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Abstract. We analyze stability of consensus algorithms in networks of multi-
agents with time-varying topologies and delays. The topology and delays are
modeled as induced by an adapted process and are rather general, including
i.i.d. topology processes, asynchronous consensus algorithms, and Markovian
jumping switching. In case the self-links are instantaneous, we prove that the
network reaches consensus for all bounded delays if the graph corresponding
to the conditional expectation of the coupling matrix sum across a finite time
interval has a spanning tree almost surely. Moreover, when self-links are also
delayed and when the delays satisfy certain integer patterns, we observe and
prove that the algorithm may not reach consensus but instead synchronize at
a periodic trajectory, whose period depends on the delay pattern. We also give
a brief discussion on the dynamics in the absence of self-links.

1. Introduction. Consensus problems have been recognized as important in dis-
tribution coordination of dynamic agent systems, which is widely applied in dis-
tributed computing [21], management science [5], flocking/swarming theory [32],
distributed control [10], and sensor networks [26]. In these applications, the multi-
agent systems need to agree on a common value for a certain quantity of interest
that depends on the states of the interests of all agents or is a preassigned value.
The interaction rule for each agent specifying the information communication be-
tween itself and its neighborhood is called the consensus protocol/algorithm. A
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related concept of consensus, namely synchronization, is considered as “coherence
of different processes”, and is a widely existing phenomenon in physics and biology.
Synchronization of interacting systems has been one of the focal points in many
research and application fields [33, 16, 29]. For more details on consensus and the
relation between consensus and synchronization, the reader is referred to the survey
paper [27] and the references therein.

A basic idea to solve the consensus problem is updating the current state of each
agent by averaging the previous states of its neighborhood and its own. The ques-
tion then is whether or under which circumstances the multi-agent system can reach
consensus by the proposed algorithm. In the past decade, the stability analysis of
consensus algorithms has attracted much attention in control theory and mathemat-
ics [27]. The core purpose of stability analysis is not only to obtain the algebraic
conditions for consensus, but also to get the consensus properties of the topology
of the network. The basic discrete-time consensus algorithm can be formulated as
follows:

xt+1
i = xt

i + ε
∑

j∈Ni

(xt
j − xt

i), i = 1, . . . ,m, (1)

where xt
i ∈ R denotes the state variable of the agent i, t is the discrete-time, Ni

denotes the neighborhood of the agent i, and ε is the coupling strength. Define
L = [lij ]

m
i,j=1 as the Laplacian of the graph of the network in the manner that

lij = 1 if i 6= j and a link from j to i exists, lij = 0 if that i 6= j and no link from j
to i exists, and lii = −

∑

j 6=i lij . With G = I − εL, (1) can be rewritten as

xt+1 = Gxt, (2)

where xt = [xt
1, . . . , x

t
m]>. If the diagonal elements in G are nonnegative, i.e.,

0 ≤ ε ≤ 1/maxi lii, then G is a stochastic matrix. Eq. (2) is a general model of the
synchronous consensus algorithm on a network with fixed topology. The network
can be a directed graph, for example, the leader-follower structure [22], and may
have weights.

In many real-world applications, the connection structure may change in time,
for instance when the agents are moving in physical space. One must then consider
time-varying topologies under link failure or creation. The asynchronous consen-
sus algorithm also indicates that the updating rule varies in time [9]. Thus, the
consensus algorithm becomes

xt+1 = G(t)xt, (3)

where the time-varying coupling matrix G(t) expresses to the time-varying topology.
We associate G(t) with a directed graph at time t (see Sec. 2), in which Gij(t) > 0
implies that there is a link from j to i at time t, which may be a self-link if i = j.
Note that the self links in G arise from the presence of the xi on the right hand
side of (1); they do not necessarily mean that the physical network of multi-agents
have self-loops.

Furthermore, delays occur inevitably due to limited information transmission
speed. The consensus algorithm with transmission delays can be described as

xt+1
i =

m
∑

j=1

Gij(t)x
t−τ t

ij

j , (4)

where τ tij ∈ N, i, j = 1, . . . ,m, denotes the time-dependent delay from vertex j to

i. A link from j to i is called instantaneous if τ tij = 0 ∀t, and delayed otherwise.
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In this paper, we study a general consensus problem in networks with time-
varying topologies and time delays described by

xt+1
i =

m
∑

j=1

Gij(σ
t)x

t−τij(σ
t)

j , i = 1, . . . ,m, (5)

as well as the more general form

xt+1
i =

τM
∑

τ=0

m
∑

j=1

Gτ
ij(σ

t)xt−τ
j , i = 1, . . . ,m. (6)

Note that (5) can be put into the form (6) by partitioning the inter-links according
to delays, where τM is the maximum delay. However, (6) is more general, as it in
principle allows for multiple links with different delays between the same pair of
vertices. In particular, there may exist both instantaneous and delayed self-links,
which may naturally arise in a model like (1) where the term xi appears both by
itself as well as under the summation sign. In reference to (6), we talk about self-
link(s) when Gτ

ii 6= 0, which may be instantaneous or delayed depending on whether
τ = 0 or τ > 0, respectively. In equations (5)–(6), σt denotes a stochastic process,
G(σt) = [Gij(σ

t)]ni,j=1 = [
∑τM

τ=0 G
τ
ij(σ

t)]ni,j=1 is a stochastic matrix, τij(σ
t) ∈ N is

the stochastically-varying transmission delay from agent j to agent i. This model
can describe, for instance, communications between randomly moving agents, where
the current locations of the agents, and hence the links between them, are regarded
as stochastic. Furthermore, the delays are also stochastic since they arise due to
the distances between agents. In this paper, {σt} is assumed to be an adapted
stochastic process.

Definition 1.1. (Adapted process) Let {Ak} be a stochastic process defined on the
basic probability space {Ω,F , P}, with the state space Ω, the σ-algebra F , and the
probability P. Let {Fk} be a filtration, i.e., a sequence of nondecreasing sub-σ-
algebras of F . If Ak is measurable with respect to (w.r.t.) Fk, then the sequence
{Ak,Fk} is called an adapted process.

Via a standard transformation, any stochastic process can be regarded as an
adapted process. Let {ξt} be a stochastic process in probability spaces {Ωt,Ht,Pt}.
Define Ω =

