NETWORKS AND HETEROGENEOUS MEDIA d0i:10.3934/nhm.2011.6.351
(©American Institute of Mathematical Sciences
Volume 6, Number 3, September 2011 pp- 351-381

TWO-WAY MULTI-LANE TRAFFIC MODEL FOR PEDESTRIANS
IN CORRIDORS

CECILE APPERT-ROLLAND

1-University Paris-Sud; Laboratory of Theoretical Physics
Batiment 210, F-91405 ORSAY Cedex, France
2-CNRS; LPT; UMR 8627
Batiment 210, F-91405 ORSAY Cedex, France

PIERRE DEGOND

3-Université de Toulouse; UPS, INSA, UT1, UTM
Institut de Mathématiques de Toulouse
F-31062 Toulouse, France
4-CNRS; Institut de Mathématiques de Toulouse UMR 5219
F-31062 Toulouse, France

SEBASTIEN MOTSCH

5-Department of Mathematics University of Maryland
College Park, MD 20742-4015, USA

ABSTRACT. We extend the Aw-Rascle macroscopic model of car traffic into a
two-way multi-lane model of pedestrian traffic. Within this model, we propose
a technique for the handling of the congestion constraint, i.e. the fact that the
pedestrian density cannot exceed a maximal density corresponding to contact
between pedestrians. In a first step, we propose a singularly perturbed pres-
sure relation which models the fact that the pedestrian velocity is considerably
reduced, if not blocked, at congestion. In a second step, we carry over the
singular limit into the model and show that abrupt transitions between com-
pressible flow (in the uncongested regions) to incompressible flow (in congested
regions) occur. We also investigate the hyperbolicity of the two-way models
and show that they can lose their hyperbolicity in some cases. We study a dif-
fusive correction of these models and discuss the characteristic time and length
scales of the instability.

1. Introduction. Crowd modeling and simulation is a challenging problem which
has a broad range of applications from public safety to entertainment industries
through architectural and urban design, transportation management, etc. Com-
mon and crucial needs for these applications are the evaluation and improvement
(both quantitatively and qualitatively) of existing models, the derivation of new
experimentally-based models and the construction of hierarchical links between
these models at the various scales.
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The goal of this paper is to propose a phenomenological macroscopic model for
pedestrian movement in a corridor. A macroscopic model describes the state of the
crowd through locally averaged quantities such as the pedestrian number density,
mean velocity, etc. Macroscopic models are opposed to Individual-Based Models
(IBM’s) which follow the location and state of each agent over time. Macroscopic
models provide a description of the system at scales which are large compared to the
individuals scale. Although they do not provide the details of the individuals scale,
they are computationally more efficient. In particular, their computational cost
does not depend on the number of agents, but only on the refinement level of the
spatio-temporal discretization. In addition, by comparisons with the experimental
data, they give access to large-scale information about the system. This information
can provide a preliminary gross analysis of the data, which in turn can be used for
building up more refined IBM’s. This procedure requires that the link between
the microscopic IBM and the macroscopic model has been previously established.
Therefore, macroscopic models which can be rigorously derived from IBM’s are
crucial.

The present work focuses on a one-dimensional model of pedestrian traffic in
corridors. This setting has several advantages:

1. It makes the problem essentially one-dimensional and is a preliminary step for
the development of more complex multi-dimensional problems. The present
work will consider that pedestrian traffic occurs on discrete lanes. This ap-
proximation can be viewed as a kind of discretization of the actual two-
dimensional dynamics. It prepares the terrain for the development and in-
vestigation of truly two-dimensional models.

2. We can build up on previous experience in the field of traffic flow models.
Our approach relies on the Aw-Rascle model of traffic flow [3], which has
been proven an excellent model for traffic flow engineering [42]. In the present
work, this approach will be extended to two-way multi-lane traffic flow of
pedestrians.

3. It is easier to collect well-controlled experimental data in corridors than in
open space (see for instance [34]).

4. The relation of the macroscopic model to a corresponding microscopic IBM
is more easily established in the one-dimensional setting. In [2], it has been
proven that the Aw-Rascle model can be derived from a microscopic Follow-
the-Leader model of car traffic. The proof uses a Lagrangian formulation of the
Aw-Rascle model. The correspondence between the Lagrangian formulation
and the IBM cannot be carried over to the two dimensional case, because of
the very special structure of the Lagrangian model in one-dimension.

The most widely used models of pedestrian traffic are IBM’s. Several families of
models have been developed. Rule based models [38] have been used in particular
for the development of games and virtual reality, with several possible levels of
description. But their aim is more to have a realistic appearance rather than really
reproducing a realistic behavior. More robust models are needed for example to test
and improve the geometry of various types of buildings. Physicists have proposed
some models inspired from the fluid simulation methods. In the so-called ‘social
force’ model [18, 20, 21], the equations of motion for each pedestrian have the form
of Newton’s law where the force is the sum of several terms each representing the
‘social force’ under consideration. It obviously relies on the analogy existing between
the displacement of pedestrians and the motion of particles in a gas. It describes
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quite well dense crowds, but not the individual trajectories of a few interacting
pedestrians. Other approaches have been developed in the framework of cellular
automata [9, 16, 31]. In these models, the non-local interactions between pedestrians
are made local through the mediation of a virtual floor field. These models also are
meant to describe the motion of crowds, not of individuals. Besides, a systematic
study of the isotropy of cellular automata models is still lacking. More recently, some
geometrical models have been developed. Pedestrians try to predict each others’
trajectories, and to avoid collisions [17, 33, 40]. The knowledge of other pedestrians’
trajectories depends on the perception that the pedestrian under consideration has,
which may vary with time. [35] takes into account the fact that this knowledge
is acquired progressively. Another type of perception based on the visual field is
proposed in [32]. These models describe well the individual trajectories of a few
interacting pedestrians, but it is not obvious yet whether they can handle crowds.

By contrast to microscopic IBM’s, macroscopic crowd models are based on the
analogy of crowd flow with fluid dynamics. A first approach has been proposed in
[22]. In [19], a fluid model is derived from a gas-kinetic model through a moment
approach and phenomenological closures. Recently, a similar approach has been
proposed in [1]. In [23, 24, 25], a continuum model is derived through optimal con-
trol theory and differential games. It leads to a continuity equation coupled with a
potential field which describes the velocity of the pedestrians. Other phenomeno-
logical models based on the analogy with the Lighthill-Whitham-Richards model
of car traffic have been proposed by [4, 10, 11]. In [36, 37], instead of considering
a continuous time evolution described by PDE’s, the evolution of measures is per-
formed on a discrete time scale. In the present paper, we shall consider a continuous
time description. Macroscopic models provide a description of the system at large
spatial scales. They can be heuristically justified for a long corridor stretch like a
subway corridor, when the spatial inhomogeneities are weak (such as low variations
of the density or velocity in the direction of the corridor). Of course, they cannot
be used when the spatial inhomogeneities are at the same scale as for instance the
mean-interpedestrian distance in the longitudinal direction. In the case of narrow
corridors, this mean-interpedestrian distance is larger because there are less pedes-
trians in a cross-section, and the condition of weak spatial inhomogeneities is more
stringent. From a rigorous standpoint, the derivation of macroscopic models from
Individual-Based models requires that the number of agents be large, which is obvi-
ously questionable in most situations in pedestrians and highway traffic. Still there
is a large literature devoted to macroscopic models which seem to provide adequate
models for large scale dynamics.

We will be specifically interested in two-way multi-lane traffic flow models with
a particular emphasis on the handling of congestions. These points have been
previously addressed in [41] for pedestrian counter-flows, [39] for multi-lane traffic
and [29, 30] for the treatment of congestions. However, to the best of our knowl-
edge, none of these different features have been included in the same model at the
same time. The most difficult point is the treatment of congestions. In the recent
approach [29, 30] the congestion constraint (i.e. the limitation of the density by
a maximal density corresponding to contact between pedestrians) is enforced by
means of convex optimization tools (for IBM’s) or techniques borrowed from opti-
mal transportation such as Wasserstein metrics (for continuum models). However,
these abstract methods do not leave much space for parameter fitting to data and
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cannot distinguish between the behavior of pedestrians and say, sheep. Our tech-
nique relies on the explicit derivation of the dynamics of congestions, in the spirit of
earlier work for traffic [6, 7, 13]. This procedure was initiated in the seminal work
[8].
The outline of the paper is as follows. We first present the modeling approach
for a one-way one-lane Aw-Rascle model (1W-AR) of pedestrian flow in corridors
in section 2. We then successively extend this model into a two-way one-lane Aw-
Rascle model (2W-AR) in section 3 and to a two-way multi-lane Aw-Rascle model
(ML-AR) in section 4. In each section, we present the corresponding Aw-Rascle
model, together with a simplified version of it supposing that the pedestrian desired
velocity is constant and uniform. We refer these simplified models as “Constant
desired velocity Aw-Rascle” (CAR) models. Therefore, we successively have the
1W-CAR, 2W-CAR and ML-CAR models as Constant desired velocity versions of
respectively the IW-AR, 2W-AR and ML-AR models. The 1IW-CAR model can be
recast in the form of the celebrated Lighthill-Whitham-Richards (LWR) model of
traffic.

