v on K` ∈ T ` at time t = tn by

unK` :=
1

|K`|

∫
K`

u(x, tn) dx, vnK` :=
1

|K`|

∫
K`

v(x, tn) dx.

The resulting finite-volume scheme for the approximation of (4), defined on the
resolution level `, assumes values unK` and vnK` for all K` ∈ T ` at time t = tn and
determines un+1

K` and vn+1
K` for all K` ∈ T ` at time t = tn+1 = tn+∆t by a marching

formula. With the compact notation

F =
(
f , g

)
=

(
f1 g1

f2 g2

)
,
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and using a standard finite-volume approach, the system (4) is discretized as

|K`|u
n+1
K` − unK`

∆t
−

∑
σ∈Eint(K`)

|σ(K`, L`)|
d(K`, L`)

(
F
(
unK` ,uL` ; x̄(K`, L`);n(K`, L`))·

n(K`, L`) +
b(unL`) + b(unK`)

2

(
unL` − unK`

))
,

(10)

where n(K`, L`) =
(
n1(K`, L`), n2(K`, L`)

)T
is the outer normal vector of cell K`

pointing towards L` such that

F
(
unK` ,uL` ; x̄(K`, L`);n(K`, L`)

)
· n(K`, L`)

= f
(
unK` ,u

n
L` ; x̄(K`, L`);n(K`, L`)

)
· n1(K`, L`)

+ g
(
unK` ,u

n
L` ; x̄(K`, L`);n(K`, L`)

)
· n2(K`, L`).

Here, the numerical fluxes

f
(
unK` ,uL` ; x̄(K`, L`);n(K`, L`)

)
, g

(
unK` ,uL` ; x̄(K`, L`);n(K`, L`)

)
depend on both of the components unK` and unL` on the sides of the cell interface;

x̄(K`, L`) is the position of the midpoint of the interface between cell K` and
L`. Moreover, (b(unL`) + b(unK`)/2 corresponds to a component-wise average of the
diffusion matrix b. This averaged matrix is multiplied by the vector difference unL`−
unK` such that the summation over all volumes resembles a central difference for the
parabolic term. In [7], this non-conservative discretization of the parabolic term
is compared to a conservative discretization. The multiresolution setting produces
such an accurate resolution that no differences can be detected for a non-linear
diffusion matrix. For a constant diffusion matrix both discretizations are equivalent.

Making use of the rectangular grid structure, we calculate the two-dimensional
numerical fluxes as

F
(
unK` ,u

n
L` ;n(K`, L`)) · n(K`, L`)

)
=


f(unK` ,u

n
L`) if n = (1, 0),

f(unL` ,u
n
K`) if n = (−1, 0),

g(unK` ,u
n
L`) if n = (0, 1),

g(unL` ,u
n
K`) if n = (0,−1).

The marching formula (10) is valid for all cells and, in particular, for the bound-
ary cells. The no-slip boundary condition is enforced by automatically setting the
boundary fluxes to zero.

As numerical flux, we choose the local Lax-Friedrichs flux, which is defined as

f
(
unK` ,u

n
L` ; x̄

)
=

f
(
unK` ; x̄

)
+ f

(
unL` ; x̄

)
2

− ax(K`, L`)

2
(unK` − unL`),

g
(
unK` ,u

n
L` ; x̄

)
=

g
(
unK` ; x̄

)
+ g
(
unL` ; x̄

)
2

− ay(K`, L`)

2
(unK` − unL`),

where we used the abbrevation x̄ = x̄(K`, L`). The local Lax-Friedrichs flux can be
systematically derived as that numerical flux that corresponds to a central Godunov-
type scheme [34]. It produces much less numerical viscosity than the classical Lax-
Friedrichs flux. The coefficients ax, ay are determined as the maximum spectral
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radius on the cell interface

ax(K`, L`) = max
(
%(f ′(unK`)), %(f ′(unL`))

)
,

ay(K`, L`) = max
(
%(g′(unK`)), %(g′(unL`))

)
,

or upper estimates of that radius; here, the flux Jacobians f ′(uK`), g′(uK`) are eval-
uated for the solution value uK` and %(f ′(uK`)), %(g′(uK`)) are the corresponding
spectral radii. The point x̄(K`, L`) is the position of the interface between the cells
K` and L`. Splitting (8) and then inserting (6), we write the local Lax-Friedrichs
numerical flux as

f
(
unK` ,u

n
L` ; x̄(K`, L`)