∏

t Ω
t, F and P are both induced by

∏

t H
t and

∏

t P
t, where

∏

stands

for the Cartesian product. Let σt = [ξk]tk=1 and F t be the minimal σ-algebra

induced by
∏t

k=1 H
t. Then F t is a filtration. Thus, it is clear that the notion of an

adapted process is rather general, and it contains i.i.d. processes, Markov chains,
and so on, as special cases.
Related work. Many recent papers address the stability analysis of consensus in
networks of multi-agents. However, the model (5) with delays we have proposed
above is more general than the existing models in the literature. We first mention
some papers where models of the form (3) are treated. A result from [25] shows that
(3) can reach consensus uniformly if and only if there exists T > 0 such that the
union graph across any T -length time period has a spanning tree. Ref. [2] derived a
similar condition for reaching a consensus via an equivalent concept: strongly rooted
graph. Our previous papers [19, 20] studied synchronization of nonlinear dynamical
systems of networks with time-varying topologies by a similar method. Ref. [36] has
pointed out that under the assumption that self-links always exist and are instan-
taneous (i.e. without delays), the condition presented in Ref. [25] also guarantees
consensus with arbitrary bounded multiple delays. However, this criterion may not
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work when the time-varying topology involves randomness, because for any T > 0,
it might occur with positive probability that the union graph across some T -length
time period does not have a spanning tree for any T . Refs. [14, 35, 31] studied
the consensus in networks under the circumstance that the processes {G(t)}t≥0

are independently and identically distributed (i.i.d.) and [38] also investigated the
stability of consensus of multi-agent systems with Markovian switching topology
with finite states. In these papers, consensus is considered in the almost sure sense.
Ref. [8] studied a particular situation with packet drop communication. The most
related literature to the current paper is [18], where a general stochastic process,
an adapted process, was introduced to model the switching topology, which gen-
eralized the existing works including i.i.d. and Markovian jumping topologies as
special cases. The authors proved that, if the δ-graph (see its definition in Sec. 2.2)
corresponding to the conditional expectation of the coupling matrix sum across a
finite time interval has a spanning tree almost surely, then the system reaches con-
sensus. However, none of those works considered the stochastic delays but rather
assumed that self-links always exist. There are also many papers concerned with
the continuous-time consensus algorithm on networks of agents with time-varying
topologies or delays. See Ref. [28] for a framework and Ref. [27] for a survey, as
well as Refs. [24, 1, 37, 23], among others. Also, there are papers concerned with
nonlinear coupling functions [6] and general coordination [17].
Statement of contributions. In the following sections, we study the stability of
the consensus of the delayed system (5), where σt is an adapted process. First, we
consider the case that each agent contains an instantaneous self-link. In this case,
we show that the same conditions enabling the consensus of algorithms without
transmission delays, as mentioned in Ref. [18], can also guarantee consensus for the
case of arbitrary bounded delays. Second, in case that delays also occur at the self-
links (for example, when it costs time for each agent to process its own information),
and only certain delay patterns can occur, we show that the algorithm does not
necessarily reach consensus but may synchronize to a periodic trajectory instead.
As we show, the period of the synchronized state depends on the possible delay
patterns. Finally, we briefly study the situation without self-links, and present
consensus conditions based on the graph topology and the product of coupling
matrices.

The basic tools we use are theorems about product of stochastic matrices and
the results from probability theory. Ref. [3] has proved a necessary and sufficient
condition for the convergence of infinite stochastic matrix products, which involves
the concept of scramblingness. Ref. [34] provided a means to get scrambling matri-
ces (defined in Sec. 2.2) from products of finite stochastic indecomposable aperiodic
(SIA) matrices and Ref. [36] showed that an SIA matrix can be guaranteed if the
corresponding graph has a spanning tree and one of the roots has a self-link. The
Borel-Cantelli lemma [7] indicates that if the conditional probability of the occur-
rence of SIA matrices in a product of stochastic matrices is always positive, then it
occurs infinitely often. These previous results give a bridge connecting the proper-
ties of stochastic matrices, graph topologies, and probability theory which we will
call upon in the present paper.

The paper is organized as follows. Introductory notations, definitions, and lem-
mas are given in Sec. 2. The dynamics of the consensus algorithms in networks of
multi-agents with switching topologies and delays, which are modeled as adapted
processes, are studied in Sec. 3. Applications of the results are provided in Sec. 4 to
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i.i.d. and Markovian jumping switching. Proofs of theorem are presented in Sec. 5.
Conclusions are drawn in Sec. 6.

2. Preliminaries. This paper is written in terms of stochastic process and al-
gebraic graph theory. For the reader’s convenience, we present some necessary
notations, definitions and lemmas in this section. In what follows, N denotes the
integers from 1 to N , i.e., N = {1, . . . , N}. For a vector v = [v1, . . . , vn]

> ∈ R
n,

‖v‖ denotes some norm to be specified, for instance, the L1 norm ‖v‖1 =
∑n

i=1 |vi|.
N denotes the set of positive integers and Z denotes the integers. For two integers
i and j, we denote by 〈i〉j the quotient integer set {kj + i : k ∈ Z}. The greatest
common divisor of the integers i1, . . . , iK is denoted gcd(i1, . . . , iK). The product
∏n

k=1 Bk of matrices denotes the left matrix product Bn × · · · × B1. For a matrix
A, Aij or [A]ij denotes the entry of A on the ith row and jth column. In a block
matrix B, Bij or [B]ij can also stand for its i, j-th block. For two matrices A,
B of the same dimension, A ≥ B means Aij ≥ Bij for all i, j, and the relations
A > B, A < B, and A ≤ B are defined similarly. Im denotes the identity matrix of
dimension m.

2.1. Probability theory. {Ω,F ,P} is our general notation for a probability space,
which may be different in different contexts. In this notation, Ω stands for the state
space, F the Borel σ-algebra, and P{·} the probability on Ω. EP{·} is the expec-
tation with respect to P (sometimes E for simplicity, if no ambiguity arises). For
any σ-algebra G ⊆ F , E{·|G} (P{·|G}) is the conditional expectation (probability,
respectively) with respect to G. It should be noted that both E{·|G} and P{·|G} are
actually random variables measurable w.r.t. G. The following lemma provides the
general statement of the principle of large numbers.

Lemma 2.1. [7] (The Second Borel-Cantelli Lemma) Let Fn, n ≥ 0 be a filtration
with F0 = {∅,Ω} and Cn, n ≥ 1 a sequence of events with Cn ∈ Fn. Then

{Cn infinitely often } =
{

+∞
∑

n=1

P{Cn|Fn−1} = +∞
}

with a probability 1, where “infinitely often” means that an infinite number of
{Cn}∞n=1 occur.

2.2. Stochastic matrices and graphs. An m×m matrix A = [aij ]
m
i,j=1 is said to

be a stochastic matrix if aij ≥ 0 for all i, j = 1, . . . ,m and
∑m

j=1 aij = 1 for all i =
1, . . . ,m. A matrix A ∈ R

m,m is said to be SIA if A is stochastic, indecomposable,
and aperiodic, i.e., limn→∞ An converges to a matrix with identical rows. The
Hajnal diameter is introduced in Ref. [12, 13] to describe the compression rate of a
stochastic matrix. For a matrix A with row vectors a1, . . . , am and a vector norm
‖ · ‖ in R

m, the Hajnal diameter of A is defined by diam(A) = max
i,j

‖ai − aj‖. The

scramblingness η of a stochastic matrix A is defined as

η(A) = min
i,j

‖ai ∧ aj‖1, (7)

where ai ∧ aj = [min(ai1, aj1), . . . ,min(aim, ajm)]. The stochastic matrix A is said
to be scrambling if η(A) > 0. The Hajnal inequality estimates the Hajnal diameter
of the product of stochastic matrices. For two stochastic matrices A and B of the
same order, the inequality

diam(AB) ≤ (1− η(A))diam(B) (8)
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holds for any matrix norm [30]. It can be seen from (8) that the diameter of the
product AB is strictly less than that of B if A is scrambling.