Finally, for each of these models, we propose a specific treatment of congestion
regions. This treatment consists in introducing a singular pressure in the AR model
which tends to infinity as the density approaches the congestion density (i.e. the
density at which the agents are in contact to each other). This singularly perturbed
pressure relation provides a significant reduction of the flow when the density reaches
this maximal density. A small parameter ¢ controls the thickness of the transition
region. In the limit ¢ — 0, two phases appear: an uncongested phase where the
flow is compressible and a congested phases where the flow is incompressible. The
transition between these two phases is abrupt, by contrast to the case where ¢ stay
finite, where this transition is smooth. The location of the transition interface is
not given a priori and is part of the unknowns of the limit problem.

Table 1 below provides a summary of the various proposed models and their
relations.

One interesting characteristics of two-way models as compared to one-way mod-
els is that they may lose their hyperbolicity in situations close to the congestion
regime. Although, this loss of hyperbolicity can be seen as detrimental to the model,
the resulting instability may explain the appearance of crowd turbulence at high
densities. We note that a loss of (strict) hyperbolicity has already been found in
a multi-velocity one-way model [5]. In order to gain insight into this instability, in
section 5, we analyze the diffusive perturbation of the two-way Aw-Rascle model
with constant desired velocity, and exhibit the typical time scale and growth rate of
the so-generated structures. These observables can be used to assess the model and
calibrate it against empirical data. In order to illustrate these considerations, we
show numerical simulations that confirm the appearance of these large-scale struc-
tures which consist of two counter-diffusing crowds. In these simulations, which are
presented for illustrative purposes only, in order to explore what kind of structures
the lack of hyperbolicity of the model leads to, we assume a smooth pressure-density
relation. Thanks to this assumption, we omit to treat the congestion constraint,
which is a difficult stiff problem, for which special methods have to be designed (see
e.g. [15, 14] for the case of Euler system of gas dynamics and [6, 13] for the AR
model).
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Basic model Congestion model Congestion model
with smooth transition: | with abrupt transition:
finite & e—=0
1W-AR Section Section Section
1-way 2.1 2.3.1 2.3.2
1-lane
1W-CAR Section Section Section
1-way 2.2 2.3.3 2.3.3
1-lane item (i) item (ii)
2W-AR Section Section Section
2-way 3.1 3.3.1 3.3.2
1-lane
2W-CAR Section Section Section
2-way 3.2 3.3.3 3.3.3
1-lane item (i) item (ii)
ML-AR Section Section Section
2-way 4.1 4.4.1 4.4.2
multi-lane
ML-CAR Section Omitted Omitted
2-way 4.3
multi-lane

TABLE 1. Table of the various models, with some of their character-
istics and the sections in which they are introduced. The meaning of
the acronyms is as follows: AR=‘Aw-Rascle model’, CAR=*‘Aw-Rascle
model with Constant Desired Velocity’. The left column (basic model)
refers the general formulation of the model and the middle and right
columns, the modified models taking into account the congestion phe-
nomena. The middle column corresponds to a smooth transition from
uncongested state to congestion while the right column corresponds to
an abrupt phase transition.

2. One-way one-lane traffic model.

2.1. An Aw-Rascle model for one-lane one-way pedestrian traffic. In this
section, we construct a one-lane one-way continuum model of pedestrian traffic in
corridors. In this model, we will pay a particular attention to the occurrence of
congestions. We encode the congestion effect into a constraint of maximal total
density. This work is inspired by similar approaches for vehicular traffic, which
have been developed in [6, 7, 13].

For that purpose, the building block is a one-lane, one-way Aw-Rascle (1W-
AR) model which has been proposed for vehicular traffic flow [3]. This model
belongs to the class of second-order models in the sense that it considers that both
the density and the velocity are dynamical variables which are subject to time-
differential equations. By contrast, first order models use the density as the only
dynamical variable and prescribe the density flux as a local function of the density.
The Aw-Rascle model with constant desired velocity considered in section 2.2 is an
example of a first order model.
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Definition 2.1. (1W-AR model) Let p(z,t) € R the density of pedestrians on
the lane, u € R4 their velocity, w(z,t) € Ry the desired velocity of the pedestrian
in the absence of obstacles and p(p) the velocity offset between the desired and
actual velocities of the pedestrian. The 1W-AR model is written:

9ip + 0x(pu) =0, (1)
9 (pw) + 9z (pwu) =0, (2)
w=u+p(p). (3)

In this model, the offset p(p) is an increasing function of the pedestrian density.
By analogy with fluid mechanics, this offset will be often referred to as the pressure,
but its physical dimension is that of a velocity.

Using the mass conservation equation, we can see that the desired velocity is a
Lagrangian quantity (i.e. is preserved by the flow), in the sense that:

Oyw + ud,w = 0. (4)

It is natural, since the desired velocity is a quantity which is attached to the particles
and should move together with the particles at the flow velocity.

This model has been studied in great detail in [3] and proven to derive from a
follow-the-leader model of car traffic in [2]. Of particular interest is the fact that
this model is hyperbolic, with two Riemann invariants. The first one is obviously
the desired velocity w as (4) testifies. The second one is less obvious but is nothing
but the actual flow velocity u. Indeed, from (4) and using (1), we get:

Ou+ udu = —(0p + udyp)
= —p'(p)(Op + udyp)
= p’(p)p@xu,
and therefore
Oru + (u—p(p)p)dau = 0. (5)

Therefore, information about the fluid velocity propagates with a velocity

cu = u—p'(p)p. (6)

In the reference frame of the fluid, this gives raise to waves moving upstream the
flow with a speed equal to —p’(p)p.

Remark 1. We can also consider the evolution of pu instead of that of u. We
obtain from (4) and using (1):

O (pu) + Ox(puu) = —(0:(pp) + Oz (ppu))
= —p(Owp + udyp)
dp

= —pP—, 7
P (7)
where we have introduced the material derivative d/dt = 0; + ud,. This form is
motivated by the observation [3] that drivers do not react to local gradients of the
vehicle density but rather to their material derivative in the frame of the driver.

This modification to standard gas dynamics like models of traffic was crucial in
obtaining a cure to the various deficiencies of second order models as observed by
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Daganzo [12]. Eq. (7) can also be put in the form

O(pu) + Oz (puw) = —04(pp)
= —7'(p)op
7' (p) 0z (pu), (8)
with
m(p) = pp(p), 7' (p) = pp'(p) + p(p). 9)

We will consider the 1W-AR model as a building block for the pedestrian model.
In order to make the connection with a microscopic view of pedestrian flow, we
consider a subcase of this model in the section below.

2.2. Constant desired velocity. This one-way Constant Desired Velocity Aw-
Rascle (1W-CAR) model assumes that the pedestrians can have only two velocities:
either a fixed uniform velocity V' which is the same for all pedestrians and does not
vary with time ; or zero, indicating that they are immobile. In other words, if
because of the high density of obstacles in front, the pedestrians cannot proceed
further with the velocity V', they have to stop.

In this case,

w=V
is a fixed value and therefore, the actual flow velocity

u="V —p(p) (10)

is a local function of p. This leads to a first-order model where the flux velocity is
given as a local prescription of the density.

Definition 2.2. (1W-CAR model) Let p(x,t) € R the density of pedestrians
on the lane, V' € R, the (constant) desired velocity of pedestrians and p(p) the
pressure. The 1W-CAR model is written:

9ep + 9:(p(V —p(p))) = 0. (11)

We denote by f(p) = p(V — p(p)) the mass flux. The quantity p(p) being an
increasing function of p, f(p) has a concave shape (and is actually concave if pp(p)
is convex), which is consistent with classical first-order traffic models such as the
Lighthill- Whitham-Richards (LWR) model [28]. Figure 1 provides a graphical view
of f(p). It is interesting to note that the original 1W-AR model can be viewed as
a LWR model with a driver-dependent flux function f(p,w) = p(w — p) where w
is the driver dependent parameter, and consequently moves with the flow speed.
It follows that the LWR is a useful lab to test concepts ultimately applying to the
1W-AR model. However, some of the features of the LWR model are too simple
(such as the conservation of the maxima and minima of p) and a realistic description
of the dynamics requires more complex models such as the ITW-AR model.

