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Abstract. We consider solutions to a nonlinear reaction diffusion equation
when the reaction term varies randomly with respect to the spatial coordinate.
The nonlinearity is the KPP type nonlinearity. For a stationary and ergodic

medium, and for certain initial condition, the solution develops a moving front
that has a deterministic asymptotic speed in the large time limit. The main
result of this article is a central limit theorem for the position of the front, in
the supercritical regime, if the medium satisfies a mixing condition.

1. Introduction and main results. We consider the scalar reaction-diffusion
equation

vt = vxx + g(x, ω)v(1− v), x ∈ R, t > 0, (1)

with random reaction rate g(x, ω) : R × Ω → (0,∞), defined over a probability
space (Ω,F ,P). We will make assumptions about g and about the initial condition
at t = 0 so that, with probability one, there is a classical solution to (1) satisfying
0 < v < 1 and limx→−∞ v = 1, limx→∞ v = 0. This ensemble of solutions behaves
like a traveling wave or front propagating through the random environment. We
wish to understand the statistical fluctuations of the ensemble at large times.

When the reaction rate g is a constant, this equation is often called the KPP-
Fisher equation, and it has been known for a long time that there is a family of
traveling wave solutions moving with constant speed [12, 7]. There is a minimal
speed c∗ > 0 such that for each c ≥ c∗ there is a traveling wave of the form
v(t, x) = ṽ(x − ct) where 0 < ṽ < 1 and ṽ(−∞) = 1, ṽ(+∞) = 0. The equilibrium
states v = 0 and v = 1 are unstable and stable, respectively. So, traveling waves
describe the propagation of the stable state. When g varies with x, there may not be
traveling wave solutions in this classical sense, although solutions may still exhibit
some wave-like behavior. For some examples of such behavior in periodic, almost-
periodic, random media, or general disordered media we refer to [2, 23, 19, 3, 26].

In this paper, we impose a statistical structure on g that is stationary and ergodic
with respect to shifts in x. This means that there is a group of measure-preserving
transformations {πk}k∈R, acting ergodically on (Ω,F), such that for almost every
ω ∈ Ω, g(x+k, ω) = g(x, πkω) holds for all x ∈ R, k ∈ R. We also assume that there
are constants gmin and gmax such that 0 < gmin ≤ g(x, ω) ≤ gmax holds for all x
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with probability one, so that the state v = 1 is everywhere stable and the state v = 0
is everywhere unstable. Although the statistics of g are translation invariant, each
realization x→ g(x, ω) will vary with x. We assume that the function x→ g(x, ω)
is almost surely uniformly Lipschitz continuous. Under these assumptions and with
suitable initial condition v0 = v(0, x, ω) to be defined later, (1) admits a unique
classical solution v(t, x, ω) for almost every ω ∈ Ω.

The initial condition will satisfy 0 < v0 < 1, limx→−∞ v0 = 1, and limx→∞ v0 =
0. One can show that v ↗ 1 locally uniformly, as t→ ∞. We define the position of
the wave for t ≥ 0 to be the random process

X(t, ω) = sup {x ∈ R | v(t, x, ω) = 1/2} .

This process will diverge as t → ∞, but because the environment is statistically
stationary one expects some averaging to occur in the large time limit. Indeed,
Freidlin and Gärtner [8, 9] have proved that for suitable initial conditions the limit

lim
t→∞

X(t, ω)

t
= c > 0

exists with probability one. This may be regarded as a law of large numbers for
the random wave position. The purpose of the present analysis is to understand
the fluctuations around this average behavior X(t, ω) ∼ ct. Specifically, are the
fluctuations Gaussian? Under what conditions will the central limit theorem hold

lim
t→∞

P

(

X(t, ω)− ct√
t

> α

)

= Φ(α/σ) =
1√
2π

∫ α/σ

−∞
e−y2/2 dy

for some σ > 0?
Equations like (1) arise in several physical and biological applications in which

a front or phase boundary develops and invades an unstable phase. The nonlinear
term v(1 − v) is a prototype model that leads to “pulled fronts”. For an extensive
review of such applications, see [25]. From the point of view of applications, the
choice of a coefficient g which varies with x is natural, given that g represents a
physical or biological parameter like a reaction rate or birth rate. Because the
underlying environment may vary in a way that is best described statistically, these
parameters may be described as a random field, and it is interesting to consider
the statistical behavior of fronts moving through such a random environment. For
work on some other models of noisy pulled fronts see [22, 24, 17, 5].

1.1. The linearized equation. The dynamics of pulled fronts depends sensitively
on the behavior at the leading edge where v takes values close to 0, the unstable
state. For this reason, it is natural to first consider the linearized equation

ϕt = ϕxx + g(x, ω)ϕ, (2)

and then try to compare the solution of the nonlinear equation (1) to solutions of
this linearized equation. To this end, we will study a special family of solutions for
x ∈ [0,∞) having the form

ϕ(t, x, ω; γ) = eγtu(x, ω; γ),

where for sufficiently large values of the parameter γ > 0, the random function
u(·, ω; γ) is defined by the following theorem.
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Theorem 1.1. There is a real number γ̄ ∈ [gmin, gmax] such that the following hold,
P almost surely: For every γ > γ̄ there exists a unique function u = u(·, ω; γ) ∈
C2((0,∞)) ∩ C([0,∞)) which solves the linear boundary value problem

uxx + (g(x, ω)− γ)u = 0, x > 0 (3)

and satisfies u(x, ω, γ) > 0 for all x > 0; u(0) = 1; and limx→+∞ u(x) = 0. If
γ < γ̄, then no such solution exists. For γ > γ̄, the limit

µ(γ) = lim
x→+∞

− 1

x
log u(x, ω; γ) (4)

holds with probability one. The decay rate µ(γ) is deterministic, and it is concave
and increasing in γ.

For γ > γ̄, ϕ(t, x, ω; γ) solves the linearized equation (2) on the half-line x ∈
[0,∞) with boundary condition ϕ(t, 0, ω; γ) = eγt for t ≥ 0 and initial condition
ϕ(0, x, ω; γ) = u(x, ω; γ) for all x ≥ 0. We define

Y (t, ω; γ) = sup{x ≥ 0 | ϕ(t, x, ω; γ) = 1/2},

and we refer to this stochastic process as the position of the wave ϕ at time t.
This process is nonnegative and non-decreasing in t. However, because u may
not be monotone decreasing, Y (t) may not be continuous. Using the fact that
log(u(x, ω; γ)) ∼ −µ(γ)x as x→ ∞, we see that the limit

lim
t→∞

Y (t, ω; γ)

t
=

γ

µ(γ)
= c(γ) (5)

holds with probability one. The properties of the function µ(γ) (see Lemma 2.6)
imply that the minimal speed

c∗ = inf
γ>γ̄

c(γ) = inf
γ>γ̄

γ

µ(γ)
> 0

is positive. The asymptotic speed of ϕ depends on the exponential decay rate of
the initial condition, u(x, ω; γ).