The link between stochastic matrices and graphs is an essential feature of this
paper. A stochastic (or simply nonnegative) matrix A = [aij ]

m
i,j=1 ∈ R

m,m defines
a graph G = {V , E}, where V = {1, . . . ,m} denotes the vertex set with m vertices
and E denotes the link set where there exists a directed link from vertex j to i,
i.e., e(i, j) exists, if and only if aij > 0. We denote this graph corresponding
to the stochastic matrix A by G(A). For a directed link e(i, j), we say that j
is the start of the link and i is the end of the link. The vertex i is said to be
self-linked if e(i, i) exists, i.e., aii > 0. G is said to be a bigraph if the existences
of e(i, j) and e(j, i) are equivalent. Otherwise, G is said to a digraph. An L-
length path in the graph denotes a vertex sequence (vi)

L
i=1 satisfying that the link

e(vi+1, vi) exists for all i = 1, . . . , L − 1. The vertex i can access the vertex j, or
equivalently, the vertex j is accessible from the vertex i, if there exists a path from
the vertex i to j. The graph G has a spanning tree if there exists a vertex i which
can access all other vertices, and the set of vertices that can access all other vertices
is named the root set. The graph G is said to be strongly connected if each vertex
is a root. We refer interested readers to the book [11] for more details. Due to the
relationship between nonnegative matrices and graphs, we can call on the properties
of nonnegative matrices, or equivalently, those of their corresponding graphs. For
example, the indecomposability of a nonnegative matrix A is equivalent to that
G(A) has a spanning tree, and the aperiodicity of a graph is associated with the
aperiodicity of its corresponding matrix [15]. We say that G is scrambling if for
each pair of vertices i 6= j, there exists a vertex k such that both e(i, k) and e(j, k)
exist, which can be seen to be equivalent to the definition of scramblingness for
stochastic matrices. For two matrices A = [aij ]

n
i,j=1, B = [bij ]

n
i,j=1 ∈ R

n,n, we say
A is an analog of B and write A ≈ B, in case that aij 6= 0 if and only if bij 6= 0,
∀i, j = 1, . . . , n, that is, when their corresponding graphs are identical.

Furthermore, for a nonnegative matrix A and a given δ > 0, the δ-matrix of A,
denoted by Aδ, is defined as

[Aδ]ij =

{

δ, if Aij ≥ δ;
0, if Aij < δ.

The δ-graph of A is the directed graph corresponding to the δ-matrix of A. We
denote by N δ

i the neighborhood set of the vertex vi in the δ-graph: N δ
i = {vj :

Aij ≥ δ}.

2.3. Convergence of products of stochastic matrices. Here, we provide the
definition of consensus and synchronization of the system (5). Suppose the delays
are bounded, namely, τij(σ

k) ≤ τM for all i, j = 1, . . . ,m and σk ∈ Ω.

Definition 2.2. The multi-agent system is said to reach consensus via the algorithm
(5) if for any essentially bounded random initial data x0

τ ∈ R
m, τ = 0, 1, . . . , τM ,

(that is, x0
τ is bounded with probability one), and almost every sequence {σt}, there

exists a number α ∈ R such that lim
t→∞

xt = α1 with 1 = [1, 1, . . . , 1]>. The multi-

agent system is said to synchronize via the algorithm (5) if for any initial essentially
bounded random x0 ∈ R

m and almost every sequence {σt} , limt→∞ |xi(t)−xj(t)| =
0, i, j = 1, . . . ,m. In particular, if for any initial essentially bounded random
x0
τ ∈ R

m, τ = 0, 1, . . . , τM , and almost every sequence, there exists a P -periodic
trajectory s(t) (P independent of the initial values and the sequence) such that
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limt→∞ |xi(t)− s(t)| = 0 holds for all i = 1, . . . ,m, then the multi-agent system is
said to synchronize to a P -periodic trajectory via the algorithm (5).

In general, consensus can be regarded as a special case of synchronization, where
the multi-agent system synchronizes at an equilibrium. As shown in Ref. [3], in
the absence of delays, consensus and synchronization are equivalent w.r.t. the
product of infinite stochastic matrices; that is, whenever a system synchronizes, it
also reaches consensus. However, we will show in the following sections that, under
transmission delays, consensus and synchronization of the algorithm (5) are not
equivalent. Thus, a system can synchronize without necessarily reaching consensus.

Consider the model where the topologies are induced by a stochastic process:

xt+1
i =

m
∑

j=1

Gij(ξ
t)xt

j , i = 1, . . . ,m, (9)

where {ξt}t∈N is a stochastic process with a probability distribution of the sequence
P. The results of this paper are based on the following lemma, which is a conse-
quence of Theorem 2 in Ref. [3].

Lemma 2.3. Let η(·) denote the scramblingness, as defined in (7). The multi-
agent system via the algorithm (9) reaches consensus if and only if for P-almost
every sequence there exist infinitely many disjoint integer intervals Ii = [ai, bi] such
that

∞
∑

i=1

η

( bi
∏

k=ai

G(ξk)

)

= ∞.

As a trivial extension to a set of SIA matrices, we have the next lemma on how
to obtain scramblingness.

Lemma 2.4. [34] Let Θ ⊂ R
m,m be a set of SIA matrices. There exists an integer N

such that any n-length matrix sequence with n > N picked from Θ: G1, G2, . . . , Gn

satisfies

η

( n
∏

k=1

Gk

)

> 0.

The following result provides a relation between SIA matrices and spanning trees.

Lemma 2.5. (Lemma 1 in Ref. [36]) If the graph corresponding to a stochastic
matrix A has a spanning tree and a self-link at one of its root vertices, then A is
SIA.

3. Main results. We first consider the multi-agent network without transmission
delays:

xt+1
i =

n
∑

j=1

Gij(σ
t)xt

j , i = 1, . . . ,m. (10)

The following theorem is the main tool for the proofs of the main results and it can
be regarded as a realization of Lemma 2.3 and an extension from Ref. [18] without
assuming self-links.
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Theorem 3.1. For the system (10), if there exist L ∈ N and δ > 0 such that the
δ-graph of the matrix product

E

{ n+L
∏

k=n+1

G(σk)|Fn

}

(11)

has a spanning tree and is aperiodic for all n ∈ N almost surely, then the multi-agent
system reaches a consensus.

The proof is given in Sec. 5.1. The main result of [18] can be regarded as a
consequence of Theorem 3.1, where each node in the graph was assumed to have a
self-link. In the following, we first study the multi-agent systems with transmission
delays such that each agent is linked to itself without delay and then investigate
the general situation where delays may occur also on the self-links. Finally, we give
a brief discussion on the consensus algorithms without self-links. All proofs in this
section are placed in Sec. 5.

3.1. Consensus and synchronization with transmission delays. Consider
the consensus algorithm (6), which we rewrite in matrix form as

xt+1 =

τM
∑

τ=0

Gτ (σt)xt−τ , (12)

where G(σt) = [Gτ
ij(σ

t)]ni,j=1. We assume the following for the matrices Gτ (·).

A: Each Gτ (σt), τ ∈ τM , is a measurable map from Ω to the set of nonnegative

matrices with respect to F t.

Letting yt = [xt>, xt−1>, . . . , xt−τM >
]> ∈ R

m×(τM+1), we can write (12) as

yt+1 = B(σt)yt, (13)

where B(σt) ∈ R
(τM+1)×m,(τM+1)×m has the form

B(σt) =















G0(σt) G1(σt) · · · GτM−1(σt) GτM

Im 0 · · · 0 0
0 Im · · · 0 0
...