)
=

(
h(unK`) + h(unL`

))
⊗ dx(x̄)

2
− ax(K`, L`)

2
(unK` − unL`)

=
1

2

a1

(
unK`V (unK`) + unL`V (unL`)

)
dx

1

(
x̄(K`, L`)

)
a2

(
vnK`V (unK`) + vnL`V (unL`)

)
dx

2

(
x̄(K`, L`)

)
− ax(K`, L`)

2
(unK` − unL`),

g
(
unK` ,u

n
L` ; x̄(K`, L`)

)
=

(
h(unK`) + h(unL`)

)
⊗ dy(x̄)

2
− ay(K`, L`)

2
(unK` − unL`)

=
1

2

a1

(
unK`V (unK`) + unL`V (unL`)

)
dy

1

(
x̄(K`, L`)

)
a2

(
vnK`V (unK`) + vnL`V (unL`)

)
dy

2

(
x̄(K`, L`)

)
− ay(K`, L`)

2
(unK` − unL`).

The spectral radii for the coefficients ax(K`, L`)ay(K`, L`), are estimated as

ax(K`, L`) = max
(
a1, a2

)
max

(
V (unK`)d

x
1

(
x̄(K`, L`)

)
, V (unL`)d

x
2

(
x̄(K`, L`)

))
,

ay(K`, L`) = max
(
a1, a2

)
max

(
V (unK`)d

y
1

(
x̄(K`, L`)

)
, V (unL`)d

y
2

(
x̄(K`, L`)

))
.

4.2. Multiresolution setting. The success of the multiresolution algorithm de-
pends strongly on a coarse representation of the solution plus a sequence of details
that contain information about the differences between two consecutive resolution
levels. This information is related to the regularity of the solution (see e.g. [38]). For
x ∈ K`, let ϕ̃K`(x) := |K`|−1χK`(x), where χK` is the characteristic function of K`.
This allows us to write the average of u over the cell K` as uK` :=

(
u, ϕ̃K`

)
L1(Ω)

.

For the navigation between resolution levels, certain adequate transfer operators
are needed. These allow us to determine an invertible transformation between finite
volumes on level ` = H, and the set formed by finite volumes on the coarsest level
` = 0 and a sequence of so-called wavelet coefficients. To switch from fine to coarser
levels, a projection or coarsening operator is defined by

uK` =
∑

L`+1
i ∈M

K`

|L`+1
i |
|K`| uL`+1

i
, ϕ̃K` =

∑
L`+1

i ∈M
K`

|L`+1
i |
|K`| ϕ̃L`+1

i
,

where MK` stands for the refinement set of the control volume K`, whose four
elements are control volumes, contained in the spatial position occupied by K`,
that belong to T `+1. To move from coarse to finer levels, a prediction operator is
employed.
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xKℓ

ℓ = H

Lℓ

ℓ = H − 1

Sℓ+1

T ℓ+1

Figure 1. Sketch of a graded tree structure. Here K` is a parent
node on level ` = H−1, its children nodes (including S`+1) belong
to L(Λ); L` is a virtual node and T `+1 is a virtual leaf.

As in [12], we choose this to be the following polynomial reconstruction:

ũK`+1 = uT ` −
s∑

m=1

γ̃m

[(
uS`

x
− uS`

−x

)
+
(
uS`

x
− uS`

−x

)]

+

s∑
m=1

γ̃m

s∑
p=1

γ̃p
(
uS`

xy
− uS`

x,−y
− uS`

−x,y
+ uS`

−x−y

)
,

where γ̃1 = −22/128, γ̃2 = 3/28 are prediction coefficients. The wavelet function
for x ∈ K`+1 is

ψ̃K`,j = ϕ̃L`+1
i
−

s∑
m=−s

γ̃i+mϕ̃Ll
i+m

for j = 1, . . . , 4,

where L`+1
i ∈ MK` . The error induced by the prediction operator at the finite

volume K` is defined as the difference between the cell average and the predicted
value, i.e., duK` := uK` − ũK` . It follows from the definition of the wavelet func-

tion that duK` =
(
u, ψ̃K`

)
L1(Ω)

. If u is sufficiently smooth, its wavelet coefficients

decrease when going from coarser to finer levels. Thus, the compression of data by
discarding the information corresponding to small wavelet coefficients, or thresh-
olding procedure, is automatically achieved. In practice, the algorithm consists in
discarding all control volumes corresponding to wavelet coefficients for which∣∣duK`

∣∣ < ε`, ` = 0, . . . ,H

where ε` is a level-dependent tolerance. Given a reference tolerance εR whose choice
depends on the maximum values of the reaction and diffusion coefficients, we can
determine ε` by

ε` = 22(`−H)εR, ` = 0, . . . ,H.