To analyze the fluctuations in Y (t, ω; γ), we must analyze fluctuations in the
tail of u(x, ω; γ) via a refinement of (4). We will assume that g satisfies a mixing
condition (38). This is a standard condition that appears in central limit theorems
for sums of dependent random variables; it controls long-range dependence in the
random field g(x, ω).

Theorem 1.2. Suppose that g(x, ω) satisfies the φ-mixing condition (38) with
∑

k φ(k)
1/2 <∞. Let γ > γ̄. Then as n→ ∞, the random variable

log(u(n, ω; γ)) + µ(γ)n√
n

(6)

converges in distribution to a centered Gaussian with variance σ2 ≥ 0. If σ2 > 0,
then for any M > 0 the family of processes {Vn(x, ω)}∞n=1 defined by

Vn(x, ω; γ) =
log(u(xn, ω; γ)) + µ(γ)xn

σ
√
n

, x ∈ [0,M ] (7)

converges weakly to a standard Brownian motion on [0,M ] as n→ ∞, in the sense
of weak convergence of measures on C([0,M ]) with the uniform topology.
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In principle, the variance σ2 could vanish, although we do not have a nontrivial
example of this phenomenon. If σ = 0, the convergence described by the theorem
means that the quotient (6) converges in distribution to zero. Later at Proposition
1, we construct a simple example for which σ is positive. From this we will obtain
a central limit theorem for the fluctuations of Y (t, ω; γ) about its asymptotic mean
behavior:

Theorem 1.3. Suppose that g(x, ω) satisfies the φ-mixing condition (38) with
∑

k φ(k)
1/2 < ∞. Let γ > γ̄, µ = µ(γ), and c = c(γ). Suppose that σ > 0,

where σ is defined in Theorem 1.2. For any α ∈ R,

lim
t→∞

P

(

Y (t, ω; γ)− ct

µ−1c
√
t

≤ α

)

= Φ(α/σ) =
1√
2π

∫ α/σ

−∞
e−y2/2 dy. (8)

For each M > 0 the family of processes

Zn(t, ω; γ) =
Y (nt, ω; γ)− cnt

µ−1cσ
√
n

, t ∈ [0,M ]

converges weakly, in the Skorohod space D, to a standard Brownian motion as n→
∞.

The processes Y (t, ω; γ) and Zn(t, ω; γ) may not be continuous. This is why we
consider convergence in the Skorohod space D – the space of functions on [0,M ]
which are right-continuous with left-hand limits, endowed with the Skorohod metric
topology [4].

1.2. The nonlinear equation. Now we return to the nonlinear equation (1). Frei-
dlin and Gärtner [8, 9] proved that if

lim
x→−∞

v0(x, ω) = 1, (9)

and

lim
x→∞

− 1

x
log v0(x, ω) > µ∗ = µ(γ∗), (10)

where
γ∗ = inf {γ > γ̄ | c(γ) = c∗} , (11)

then X(t, ω)/t → c∗, with probability one as t → ∞. The bound (10) means
that the initial condition v0 decays to zero more rapidly than ϕ(0, x, ω; γ∗), which
corresponds to the minimal speed c∗. This result can be extended to more slowly
decaying initial conditions. Specifically, if (9) and

lim
x→∞

− 1

x
log v0(x, ω) = µ(γ) < µ∗, (12)

hold for some γ ∈ (γ̄, γ∗) (with probability one), then

lim
t→∞

X(t, ω)

t
= c(γ) > c∗.

So, the decay rate of the initial condition v0 selects the asymptotic speed of the
front.

The fluctuations of the solution are a more delicate issue. One expects that the
large time behavior of v(t, x, ω) will be close to that of ϕ(t, x, ω; γ) if the initial
condition v0(x, ω) is sufficiently close to u(x, ω; γ) = ϕ(0, x, ω; γ) for x >> 1. Thus,
we might obtain a central limit theorem for X(t, ω) by comparing v to ϕ and using
Theorem 1.3. For technical reasons, however, our approach to estimating v by ϕ
allows us to consider only supercritical waves which move faster than the minimal
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speed c∗. We suppose that for some γ ∈ (γ̄, γ∗) the initial condition v0(x, ω) satisfies
(9) and

C1(ω)u(x, ω; γ) ≤ v0(x, ω) ≤ C2(ω)u(x, ω; γ), ∀ x > 0. (13)

and some positive constants C1(ω), C2(ω). Our main result for the nonlinear prob-
lem is the following:

Theorem 1.4. Suppose that g(x, ω) satisfies the φ-mixing condition (38) with
∑

k φ(k)
1/2 < ∞. Suppose that γ ∈ (γ̄, γ∗), c = c(γ), µ = µ(γ), and that v0

satisfies (9) and (13). Suppose that σ > 0, where σ is defined in Theorem 1.2.
Then for any α ∈ R,

lim
t→∞

P

(

X(t, ω)− tc

µ−1c
√
t

≤ α

)

= Φ(α/σ) =
1√
2π

∫ α/σ

−∞
e−y2/2 dy.

In [18] the author derived a complementary result in the case that the nonlinear
term is of the bistable or ignition type. Those nonlinearities correspond to “pushed
fronts”, which are not as sensitive to fluctuations in the leading edge of the wave.
Moreover, in that setting the asymptotic wave speed is unique. The strategy in [18]
was to show that the wave is stable with respect to fluctuations in the environment
that are far from the interface, so the motion of the interface depends primarily
on the local environment. That approach relies on stability analysis for generalized
traveling waves developed in [16], and resulted in a full invariance principle for the
wave position.

For KPP fronts (i.e. pulled fronts), stability is a more delicate issue and the
dynamics can be quite complex, even in the case of the homogeneous environment
where g is constant. This is due to the sensitive dependence of the wave on the
leading edge. For recent work on the stability of KPP fronts, see [1] and [11] for
the supercritical case, and [15] for the critical case. As the reader will see later, our
approach to proving Theorem 1.4 is to show that, with high probability as t→ ∞,
the wave position X(t, ω) (associated with v) does not lag too far behind Y (t, ω)
(associated with ϕ).

Observe that the initial condition v0(x) satisfying (13) is random. In particular,
this assumption excludes the case where v0(x) = Ce−λx for x >> 1. In that case
log(u(x, ω; γ)/v0(x)) behaves like a Brownian motion and is not bounded above

or below; typical values of u(x, ω; γ)/v0(x) are of the order O(eσ
√
x) as ε → ∞.