...
. . .

...
...

0 0 · · · Im 0















.

Thus, the consensus of (6) is equivalent to that of (13). As a default labeling, let us
consider the corresponding graph G(B(σt)), which has (τM +1)m vertices, which we
denote by {vi,j , i ∈ τM + 1, j ∈ m}, where vi,j corresponds to the ((i− 1)m+ j)th
row (or column) of the matrix B(σt).

Theorem 3.2. Assume the conditions A, and suppose there exist µ > 0, L ∈ N, and

δ > 0 such that G0(σ) > µIm for all σ ∈ Ω and the δ-graph of E{
∑n+L

k=n+1 G(σk)|Fn}
has a spanning tree for all n ∈ N almost surely. Then the delayed multi-agent system
(6) reaches consensus.

The proof is given in Sec 5.2. In the case that the topological switching is
deterministic, a similar result is obtained in the literature [24, 36].

Example 3.3. We give a simple example to illustrate Theorem 3.2. Consider a
delayed multi-agent system on a network with 2 vertices and the maximum delay
is 1. The system can be written as

xt+1 = G0(σt)xt +G1(σt)xt−1,
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which can further be put into a form without delays yt+1 = B(σt)yt with

B(σt) =

(

G0(σt) G1(σt)
Im 0

)

.

Let us consider the product of two matrices B1 and B2:

B1 =









1 0 0 0
0 1 0 0
1 0 0 0
0 1 0 0









, B2 =









1/2 0 0 1/2
0 1 0 0
1 0 0 0
0 1 0 0









.

In the absence of delays, they correspond to G1 =

(

1 0
0 1

)

and G2 =
(

1/2 1/2
0 1

)

. One can see that the union of the graphs G(G1) and G(G2) has

spanning trees and self-connections. Then the proof of Theorem 3.2 says that for
some integer L, the product of L successive matrices corresponds to a graph which
has a spanning tree and a self-link on the root node. For example, we consider the
following matrix product:

B1B2 =









1/2 0 0 1/2
0 1 0 0
1/2 0 0 1/2
0 1 0 0









.

The corresponding graph has four vertices, which we label as v1,1, v1,2, v2,1, and
v2,2 following the scheme defined below Eq. (13). From Figure 1, it can be seen
that the graph corresponding to B1B2 has spanning trees with v1,2 being the root
vertex which has a self-link. So, by Theorem 3.2, the system reaches consensus.
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Figure 1. The graphs corresponding to the matricesB1, B2, and
the matrix product B1B2, respectively.

In some cases delays occur at self-links, for example, when it takes time for
each agent to process its own information. Suppose that the self-linking delay for
each vertex is identical, that is, τii = τ0 > 0. We classify each integer t in the
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discrete-time set N (or the integer set Z) via mod (t + 1, τ0 + 1) as the quotient
group of (Z + 1)/(τ0 + 1). As a default set-up, we denote 〈i〉τ0+1 by 〈i〉. Let

Ĝi(·) =
∑

j∈〈i〉 G
j(·). For a simplified statement of the result, we provide the

following condition B:

B.1 There exist an integer τ0 > 0 and a number µ > 0 such that Gτ0(σ1) > µIm
for all σ1 ∈ Ω;

B.2 There exist τ1, . . . , τK excluding the integers in 〈0〉 with gcd(τ0 +1, τ1+1, . . . ,

τK + 1) = P > 1 such that Ĝj(σ1) = 0 for all j /∈ {τ1, . . . , τK} and all

σ1 ∈ Ω and the δ-matrix of E{Ĝτk(σn+1)|Fn} is nonzero for all n ∈ N and
k = 1, . . . ,K almost surely.

Theorem 3.4. Assume that the conditions A and B hold, and suppose there exist

L ∈ N and δ > 0 such that the δ-graph of E{
∑n+L

k=n+1 Ĝ
0(σk)|Fn} is strongly con-

nected for all n ∈ N almost surely. Then the system (6) synchronizes to a P -periodic
trajectory. In particular, if P = 1, then (6) reaches consensus.

The proof is given in Sec. 5.3. From this theorem, one can see that under self-
linking delays, consensus is not equivalent to synchronization. In fact, the delays
that occur on self-links are essential for the failure to reach consensus.

Example 3.5. Theorem 3.4 demands that the δ-graph corresponding to the matrix

E{
∑n+L

t=n+1 Ĝ
0(σt)|Fn} is strongly connected. This is stronger than the condition in

Theorem 3.2, which demands that the corresponding graph has a spanning tree. We
give an example to show that the strong connectivity is necessary for the reasoning
in the proof. Consider a delayed multi-agent system on a network with two vertices
and a maximum delay of 3. Consider the form (13) and the matrix B(·). Suppose
that the state space only contains one state σ1 as follows:

B(σ1) =

























0 0 1/3 0 0 1/3 0 1/3
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

























.

Here, τ0 = 1. It is clear that the subgraph corresponding to each Ĝ0
1,2 has spanning

trees but is not strongly connected, and that there is a link between the subgraphs
corresponding to 〈1〉 and 〈0〉. For the word σ1σ1 · · ·σ1σ1, direct calculations show
that the corresponding matrix product is an analog of the following matrix if the
length of the word is sufficiently long:

























1 1 0 1 0 1 0 0
0 1 0 0 0 0 0 0
0 1 1 1 0 1 0 1
0 0 0 1 0 0 0 0
1 1 0 1 0 1 0 0
0 1 0 0 0 0 0 0
0 1 1 1 0 1 0 1
0 0 0 1 0 0 0 0

























(14)



CONSENSUS AND SYNCHRONIZATION IN NETWORKS 339

1
,
1
v


1
,
3
v


2
,
1
v


2
,
3
v


1
,
2
v


2
,
2
v


1
,
4
v
 2
,
4
v


'


1

G


'

2
G


Figure 2. The graph corresponding to the matrix product (14).

The corresponding graph is shown in Figure 2, using the labeling scheme for the
vertices as defined below Eq. (13). One can see that it does not have a spanning
tree since the vertices v1,2 and v2,2 do not have incoming links other than self-links.
In fact, the set of eigenvalues of the matrix B(σ1) contains 1 and −1, which implies
that (12) with B(σt) can not reach consensus even though the condition in Theorem
3.2 is satisfied.

3.2. Consensus and synchronization without self-links. So far the stability
result is based on the assumption that each agent takes its own state into consider-
ations when updating. In other words, the coupling matrix has positive diagonals
(possibly with delays). There also exist consensus algorithms that are realized by
updating each agent’s state via averaging its neighbor’s states and possibly exclud-
ing its own [9]. In [5], it is shown that consensus can be reached in a static network if
each agent can communicate with others by a directed graph and the coupling graph
is aperiodic, which can be proved by nonnegative matrix theory [15]. In the follow-
ing, we briefly discuss the general consensus algorithms in networks of stochastically
switching topologies that do not necessarily have self-links for all vertices.