These level-dependent tolerances guarantee that the error due to thresholding is of
the same order as the discretization error, and therefore the order of the underlying
scheme is preserved. For multi-species problems, wavelet coefficients will be defined
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by dK` = min
{∣∣duK`

∣∣, ∣∣dvK`

∣∣} and dK` = max
{∣∣duK`

∣∣, ∣∣dvK`

∣∣} for the refinement and
coarsening procedures, respectively.

4.3. Dynamic tree structure and measures of compression. Two core in-
gredients of the fully adaptive multiresolution framework are the graded tree data
storage and an efficient procedure to navigate inside it (see Figure 1). The root
is the basis of the tree. A parent node has four children, and the children of the
same parent are called brothers. A node without children is a leaf. A given node
has s′ = 2 nearest neighbors in each spatial direction. These are needed for the
computation of the fluxes of leaves. If these neighbors do not exist, we create them
as virtual leaves. We denote by Λ the set of all nodes of the tree, by L(Λ) the
restriction of Λ to the leaves, and by L(Λ`) the restriction of L(Λ) to the level ` for
` = 0, . . . ,H. Once the thresholding is done, we add a safety zone to the tree, by
adding one finer level to all the leaves in the tree without violating the graded-tree
data structure. This is a crucial point because it eliminates the need to decode the
solution back to the finest resolution level at each time step. In addition, to enforce
conservation in the scheme, we compute only the fluxes at level ` + 1 and set the
ingoing flux on the leaf at level l equal to the sum of the outgoing fluxes on the
leaves of level `+ 1 sharing the same edge. Notice that the marching formula (10)
in the adaptive scheme is used not for all K` ∈ Λ` but only for each K` ∈ L(Λ`),
` = 0, . . . ,H.

The quantity η := N/(2−2HN + #L(Λ)), called the data-compression rate [22],
is used to measure the improvement in data compression. Here, N is the number
of control volumes in the full finest grid at level ` = H, and #L(Λ) is the number
of leaves in the tree. The speed-up V between the CPU times of the numerical
solutions (obtained by the one-level finite-volume method and the fully adaptive
multiresolution method) is defined by V := CPU timeFV/CPU timeMR.

The multiresolution setting allows us to accurately resolve the solution at the
sharp interfaces which originate from pattern formation, where the patterns corre-
spond to separated pedestrian groups.

5. Numerical examples. In the numerical examples, the convection coefficients
are normalized to a1 = a2 = 1. The diffusion matrix is assumed to be constant
taking the form

b(u) =

(
ε δ
δ ε

)
(11)

with self-diffusion rate ε and cross-diffusion rate δ. The cross-diffusion rate δ is
assumed to vanish in all examples, except the last one (Example 7). If not otherwise
specified, in the numerical examples we set the velocity function to V (u, v) = 1−u−
v, the domain to Ω = [−1, 1]2, and on the boundary we impose absorbing boundary
conditions.

5.1. Example 1: Flow towards exit targets. In Example 1 a perpendicular flow
towards exit targets is considered. Two different populations are supposed to cross
in the center of the square-shaped domain Ω = [−1, 1]× [−1, 1], where their streams
are supposed to intersect. To enforce this intersection, the entries of the populations
are situated in two adjacent corners, and their exits are in the respective opposite
corners, mirrored by the origin. At the beginning of the simulation, the domain is
assumed to be empty, i.e. the initial data are set to (0, 0) all over the domain Ω.
The two populations enter the domain through doors of width w, which for the test
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Figure 2. Example 1. Species’ densities u (top) and v (bottom)
at times t = 2.0, t = 4.0, and t = 18.0.