While the condition (12) is sufficient to select the asymptotic speed, it is not clear
whether this is also sufficient to guarantee the central limit theorem for X(t, ω). To
understand this point, consider the linear equation (2) with g being a constant (i.e. a

deterministic, homogeneous medium). If the initial condition is v0(x) ∼ e−λx+σ
√
x

then it is not hard to show that the corresponding wave position Y (t) satisfies

Y (t) ≥ ct + kσ
√
t for some positive constant k, and t sufficiently large. Thus,

even in the deterministic linear setting, fluctuations of order eσ
√
x in the initial

condition could lead to O(kσ
√
t) fluctuations in the position of the wave. We plan

to investigate this issue further in future work.
Let us also point out that our approach to analyzing the nonlinear equation

does not extend to the critical case γ = γ∗. For critical waves in the homogeneous
medium, there is a logarithmic gap between the solution of the linearized equation
and that of the nonlinear equation: Y (t)−X(t) ∼ 3

c∗ log t (see [15], and references
therein). In the random setting, however, it is not clear whether the gap between
ϕ and v is only logarithmic or much larger. If the gap is o(

√
t) then Theorem 1.4
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also holds in the critical case. We hope to address this critical case in future work,
as well. Fluctuations of the interface in the multidimensional setting is another
interesting and challenging topic. Although asymptotic spreading of the interface
has been proved in this setting ([14, 13, 18]), little is known about the statistics of
the fluctuations.

The rest of this paper is organized like this introductory section. In Section 2
we study the stationary equation (3). There we prove Theorem 1.1 and Theorem
1.2, and we derive some useful estimates on the function u(x, ω; γ). In Section 3 we
prove Theorem 1.3 for fluctuations in the position of ϕ which solves the linearized
evolution equation. In Section 4, we prove some technical estimates that are needed
to bridge the gap between solutions of the linearized and the nonlinear equations.
In particular, we show that the leading edge of (ϕ(t, x, ω; γ))2 is dominated by a
slower-moving wave; this is where we use the supercritical assumption, γ ∈ (γ̄, γ∗).
In Section 5 we prove Theorem 1.4 using the key estimate in Lemma 5.1 which
shows that, with high probability, X(t, ω) (associated with v) does not lag far
behind Y (t, ω) (associated with ϕ).

Acknowledgements: I am grateful to Guillaume Bal, Françios Hamel, Jean-
Michel Roquejoffre, and Lenya Ryzhik for stimulating discussions. Also, I thank
J.-M.R. for providing drafts of [1, 15].

2. The stationary equation.

2.1. Proof of Theorem 1.1. In this section we give a proof of Theorem 1.1. Most
aspects of the theorem are proved already in [8] (see Chapter 7.5 therein) using the
Feynman-Kac formula and probabilistic estimates. For completeness and in order
to establish some important estimates that we will use later, we give a proof here
using different arguments.

The constant γ̄ will be identified with the principal eigenvalue of the operator
uxx+gu on R (in the sense described below), and in order to construct the function
u(x, ω; γ) we will need to study properties of the eigenvalue problem on bounded
intervals. For an interval I = [a, b], let Γ(I, ω) be the principal eigenvalue and
ψI(x, ω) ≥ 0 the principal eigenfunction of

ψI
xx + g(x, ω)ψI = Γ(I, ω)ψI , x ∈ (a, b), (14)

with ψI(a) = ψI(b) = 0, and ψI(x) > 0 for all x ∈ (a, b), and normalized by
∫

I ψ
I dx = 1.

Lemma 2.1. There is a constant Γ∞ ∈ [gmin, gmax] such that the following state-
ments hold P-almost surely. If I1 ⊂ I2 ⊂ R are two intervals, then Γ(I1, ω) ≤
Γ(I2, ω). Also,

Γ∞ = lim
k→∞

Γ([−k, k], ω) = lim
k→∞

Γ([0, k], ω).

Proof of Lemma 2.1: If I1 ⊂ I2, the fact that Γ(I1, ω) ≤ Γ(I2, ω) follows from the
variational representation

Γ(I, ω) = max

{∫

I

−(ψx)
2 + g(x, ω)ψ2 dx | ψ ∈ H1

0 (I),

∫

I

ψ2 dx = 1

}

. (15)

Since gmin ≤ g ≤ gmax, this representation also implies gmin−π−2|I|−2 ≤ Γ(I, ω) ≤
gmax − π−2|I|−2, because π−2|I|−2 is the principal eigenvalue on of the Laplacian
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on I. It follows that the limit

Γ∞ = lim
k→∞

Γ([−k, k], ω) (16)

exists and satisfies Γ∞ ∈ [gmin, gmax]. We claim that Γ∞ is a constant, independent
of ω. This follows from the ergodicity assumption and the fact that Γ∞ must be
invariant with respect to the action of πx. Specifically, the stationarity of g implies
that with probability one,

Γ∞(πxω) = lim
k→∞

Γ([−k, k], πxω) = lim
k→∞

Γ([−k + x, k + x], ω)

holds for all x ∈ R. However, since Γ is nondecreasing in I, Γ([−k + x, k + x], ω) ≥
Γ([−(k − |x|), k − |x|], ω), and thus

Γ∞(πxω) ≥ lim
k→∞

Γ([−(k − |x|), k − |x|], ω) = Γ∞(ω), ∀ x ∈ R

holds with probability one. Since πx is measure-preserving, this implies Γ∞(πxω) =
Γ∞(ω), P-almost surely. Now the ergodicity assumption implies Γ∞ is constant,
almost surely.

Since Γ is nondecreasing in I, the limit

Γ+
∞ = lim

k→∞
Γ([0, k], ω)

also exists and satisfies Γ+
∞ ≤ Γ∞. Given δ > 0 and ε > 0, we may choose K large

so that P (Γ([−k, k], ω) > Γ∞ − ε) ≥ 1 − δ holds for all k ≥ K. Hence, because πx
is measure-preserving and g is stationary,

P
(

Γ+
∞(ω) > Γ∞ − ε

)

≥ P (Γ([0, 2k], ω) > Γ∞ − ε)

= P (Γ([0, 2k], πkω) > Γ∞ − ε)

= P (Γ([−k, k], ω) > Γ∞ − ε) ≥ 1− δ. (17)

Since δ and ε may be chosen arbitrarily small, this implies Γ+
∞ ≥ Γ∞ holds with

probability one, so Γ+
∞ = Γ∞.

In the construction of u(x, ω; γ) and in the subsequent analysis we will make
frequent use of the following estimates:

Lemma 2.2. Let I = [a, b] and γ > Γ∞. Let ε > 0. There is a constant C > 0,
such that if w(·, ω) satisfies

wxx + (g(x, ω)− γ)w ≥ 0, x ∈ (a, b)

then

w(x, ω) ≤ max(0, w(a, ω))Ce−(x−a)(
√
γ−Γ∞−ε) +max(0, w(b, ω))Ce(x−b)(

√
γ−Γ∞−ε),

for all x ∈ I. In particular, if w(a, ω) ≤ 0 and w(b, ω) ≤ 0, then w ≤ 0 for all
x ∈ [a, b]. The constant C depends on ε, gmax and γ, but not on ω or I.

Proof of Lemma 2.2: We first prove the result assuming w(a, ω) = 1 and w(b, ω) ≤
0. Let δ > 0, and define z = eδ(x−a)w(x, ω)− e−(x−a) which satisfies

zxx − 2δzx + (g − γ + δ2)z ≥
(

−1 + 2δ − (g − γ + δ2)
)

e−(x−a), x ∈ (a, b)
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and z(a) = 0, z(b) < 0. After multiplying this equation by z+ = max(z, 0) ∈ H1
0 (I)

and integrating over I, we obtain
∫

I

−(z+)2x + g(z+)2 dx (18)

≥ (γ − δ2)

∫

I

(z+)2 dx+

∫

I

(

−1 + 2δ − (g − γ + δ2)
)

e−(x−a)z+ dx.