When transmission delays occur, the general algorithm (6) can be regarded as
increasing dimensions as in (13). Thus, one can similarly associate (13) with a new

graph on m× (τM + 1) vertices {vij : i ∈ τM + 1, j ∈ m}, denoted by G
′

(·), where

B(·) denotes the link set of G
′

(·), by which vij corresponds to the (i−1)×(τM+1)+j

column and row of B. B̂p(σ1) as the matrix corresponding the vertices {vij : i ∈
〈p〉, j ∈ m}. Based on theorem 3.1, we have the following results, which can be
proved similarly to Theorems 3.2 and 3.4.

Proposition 3.6. Assume A holds, and suppose there exist L ∈ N and δ > 0 such

that the δ-graph of E{
∏u+L

k=u+1 B(σk)|Fu} has a spanning tree and self-link at one
root vertex for all n ∈ N almost surely. Then the algorithm (10) reaches consensus.

In fact, under the stated conditions, each product E{
∏u+L

k=u+1 B(σk)|Fu} is SIA
almost surely; so, this proposition is a direct consequence of Theorem 3.1.

In the possible absence of self-links, the following is a consequence of Proposition
3.6.

Proposition 3.7. Assume A and B.2 hold (B.1 need not hold). Suppose there

exist L ∈ N and δ > 0 such that the δ-graph of E{
∏n+L

k=n+1 B̂p(σ
k)|Fn} is strongly

connected and has at least one self-link for all n ∈ N and p ∈ P almost surely, where
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B̂p is defined in the proof of Theorem 3.4, for example, (15) in Sec. 5.3. Then the
algorithm (6) synchronizes to a P -periodic trajectory. In particular if P = 1, then
the algorithm (6) reaches consensus.

4. Applications. Adapted processes are rather general and include i.i.d processes
and Markov chains as two special cases. Therefore, the results obtained above can
be directly utilized to derive sufficient conditions for the cases where the topology
switching and delays are i.i.d. or Markovian.

First, by a standard construction as mentioned in Sec. 1, from the property of
i.i.d. it follows that E{G(σk+1)|Fk} = E{G(σk+1)} is a constant stochastic matrix.
Then, we have the following results.

Corollary 4.1. Assume that A holds and {σt} is an i.i.d. process. Suppose there
exist µ > 0, L ∈ N, and δ > 0 such that G0(σ) > µIm for all σ ∈ Ω and the
δ-graph of E{G(σ1)} has a spanning tree. Then the delayed multi-agent system via
algorithm (6) reaches consensus.

Corollary 4.2. Assume that A and B hold and {σt} is an i.i.d. process. Suppose

there exist L ∈ N and δ > 0 such that the δ-graph of E{Ĝ0(σ1)} is strongly connected
for all n ∈ N almost surely. Then the system (6) synchronizes to a P -periodic
trajectory. In particular, if P = 1, then (6) reaches consensus.

Second, we consider the Markovian switching topologies, namely, the graph se-
quence is induced by a homogeneous Markov chain with a stationary distribution
and the property of uniform ergodicity, which is defined as follows.

Definition 4.3. [4] A Markov chain {σt}, defined on {Ω,F}, with a stationary
distribution π and a transition probability T(x,A) is called uniformly ergodic if

∑

x∈Ω

‖Tk(x, ·)− π(·)‖ → 0 as k → +∞,

where Tk(·, ·) denotes the k-th iteration of the transition probability T(·, ·), for two
probability measures µ and ν on {Ω,F)}, and ‖µ− ν‖ = supA∈F |µ(A) − ν(A)|.

From the Markovian property, we have the following results.

Corollary 4.4. Assume that A holds. Let {σt} be an irreducible and aperiodic
Markov chain with a unique invariant measure π. Suppose {σt} is uniformly ergodic
and there exist µ > 0 and δ > 0 such that G0(σ) > µIm for all σ ∈ Ω and the δ-
graph of Eπ{G(σ1)} has a spanning tree. Then the delayed multi-agent system(6)
reaches consensus.

Proof. From the Markovian property, we have

E{
1

L

n+L
∑

t=n+1

G(σt)|Fn} = E{
1

L

n+L
∑

t=n+1

G(σt)|σn}.

If {σt} is uniformly ergodic, then

lim
L→+∞

E{
1

L

n+L
∑

1=n+1

G(σt)|σn}

= lim
L→+∞

1

L

L
∑

i=1

∫

Ω

G(y)Ti(σn, dy) =

∫

Ω

G(y)π(dy) = Eπ[G(σ1)].
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Since the convergence is uniform, there exits L such that the δ/2-graph corre-

sponding to E{(1/L)
∑n+L

t=n+1 G(σt)|Fn} has a spanning tree almost surely. From
Theorem 3.2, the conclusion can be derived.

Corollary 4.5. Assume that A and B hold, and let {σt} be an irreducible and
aperiodic Markov chain with a unique invariant measure π. Suppose that {σt} is

uniformly ergodic and there exists δ > 0 such that the δ-graph of Eπ{Ĝ0(σ1)} is
strongly connected. Then the system (6) synchronizes to a P -periodic trajectory. In
particular, if P = 1, then (6) reaches consensus.

These corollaries can be proved directly from Theorems 3.4 in the same way as
Corollary 4.4. It can be seen that the a homogeneous Markov chain with finite state
space and unique invariant distribution is uniformly ergodic. Hence, the results of
Corollaries 4.4 and 4.5 hold for this scenario.

5. Proofs of the main results. In the following, the coupling matrix B(·) in the
delayed system (13) is written in the following block form:

B(σt)

=











B1,1(σ
t) B1,2(σ

t) · · · B1,τM+1(σ
t)

B2,1(σ
t) B2,2(σ

t) · · · B2,τM+1(σ
t)

...
...

. . .
...

BτM+1,1(σ
t) BτM+1,2(σ

t) · · · BτM+1,τM+1(σ
t)











∈ R
(τM+1)m,(τM+1)m

with Bij(σ
t) ∈ R

m,m, i, j ∈ τM + 1. For two index sets I and J , we denote by
[B(σt)]I,J the sub-matrix of B(σt) with row index set I and column index set
J . For an n-length word σ = (σk)nk=1 in the stochastic process, we use B(σ) to
represent the matrix product

∏n

i=1 B(σi). One can see that the structure of the
matrix B(σt) has the following properties: (1). Each Bi,i−1 = Im for all i ≥ 2; (2).
Bi,j = 0 for all i ≥ 2 and j 6= i− 1. These properties are essential for the following
proofs.

As the same way defined below Eq. (13), let us consider the corresponding graph
G(B(σt)), which has (τM +1)m vertices, which we denote by {vi,j , i ∈ τM + 1, j ∈
m}, where vi,j corresponds to the (i− 1)m+ j row of the matrix B(σ).

We denote the following finitely generated periodic group:

〈i1, i2, . . . , iK〉j := {p : p =

K
∑

l=k

ikpk mod j, pk ∈ Z}.

If these numbers are be picked in a finite integer set, for instance, {1, . . . , τM + 1}
in the present paper, then 〈i1, i2, . . . , iK〉j denotes the set 〈i1, i2, . . . , iK〉j

⋂

τM + 1
unless specified otherwise. As a default setup, 〈i〉 denotes 〈i〉τ0+1 where τ0 is the
self-linking delay as in (12). We will sometimes be interested in whether an element
in a matrix is zero or not, regardless of its actual value.