It is also instructive to write the 1W-CAR model as a second order model, like
the ITW-AR model. Indeed, using (8) and (10), we can write (11) as:

O¢p + Oz (pu) =0, (12)
O (pu) + Oy (puV) = 7' (p) 0 (pu). (13)

Conversely, if p and u are solutions of this model, using the fact that V' is a constant
together with eq. (12) to modify the second term of (13), and using the r.h.s. of
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f(p)

fJ]L'..'lX JO

FIGURE 1. Density flux f(p) = p(V — p(p)) as a function of p in
the IW-CAR model.

eq. (8) to modify the r.h.s of (13), we find, :
O(plp+u—V))=0.
Therefore, if (10) is satisfied initially, it is satisfied at all times and we recover (11).

Remark 2. The 1W-CAR model in the form (12), (13) has an interesting inter-
pretation in terms of microscopic dynamics, when the pedestrians have two velocity
states, the moving one with velocity V' and the steady one, with velocity 0. Indeed,
denoting by g(z,t) the density of moving pedestrians and by s(z,t) that of steady
pedestrians, we have

p=g-+s.

Because the moving pedestrians move with velocity V', we can write the pedestrian
flux pu as

pu="Vg. (14)
Since by (11), pu = p(V — p(p)), we deduce that
p(p) p(p)
= 1 — == .
g=r==7), P

Not surprisingly, the offset velocity scaled by the particle velocity is nothing but the
proportion of steady particles and it is completely determined by the total density

p.
We deduce from (14) that system (12), (13) can be rewritten in the form:

Oc(g +s)+ 0, (Vg) =0, (15)
0:(Vg) + 0:(Vg) = V' (p)ag, (16)
Dividing (16) by V and subtracting to (15), we find:
Org + 02(Vg) = 7'(p)0ag,
Os = —'(p)0rg-



TWO-WAY MULTI-LANE TRAFFIC MODEL 359

Thus, the term 7/(p)d.g represents the algebraic transfer rate from immobile to
moving particles, while —7’(p)d,g represents the opposite transfer. Therefore, this
model assumes that the pedestrians decide to stop or become mobile again, based
not only on local observation of the surrounding density, but on the observation of
their gradients. More precisely, keeping in mind that 7’(p) and V have the same
sign, the transfer rate from the immobile to moving state is positive if the moving
particle density increases in the downstream direction, indicating a lower congestion.
Symmetrically, the transfer rate from the moving to immobile state increases if
the moving particle density decreases in the downstream direction, indicating an
increase of congestion. These evaluations of the variation of the moving particle
density derivative are weighted by increasing functions of the density, meaning that
the reactions of the pedestrians to their environment are faster if the density is
large.

We now turn to the introduction of the density constraint in the 1W-AR or
1W-CAR models.

2.3. Introduction of the maximal density constraint in the 1W-AR model.
The maximal density constraint (also referred to below as the congestion constraint)
is implemented in the expression of the velocity offset or pressure p. Two ways to
achieve this goal are proposed.

In the first one, p is a smooth function of the particle density which blows-up at
the approach of the maximal allowed density p*.

In the second one, congestion results in an incompressibility constraint which
produces non-local effects with infinite speed of propagation of information. In
congested regions, the pressure is no longer a function of the density but becomes
implicitly determined by the incompressibility constraint. The transition from un-
congested to congested regions is abrupt and appears as a kind of phase transition.
This second approach can be realized as an asymptotic limit of the first approach
where compression waves (or acoustic waves by analogy with gas dynamics) prop-
agate at larger and larger speeds (so-called low Mach-number limit).

Below, we successively discuss these two strategies. Then, we specifically consider
the introduction of the congestion constraint within the 1W-CAR model.

2.3.1. Congestion model with smooth transitions between uncongested and congested
regions. To implement the congestion constraint, we will highly rely on previous
work [6, 7, 13], where this constraint has been implemented in the 1IW-AR model.
We take a convex function p(p) such that p(0) = 0, p’(0) > 0 and p(p) — oo as
p — p*. More explicitly, we can choose for instance for the pressure:

p(p) =p°(p) = P(p) + Q°(p), (17)
P(p) =Mp™, m>1, (18)
Q°(p) = d 7> 1 (19)

11 \"
14 P*

P(p) is the background pressure of the pedestrians in the absence of congestion
(and is taken in the form of an isentropic gas dynamics equation of state). Q° is
a correction which turns on when the density is close to congestion (i.e. ¢ <« 1
is a small quantity), and modifies the background pressure to have it match the
congestion condition p(p) — oo as p — p*.
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FIGURE 2. Schematic representation of Q¢, P, and p* = P + @°,
as a function of p.

Indeed, as long as p — p, is not too small, the denominator in (19) is finite and
Q% (p) is of order . Thus the pressure p is dominated by the P term. However, a

crossover occurs when
1 1\”
S— =) ~e
PP

p —pr~ppel (20)
Thus in a density range near p* which scales as £'/7, the correction Q¢ (p) becomes
of order unity.

This is represented schematically on Figure 2. Note that the precise shape of
the term (% — p%)w is not important, as it does not contribute to the pressure law,
except in a narrow region close to congestion. The chosen expression ensures that
Q%(p =0) =0, and that it becomes significant in the vicinity of p* only. Note also
that Q¢ is an increasing function of p, in order to keep the problem hyperbolic.

The pressure singularity at p = p* ensures that the congestion density p* cannot
be exceeded. Indeed, let us consider a closed system (e.g. the system is posed on
an interval [a, b] with periodic boundary conditions) for simplicity. Let ug and wyg

be the initial conditions and suppose that they satisfy

i.e. when

OSUIIISuOSuM7 Oﬁwmﬁwoﬁva

for some constants wum, un, W, wnm. Then, [3] notices that, at any time, v and w
satisfy the same estimates:

0 <um <ulz,t) <uy, 0<wy <w(zt)<wy, Y(z,t)€[a,b xRy (21)

In other words, this estimate defines an invariant region of the system. It follows
from the fact that, u and w being the two Riemann invariants, they are transported
by the characteristic fields (see egs. (5), (4)) and therefore, satisfy the maximum
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principle. From (21), we deduce that w — u = p(p) < wym — um, and we also have
that p(p) > 0 at all times. Let p~! be the inverse function of p. Since p maps
[0, p*) increasingly to Ry, then p~! maps increasingly R, onto [0, p*), from which
the estimate p < p~!(wy —um) < p* follows. This indeed shows that the constraint
p < p* is satisfied at all times. From the estimate (21), we also see that u cannot
become negative, so that the estimate w > p(p) is also satisfied at all times.

With this e-dependent pressure, the 1W-AR model becomes a perturbation prob-
lem, written as follows:

Op® + 0(p°u) = 0, (22)
O (p*w®) + Ox (p*wuf) =0, (23)
wF = o + P (). (24)

The next section investigates the formal € — 0 limit.

2.3.2. Congestion model with abrupt transitions between uncongested and congested
regions. In the limit ¢ — 0, the uncongested motion remains unperturbed until
the density hits the exact value p*. Once this happens, congestion suddenly turns
on and modifies the dynamics abruptly. In the uncongested regions, the flow is
compressible ; it becomes incompressible at the congestion density p*. Therefore,
in the limit & — 0, the abrupt transition from uncongested motion (when p < p*) to
congested motion (when p = p*) corresponds to the crossing of a phase transition
between a compressible to an incompressible flow regime.

In the limit ¢ — 0, the arguments of [6, 7, 13] can be easily adapted. Suppose
that p° — p < p*. In this case, Q°(p°) — 0 and we recover an 1W-AR model
associated to the pressure P(p):

8ep° + 0, (p"u’) = 0, (25)
1 (p°w?) + 0, (p*w’u®) = 0, (26)
w’ = u® + P(p°). (27)

If on the other hand, p° — p*, then Q°(p°) — Q with 0 < Q < wy;. Therefore,
the total pressure is such that p®(p®) — p with P(p*) < p. In this case, the model
becomes incompressible:

d,ul =0, (28)
O’ + ud,uw’ = 0, (29)
w’ =’ +p, with P(p*) <p. (30)

Note that in this congested region, the density does not vary (it is equal to p*) and
cannot determine the pressure anymore. Indeed, the functional relation between the
density and the pressure is broken and p may be varying with x even though p does
not. The spatial variations of j compensate exactly (through (30)) the variations of
w?, in such a way that all the pedestrians, whatever their desired velocity is, move
at the same speed in the congestion region.

This can also be seen when taking the limit € — 0 in (5). Indeed, if p° — p* with
p°(p°)(= w® — ) staying finite, then p° — p* = O(/7) (see (20)) and dp®/dp ~
£71/7 — o0o0. Therefore, in the congested regime, the derivative of the pressure with
respect to the density becomes infinite. Inserting this in (5) shows that d,u® — 0.
This ensures that all the pedestrians move at the same speed. Simultaneously, this
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blocks any further increase of the density, which cannot become larger than p*.
Indeed, the mass conservation equation (1) tells us that

ips = 0p® +u0yp° = —p°0yu",
dt
and consequently, if 0,u® — 0, any further increase of the density is impeded.