By the representation (15), the left side is bounded by Γ(I, ω)
∫

I(z
+)2 dx. Therefore,

(γ − δ2 − Γ(I))

∫

I

(z+)2 dx ≤ −
∫

I

(

−1 + 2δ − (g − γ + δ2)
)

e−(x−a)z+ dx.

For β > 0, let δ2 = γ − Γ∞ − β ≤ γ − Γ(I, ω) − β and apply the Cauchy-Schwarz
inequality on the right side to obtain:

β

∫

I

(z+)2 dx ≤ 1

2β

∫

I

(

−1 + 2δ − (g − γ + δ2)
)2
e−2(x−a) dx+

β

2

∫

I

(z+)2 dx.

Therefore,
∫

I

(z+)2 dx ≤ β−2

∫ ∞

a

(

−1 + 2δ − (g − γ + δ2)
)2
e−2(x−a) dx

≤ (1 + 2δ + gmax + Γ∞ + β)2

2β2
.

Observe that the constant on the right side is independent of I and ω. Returning
to (18) and applying Cauchy-Schwarz again, we conclude that there is a constant
C1 – depending only on δ, gmax, γ, Γ∞, and β – such that

∫

I

(z+x )
2 ≤ C1.

Consequently, for all x ∈ I

z(x) ≤ z+(x) =

∫ x

a

z+x (s) ds ≤
√
x− a

(∫

I

(z+x )
2 dx

)1/2

≤
√

C1(x− a)

and thus,

w(x, ω) = e−δ(x−a)(z + e−(x−a)) ≤ e−δ(x−a)(
√

C1(x − a) + e−(x−a)).

Now we let β be small so that δ =
√
γ − Γ∞ − β ≥ √

γ − Γ∞ − ε/2 and we have

w(x, ω) ≤ C2e
−(x−a)(

√
γ−Γ∞−ε)

= max(0, w(a, ω))C2e
−(x−a)(

√
γ−Γ∞−ε)

+max(0, w(b, ω))C2e
(x−b)(

√
γ−Γ∞−ε)

since we have assumed w(a, ω) = 1 and w(b, ω) ≤ 0. In the case w(a, ω) ≤ 0 and
w(b, ω) = 1, a very similar argument (with z = eδ(b−x)w − ex−b) leads to the same
bound with the same constant C2, independent of I and ω. The general case then
follows from the linearity of the equation.

The following corollary will enable comparison of functions on the unbounded
interval I = [a,∞).
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Corollary 1. Let I = [a,∞) and γ > Γ∞ and ε > 0. There is a constant C > 0
such that if w satisfies

wxx + (g(x, ω)− γ)w ≥ 0, ∀ x > a

with lim supx→∞ w(x, ω) <∞, then

w(x, ω) ≤ max(0, w(a, ω))Ce−(x−a)(
√
γ−Γ∞−ε), ∀ x ∈ I. (19)

In particular, if w(a, ω) ≤ 0, then w(x, ω) ≤ 0 for all x ≥ a.

Proof of Corollary 1: If w vanishes outside an interval [a, b], then this is an imme-
diate consequence of Lemma 2.2. Otherwise, since M(ω) = lim supx→∞ w(x, ω)
is finite, we may choose a point b (depending on ω) arbitrarily large such that
w(b, ω) ≤ 2M(ω). Then apply Lemma 2.2 on the interval [a, b] to conclude that

w(x, ω) ≤ max(0, w(a, ω))Ce−(x−a)(
√
γ−Γ∞−ε)+2MCe(x−b)(

√
γ−Γ∞−ε), ∀ x ∈ [a, b].

Since b may be chosen arbitrarily large, and since C is independent of b and ω, we
conclude that w(x, ω) satisfies (19) for all x ≥ a.

Now we continue with the proof of Theorem 1.1. The solution u(x, ω; γ) is defined
as the limit, as k → ∞, of the function uk,γ(x, ω) satisfying the boundary value
problem:

uk,γxx + (g(x, ω)− γ)uk,γ = 0, x ∈ (0, k) (20)

with uk,γ(0) = 1 and uk,γ(0) = 0. If γ > Γ∞, then γ > Γ([0, k], ω) and the
Fredholm alternative implies that there exists a unique solution to this problem.
For each k, uk,γ(x) ≥ 0 for all x ∈ [0, k]. This follows from Lemma 2.2 applied to
the function w = −uk,γ(x). Moreover, for each x ∈ (0, k), uk,γ(x, ω) is increasing
in k. Specifically, if j > k then we may apply Lemma 2.2 to the function w =
uk,γ(x̄, ω) − uj,γ(x̄, ω) to conclude that uj,γ(x, ω) ≥ uk,γ(x, ω) for all x ∈ [0, k] if
j > k.

Therefore, for all γ > Γ∞ we may define

u(x, ω; γ) = lim
k→∞

uk,γ(x, ω). (21)

By Lemma 2.2, uk,γ(x, ω) ≤ Ce−(
√
γ−Γ∞−ε)x holds for all x ∈ [0, k] with a constant

C = C(ε, γ) that is independent of k and ω. Therefore, the limit u(x, ω; γ) is also
finite and satisfies

u(x, ω; γ) ≤ Ce−(
√
γ−Γ∞−ε)x (22)

with the same constant C, independent of ω. Because u(x, ω; γ) is finite, elliptic
regularity implies that u(·, ω; γ) satisfies equation (3) for x > 0, and u(0, ω; γ) = 1
and u(x, ω; γ) > 0 for x > 0. Thus we have established that if γ > Γ∞, there exists
a function u(x, ω; γ) with the desired properties. With Corollary 1 it is not hard to
see that the solution u(x, ω; γ) must be unique. Moreover, by applying Corollary 1

to the function w = e−x
√
γ−gmin − u(x, ω; γ) we obtain the lower bound

u(x, ω; γ) ≥ e−x
√
γ−gmin , ∀ x > 0. (23)

Let us also observe that for each x, the functions y 7→ u(x + y, ω; γ) and y 7→
u(x, ω; γ)u(y, πxω; γ) satisfy the same boundary value problem on [0,∞), because
of g(x + y, ω) = g(y, πxω). Therefore the uniqueness of u immediately implies the
following useful relation:
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Lemma 2.3. With probability one, u(x, ω; γ) satisfies

u(x+ y, ω; γ) = u(x, ω; γ)u(y, πxω; γ) (24)

for all x ≥ 0, y ≥ 0, γ > γ̄.