5.1. Proof of Theorem 3.1. From the condition in this theorem, we can see that

the δ-matrix of E{
∏n+L

k=n+1 G(σk)|Fn} is SIA for all n ∈ N. Lemma 2.4 states
that there exists N ∈ N such that the product of any N SIA matrices in R

m,m is
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scrambling. Note that

E

{ n+NL
∏

t=n+1

G(σt)|Fn

}

= E

{

· · ·E

{

E

{ n+NL
∏

tL=n+(N−1)L+1

G(σtL)|Fn+(N−1)L

}

n+(N−1)L
∏

tL−1=n+(N−2)L+1

G(σtL−1)|Fn+(N−2)L

}

· · ·
n+L
∏

t1=n+1

G(σt1 )|Fn

}

,

since {F t} is a filtration. This implies that there exists a positive constant δ1 < δN

such that the δ1-graph of E{
∏n+NL

t=n+1 G(σt)|Fn} is scrambling. So, from Lemma
3.12 in Ref. [18], there exist δ′ > 0 and M1 ∈ N such that

P

{

η

( n+M1NL
∏

t=n+1

G(σt)

)

> δ′|Fn

}

> δ′, ∀ n ∈ N.

Let Ck =
∏(k+1)M1NL

t=kM1NL+1 G(σt). We can conclude that for almost every sequence of

{σt}, it holds that

lim
K→∞

K
∑

k=1

P

{

η(Ck) > δ′|FkNL

}

> lim
K→∞

K × δ′ = +∞.

From Lemma 2.1, we can conclude that the events {η(Ck) > δ′}, k = 1, 2, . . . , occur
infinitely often almost surely. Therefore, we can complete the proof directly from
Lemma 2.3.

5.2. Proof of Theorem 3.2. The proof of this theorem is based on the structural
characteristics of the product of matrices B(·). We denote by [B(·)]ij the R

m,m

sub-matrix of B(σ) in the position (i, j). We first show by the following lemma that
the graph corresponding to the product of more than τM + 1 successive matrices
B(σt), as defined by (13), has a spanning tree and self-link at one root vertex. Thus,
we can prove Theorem 3.2 by employing Theorem 3.1.

Lemma 5.1. Under the conditions in Theorem 3.2, for any n-length word σ =
(σi)

n
i=1 with n ≥ τM + 1, there exists µ1 > 0 such that

(i). [B(σ)]i,1 ≥ µn
1 Im;

(ii).
∑τM+1

j=1 [B(σ)]1,j ≥ µn
1

∑τM+1
j=1

∑n

k=1 G
j(σk).

Proof. We choose 0 < µ1 < µ, where µ is defined in Theorem 3.2. (i). For a word
σ = (σi)

n
i=1 with n ≥ τM + 1,

[B(σ)]i,1 =
∑

i1,...,in

[B(σn)]i,i1 [B(σn−1)]i1,i2 · · · [B(σ1)]in,1

≥

( n
∏

k=n−i+2

[B(σk)]k+i−n,k+i−n−1

)( n−i+1
∏

k=1

[B(σk)]1,1

)

=

n−i+1
∏

k=1

[B(σk)]1,1 ≥ µn
1 Im

since [B($)]k+i−n,k+i−n−1 = Im for all k ≥ n− i+ 2 and [B($)]1,1 ≥ µIm ≥ µ1Im
for all $ ∈ Ω.
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(ii). Let j ∈ τM + 1 and t0 ∈ n. If t0 ≥ j, we have
∑

l

[B(σ)]1,l =
∑

i1,...,in,l

[B(σn)]1,i1 [B(σn−1)]i1,i2 · · · [B(σ1)]in,l

≥

( n
∏

k=t0+1

[B(σk)]1,1

)

[B(σt0)]1,j

( t0−1
∏

l=t0−j+2

[B(σl)]l−t0+j,l−t0+j−1

)

( t0−j+1
∏

p=1

[B(σp)]1,1

)

≥ µn
1 [B(σt0 )]1,j ,

since [B($)]1,1 ≥ µ1Im, [B($)]l−t0+j,l−t0+j−1 = Im for all l ≥ t0 − j + 2 for all
$ ∈ Ω; whereas if j > t0, we similarly have

∑

l

[B(σ)]1,l ≥

( n
∏

k=t0+1

[B(σn)]1,1

)

[B(σt0)]1,j

( t0−1
∏

l=1

[B(σl)]l+j−t0+1,l+j−t0

)

≥ µn
1 [B(σt0 )]1,j .

Summing the right-hand side of the above inequality with respect to t0 and jproves
(ii).

Proof of Theorem 3.2. Let us consider the µn
1 -graph of B(σ) for all σ = (σt)nt=1

with n ≥ τM + 1, as defined in Lemma 5.1. The item (i) in Lemma 5.1 indicates
that for each vertex vi,j with i ≥ 2 and j ∈ m, there exist a path from vertex v1,j
to vi,j : (v1,j , v2,j , . . . , vi,j).

From item (ii) in Lemma 5.1 and the conditions in Theorem 3.2, one can see that

there exits δ > 0 and L ∈ N such that the δ-graph of
∑

l[E{
∏n+L

t=n+1 B(σt)|Fn}]1,l
has spanning trees and self-links. Let G be the random variable corresponding to the

δ-graph of E{
∏n+L

t=n+1 B(σt)|Fn} and G′ be the random variable corresponding to

the δ-graph of
∑

l[E{
∏n+L

t=n+1 B(σt)|Fn}]1,l. Then, for almost every graph G′, there
exists an index j0 ∈ m such that for any j, there exists a path (j0, j1, . . . , jK−1, j)
to access j. This implies that for almost every graph G, there exists a path from
v1,j0 to v1,j . Thus, v1,j0 can access all vertices vi,j , i = 1, . . . , τM + 1, since v1,j
can access all vi,j for τM + 1 ≥ i ≥ 2 by a directed link and v1,j0 and has self-link,
noting that G0(·) has positive diagonals. Therefore, for almost every graph G, it
has a spanning tree and the vertex v1,j0 is one of the roots. From Lemma 2.5, one

can see that E{
∏n+L

t=n+1 B(σt)|Fn} is SIA almost surely. According to Theorem 3.1,
the system (10) reaches consensus. This proves the theorem.

5.3. Proof of Theorem 3.4. Outline of the proof: For a better understanding
of the proof, we first give the following sketch. We start the proof by defining a
permutation matrix Q ∈ R

τM+1,τM+1 corresponding to the permutation sequence
from (1, 2 . . . , τM+1) to (〈1〉, 〈2〉, . . . , 〈P 〉). Then we show by the lemma that follows
that the matrix B(σt) can be transformed into the following form:

[Q⊗ Im]B(σt)[Q⊗ Im]> =











B̂1(σ
t) 0 · · · 0

0 B̂2(σ
t) · · · 0

...
...

. . .
...