In the general case, we expect that the two limit regimes coexist. The con-
gested region may appear anywhere in the flow, depending on the initial conditions.
Congestion regions must be connected to uncongested regions by interface condi-
tions. Across these interfaces, p and pw, which are conserved quantities obey the
Rankine-Hugoniot relations. The quantity w, which is thought of as the (locally av-
eraged) pedestrians’ desired velocity is modified across the interfaces through these
relations. However, the bounds (21) are preserved (see [3]).

Connecting congested and uncongested regions is a delicate problem which has
been investigated in [6] by a careful inspection of Riemann problem solutions.
Specifically, [6] treats the special case M = 0 in (17)-(19). The present choice
of the pressure (17)-(19) is slightly different: in the limit ¢ — 0, it produces a
non-zero pressure in the uncongested region, while [6] considers that uncongested
regions are pressureless in this limit. Pressureless gas dynamics develops some un-
pleasant features (such as the occurrence of vacuum, weak instabilities, and so on).
Keeping a non-zero pressure in the uncongested region in the limit ¢ — 0 allows to
bypass some of these problems and represents an improvement over [6]. Of course,
the precise choice of m and M must be fitted against experimental data.

We do not attempt to derive interface conditions between uncongested and con-
gested regions for the present choice of the pressure. Indeed, the perturbation
problem (22)-(24), even with a small value of € is easier to treat numerically than
the connection problem between the two models (25)-(27) and (28)-(30). Therefore,
we will not regard the limit model as a numerically effective one, but rather, as a
theoretical limit which provides some useful insight. Still, the numerical treatment
of the perturbation problem requires some care. Of particular importance is the
development of Asymptotic-Preserving schemes, i.e. of schemes that are able to
capture the correct asymptotic limit when ¢ — 0. This is not an easy problem
because of the blow up of the pressure near p*. Indeed, due to the blow up of the
characteristic speed in (5), the CFL stability condition of a classical explicit shock-
capturing method leads to a time-step constraint of the type At = 0(51/7) — 0 as
€ — 0. For this reason, classical explicit shock-capturing methods cannot be used to
explore the congestion constraint when € — 0 and Asymptotic-Preserving schemes
are needed.

Another reason for considering the perturbation problem (22)-(24) instead of
the limit model is that the congestion may appear gradually rather than like an
abrupt phase transition from compressible to incompressible motion. In particular,
for large pedestrian concentrations, some erratic motions occur (this is referred to
as crowd turbulence) and might be modeled by a suitable (may be different) choice
of the perturbation pressure Q°.

2.3.3. Introduction of the congestion constraint in the constant desired velocity 1 W-
CAR model.

(i) Congestion model with smooth transitions. The smooth pressure relations (17)-
(19) can be used for the IW-CAR model. Because p now satisfies a convection
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equation:

9p+ (V= (pp)'(p))0zp = O,
the initial bounds are preserved. Indeed, suppose that
0<pm<po<pm<p,
for some constants p,, pa, then, at any time, p satisfy the same estimates.
0< pm < p(z,t) < pm < p*, V(z,t) € [a,b] x Ry.

In this way, the constraint 0 < p < p* is always satisfied. However, the fact that the
bounds on the density are preserved by the dynamics can be viewed as unrealistic.
In real pedestrian traffic, strips of congested and uncongested traffic spontaneously
emerge from rather space homogeneous initial conditions. The generation of new
maximal and minimal bounds is an important feature of real traffic systems which
is not well taken into account in the 1IW-CAR model and more generally, in LWR
models.

(ii) Congestion model with abrupt transitions. If the limit ¢ — 0 is considered,
and if the upper bound py = py; depends on € and is such that py; — p*, then,
some congestion regions can occur. The limit model in the uncongested region does
not change, and is given by the single conservation relation (11) with the pressure
p(p°) = P(p°). In the congested region, we have p® = p*, which implies 9,u’ = 0.
In terms of the moving and steady pedestrian densities, the congested regime means
that

8zgo = 07 SO = p* - goa

i.e. both the steady and moving pedestrian densities are uniform in the congested
region.

3. Two-way one-lane traffic model.

3.1. An Aw-Rascle model for two-way one-lane pedestrian traffic. The
extension of the IW-AR model to 2-way traffic, denoted by 2W-AR model, may
seem rather easy, the 2-way traffic is written as a system of two 1-way models.
However, we will see that the mathematical properties of the 2-way models are
rather different from their one-way counterpart.

Definition 3.1. (2W-AR model) Let pi the density of pedestrians, uy their
velocity, w4 their desired velocity and p the pressure, with an index + for the right-
going pedestrians and — for the left-going ones. The 2W-AR model for 2-way traffic
is written:

Op+ + 0z(pruq) =0,

Op— + Ox(p-u-) =0,
O(prwy) + Ou(prwiuy) =
O(p—w_) + Oz(p_w_u_) =
wy = uy +p(p4, p-),

w_ = —u_ +p(p—,p+).

)

)
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The coupling of the two flows of pedestrians in the 2W-AR model is through the
prescription of the pressures which are functions of the densities of the two species
p+ and p_. Our conventions are that the desired velocities wy and the velocity
offsets p(p+, p) are magnitudes, and as such, are positive quantities. The actual
velocities uy are signed quantities: uy > 0 for right-going pedestrians and u_ < 0
for left-going pedestrians. These conventions explain the different signs in factor of
the velocities for (31) and (31). However, we do not exclude that, in particularly
congested conditions, the right-going pedestrians may have to go backwards (i.e. to
the left) or vice-versa, the left-going pedestrians have to go to the right. Therefore,
we do not make any a priori assumption on the sign of uy. For obvious symmetry
reasons, the same pressure function is used for the two particles, with reversed
arguments. The function p is increasing with respect to both arguments since the
velocity offset of one of the species increases when the density of either species
increases.

Some of the properties of the TW-AR system extend to the 2W-AR one. For
instance, the desired velocities are Lagrangian variables, as they satisfy:

atw+ + U+8x’LU+ = 0,
w_ +u_0d,w_ = 0.

Unfortunately, the velocities uy and u_ do not constitute Riemann invariants any
longer because of the coupling induced by the dependence of p upon p; and p_.
For this reason initial bounds on u; and u_ are not preserved by the flow, as
they were in the case of the 1W-AR model. Since the velocity offsets p(p4, p—)
and p(p_, p4) are not bounded a priori, the velocities u; and u_ can reverse sign
when the velocity offsets are large. This is expected to reflect the fact that a dense
crowd moving in one direction may force isolated pedestrians going the other way to
move backwards. Of course, such a situation is only expected in close to congestion
regimes.

Nonetheless, the evolution of the pedestrian fluxes reflects the same phenomenol-
ogy as in the one-way case, namely that pedestrians react to the Lagrangian deriva-
tive of the pressure, as shown by the following eqgs. (which are the 2-way equivalents

of eq. (7)):

O(pyuq) + Ou(pruquy) = —py (i) [p(p+, p-)],
+

o)+ 0ulp-uus) = p- (1) Wlomspil

where the material derivatives (d/dt)+ = 0;+u+0, depend on what type of particles
is concerned. These equations can also be put in the form (equivalent to (8) for the
1W-AR model):

O(pruy) + Ou(pruswy) = [p(fhmp—) + P+ 31p\(p+7p,)} Ou(pyus) +
+p+ 921, , ) Oulp—u-), (31)
O(p-u-) = du(p-u-w_) = — {p(p—7p+) + p- 61p\(p,,p+)} Ox(p—u-)
—p-92pl(,_,,) Oulprus), (32)
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where we denote by 01p and Oap the derivatives of the function p with respect to
its first and second arguments respectively. This form of the equations will be used
below for the derivation of the Constant Desired Velocity model.

The 2W-AR model is not always hyperbolic. Before stating the result, we intro-
duce some notations. We define:

Cry = 0p(p4,p-),  cy— = Dap(p+,p-), (33)

c—y = 0ap(p—, p+), c—— = hp(p—, p+). (34)
We assume that p is increasing with respect to both arguments, which implies
that all quantities defined by (33), (34) are non-negative. This assumption simply
means that the pedestrian speed is reduced if the densities of either categories of
pedestrians increase. For a given state (py,wy,p—,w_), the fluid velocities are
given by:

up =wi —plpg,p-),  u—=—w_+plp—,p4).
We also define the following velocities
Cup = Ut — P4Chyy Cu_ =U-t+p_C .