Now suppose γ < Γk < Γ∞. If ψk = ψI is the eigenfunction (14) for I = [0, k],
then the function η(t, x) = e(Γk−γ)tψk(x) satisfies ηt = ηxx+(g(x)−γ)η and η ↗ ∞.
If there were a solution u(x, ω; γ) satisfying u > 0 for x ≥ 0, then the maximum
principle would imply that for suitable constant C, u(x, ω; γ) > Cη(t, x) must hold
for all t and x ∈ [0, k]. However, this cannot hold since η → ∞ as t→ ∞. Therefore,
for γ < Γ∞, no such solution exists since Γk → Γ∞ as k → ∞.

We now have established the first part of Theorem 1.1 and identified γ̄ = Γ∞.
Next we show that the limit (4) exists, almost surely, and satisfies the stated bounds.
For each integer n ≥ 1, we may iterate the equality (24) n− 1 times to obtain

log(u(n, ω; γ)) = log

(

n−1
∏

k=0

u(1, πkω; γ)

)

=
n−1
∑

k=0

log u(1, πkω; γ). (25)

Let qk(ω) = log u(1, πkω; γ). The F -measurability of qk may be proved as in [19].
By the bounds (22) and (23), E[qk] is finite, so the ergodic theorem implies that the
limit

− µ(γ) = lim
n→∞

1

n
log(u(n, ω; γ)) = lim

n→∞
1

n

n−1
∑

k=0

qk(ω) = E [q0] = E (log u(1, ω; γ))

(26)
holds with probability one. The fact that µ is independent of ω follows from the
ergodicity assumption, since we can show (using Lemma 2.3) that µ(γ) is invariant
under the action of every πk, k ∈ R. Elliptic regularity implies that the limit holds
along continuous x, as well. This concludes the proof of Theorem 1.1.

2.2. Properties of µ(γ) and u(x, ω; γ). In this section we gather some useful
observations about the functions µ(γ) and u(x, ω; γ).

Lemma 2.4. The following bounds hold P-almost surely. If γ′ > γ > γ̄, then

u(x, ω; γ) ≥ u(x, ω; γ′)
u(y, ω; γ)

u(y, ω; γ′)
(27)

for all 0 ≤ y ≤ x.

Proof. By (24) we know that,

u(x, ω; γ)

u(y, ω; γ)
= u(x− y, πyω; γ) and

u(x, ω; γ′)

u(y, ω; γ′)
= u(x− y, πyω; γ

′)

hold for all x ≥ y. By applying Corollary 1 to the function w(x) = u(x−y, πyω; γ′)−
u(x − y, πyω; γ) on the interval x ∈ [y,∞), we see that u(x − y, πyω; γ) ≥ u(x −
y, πyω; γ

′) for all x ≥ y, so (27) must hold for all x ≥ y.

Lemma 2.5. Let γ′ > Γ∞, γ > Γ∞ and σ = 2γ − γ′ > Γ∞. Then

(u(x, ω; γ))2 ≤ u(x, ω; γ′)u(x, ω;σ) (28)

holds for all x ≥ 0. Also, for any ε > 0, there is a constant C such that

(u(x, ω; γ))2 ≤ u(x, ω; γ′)Ce−(
√
σ−Γ∞−ε)x (29)
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holds for all x ≥ 0. The constant C depends on σ and ε, but not on ω.

Proof. Let σ = 2γ − γ′ > Γ∞. Since σ > Γ∞, the function u(x, ω;σ) is well-
defined. To make the notation simpler in what follows, we let θ(x, ω) = u(x, ω; γ′)
and η(x, ω) = u(x, ω;σ). Now consider the function z(x, ω) =

√

θ(x)η(x). A simple
computation of zxx/z shows that z satisfies the equation

zxx + (g(x, ω)− γ)z = −z
4

(

θx
θ

− ηx
η

)2

. (30)

Because the right side is nonpositive and because z(0) = 1 and z(x) > 0 for x > 0,
we may apply Corollary 1 to the function w(x) = u(x, ω; γ) − z to conclude that
w ≤ 0 for all x ≥ 0. Since u(x, ω; γ) > 0 this means that

(u(x, ω; γ))2 ≤ z(x)2 = u(x, ω; γ)u(x, ω;σ) (31)

holds for all x > 0. The bound (29) now follows immediately from (19) applied to
the function w = u(x, ω;σ).

Lemma 2.6. For γ > γ̄, the function γ 7→ µ(γ) is concave. Also, (γ − γ̄)
1/2 ≤

µ(γ) ≤ (γ − gmin)
1/2

.

Proof. Let γ1 < γ2 be such that Γ∞ < γ1 and γ2 ≤ 2γ1 + Γ∞. Then we may apply
Lemma 2.5 with γ = (γ1+γ2)/2 and γ′ = γ2. In this case, σ = γ1, and (28) implies

2µ(
γ1 + γ2

2
) = 2µ(γ) ≥ µ(γ′) + µ(σ) = µ(γ1) + µ(γ2)

Since this holds for all such γ1 and γ2, µ must be concave. The upper and lower
bound on µ follow from the bounds (22) and (23) on u.

Lemma 2.7. Let γ′ > γ > γ̄ and δ ∈ [0,
√
γ′ − gmin −√

γ − gmin ]. Then

u(x, ω; γ′) ≤ e−δxu(x, ω; γ), ∀ x ≥ 0 (32)

holds with probability one. Thus µ(γ′) ≥ µ(γ) +
√
γ′ − gmin −√

γ − gmin > µ(γ).

Proof. Consider the function z = e−δxu(x, ω; γ) which satisfies

zxx+(g(x, ω)−γ′)z = e−δx
(

δ2u(x, ω; γ)− 2δux(x, ω; γ)− (γ′ − γ)u(x, ω; γ)
)

(33)

The function η = log u(x, ω; γ) satisfies ηxx + (ηx)
2 + (g(x) − γ) = 0. If ηx attains

a negative local minimum at a point x̄, this implies that g(x̄) < γ and ηx(x̄) =

−
√

γ − g(x̄) ≥ −√
γ − gmin. Therefore,

ux(x, ω; γ) ≥ −√
γ − gminu(x, ω; γ) (34)

holds for all x. Therefore,

zxx + (g(x, ω)− γ′)z

≤ e−δx
(

δ2u(x, ω; γ) + 2δ
√
γ − gminu(x, ω; γ)− (γ′ − γ)u(x, ω; γ)

)

If δ ∈ [0,
√
γ′ − gmin − √

γ − gmin ], the right hand side is nonpositive. Now
by applying Corollary 1 to the function w = u(x, ω; γ′) − z, we conclude that
u(x, ω; γ′) ≤ z.
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2.3. Fluctuations in the tail of u. We are ready to prove Theorem 1.2 which
describes fluctuations in the tail of u(x, ω; γ). We have shown that the functions
u(x, ω; γ) decay exponentially with rate −µ(γ). Now consider the partial sums

SN (ω; γ) = log u(N,ω; γ) =

N−1
∑

k=0

qk(ω),

where qk(ω) = log u(1, πkω; γ). We will show that for fixed γ ∈ (γ̄,∞), SN sat-

isfies the central limit theorem, meaning that the quotient (SN + Nµ(γ))/
√
N is

asymptotically normally distributed as N → ∞. One approach to obtaining a cen-
tral limit theorem (CLT) for SN is to use the method of martingale approximation.
This strategy can be made to work via the following theorem. Let F−

k ⊂ F denote

the σ-algebra generated by g(x, ω) for x ≤ k. Also, let F+
j denote the σ-algebra

generated by g(x, ω) for x ≥ j.