0 0 · · · B̂P (σ
t)











, (15)
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where ⊗ stands for the Kronecker product and B̂p(σ
t) = B〈〈p〉|P 〉,〈〈p〉|P 〉(σ

t). By the
permutation Q, we can rewrite the coupled system (5) as

ŷt+1 = B̂(σt)ŷt, (16)

where ŷt = [Q ⊗ Im]yt and B̂(·) = [Q ⊗ Im]B(·)[Q ⊗ Im]>. This system can be
divided into P subsystem as

ŷt+1
p = B̂p(σ

t)ŷtp, p ∈ P , (17)

where ŷtp corresponds to [yt]〈〈p〉|P 〉. So, it is sufficient to prove the following claim
to complete this proof from Lemma 3.1:

Claim 1: For each p ∈ P , there exists δ′ > 0 and L ∈ N such that the δ′-graph
of the matrix

E

{ n+L
∏

t=n+1

B̂p(σ
t)|Fn

}

(18)

has a spanning tree for all n ∈ N almost surely.
The proof of this theorem is also based on the structural characteristics of the

product of matrices B(·). By the lemmas below, we are to show the permutation
form (15) can be guaranteed.

Lemma 5.2. Under the conditions of Theorem 3.4, for any (τ0 + 1)-length word
σ = (σk)

τ0+1
k=1 , there exists some µ1 > 0 such that the following hold:

(i). [B(σ)]i,i ≥ µτ0+1
1 Im for all i ∈ τ0 + 1;

(ii). [B(σ)]j,j−(τ0+1) ≥ Im for all j ≥ τ0 + 2;

(iii).
∑

l∈〈1−j〉[B(σ)]τ0+2−j,l ≥ µτ0+1
1 Ĝ0(σj) for all j ∈ τ0 + 1;

(iv).
∑

l∈〈i+(τ+1)〉[B(σ)]i,l ≥ µτ0+1
1 [B(στ0+2−i)]1,τ+1 for all i ∈ τ0 + 1 and τ ∈ τM .

Proof. We choose 0 < µ1 < µ. (i). For any i ∈ τ0 + 1, we have

[B(σ)]i,i =
∑

i1,...,iτ0

[B(στ0+1)]i,i1 [B(στ0)]i1,i2 · · · [B(σ1)]iτ0 ,i

≥

( τ0+1
∏

p=τ0+3−i

[B(σp)]p+i−1−τ0,p+i−2−τ0

)

[B(στ0−i+2)]1,τ0+1

( τ0−i+1
∏

q=1

[B(σq)]q+i,q+i−1

)

≥ µIm ≥ µτ0+1
1 Im

since [B($)]i+1,i = Im and [B($)]1,τ0+1 ≥ µIm for all $ ∈ Ω and i ∈ τM .
(ii). For any j ≥ τ0 + 2, we have

[B(σ)]j,j−(τ0+1) =
∑

i1,...,τ0

[B(στ0+1)]j,i1 [B(σ(τ0))]i1,i2 · · · [B(σ1)]iτ0 ,j−(τ0+1)

≥
τ0+1
∏

k=1

[B(σk)]k+j−τ0−1,k+j−τ0−2 = Im

since [B($)]i+1,i = Im for all i ≥ 2 and $ ∈ Ω.



CONSENSUS AND SYNCHRONIZATION IN NETWORKS 345

(iii). For any i ∈ τ0 + 1, we have
∑

i1,...,iτ0 ,k

[B(σ)]i,i+(τ0+1)k =
∑

k

[B(στ0+1)]i,i1 [B(στ0)]i1,i2 · · · [B(σ1)]iτ0 ,(τ0+1)k+i

≥

( i
∏

k=2

[B(στ0−i+k+1)]k,k−1

)

[B(στ0−i+2)]1,(k+1)(τ0+1)

( (k+1)(τ0+1)
∏

l=i+(τ0+1)(k+1)−τ0

[B(σl−k(τ0+1)−i)]l,l−1

)

≥ [B(στ0+2−i)]1,(k+1)(τ0+1)

for all k ≥ 0. Summing the right-hand side with respect to k and letting j = τ0+2−i,
we have

∑

l∈〈1−j〉[B(σ)]τ0+2−j,l ≥
∑

l∈〈τ0+1〉[B(σj)]1,l.

(iv). Let j = τ0 + 2− i. If j ≥ τ ,

∑

k

[B(σ)]τ0+2−j,τ0+2−j+(τ+1)+(τ0+1)k ≥

( τ0+1
∏

p=j+1

[B(σp)]p−j+1,p−j

)

[B(σj)]1,τ+1

( j−1
∏

q=j−τ

[B(σq)]q+τ+2−j,q+τ+1−j

)

[B(σj−τ−1)]1,τ0+1

( j−τ−2
∏

l=1

[B(σl)]l+τ+τ0+3−j,l+τ+τ0+2−j

)

≥ µ[B(σj)]1,τ+1;

whereas if j < τ ,

∑

k

[B(σ)]τ0+2−j,τ0+2−j+(τ+1)+(τ0+1)k ≥

( τ0+1
∏

p=j+1

[B(σp)]p−j+1,p−j

)

[B(σj)]1,τ+1

( j−1
∏

q=1

[B(σq)]q+τ+2−j,q+τ+1−j

)

≥ [B(σj)]1,τ+1.

These calculations complete the proof of the lemma.

Lemma 5.3. Under the conditions of Theorem 3.4, consider an L(τ0 + 1)-length

word σ̃ = (σ̃1, . . . , σ̃L), where each σ̃l = (σl,i)
τ0+1
i=1 is a (τ0 + 1)-length word. If

L ≥ τM + 1, then there exists µ1 > 0 such that

(i). [B(σ̃)]j,i ≥ µ
(τ0+1)L
1 Im for all j ∈ 〈i〉 and i ∈ τ0 + 1;

(ii).
∑

l∈〈i〉[B(σ̃)]τ0+2−j,l ≥ µ
(τ0+1)L
1

∑

k Ĝ
0(σk,j) for all j ∈ τ0 + 1;

(iii).
∑

j∈〈i+τ+1〉[B(σ̃)]i,j ≥ µτ0+1
1

∑

l∈〈τ+1〉[B(σ̃τ0+2−i)]1,l for all i ∈ τ0 + 1 and
τ ∈ τM ;

(iv). If τ ′ is such that τ ′ + 1 /∈ 〈τ0 + 1, τ1 + 1, . . . , τK + 1〉 and [B(σ1)]1,〈τ ′+1〉 = 0
for all σ1 ∈ Ω, then [B(σ̃)]i,〈i+τ ′+1〉 = 0 for all i ≥ 1.

Proof. We pick some µ1 < µ. (i). For j ≤ τ0 + 1, the proof is similar to the proof
of item (i) of Lemma 5.2. For j ≥ τ0 + 2, we have

[B(σ̃)]j,i

≥

( L
∏

l=l1

[B(σ̃l)]j−(L−l)(τ0+1),j−(L−l+1)(τ0+1)

)( l1
∏

p=1

[B(σ̃p)]i,i

)

≥ µ
(τ0+1)L
1 Im,
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where l1 = L+ 1− (j − i)/(τ0 + 1) is an integer (noting j ∈ 〈i〉), since
[B(σ̃l)]j−(L−l)(τ0+1),j−(L−l+1)(τ0+1) ≥ Im holds here, as mentioned in Lemma 5.2
(ii).