These are the characteristic speeds (6) of the IW-AR system. Specifically, ¢, is
the wave at which information about velocity would propagate in a system of right-
going pedestrians without coupling with the left-going ones. A similar explanation
holds symmetrically for ¢, _.

We now have the following theorem, the proof of which is elementary and left to
the reader.

Theorem 3.2. The 2W-AR system is hyperbolic about the state (p4, w4, p—,w_)
if and only if the following condition holds true:

A= (cy, —cy ) —4ppp_ci_c_ >0. (35)

The quantities ux are two characteristics velocities of the system. If condition (35)
is satisfied, the two other characteristic velocities are

1
Ai:§CM+QLi¢K. (36)

Non-hyperbolicity occurs when the two characteristic velocities ¢, and ¢,_ of the
uncoupled systems are close to each other. In this case, the first term of A is close
to zero and does not compensate for the second term, which is negative. These
conditions happen in particular when both velocities ¢,, and c,_ are close to zero,
which corresponds to the densities where the fluxes pyuy, p_u_ are maximal as
functions of the densities p4, p_ respectively. In particular, in the one-way case
with constant speed of figure 1, this would correspond to the point ppmax. These
conditions correspond to the onset of congestion. Therefore, instabilities linked
to the non-hyperbolic character of the model will develop in conditions close to
congestion.

The occurrence of regions of non-hyperbolicity is not entirely surprising. The
instability of two counter-propagating flows is a common phenomenon in fluid me-
chanics. In plasma physics, the instability of two counter-propagating streams of
charged particles is well known under the two-stream instability. The situation here
is extremely similar, in spite of the different nature of the interactions (which are
mediated by the long-range Coulomb force in the plasma case).
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The occurrence of a non-hyperbolic region is often viewed as detrimental, because
in this region, the model is unstable. On the other hand, self-organization phenom-
ena like lane formation or the onset of crowd turbulence cannot be described by an
everywhere stable model. For instance, morphogenesis is explained by the occur-
rence of the Turing instability in systems of diffusion equations. Here, diffusion is
not taken into account and the instability originates from a different phenomenon.
However, in practice, some small but non-zero diffusion always exists. This diffusion
damps the small scale structures but keeps the large scale structures growing. The
typical size of the observed structures can be linked to the threshold wave-number
below which instability occurs.

Numerical simulations to be presented in a forthcoming work will allow us to
determine whether the phenomena which are observed in dense crowds may be
explained by this type of instability. In section 5, a stability analysis of a diffusive
two-way LWR model will provide more quantitative support to these concepts.

3.2. The constant desired velocity Aw-Rascle model for two-way one-lane
pedestrian traffic. To construct the two-way constant desired velocity Aw-Rascle
model (2W-CAR) for two-way one-lane pedestrian traffic, we must set

wy =w_ =V, (37)
and
uy =V =plpt,p-), u-==V+plp-,pi). (38)
This leads to the following model:
Definition 3.3. (2W-CAR model) Let p; and p_ the densities of pedestrians

moving to the right and to the left respectively, V' the (constant) desired velocity
of pedestrians and p the pressure term. The 2W-CAR model is written:

Op+ + 0x(p+(V = p(p+,p-))) =0, (39)
p— — 0z (p—(V = plp-, p+))) = 0. (40)

These are two first-order models coupled by a velocity offset which depends on
the two densities.

We can find the same interpretation of this model in terms of moving and steady
particles as in the one-way model case. Using (31), (32) and (37), we can write:

Op+ + 0z(pruqg) =0, (41)
Op— + O(p-u-) =0, (42)

psus) + 0ulprusV) = [plpr.p-) + oy 011l )| Dalpsus) +

o4 021l , ) Ox(p—u—), (43)
O(p-u-) = Ou(p-u-V) = — [p(p—, p+) +p- 81p|(p,,p+)] 9z (p-u-)

—p— O2pl(,_ ) Ox(pguy). (44)

Conversely, if py, us, p—, u_ are solutions of this model, using the same method
as in the one-way case, we easily find that:

d(p£(p £usr —V)) =0.

Therefore, if (38) is satisfied initially, it is satisfied at all times and we recover (39),
(40).
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Now, we denote by g4 (x,t) the density of the moving particles and by s4(z,t)
that of the steady particles with a + (respectively a —) indicating the right-going
(respectively left-going) pedestrians. Although steady, the pedestrians have a de-
sired motion either to the right or to the left, and we need to keep track of these
intended directions of motions. We have

p+ =g+ +s+ and prup==£Vgy.
We deduce that
s+ plp+,p-) s— _ plp—,p+)

P+ |2 |4
Therefore, the offset velocities p(p4+, p—) and p(p—, p+) scaled by the particle velocity

V represent the proportions of the steady particles s™/p, and s~ /p_ respectively.
Now, we can rewrite (41)-(44) as follows:

0i(g4 +54) +0:(Vgy) =0,
Oi(g-+5-)—0.(Vg_) =0,
(Vgs) +0:(V29:) = [plosp-) + oy 011l ] e(Vas)
—p+ 02pl,, ) 02(Vg-),
K(Vg-) = 0.(V2g-) = = [plpps) + o 0ply )| (V) +
+p- 0pl(, ) 0=(Vgs).

By simple linear combinations, this system is equivalent to

Org+ +0:(Vgy) = [p(p+7 p-)+p+ 01p|<p+,p,)} 0+

—p+ O2pl(,, , ) O29-,
Og- —0x(Vg-) = — [p(pf, p+) +p— 81p|(p_,p+)} 0z9- +

+o- 02pl(,_ ) Oagts
Ops4 = — [p(m?pf) + p+ alp\(p+,p_)} Oug4 + p+ 2|, , ) Oug—,

05— = [plo_p) +P-00l(o_p)] O2g— = p-02pl(p_ 1) 029+
Like in the one-way model, we find that the transition rates from the steady
to moving states or vice-versa depend on the derivatives of the concentrations of
moving pedestrians. Now, both the left and right going pedestrian total densities
appear in the expressions of the transitions rates for either species. This is due to
the coupling through the pressure term, which depends on both densities.

Like the 2W-AR model, the 2W-CAR model is not always hyperbolic. Using the
same notations as in the previous section, we have the:

Theorem 3.4. The 2W-CAR system is hyperbolic about the state (py,p—) if and
only if condition (35) is satisfied. In this case, the two characteristic velocities are
given by (56).

This can be seen directly from equations (39) and (40), once they are put under the

form
at ( P+ ) + ( Cuy —P4C— )ax ( P+ > —0.
p— p—C—4 Cu_ p—

We refer to the end of section 3.1 for more comments about this property.
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3.3. Introduction of the congestion constraint in the 2W-AR model.

3.3.1. Congestion model with smooth transitions. It is difficult to make a prescrip-
tion for the function p. Its expression should be fitted to experimental data. Here
we propose a form which allows us to investigate the effects of congestion. We
propose:

p(p+,p-) =0 (p4.p-) = P(p) + Q(p+,p-), with p=py+p_ (45
P(p) =Mp™, m=>1, (46)

Q (pyop-) = = y>1 (47)
ato) (3= %)

The rationale for this formula is as follows. First, in uncongested regime, we
expect that the velocity offsets of the right and left going pedestrians are the same,
this common offset being a function of the total particle density. Thus, the uncon-
gested flow pressure P given by (46) is a function of p only, and has the same shape
as in the one-way case. Congestion occurs when the total density p becomes close
to p*. Therefore, formula (47) resembles (19), except for the prefactor ¢(p4). With
this choice of the pressure, we anticipate that the constraint

p=py+p-<p

will be satisfied everywhere in space and time, like in the one-way case.

The prefactor g(p) takes into account the fact that the velocity offset for the
majority particle is smaller than that of the minority particle. Therefore, we pre-
scribe ¢ to be an increasing function of p. For further usage, we note the following
formula, which follows from eliminating ((1/p) — (1/p*))" between Q°(p,p—) and

Q°(p—,py):
a(p+) Q% (p+.p-) = alp-) Q% (p—, p)- (48)
It is more convenient to express this formula as

Q(p+,r-) _ qlp-)

Q(p-,p+)  qlp+)

)

remembering that ¢ is an increasing function. This formula states that the velocity
offset for the right and left-going particles are inversely proportional to the ratios
of a (function of) the densities. Since ¢ is increasing and taking p_ < py as
an example, we deduce that the velocity offset of the right-going particles will be
less than that of the left-going particles. In other words, the flow of the majority
category of pedestrians is less impeded than that of the minority one. In order
to keep Q°(p+, px) small whenever p < p*, we require that ¢(p+) = O(1) when
p+ < p* . Physically relevant expressions of g(p+) can be obtained from real
experiments. A possible extension, that we will not consider here, would be to have
different functions g (p+) and g—(p—). This could model the fact that for example,
a crowd heading towards a train platform could be more pushy than the one going
in the opposite direction.
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The 2W-AR model with e-dependent pressure becomes a perturbation problem:
Oupf, + Oupiu) =0,
Op + 0x(p=uf) =0,
0w + 0u(p wius) = 0,
Or(pZws ) + 0z (p=wus ) =0,
wi = ug +p°(p%,p2),

S

we = —u +p°(pZ, p).