Theorem 2.8 (See Hall and Heyde [10], Section 5.4). Suppose that a stationary
sequence {ηk}k ⊂ L2(Ω,F ,P) satisfies E[ηk] = 0, and that the two series

∞
∑

k=1

(

η0 − E[η0|F−
k ]
)

and

∞
∑

k=1

E[ηk|F−
0 ] (35)

converge in L2(Ω,F ,P). Then, the limit

σ2 = lim
N→∞

1

N
E





∣

∣

∣

∣

∣

N−1
∑

k=0

ηk

∣

∣

∣

∣

∣

2


 (36)

exists and is finite. If σ2 > 0 and Sk =
∑k−1

j=0 ηj, then as n → ∞ the family of
processes

Z̄n(x) =
1

σ
√
n
(Sk + (nx− k)ηk) , k ≤ nx ≤ k + 1, k = 0, 1, . . . , n− 1 (37)

converges weakly to a standard Brownian motion on [0, 1], in the sense of C([0, 1])
with the topology of uniform convergence.

In order to apply the theorem with ηk = qk + µ = log u(1, πkω; γ) + µ, we will
require a mixing condition on the random field g(x, ω). Suppose that φ : [0,∞) →
[0,∞) is a continuous decreasing function such that φ(+∞) = 0. We say that the
random field g(x, ω) is φ-mixing if the following holds: for all j ≥ k and any
ξ ∈ L2(Ω,F−

k ,P) and η ∈ L2(Ω,F+
j ,P),

|E [ξη]− E[ξ]E[η]| ≤ (φ(j − k))1/2
(

E[ξ2]E[η2]
)1/2

. (38)

Let us suppose that g(x, ω) is φ-mixing for some φ satisfying
∑∞

k=1 φ(k)
1/2 <∞.

Now we consider the first series in (35):
∞
∑

k=1

(

η0 − E[η0|F−
k ]
)

=

∞
∑

k=1

(

q0 − E[q0|F−
k ]
)

.

We need to show that E
[

|q0 − E[q0|F−
k ]|2

]

decays sufficiently fast as k → ∞ so

that the series converges in L2. Since E[q0|F−
k ] is the best L2 approximation of

q0 that is F−
k -measurable, we can prove the desired result by constructing an F−

k -
measurable random variable q′0 which is very close to q0 (error decays fast with
k → ∞). Since q0 = log u(1, ω; γ), a natural candidate is obtained by solving the
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differential equation with homogeneous Dirichlet condition at x = k. Let wk(x, ω; γ)
solve

wxx + (g(x, ω)− γ)w = 0, x ∈ [0, k] (39)

with wk(0, ω; γ) = 1 and wk(k, ω; γ) = 0. Then for all x ∈ (0, k),

u(x, ω; γ) = wk(x, ω; γ) + zk(x, ω; γ)u(k, ω; γ)

where zk(x, ω; γ) solves (39) with zk(0) = 0 and zk(k) = 1. Both wk and zk are
F−

k -measurable. Therefore, with q′0 = logwk(1, ω; γ) we have

q0 − q′0 = − log

(

wk(1, ω; γ)

u(1, ω; γ)

)

= − log

(

1− zk(1, ω; γ)u(k, ω; γ)

u(1, ω; γ)

)

.

Let ε = (
√
γ − γ̄)/2 > 0. By Lemma 2.2 there is a constant C1 independent of

k and ω such that u(k, ω; γ) ≤ C1e
−kε. By applying the same Lemma to zk, we

see that 0 ≤ zk(1, ω; z) ≤ C1e
(1−k)ε also holds. The maximum principle implies

that u(1, ω; γ) is bounded below by ρ(1) > 0 where ρ(x) satisfies ρxx + (gmin − γ)ρ
for x ∈ [0, 2] with ρ(0) = 1 and ρ(2) = 0. Consequently, there is a constant C2,
depending only on γ, such that

q0 − q′0 ≤ log
(

1 + C2e
−kε
)

holds for all k ≥ 1, with probability one. This upper bound, and a similar lower
bound, imply that

E
[

|q0 − E[q0|F−
k ]|2

]

≤ E
[

|q0 − q′0|2
]

≤ C3e
−kε

for some constant C3 depending only on ε. So, the first series in (35) converges in
L2(Ω,F ,P).

Next, we consider the series
∞
∑

k=1

E[ηk|F−
0 ].

We have to show that E[|E[ηk|F−
0 ]|2] decays rapidly as k → ∞, and this is where

we use the assumption that g is φ-mixing. Observe that each qk and ηk is F+
k

measurable. This follows from the fact that qk = log u(1, πkω) = log ũk(k + 1, ω),
where ũk is defined for x ≥ k by

ũkxx + (g(x, ω)− γ)ũk = 0, x > k; ũk(k, ω) = 1; lim
x→∞

ũk(x, ω) = 0.

Hence, ũk depends only on g(x, ω) for x ≥ k. Let θ ∈ L2(Ω,F−
0 ,P) with E(θ2) = 1.

Because ηk is F+
k measurable, θ is F−

0 measurable, and E[ηk] = 0, we have
∣

∣E
(

θE[ηk|F−
0 ]
)∣

∣ = |E (θηk)| =
∣

∣E
(

θE[ηk|F+
j ]
)∣

∣

≤ φ(k)1/2E[(ηk)
2]1/2 ≤ Cφ(k)1/2. (40)

The last two inequalities follow from the mixing condition (38). Therefore, as

θ ∈ L2(Ω,F−
0 ,P) was arbitrary, we conclude that E

(

|E[ηk|F−
0 ]|2

)1/2 ≤ Cφ(k)1/2.
Now the triangle inequality implies

E

[

(

n
∑

k=m

E[ηk|F−
0 ])2

]1/2

≤
n
∑

k=m

E
[

(E[ηk|F−
0 ])2

]1/2 ≤
n
∑

k=m

Cφ(k)1/2.

Since the series
∑∞

k=1 φ(k)
1/2 converges, it follows that

∑∞
k=1 E[ηk|F−

0 ] converges
in L2(Ω,F ,P).
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We have shown that the random variables ηk = qk + µ = log u(1, πkω; γ) + µ
satisfy the hypotheses of Theorem 2.8. Therefore, Theorem 1.2 follows immediately
from an application of Theorem 2.8.