case is specified to be w = 0.1. The two inlets are positioned at {−1}× [−1,−1+w]
and {−1} × [1− w, 1] for the populations quantified by u and v, respectively. The
entrance flow is specified by Neumann boundary conditions that quantify the fluxes
at the inlets; the entrance fluxes are defined as

f1(u;x) = fSW for x ∈ {−1} × [−1,−1 + w],

f2(u;x) = fNW for x ∈ {−1} × [1− w, 1],

with fNW = fSW = 0.5. The exit fluxes are defined at the outlets {1} × [1 − w, 1]
and {1} × [−1,−1 + w] as

f1(u;x) = up, f2(u;x) = 0 for x ∈ {1} × [−1,−1 + w],

f2(u;x) = vq, f1(u;x) = 0, for x ∈ {1} × [1− w, 1],

with p = q = 1. The remaining parameters are set to a1 = a2 = 1, ε = 0.01, δ = 0.
The crowd dynamics are oriented towards exit targets for both populations. The

targets are located in the centers of the respective exit doors and are located at
(x1, y1) = (1, 1−w/2), (x2, y2) = (1,−1+w/2). The directions towards the targets
(exit points) (x1, y1), (x2, y2) for species 1 and 2, respectively, are given by

di(x) =
d̃i(x)

‖d̃i(x)‖2
, d̃i(x) =

(
x− xi y − yi

)
, i = 1, 2.

Therefore, the pedestrian flow is directed towards a location-dependent direction.
In Figure 2 one recognizes the first pedestrians reaching the opposite corner avoiding
the jam. Thereafter the flow towards the opposite corners does not continue but
slowly a big jam in the center is built up. The two big clusters, one for each
population, block each other, letting only the small early fractions cross towards
the outlets. Even though the states obtained during the simulation are inside the
elliptic region, there is no phase separation. This means that data getting inside an
elliptic region does not necessarily cause pattern formation. It can be conjectured,
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however, that phase separation and pattern formation can be obtained for certain
changes in the boundary conditions.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

u

v

Figure 3. Example 2. Species’ densities u (left), v (right), and
corresponding phase diagram where the elliptic region is depicted,
for times t = 0.1 (top), t = 0.5 (center) and t = 1.5 (bottom).

5.2. Example 2: Battle of Agincourt. Example 2 gives an account of the Battle
of Agincourt, 1415, a relatively well documented medieval war. In [17], the historical
setting is recalled and related to a pedestrian model framework, but no numerical
simulations are performed. The flow is assumed to be in opposite directions, i.e. we
set

d1(x) =
(
1 0

)
, d2(x) =

(
−1 0

)
.

In this case of this countercurrent flow, system (4) can be specified as

ut +
(
u(1− u− v)

)
x

= ε∆u, vt −
(
v(1− u− v)

)
x

= ε∆v.

The boundary conditions are absorbing.
An idealized battle model would initially set the two opposed armies at opposite

sides of a field. Therefore, in the initial conditions the two phases are separated in
two parts, in each of which only one phase is present and the other not. Tentative
simulations with a straight interface between both armies, where a straight line in
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the center separates both phases, did not lead to pattern formation, even if the
initial values at each side are perturbed. Therefore, a serrated interface in form of
a zig-zag curve with frequency F and amplitude A is assumed. More specifically,
introducing the zig-zag curve

z(y) = 4A

(∣∣∣∣Fy − bFyc − 1

2

∣∣∣∣− 1

4

)
,

where b·c indicates the next lower integer, the domain is divided into two parts as

Ωu = {−1 ≤ x ≤ z(y), 0 ≤ y ≤ 2}, Ωv = {z(y) < x ≤ 1, 0 ≤ y ≤ 2},
Ω = Ωu ∪ Ωv = [−1, 1]× [0, 2].

For amplitude A = 0 the interface corresponds to a straight line. In the examples
we choose A = 0.05 and F = 4. The initial conditions are

u(x, t = 0) = u0 + ηu(x), v(x, t = 0) = 0 if x ∈ Ωu,

v(x, t = 0) = 0, v(x, t = 0) = v0 + ηv(x) if x ∈ Ωv,

where u0 = v0 = 0.2 and ηu, ηv are uniformly distributed random noise with vari-
ations of 10% and 1.5% for u and v, respectively. For the multiresolution setting,
L = 10 resolution levels are used with a reference tolerance of εref = 1.25× 10−3.