3.3.2. Congestion model with abrupt transitions. This case corresponds to the for-
mal limit ¢ — 0 of the previous model. Suppose that p° — p < p*. In this case,
Q(p%, p%) — 0 and we recover a 2W-AR model associated to the pressure P(p):

615[03- + 833([)3_1,63_) =0,
8tp0 +8 ( 0 0)_07
i (p +w+)+8 (P+ wiul) =0
B (P2 w?) + 9, (pLwu?) =0,
wy = ul +P( %), ui>
(1 = —U + P( )7 u
If on the other hand, p° — p*, then Q°(p%,p%) — Q4 and Q°(p°,p5) — Q_.
Furthermore, following (48), Q4 and @Q_ are related by:
a(p}) Q+ = a(p2) Q- (49)
Therefore, the total pressure is such that p*(p5.,p%) — p4 and p°(p=, p3) — P-

with P(p*) < p+ and p; and p_ related through (49) (with Q4 replaced by py —
P(p")).

We stress the fact that Q4 and consequently . are not local function of p, p%
(only the ratio Q1 /Q— = q(p°)/q(p%) is a local function of pY, p°). Indeed the
value of Q4 of two different solutions of the model may be different, even if the local
values of (p9, p°) are the same. Therefore, there is no local function of (p%., p%)

which can match the value of Q.
Then, in this case, the model becomes:
Oup. + 0u(p}ul) =0,
oup° + 0 (p°u) =0,
Oe(plw}) + Ou(pfwlug) =0,
By (P2 w?) + 0z (p2w?u?) =0,
w) =uf +py with P(p*) < py,
O =—u’ +p_ with P(p*)<p
pg + o2 =, (50)
a) (s — P(*)) = a(®) (5 — P(")). (51)
Relations (50) and (51) furnish the two supplementary relations which allow us to

compute the two additional quantities p; and p_. The last relation (51) specifies
how, at congestion, the left and right going pedestrians share the available space.

0
0 <o.
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We see that this sharing relation depends upon the choice of the function ¢q. Obvi-
ously, ¢ is an input of the model which must be determined from the experimental
measurements. If some flow asymmetry must be taken into account (like if one
crowd is more pushy than the other one), different functions ¢4 (p+) and ¢_(p-)
can be used.

This model is a system of first-order differential equations in which the fluxes are
implicitly determined by the constraint (50). As a consequence of this constraint,
the total particle flux pﬂ)ruo+ + p2u® is constant within the congestion region. We
note the difference between this constrained model and the constrained 1W-AR
model (see section 2.3.2). In the IW-AR model, there was a single unknown con-
gestion pressure p and a single density constraint p = p*. In the 2W-AR model,
there are two congestion pressures py and p_, which play a similar role in the dy-
namics of their associated category of pedestrians. However, there is still a single
density constraint, acting on the total density p;+ + p— = p*. The additional condi-
tion which allows for the computation of the two congestion pressures is provided
by the ‘space-sharing’ constraint (51). The two constraints express very different
physical requirements and must be combined in order to find the two congestion
pressures which, themselves, have a symmetric role.

3.3.3. Introduction of the congestion constraint in the 2W-CAR model.

(i) Congestion model with smooth transitions. The smooth pressure relations (45)-
(47) can be used for the 2W-CAR model. With this pressure relation, we anticipate
that the bound p < p* is enforced.

(ii) Congestion model with abrupt transitions. If the limit & — 0 is considered, then,
the limit model in the uncongested region remains of the same form, i.e. is given
by (39), (40) with the pressure given by p(p%., p°) = P(p% + p2). In the congested
region, using the same arguments as in section 3.3.2, we find that (p9, p? ) satisfies:

O} +0:(pL(V —py)) =0,

Oup® — 0, (p°(V —p-)) =0,

Pt +p% =p", (52)

a(p}) 0+ = P(p") = a(p?) (h- — P(p"))- (53)
Again, this model gives rise to a system of first order differential equations in which
the fluxes are implicitly determined by the constraints (52), (53). As a consequence
of this constraint, the total particle flux pgug + p2u® (where vl =V — pg) is
constant within the congestion region.

4. Two-way multi-lane traffic model.

4.1. A Two-way multi-lane Aw-Rascle model of pedestrians. We now con-
sider a multi-lane model to describe the structure of the flow in the cross sectional
direction to the corridor. The models presented so far considered averaged quanti-
ties in the cross section of the corridor. However, it is a well observed phenomenon
that two-way pedestrian flow presents interesting spontaneous lane structures (see
e.g. [9]), with a preferential side depending on sociological behavior: pedestrians
show a preference to the right side in western countries, while the preference is to
the left in Japan for instance. In order to allow for a description of the cross-section
of the flow, we discretize space in this cross-sectional direction and suppose that
pedestrians walk along discrete lanes, like cars on a freeway, with lane changing
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probabilities depending on the state of the downwind flow. In this way, we design
a model which may, if the parameters are suitable chosen, exhibit the spontaneous
emergence of a structuration of the flow into lanes. We stress however, that the lanes
in our model must be viewed as a mere spatial discretization and that spontaneously
emerging pedestrian lanes may actually consist of several contiguous discrete lanes
of our model.

Let k € Z be the lane index. So far, we consider an infinite number of lanes. Of
course, there is a maximal number of K lanes and k € {1,..., K'}. Extra-conditions
due to the finiteness of the number of lanes are discarded here for simplicity. For
each of the lane, we write a 2W-AR model in the form described in section 3,
supplemented by lane-changing source terms.

Definition 4.1. (ML-AR model) For any index k € Z, let pj 1 the density of
pedestrians in the k-th lane, uj 4 their velocity, wy 4+ their desired velocity and
P a pressure term, with an index + for the right-going pedestrians and — for the
left-going ones. The ML-AR model is given by:

0Pk, + + O Pkt Uk, +) = Sk, (
Oupr,— + Ou(pre,— ug,—) = Sk,—, (
O (pr,+ wi,+) + O (Pk,+ Wiyt Uk,+) = R4 (56
O (pr,— Wi~ ) + Ou(pr,— Wk, — ug,—) = Ry —, (
Wk, = Uk, + + Pk(Pk,+5 Ph,— ), (
Wh,— = —Up,— + Pk(Pk,—+ P+ )- (59

where S;, + and Ry 4+ are source terms coming from the lane-changing transition
rates.

We allow for different pressure relations in the different lanes, to take into account
for instance that the behavior of the pedestrians may be more aggressive in the fast
lanes than in the slow ones, or to take into account that circulation along the walls
may be different than in the middle of the corridor. This point must be assessed by
comparisons with the experiments. We specify the pressure relation in each lane in
the form of (45), (47) with parameter values depending on k.

We denote by

Pk = Pkt + Pr,—>

the total density on the k-th lane. We assume that the congestion density p* is the
same for all lanes (this assumption can obviously be relaxed).

4.2. Interaction terms in the multi-lane model. We assume that pedestrians
prefer to change lane than to reduce their speed, i.e. they change lane if they feel
that the offset velocity of their lane (i.e. py(pk,+,pk,—) in the case of right-going
pedestrians on lane k) increases. If facing such an increase, right-going pedestri-
ans change from lane k to lanes k& = 1 (not changing their direction of motion)
with rates /\2' L paq- Similarly, these rates are A\,_,,,, for left-going pedestrians.
These rates increase with the value of (d/dt)k +(pr(pr,+,pk,—)) for Af,, ., and
with (d/dt)k,— (pr(pk,—, pr,+)) for A, ., to indicate that the lane changing proba-
bility is increased when an increase of the downstream density is detected. We have
denoted by (d/dt)y 4+ the material derivatives for particles moving on the k-th lane
in the positive or negative direction: (d/dt)k 1+ = 0, + ug,+0,. Strongly congested
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lanes do not attract new pedestrians. Therefore, )\: k41 18 also a decreasing func-
tions of py+1 which vanishes at congestion, when pr41 = p*. Similarly, A, ., is
decreasing with ppy; and vanishes at congestion pry1 = p* and )\f _,_, decreases
with pr_1 and vanishes at congestion px_1 = p*.