We can construct a class of examples for which the variance σ2 > 0 in Theorem
1.2 is positive. Let {gk(ω̃)}∞k=−∞ be a family of independent, identically distributed

random variables on a probability space (Ω̃, F̃ , P̃). Assume also that gmin ≤ gk ≤
gmax with probability one and Var(gk) > 0. Now we define (Ω,F ,P) to be the
product space with product measure P defined in the usual way, and for k ∈ Z let
πk act on Ω as the shift-operator in the natural way: πk : (. . . , ω̃−1, ω̃0, ω̃1, . . . ) 7→
(. . . , ω̃k−1, ω̃k, ω̃k+1, . . . ). Define the continuous, piecewise linear, random function
g(x, ω) by

g(x, ω) = (1− x+ k)gk(ω) + (x− k)gk+1(ω) ∀ x ∈ [k, k + 1), (41)

for each k ∈ Z. Because the gk are independent and idendically distributed, the
family {πk}k∈Z is measure-preserving and ergodic in its action on (Ω,F ,P). So,
Theorem 1.1 applies. Moreover, the mixing condition holds so Theorem 1.2 also
applies.

Proposition 1. Let g(x, ω) be defined by (41). For each γ > γ̄, the constant σ
defined by Theorem 1.2 is positive.

Proof of Proposition 1: If ηk = log(u(1, πkω; γ)) + µ, then

σ2 = lim
n→∞

1

n

n−1
∑

k=0

n−1
∑

j=0

E[ηkηj ] = E[η20 ] + lim
n→∞

2

n

n−1
∑

k=1

(n− k)E[η0ηk]. (42)

We claim that every term in the sum (42) is nonnegative, while E[η20 ] must be posi-
tive. It is useful to think of the variables ηj(ω) as functions of the random sequence
{gk}∞k=j . For each positive integer K, we may approximate η0 by η′0(g0, g1, . . . , gK)

where η′0 = log(wK(1, ω; γ)) + µ, and wK was defined at (39). Similarly, we may
approximate ηj by η′j(gj, gj+1, . . . , gj+K) where η′j = logwK(1, πjω; γ) + µ. Both
η′0 and η′j are increasing functions of their arguments, so Lemma 2.9 implies that

Cov(η′0η
′
j) ≥ 0. Since E[η0ηj ] = limK→∞ Cov[η′0η

′
j ], it follows that E[η0ηj ] ≥ 0 for

all j ≥ 0. Because η0 is an increasing function of each of the variables {gk}∞k=0 and
Var(gk) > 0, η0 cannot be constant. Thus E[η20 ] > 0.

Lemma 2.9. Let X = (X1, . . . , Xn) ∈ R
n be a vector of independent random

variables. Suppose that Xj takes values in the interval Ij ⊂ R: P(Xj ∈ Ij) = 1 for
j = 1, . . . , n. Let I =

∏n
j=1 Ij. Suppose that f(x) : I → R and g(x) : I → R are

such that E[f(X)2] <∞ and E[g(X)2] <∞ and for each j = 1, . . . , n either

∂f(x)

∂xj
≥ 0 and

∂g(x)

∂xj
≥ 0

holds for all x ∈ I or

∂f(x)

∂xj
≤ 0 and

∂g(x)

∂xj
≤ 0

holds for all x ∈ I. Then Cov(f(X), g(X)) ≥ 0.
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Proof. This follows from Lemma 2.3 of [6]. If X ′ = (X ′
1, . . . , X

′
n) is an independent

copy of the random vector X , that lemma gives the representation

Cov(f(X), g(X)) =
1

2

∑

A([n]

1
(

n
|A|
)

(n− |A|)
∑

j /∈A

E[∆jg(X)∆jf(X
A)]

where ∆jg(X) = g(X1, . . . , Xj−1, X
′
j , Xj+1, . . . , Xn)− g(X) and XA is the random

vector given by XA
i = X ′

i if i ∈ A and XA
i = Xi if i /∈ A. By our assumptions on f

and g, both ∆jg(X) and ∆jf(X
A) have the same sign, almost surely. Thus, each

term in the sum satisfies E[∆jg(X)∆jf(X
A)] ≥ 0.

3. CLT for traveling front solutions of the linear equation. In this section
we prove Theorem 1.3. For γ > γ̄ fixed, let c = c(γ) and µ = µ(γ). The function
ϕ(t, x, ω; γ) = eγtu(x, ω; γ) solves the linear boundary value problem

∂tϕ = ϕxx + g(x, ω)ϕ, x > 0, t ∈ R

ϕ(t, 0) = eγt, t > 0,

ϕ(0, x) = u(x, ω; γ), x > 0, (43)

For δ ∈ (0, 1], let us define

Yδ(t, ω; γ) = sup{x ≥ 0 | ϕ(t, x, ω; γ) ≥ δ}. (44)

Sometimes we abbreviate: Yδ(t). In Theorem 1.3, Y (t, ω; γ) = Yδ(t) with δ = 1/2.
This stochastic process is nonnegative and non-decreasing in t. However, because
u may not be monotone decreasing, Yδ(t) may have jumps. The F -measurability of
Yδ(t, ω; γ) may be proved as in [19].

We define the random function R(x, ω; γ) : [0,∞)× Ω → R by

R(x, ω; γ) = log u(x, ω; γ) + µ(γ)x (45)

so that

u(x, ω; γ) = e−µx+R(x,ω;γ),

and R(x, ω; γ)/x → 0 with probability one as x → ∞. For suitable hypotheses on
g, Proposition 1 shows that R(x, ω; γ) behaves like a Brownian motion for large x.
Specifically, for anyM > 0, the family of processes Vn(x, ω; γ) = R(xn, ω; γ)/(σ

√
n)

converges weakly in C([0,M ]) to a Brownian motion, as n→ ∞. For δ ∈ (0, 1] fixed,
the wave’s position is

Yδ(t, ω) = sup{x ≥ 0 | − x+ µ−1R(x, ω; γ) + ct = µ−1 log(δ)}.
Therefore, if we define ht = Yδ(t)− ct we have

ht(ω) = sup{h ≥ −ct | − h+ µ−1R(h+ ct, ω; γ) = µ−1 log(δ)} (46)

Theorem 1.3 now follows immediately from the next lemma applied to ht, with
W = µ−1R and δ = 1/2.

Lemma 3.1. Let κ > 0. Suppose that W (x, ω) : [0,∞) × Ω → R is a continuous,
random process on (Ω,F ,P) satisfying

lim
x→∞

W (x, ω)

x
= 0

and W (0, ω) = 0, P-almost surely. Also, suppose that the family of processes
{n−1/2W (nx, ω)}∞n=1 satisfies W (0, ω) = 0, P-a.s., and converges weakly as n→ ∞
to κB(x) where B(x) is a standard Brownian motion on the interval [0,M ], for any
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M (in the sense of weak convergence of measures on C([0, 1]) with the topology of
uniform convergence). Let r < 0 and c > 0. Define the random process ht by

ht(ω) = sup {h ≥ −ct | W (h+ ct, ω) = h+ r} . (47)

Then as t → ∞, (ht)/
√
t converges in distribution to a Gaussian random variable

with zero mean and variance κ2c2. If κ2 > 0, then the family of processes

Hn(t) =
1

κc
√
n
hnt (48)

converges weakly (as n → ∞) to a standard Brownian motion on [0, T ], in the
Skorohod space D.