The items (ii) and (iii) can be proved by similar arguments as in the proof of
items (iii) and (iv) of Lemma 5.2. It remains to prove item (iv). In the following,
we will prove a slightly more general result, namely that [B(σ)]i,〈i+τ ′+1〉 = 0 for

all words σ having length L ∈ 〈τ0 + 1〉. Let σ = (σi)
L
i=1 be an arbitrary L-length

word. We calculate [B(σ)]i,j with j ∈ 〈i+τ ′+1〉 as a sum of several matrix product
terms:

[B(σ)]i,j =
∑

i1,...,iL−1

[B(σL)]i,i1 [B(σL−1)]i1,i2 · · · [B(σ1)]iL−1,j .

Since any zero factor yields zero product, we avoid zero factors in the calculations.
That is, in the expression above, only factors of the form [B(σl)]i+1,i and [B(σl)]1,j
can occur where j ∈ 〈i + τ ′ + 1〉 and τ ′ + 1 /∈ 〈τ0 + 1, τ1 + 1, . . . , τK + 1〉. Thus,
letting j1 = i, we have

[B(σ)]i,j =
∑

j1,...,jV ,V

{[ V
∏

l=1

(
L−

∑l−1

p=1
jp

∏

kl=L−
∑

l
p=1

jp+2

[B(σkl
)]∑l

p=1
jp+kl−L,

∑
l
p=1

jp+kl−L−1

)

[B(σL−
∑

l
p=1

jp+1)]1,jp+1

]

(
L−

∑V
p=1

jp
∏

kV +1=1

[B(σkV +1
)]L−

∑
V
p=1

jp+kV +1,
∑

V
p=1

L−
∑

V
p=1

jp+kV +1−1

)}

,

where each jp ∈ 〈τ0 + 1, τ1 + 1, . . . , τK + 1〉. Suppose that the matrix product is

nonzero. Then j =
∑V

p=1 jp−L, i.e., 〈(i+τ ′+1)−(
∑V

p=1 jp−L)〉 = 0, which implies

〈τ ′+1−
∑V

p=2 jp+L〉 = 0. This means that τ ′+1 ∈ 〈τ0+1, τk+1 : k = 1, . . . ,K〉,

which contradicts the condition τ ′ +1 /∈ 〈τ0 +1, τk +1 : k = 1, . . . ,K〉. The lemma
is proved.

Proof of Theorem 3.4. Consider the graph Ĝδ(σt) = {V̂ , Ê(σt)} on (τM+1)m vertices
corresponding to the δ-graph of the matrix B(σt) as defined at the beginning of this
section. For L ∈ N as fixed in the main condition of Theorem 3.4 and an arbitrary

fixed m ∈ N, let B = E{
∏n+L

t=n+1 B(σt)|Fn} and Ĝδ be the random variable picked
in the δ-graphs of B.

First, we divide the graph Ĝδ into τM + 1 subgraphs: Gδ
k = {Vk, Ek(σt)}, k ∈

τM + 1, where Vk = {vk,i : i ∈ m} corresponds to the rows or columns of Bk,k

and the vertex vk,i corresponds the i-th row or column of the matrix Bk,k. Then,

integrate the subgraphs {Gδ
k}

τM+1
k=1 into τ0 +1 subgraphs: G′δ

l = {V ′
l , E

′
l}, l ∈ τ0 + 1,

where V ′
l =

⋃

k∈〈l〉 Vk, l ∈ τ0 + 1 and E ′
l corresponds to the intra-links in V ′

l . Let

El1,l2 denote the inter-links from the subgraph of V ′
l2

to the subgraph V ′
l1
. Lemma

5.3 (i) implies that for each l ∈ τ0 + 1, there must exist a link from vl,i to vk,i in

the subgraph G′δ
l (·), for each vertex vk,i ∈ Vk with k > l and k ∈ 〈l〉. Similarly to

the the proof of Theorem 3.2, the main condition of Theorem 3.4 and items (ii) and
(iii) in Lemma 5.3 imply that there exist δ1 > 0 and L ∈ N such that the subgraph

G′δ1
l is strongly connected, consequently having a spanning tree, and each vertex in

Vl is one of the roots in G′δ1
l and has a self-link almost surely for all l ∈ τ0 + 1.
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Second, according to gcd(τ0+1, τk+1 : k ∈ K) = P , we integrate the subgraphs

G′δ1
l for all l ∈ τ0 + 1, into P subgraphs, denoted by G̃δ1

p = {Ṽp, Ẽp}, p ∈ P by

Ṽp = {V ′
j : Ej,p 6= ∅}. The items (ii) and (iii) in Lemma 5.3 and the second item

in condition B indicate that the δ1-matrix of
∑

j∈〈τk+1: k=0,1,...,K〉 Bl,l+j is positive

for all l ∈ τ0 + 1. This implies that there exists at least one link from G′δ1
l+j to G′δ1

l

and this link end in Vl. So, in the graph G′δ1 , the root vertex in G′δ1
l+j can reach

all vertices in G′δ1
l since each vertex in Vl is a root vertex in G′δ1

l . This leads to

the conclusion that V ′
j ⊂ Ṽl provided j − l ∈ 〈τk + 1 : k = 0, 1, . . . ,K〉. Also, we

can conclude that each root vertex in G′
l+j

δ1 can reach all vertices in G′δ1
l , by item

(i) in Lemma 5.3. Therefore, we can conclude that Ṽp =
⋃

l∈〈p〉P
V ′
p and each G̃p

has a spanning tree almost surely. This proves Claim 1. Moreover, there exists a
vertex with self-link in Vi, i ∈ τ0 + 1 and i ∈ 〈p〉P , as one of its roots, in Ĝδ1 . So,
according to the arbitrariness of integer n, we can conclude that the δ1-graph of

E{
∏n+L

t=n+1 B̂p(σ
t)|Fn} is SIA almost surely for all n ∈ N.

Finally, according to the second item in condition B and the (iv) item in Lemma

5.3, one can conclude that there are no links between the graph G̃δ
p for different p ∈ P

for any δ ≥ 0. So, by a permutation matrix Q corresponding to the permutation
sequence from (1, 2 . . . , τM + 1) to (〈1〉, 〈2〉, . . . , 〈P 〉), [Q ⊗ Im]B(σt)[Q ⊗ Im]> has
the form (15).

By Theorem 3.1, we can conclude that (17) reaches consensus for all p = 1, . . . , P ,
but converges to different values except for initial values in a set of Lebesgue measure
zero. Therefore, xt can synchronize and converge to a P -periodic trajectory. This
completes the proof of Theorem 3.4.

6. Conclusions. In this paper we have studied the convergence of the consensus
algorithm in multi-agent systems with stochastically switching topologies and time
delays. We have shown that consensus can be obtained if the graph corresponding
to the conditional expectations of the coupling matrix product in consecutive times
has spanning trees almost surely and self-links are possible. With multiple delays,
if self-links always exist and are instantaneous (undelayed), then consensus can be
guaranteed for arbitrary bounded delays. Moreover, when the self-links are also
delayed, we have shown the phenomenon that the algorithm may not reach con-
sensus but instead may synchronize to a periodic trajectory according to the delay
patterns. Finally, we have briefly studied consensus algorithms without self-links.
We have presented several results for i.i.d. and Markovian switching topologies as
special cases.
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