Given these assumptions on the transition rates, the lane-changing source terms
for the density equations are written:

Sk,a - A?—‘,—l—)k Pk+1,a + Ag—l—ﬂc Pk—1,a — (Ag—ﬂg+1 + Ag—m—l)pk,m a ==+ (60)
It is easy to see that this formulation gives:
Z Ska=0, a==%
kEZ

which implies the balance equation of the total number of particles moving in a
given direction:

atpa + O0zja =0, Po = Zpk,aa Ja = Zpk,auk,aa a=+.
kEZ keZ
Concerning the rates Ry 4+, we consider that wy 4+ being a Lagrangian quantity,
the quantities py +wy, 4+ vary according to the same rates as the densities themselves.
Hence, we let:
Rio = ANip10k Phtla Whtla + Af_15k Ph—1,0 Wk—1,a
_(leﬁlﬂ»l + Mesk—1)PkaWhka, a==.  (61)
The material derivatives of wy, + satisfy:

dwy, 1
(d+) = 0w 4 + Uk 4 Opwi = —— (Rg,+ — wi 4 Sk 1) =
t Pk,+

Pk+1,4 Pk—1,4
= /\nglHk: Dot (wk+1,+_wk,+) + AZAHIC (wk—1,+—wk,+),
dwy, — 1
( dt/ ) = 8twk7_ + U, — 8wwk,_ = 7(Rk)_ — Wk, — Sk7_) =
k,— Pk,—
_ Pk+1,— _ Pk—1,—
= Ney1ok o (Wh1,- —wk, ) + A1 T(wk—l,——wk,—)-

i )

The right-hand sides of these equations are not zero because the arrival of pedes-
trians from different lanes with a different preferred velocity modifies the average
preferred velocity.

4.3. The ‘constant desired velocity version’ of the two-way multi-lane
Aw-Rascle model of pedestrians. To construct the constant desired velocity
Aw-Rascle model for two-way multi-lane pedestrian traffic (ML-CAR model), we
must set

Wy, = Wk, =V, (62)
and

ug,+ =V = p(pk,+, Pk~ )y Uk,— = =V +D(pk,—s P, +)- (63)
We can check in this case that Sy + and Ry + have been defined in a coherent way
by (60) and (61), i.e. that they are such that equations (54-55) and (56-57) become
equivalent. The corresponding model is written:
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Definition 4.2. (ML-CAR model) Let pj 1 the density of pedestrians in the
k-th lane, V' the constant desired velocity of pedestrian and pj the pressure term.
The ML-CAR model is given by:

Orpr,+ + Ox (pk,+(V — (P, + Pk,ﬁ)) = Sk.+,

Otpr,— — Ox (Pk,—(V — PPk, pk,+))> = Sk,—»

where S, 1 is given by (60).

The features of this model are those of the two-way, one-lane CAR model of
section 3.2, combined with the features of the source terms Sj 1+ as outlined in
section 4.2.

4.4. Introduction of the congestion constraint in the multi-lane ML-AR
model.

4.4.1. Congestion model with smooth transitions. The prescription for the pressure
functions p; are the same as in section 3.3.1, except for a possible k-dependence of
the constants, namely:

POk, 45 Pk, —) = Pe(Pk, 45 Pk,—) = Prlpr) + Qi (or,+, pr,— ),
Pr(pr) = Mypp'™, mp > 1,
g

Yk 7
ar (pr.+) (,%k - ,%)

Q5P+ Pr,—) = Y > 1.

With this pressure law, the ML-AR model becomes a perturbation problem. This
is indicated by equipping all unknowns with an exponent €. This pressure relation
can be used in the constant desired velocity model of section 4.3 where all particles
move with the same speed V.

4.4.2. Congestion model with abrupt transitions. This case corresponds to the for-
mal limit € — 0 of the previous model. Suppose that p;, — pr < p*. In this
case, Qf, (p27+, piﬁ) — 0 and we recover a ML-AR model associated to the pressure

Pr.(pr):

8tp2’+ + ax(Pg,Jr U2,+) = 52,+>

3tpg,— + am(ﬁg,— u%_) = Slg,—,

O(Ph+ wi 1) + Ou(pRpwh puf 4) = R 4,
O(pp_wy )+ 0u(pp _wi _up ) =Ry _,
wi 4 = up 4+ + Pu(oh),

=l PuleD)
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If on the other hand, p; — p*, the model becomes:

8tpg,+ + 8m(p2,+ u2,+) = Slg,+a
ook~ + Ou(pf —up ) =S¢,
O (Pg7+ wlg,Jr) + 8w<P27+ w27+ u2,+) = Rg 4
De(pi,— wp ) + Ou(p _wh _up ) = Ry _,

w2,+ = u2,+ +pp+  with  P(p*) < pg+,
wp_ = —up _+pr— with P(p*) < pp,
P+ oh_=p"

ak (PR ) P+ — Pe(p™)) = ar(p}._) (Dk— — Pe(p®)).

The source terms are unchanged compared to the € > 0 case, and the interpretation
of the model is the same as in section 3.3.2. Performing the limit ¢ — 0 in the
constant desired velocity model of section 4.3 follows a similar procedure and is left
to the reader.

5. Study of the diffusive two-way, one-lane CAR models. In this section,
we restrict ourselves to the 2W-CAR model presented in section 3.2 (i.e. without
the introduction of the maximal density constraint), and we investigate the stability
of a diffusive perturbation of this model. The goal of this section is to show that
the addition of a small diffusivity stabilizes the large wave-numbers in the region
of state space where hyperbolicity is lacking. The threshold value of the wave-
number below which the instability grows can be related to the size of macroscopic
structures observed in real crowd flows.

5.1. Theoretical analysis. We consider the following model which is a slight gen-
eralization of the 2W-CAR model:

Oupy + 0uf(py,p-) =0 02py, (64)
op— — O f(p—sp+) = 58:3/0— (65)

Typically, for the 2W-CAR model, f(p+,p-) = p+(V — p(p4, p—)) but we do not
restrict ourselves to this simple flux prescription. The assumptions on f are that
for fixed p_, the function p; — f(py,p—) has the bell-shaped curve of figure 1,
which is characteristic of the LWR flux. For fixed p4, the function p_ — f(py, p—)
is just assumed decreasing, meaning that the flux of right-going pedestrians is fur-
ther reduced as the density of left-going pedestrians increases. By symmetry, the
diffusivities ¢ are assumed to be the same for the two species of particles. Of course,
the diffusivities may depend on the densities themselves, in which case they may be
different. But we will discard this possibility here. We denote by

Gt = 01f(p4,0-), 4 = 02f(p4,p-),
et =02f(p—,p4), oo =01f(p—,p4)
These quantities are related to those defined in section 3.1 for the 2W-AR model
by
Cip =Cupy Cpo = —PyCy, C_=—Cy, Cy=—pP_C_y. (66)
With the assumptions on f, we have that ¢;_ <0, é_y <0, while ¢4 (resp. ¢__)
decreases from positive to negative values when p; (resp. p_) increases.
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Any state such that (p4,p—) is independent of x is a stationary solution. We
study the linearized stability of the system about these uniform steady states. De-
noting by (r4,7_) its unknowns, the linear system is written:

8t7“+ + é++8a;7“+ + é+,8w7"7 = 6857”4,, (67)
O+ G40y + ¢ _Opr_ =607 (68)

We look for solutions which are pure Fourier modes of the form ry = 71 exp i(§x—st)
where 74 is the amplitude of the mode, £ and s are its wave number and frequency.
Inserting the Fourier Ansatz into (67), (68) leads to a homogeneous linear system
for (74,7_). This system has non-trivial solutions if and only if the determinant of
the linear system cancels. This results in a relation between s and £ (the dispersion
relation). In this analysis, we restrict to & € R and are looking for the time stability
of the model. We denote by A = s/£ the phase velocity of the mode.

A given mode remains bounded in time, and therefore stable, if and only if the
imaginary part of s is non-positive. In the converse situation, the mode is unstable.
The system is said linearly stable about the uniform state (p4, p—) if and only if all
the modes are stable for all £ € R. In the converse situation, the system is unstable,
and it is then interesting to look at the range of wave numbers ¢ € R which generate
unstable modes. The following result follows easily from simple calculations:

Proposition 1. (i) Suppose (p+,p—) are such that the following condition:
A= Gy +é ) —4é, ¢ >0, (69)

is satisfied, then the uniform steady state with uniform densities (p4, p—) is linearly
stable about (p4,p—). For any given & € R, there exist two modes whose phase
velocities A (§) are given by
1
(€)= 5 [5++ —é__ —2ise £ VA]. (70)
(i) Suppose that (p4,p—) are such that (69) is not true. Then, the uniform steady
state with uniform densities (p4, p—) is linearly unstable about (p4,p—). Moreover,

we have
VIA|

€] < 0 = 3 a mode such that Im s >0 (unstable mode). (71)
The phase velocity is given by
17, - . .
A6 = 5 [CH e 2066+ |A@ . (72)

We note that if (66) is inserted in (69), we recover (35). Therefore, the addition
of diffusion does not change the criterion for stability or instability. However, in
the unstable case, all modes are unstable for the diffusion-free model (this would
correspond to § = 0 in (71)). The addition of a non-zero diffusivity stabilizes
the modes corresponding to the small scales (large £). However, the large scale
modes (small £) remain unstable. We also note that, in the stable case, letting the
diffusivity go to zero allows us to recover the characteristic speed of the diffusion-free
model (36).