In Figure 3, a positive amplitude A > 0 was intended to enforce some pattern
formation through an interface boundary perturbation, but obviously such an in-
terface perturbation has the effect of an interface boundary regularization, keeping
the essentially one-dimensional solution structure. In a similar but one-dimensional
setting, where two initially separated opposed phases of solid material dispersed in
a liquid move towards each other and the vector-valued flux function provides an
elliptic region, the same locking effect could be observed [5]. This locking effect is
not changed in a two dimensional setting, at least for a standard parameter setting.

5.3. Example 3: Countercurrent flow in a long channel. In Example 3, the
domain is specified to be a long channel having the domain Ω = [−5, 5] × [−1, 1].
The parameters are set to a1 = a2 = 1, ε = 2.5× 10−3, δ = 0. Initially, the domain
is assumed to be empty with u(x, t = 0) = v(x, t = 0) = 0 for all x ∈ Ω. Both
populations move in opposite directions

d1(x) =
(
1 0

)
, d2(x) =

(
−1 0

)
,

such that they are expected to meet somewhere in the middle. The two populations
access the domain at two opposite edges; at the left and right edges of the domain,
an inflow is imposed:

f(u,x)− ε∂xu =
(
fW(t) 0)

)T
at x ∈ {−5} × [−1, 1],

f(u,x)− ε∂xu =
(
0 fE(t)

)T
at x ∈ {5} × [−1, 1].

The boundaries of the longer edges are assigned with zero flux, i.e.,

g(u;x)− ε∂yu = 0, x ∈ [−5, 5]× {−1, 1}.
The populations finally leave the domain with a constant rate at the respective
target side

f(u,x)− ε∂xu = −u at x ∈ {−5, 5} × [−1, 1].
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Figure 4. Example 3. Species’ densities u, v at times t = 2, t = 4,
t = 8.

In Figure 4, a strong spatial phase-separation can be recognized, which becomes
more distinct with time. The patterns are oriented in the direction of the counter-
current flow. This corresponds to the intuition on crowds, in which all pedestrians
prefer to move alongside their own peers in the same channel in order to avoid col-
lisions. This separation is caused by data entering the elliptic region in the phase
space. The instability of states in the elliptic region makes them leave it, which
leads to channel formation. The patterns are alongside (parallel) to the flow di-
rection, i.e. the phases move through their respective channels. The phenomenon
of pattern formation and its relation to the elliptic region is studied further in the
following examples.

5.4. Example 4: Countercurrent flow. In Example 4, countercurrent flow is
modelled, where two groups of pedestrians move in the opposite directions d1(x) =
(0, 1) and d2(x) = (0,−1). Inside the domain Ω = [−1, 1]2, the initial data are set
to be randomly perturbed around a state u0 = (0.4, 0.35)T which is located inside
the elliptic region. More specifically, initial conditions are set to

u(x, t = 0) = u0 + ηu(x), v(x, t = 0) = v0 + ηv(x), for x ∈ Ω = [−1, 1]2,
(12)

where ηu, ηv are uniformly distributed random noise with variations of 10% and
1.5% for u and v, respectively. The boundary conditions are set to be absorbing.
Here the diffusion matrix has the values ε = 1.5 × 10−3, whereas δ = 0. For the
multiresolution setting, L = 10 resolution levels are used with a reference tolerance
of εref = 1.25× 10−2.

As one can see in Figure 5, a clear and strong spatial phase-separation is con-
firmed for initial data inside the elliptic region. This separation leads to channel
formation, where the phases separate horizontally and move through vertical chan-
nels. Moreover, clusters with a predominant species, moving in the directions of
that species, are formed. For initial data u0 chosen outside the elliptic region, the
variation of the density values remains very low and close to the initial state and
therefore remains clearly outside the elliptic region.