For unstable modes, (72) provides the typical growth rate v,: it is equal to the
positive imaginary part of |£|Ay , and given by

VIA|

Vg = T|€| — 8¢2.
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It is maximal for

6= Y.
44
Therefore, the typical length scale Ly of the unstable structures is given by the
inverse of this wave-number:

49

Z7

because the other modes, having smaller growth rate, will eventually disappear
compared to the amplitude of the dominant one. These length scale Ly and time
scale 1/v, may be related to observations and provide a way to assess the model
and calibrate it against empirical data.

L, =

5.2. Numerical simulations. In this part, we want to investigate numerically the
system (64),(65) and in particular we are interested in the profile of the solutions
whether the system is in a hyperbolic region or not.

With this aim, we first fix a flux function f(py,p—) defined as:

P+t p-
where ¢ is a flux depending on the total density p = p4+ + p—. We choose for g a
simple function increasing on [0, a] and decreasing on [a, 1]:

flp+.p-) = p+

x—x— for0<z<a
la—a)?
g(z) = a ala—w ‘ cr<1
2 2(1—ap O OTTS
0 otherwise

Note that here, in order to keep the simulations simple, we choose a much smoother
expression for f than the one that was proposed in section 3.3 to enforce the density
constraint. As a result, the density here can become larger than p* = 1.

The flux function f(p, p_)

- non—Hyperbolic region —

0 02 0.4 06 08 1
Py

FIGURE 3. Left figure: the flux function f(p4, p—) (73) used in our
simulations. Right figure: the region of non-hyperbolicity (69) of
the model, e.g. A < 0 in this region.

In the following, we take the maximum of g to be at .7, e.g. @ =.7. The function
f is a decreasing function of p_ since g satisfies ¢’(x) < 1 and f is zero when the
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total mass is greater than 1, e.g. f(py,p—) =01if py + p— > 1. We plot the graph
of the function f in figure 3 (left). Then, we numerically compute A to determine
the region where the system is non-hyperbolic (see figure 3, right).

To solve numerically the system (64),(65), we use a central scheme [26]. With
this aim, we consider a uniform grid in space {z;}; (Az = ;41 — ;) on a fixed
interval [0, L] along with a fixed time step At. We denote by U]* the approximation
of (p4,p—) on the cell [x;_1/2,7i41/2] (With z;41/0 = 2; + Az/2) at the time nAt.
The numerical scheme consists of the following algorithm:
n+l _ pn n __oyn n
CHa + ﬁ (Fiv1j2— Fic1j2) =6 Uiny 200 + S8

At Az?
Here, Fj; /5 denotes the numerical flux at x;; /5 defined as:
P _ F(U¢L+1/2) + F(Uﬁ-l/2) o Uﬁ-l/Q - Uiﬁ-l/Q
i+1/2 9 i+1/2 9 )

where F is the flux of the system F(p4,p_) = (f(p+,p—), —f(p—, ps))T, the vectors
Uzﬁ-l/2 and Uﬁ-l/z are respectively the left and right value of (py,p_) at x;11/0
computed using a MUSCL scheme [27] and a;41 /2 is the maximum eigenvalues (36)

of the system at z; and x;1:
+) 1\t
aiy1/2 = max(|A;7], A5 ])-

As initial condition, we use a uniform stationary state (p4, p—) perturbed by sto-
chastic noise:

p+(0,z) = py +oep(z) , p-(0,2) =p_ +oe_(z),

with 4 (z) and e_(z) two independent white noises and o the standard deviation of
the noise. We use periodic boundary condition for our simulations. The parameters
of our simulations are the following: space mesh Az = 1, time step At = .2 (CFL=
.406), diffusion coefficient § = .4 and standard deviation of the noise o = 1072. We
use periodic boundary conditions.

To illustrate our numerical scheme, we use three different initial conditions. First,
we pick two values for (p4, p—) in the hyperbolic region:

P+ = .35 y p— = 3.

The initial datum is plotted on figure 4 (left). As we can see on figure 4 (right), the
solution stabilizes around the stationary state (.35,.3).
For our second simulation, we take (p4, p—) in a non-hyperbolic region:

p+=.5 , p_=.3.

The solution does no longer stabilize around the stationary state (.5,.3). On figure
5 (left), we observe the apparition of clusters of high density. Each cluster for py
faces a cluster for p_. Moreover, in each cluster, the total mass p; +p_ is greater or
equal to 1. Therefore the flux in this region is zero. However, due to the diffusion,
the solution is not in a stationary state. There is exchange of mass between the
clusters. If we run the solution for a long time, only one cluster remains (see figure 5
(right)). In this cluster, we observe that the profile of p is concave-down whereas
the profile of p_ is concave-up. Consequently, the diffusivity makes p; moving
backward and p_ moving forward. As a result, all the clusters are moving to the
left. However, the concavity of the solution is puzzling. Numerically, it appears that
the concavity of p; and p_ depends on the total mass: the density with higher mass
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is concave-down and the density with lower mass is concave-up. But this property
has to be understood analytically.

For the third simulation, we take an initial datum (p4,p—_) close to the non-
hyperbolic region:

p+ =4 , p_=.3
Indeed, we can see on figure 3 (right) that the point (0.4,0.3) almost lies at the
border of the non-hyperbolic region. The oscillations amplify and clusters of high
densities emerge (figure 6, left). However, if we increase the diffusion coefficient,
taking § = 2 instead of = .4, then the solution stabilizes around the stationary
state (.4,.3) as we observe on figure 6, right. Therefore, a large enough diffusion
prevents cluster formation.

The simulations are provided for ilfustration purpose only, and explore what
kind of structures the lack of hyperbolicity of the model leads to. The experimental
evidence of the appearance of clusters is difficult to provide since they must occur
(if they occur) at very high densities. Experiments in such high density conditions
are not possible for obvious safety reasons. The observation of real crowds shows
that pedestrians can still move even at very high densities thanks to the sponta-
neous organization of the flow into lanes. The simple one-dimensional model that
is simulated here cannot account for this feature. However, we conjecture that clus-
ter formation can be impeded in the multi-lane model through the introduction of
adequate lane-changing probabilities.

6. Conclusion. In this work, we have presented extensions of the Aw-Rascle macro-
scopic model of traffic flow to two-way multi-lane pedestrian traffic, with a partic-
ular emphasis on the study of the hyperbolicity of the model and the treatment of
congestions.

A first important contribution of the present work is that two-way models may
lose their hyperbolicity in certain conditions and that this may be linked to the
generation of large scale structures in crowd flows. Adding diffusion helps stabi-
lize the small scale structures and favors the development of large scale structures
which may be related to observations. We have shown numerical simulations which
support this interpretation.

A second contribution of this work is to provide a methodology to handle the con-
gestion constraint in pedestrian traffic models. Congestion effects reflect the fact
that the density cannot exceed a limit density corresponding to contact between
pedestrians. We have proposed to treat them by a modification of the pressure
relation which reduces the pedestrian velocities when the density reaches this maxi-
mal density. If this modification occurs on a very small range of densities, then, the
model exhibits abrupt transitions between compressible flow (in the uncongested
region) and incompressible flow (in the congested region).

Mathematically rigorous proofs that these models respect the upper-bound on
the total density are left to future works. Their numerical resolution will require
the development specific techniques such as Asymptotic-Preserving methodologies
in order to treat the occurrence of congestions. Data learning techniques will then
be applied to fit the parameters of the model to experimental data. Other pos-
sible extensions of this work are the development of more complex models such
as two-dimensional models, kinetic models allowing for a statistical distribution of
velocities or crowd turbulence models with weak compressibility near congestion.
Finally, the derivation of approximate equations describing the geometric evolution
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FIGURE 4. The initial condition (left figure) and the solution at
t = 500 unit times. The solution stabilizes around the stationary

state (.35,.3).
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FIGURE 5. Starting from the initial state (.5,.3), the initial oscil-
lations amplify to create clusters (left figure). After a longer time
(t = 10* unit times), only one cluster remains (right figure).
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FIGURE 6. Starting from the initial state (.4,.3), clusters appears
once again (left figure). However, if we increase the diffusion coef-
ficient (6 = 2 instead of § = .4), the solution is stabilizing (right

figure).
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of the transition interface between the uncongested and congested regions would
help understanding the dynamics of these interfaces.
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