5.5. Example 5: Perpendicular flow with different velocity functions. In
Example 5, a crossing with perpendicular flow directions d1(x) = (1, 0), d2(x) =
(0, 1) is considered in the domain Ω = [−1, 1]2. Self-diffusion and cross-diffusion
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Figure 5. Example 4. Species’ densities u, v (top), void fraction
1 − u − v (bottom-left), and corresponding phase diagram where
the elliptic region is depicted (bottom-right). The simulated time
is t = 2.

are set to ε = 1× 10−3, δ = 0, respectively. As in Example 4, there are absorbing
boundary conditions and homogeneous initial data (12) with u0 = (0.4, 0.35)T are
taken inside the elliptic region. Moreover, we consider different velocity functions
which are intended to describe real and hypothesized forces during interactions
between pedestrians. The velocity function V (u, v) = 1 − u − v assumes a slow-
down that is proportional to u + v. This choice falls in the more general class
of velocity functions that have the desirable property that V (u, v) is convex and
satisfies

V (0, 0) = 1, V (1, 0) = 0, V (0, 1) = 0. (13)

This property is also satisfied for V (u, v) = (1− u− v)(1− u)(1− v), which has
a wider elliptic region, and for V (u, v) = 1 − u − v − uv, where the elliptic region
is thinner; this thinner elliptic region coincides with an overall smaller invariant
region, in comparison to our standard setting. Clearly 1−u−v−uv < 1−u−v for
u, v > 0. Such a reduced invariance region corresponds to the interpretation that
in a dense packing there is some space between pedestrians, in particular if they
belong to different groups moving in different directions.

The flow patterns corresponding to these velocity functions can be seen in Fig-
ure 6. The perpendicular flow results in the formation of diagonal patterns. For
the velocity functions V (u, v) = 1−u− v and V (u, v) = 1−u− v−uv, the solution
values are dispersed throughout the invariance region. For the velocity function
V (u, v) = (1 − u − v)(1 − u)(1 − v) the solution values are concentrated in a bold
subregion of the elliptic region; there is no solution value outside this subregion.
For the velocity function V (u, v) = 1 − u − v − uv, there is an accumulation of
solution values at the maximum packing line, in particular at its tangent to the
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Figure 6. Example 5. Species’ densities u, v, and phase dia-
grams at the final time t = 2.5 for different velocities V (u, v). Top:
V (u, v) = 1−u− v, middle: V (u, v) = 1−u− v−uv, and bottom:
V (u, v) = (1− u)(1− v)(1− u− v).

elliptic region. The variant V (u, v) = 1 −max(u, v) is convex (even if not strictly
convex) and satisfies (13) but allows a superposition of different pedestrians types,
since the boundary of the invariant region is max(u, v), which contains a value like
(u, v) = (1, 1). Moreover, there is no elliptic region, and thus the interesting feature
of pattern formation cannot be obtained.

5.6. Example 6: Effect of diffusion and cross-diffusion. In Example 6 the
effects of the self-diffusion (which is represented by the parameter ε) and in par-
ticular of the cross-diffusion (represented by parameter δ) in the constant diffusion
matrix (11) are examined. We take the same setting as in Example 4 on the coun-
tercurrent flow, but additionally consider the parameter δ in the off-diagonal entries
of the diffusion matrix, i.e., δ accounts for the intensity of the cross-diffusion. In
particular, we choose ε ∈ {0, 0.001, 0.01, 0.1} and δ ∈ {0, 0.01, 1, 2.5, 5, 10}. In all
cases of the test series, it can be seen that a small self-diffusion is necessary in order
to ensure stability of the numerical scheme, see Table 1. Figure 7 displays snapshots
at t = 2.0 for ε = 0.01 and several choices of δ. First, one observes that from δ ≥ 1
directed patterns become clearly detectable and the width of the channels increases
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with δ. For δ < 1 the patterns eventually smooth out to the equilibrium state. For
a certain parameter range, the cross-diffusion leads to more uniform shape of the
channels.

Table 1. Example 7. Behavior of the numerical solution depend-
ing on the diffusion and cross-diffusion parameters ε and δ.

ε δ Unstable Stable patterns Steep patterns

0 0, 0.01, 1, 2.5, 5, 10 •
0.001 0, 1 •
0.001 1.5, 2.5 •
0.001 5, 10 •
0.01 0, 0.01, 0.1 •
0.01 1, 2.5, 5, 10 •
0.1 0, 0.01, 0.1 •
0.1 1, 2.5, 5, 10 •
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Figure 7. Example 6. Densities for species u at time t = 2.0.
Here, ε = 0.01, and, from top-left, δ ∈ {0, 0.01, 1, 2.5, 5, 10}.

6. Conclusion and future research. We have examined a generic two-
dimensional multiphase extension of the scalar LWR model and found several inter-
esting features. Unlike highway traffic flow in which opposing streams are separated
or meet only at intersection points, pedestrian flow in buildings or open spaces al-
lows for direct interaction between flows in opposite directions or at right angles.
The particular feature of the presented model is that it considers both two space
dimensions and two different pedestrian types. Test scenarios can be handled by
using a finite-volume-multiresolution algorithm.
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A genuine setting for the presented model is that of a crossing, where two dif-
ferent pedestrian types cross a place in perpendicular directions. The simulation
of pedestrian flow where the two groups cross in the middle of the domain leads
to jamming. This mutual blocking of two different phases is not caused by a wall
or an obstacle, but by the crossing flow direction where two phases meet at a high
pedestrian density. A simplified simulation of the Battle of Agincourt, where two
opposed armies move towards each other, also leads to such a blocking, even when
the initial data and the initial interface between the armies are perturbed. The con-
sidered simulation model allows flow towards exit targets, where certain boundary
conditions correspond to entries and exits. A simulation of countercurrent flow in
a long channel, where two pedestrian phases enter from opposite edges and move
towards each other, leads to a strong spatial phase-separation that becomes more
distinct with time. In the case that homogeneous initial data are chosen, with an
initial state inside the elliptic region, a steep pattern formation is generated. If
the flows are countercurrent, the pattern is parallel to the flow direction. If the
flows are perpendicular, the pattern is diagonal, suggesting that the flow direction
is diagonal. The form of the velocity function impacts the shape of the pattern. A
test series with different values for the diffusion matrix shows that a small diffusion
term is necessary to stabilize the simulation, whereas the cross-diffusion term can
account in a certain range for steeper patterns.

These examples show that the model is able to reproduce some phenomena of
interest, and that the multiresolution algorithm is an adequate tool for the solution
of two-dimensional problems in pedestrian flow, in particular when the pattern
formation demands high refinements at the phase interfaces.

From a mathematical point of view, an open topic is the existence and uniqueness
of the equations of hyperbolic-elliptic degenerate type, which need to be analyzed
in the context of measure-valued solutions. Elliptic degeneracy implies that the
solution of Riemann problems in the hodograph plane requires completely new
techniques such as complex characteristics.

From an applications point of view, our approach is principally well suited for
the modeling of distinct pedestrian streams. Obviously, it can be extended to more
complicated, realistic geometries, and to more than two phases. The model avoids
the problems arising in the context of necessary momentum conservation in Euler-
/Navier-Stokes based approaches and, other than [16, 40] , e.g., the density remains
limited from above.

The examples, in particular Example 1, illustrate, however, the limitations of the
purely macroscopic approach which have to be overcome in the future development
of the simulation model. In Example 1, smaller groups of pedestrians are able to
reach their exit doors as long as the densities in the crossing area are still small.
With increasing densities a jam occurs first in the crossing area and leads finally to
a blocking at the horizontal center line of the region. This effect is also a result of
diffusion created by the Laplace term. The situation of the model can be illustrated
by the comparison with blind persons knowing their destination, following strictly
their direction and searching for their path using their canes. When encountering
a high concentration of other pedestrians, they stop. The diffusion term enables
them to sidestep, but only slightly, and usually they will not find the right way to
their destination again. Numerically, small diffusion facilitates slight movement in
the presence of high densities, but a higher diffusion rate would spread the particles
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(pedestrians) much wider in the region in contrast to the intended modeling of a
target-oriented movement of distinct streams.

Pedestrians either tend to pass across a jam directly as long as possible or to
circumvent it for resuming their way to their final destination. In order to model
this behavior, an additional strategy will be needed. One possibility could be to let
the pedestrians walk along graphs which describe possible paths from the current
position which are restricted by visibility. We will adopt another approach by
introducing adaptable potential fields where pedestrians are guided to their target
using potential lines. A similar approach has been used in [16, 40].

Another problem results from the fact that pedestrians have, unlike gas or fluid
molecules, a non-negligible physical extent and an individual behavior: The analogy
to flow models is limited to high densities where both aspects do not predominate.
As long as densities are small enough to give sufficient space for (individual) move-
ment, there is a need for modeling local interaction of pedestrians. We intend,
therefore, to complement the model by an adequate microscopic component based
on discrete structures.
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