Proof. First we show that the finite dimensional distributions of Hn(t) converge to
those of a Brownian motion. Then we show that the induced family of measures is
tight in the Skorohod space D. These two conditions imply the weak convergence
stated in the lemma (see Chapter 3, Section 15 of [4]).

For 0 ≤ t1 < t2 < · · · < tk ≤ T , we show that the finite dimensional distributions
of {htin/

√
n}ki=1 converge to those of {κB(cti)}ki=1. Since c > 0 and r < 0, the

assumptions on W imply that with probability one ht is well-defined and finite for
all t > 0. Let yi = htin+ ctin, i = 1, . . . , k. Observe that yi is defined as the largest
point of intersection between the line y 7→ y− ctin+ r and the function W (y) which
behaves like Brownian motion:

W (yi) = yi − ctin+ r. (49)

Let us now define a subset of Ω on which we can control the possible location of
the intersection points. For ε ∈ (0, 1/2) and ŷ ∈ R, let

S(ε, ŷ) = {ω ∈ Ω | min(−εŷ,−εy) ≤W (y, ω) ≤ max(εŷ, εy), ∀y ≥ 0}.

Because W (·, ω) is continuous and grows at most sublinearly, we may choose a
constant ŷ = ŷ(ε) sufficiently large so that P (S(ε, ŷ(ε))) ≥ 1−ε. For ŷ defined in this
way, set Sε = S(ε, ŷ(ε)). By considering the intersection of the line y 7→ y− ctin+ r
with the functions y 7→ max(εŷ, εy) and y 7→ min(−εŷ,−εy), we see that if ω ∈ Sε,
then any solution of (49) must satisfy

yi ≥ min ((1 − 2ε)(ctin− r) , −εỹ + ctin− r) ,

yi ≤ max ((1 + 2ε)(ctin− r) , εỹ + ctin− r) .

Therefore, if ω ∈ Sε, then yi must lie in the interval Iεi,n:

Iεi,n = {y ∈ R | |y − ctin| ≤ max (2εctin+ (1 + 2ε)|r| , εỹ + |r|) } .

See the figure for an illustration of this point.
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min(−εŷ,−εy)

max(εŷ, εy)

y

W (y, ω)

y − ctin+ r

Iεi,n

Let αi ∈ R. Since P(SC
ε ) ≤ ε and htin =W (yi)− r, we have

P

(

{n−1/2htin > αi, ∀ i}
)

= P

(

{n−1/2htin > αi, ∀ i} ∩ Sε

)

+ P

(

{n−1/2htin > αi, ∀ i} ∩ SC
ε

)

≤ P

(

{n−1/2htin > αi, ∀ i} ∩ Sε

)

+ ε

= P

(

{n−1/2W (yi) > rn−1/2 + αi, ∀ i} ∩ Sε}
)

+ ε

≤ P

(

{ω | sup
y∈Iε

i,n

n−1/2W (y) > rn−1/2 + αi, ∀ i}
)

+ ε.

The family of processes {n−1/2W (nt, ω)}∞n=1 converges weakly in C([0, 2cT ]) to
κB(t), so it is tight in C([0, 2cT ]). Therefore, as n→ ∞ the last quantity converges
to

lim
n→∞

P

(

{ω | sup
y∈Iε

i,n

n−1/2W (y) > rn−1/2 + αi, ∀ i}
)

= P






sup
s≥0

|s−cti|≤2εcti

κB(s) > αi, ∀ i






. (50)

Since ε > 0 is arbitrary and B(s) is almost-surely continuous, we have

lim sup
n→∞

P

(

{n−1/2htin > αi, ∀ i}
)

≤ P ({κB(cti) > αi, ∀ i}) .

A lower bound is proved in a similar manner:

P

(

{n−1/2htin > αi, ∀ i}
)

≥ P

(

{n−1/2htin > αi, ∀ i} ∩ Sε

)

,

which is bounded from below by

P

(

{ω | (W (ctin)− r)n−1/2 > αi − n−1/2 sup
y∈Iε

i,n

|W (y)−W (ctin)|, ∀ i}
)

.
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Because {n−1/2W (nt, ω)}∞n=1 is tight in C([0, 2cT ]), for any δ1, δ2 > 0 we may
choose ε smaller and n sufficiently large so that

P

(

{ω | n−1/2 sup
y∈Iε

i,n

|W (y)−W (ctin)| < δ1, ∀ i}
)

≥ 1− δ2.

Therefore,

P

(

{ω | n−1/2htin > αi, ∀ i}
)

≥ P

(

{(W (ctin)− r)n−1/2 > αi − δ1, ∀ i}
)

− δ2

for n sufficiently large. Thus, since δ1 and δ2 may be chosen arbitrarily small,

lim inf
n→∞

P

(

{n−1/2htin > αi, ∀ i}
)

≥ P (κB(cti) ≥ αi, ∀ i)

holds, as well. This proves convergence of the finite dimensional distributions.
Now we prove tightness in D. We will show that for any ε1 > 0 and ε2 > 0,

lim sup
n→∞

P






sup

s,t∈[0,T ]
|s−t|≤δ

|Hn(t)−Hn(s)| > ε1






≤ ε2 (51)

holds if δ > 0 is sufficiently small, and

sup
n≥1

P (|Hn(0)| > α) ≤ ε2 (52)

holds if α is large enough. These two conditions imply tightness in D (and in
C([0, T ]), if the processes Hn(t) were continuous [4]). For given n and any s, t ∈
[0, T ], let ys = hsn + csn and yt = hst + cst. Then observe that

|Hn(t)−Hn(s)| =
1

κc
√
n
|W (ys)−W (yt)|.

Just as before, we see that for all ω ∈ Sε

|ys − csn| ≤ max (2εcsn+ (1 + 2ε)|r| , εỹ + |r|) ,
and

|yt − ctn| ≤ max (2εctn+ (1 + 2ε)|r| , εỹ + |r|) .
Therefore, if s, t ∈ [0, T ], |s − t| ≤ δ, and ω ∈ Sε, we must have n−1|ys − yt| ≤
cδ + 4Tcε+ 6n−1|r| + 2n−1εỹ(ε). For a given δ, let ε > 0 be sufficiently small and
then nδ,ε sufficiently large so that cδ + 4Tcε+ 6n−1|r| + 2n−1εỹ(ε) ≤ 2cδ holds for
all n ≥ nδ,ε. Now we return to (51). For all n ≥ nδ,ε we have

P






sup

s,t∈[0,T ]
|s−t|≤δ

|Hn(t)−Hn(s)| > ε1







= P






sup

s,t∈[0,T ]
|s−t|≤δ

1√
n
|W (ys)−W (yt)| > κcε1







≤ P






sup

r,τ∈[0,2cT ]
|r−τ |≤2cδ

1√
n
|W (nr) −W (nτ)| > κcε1






+ P(SC

ε ).
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Recall that P(SC
ε ) ≤ ε. Now because ε ∈ (0, 1/2) is arbitrary and because

lim sup
n→∞

P






sup

r,τ∈[0,2cT ]
|r−τ |≤2cδ

1√
n
|W (nr) −W (nτ)| > κcε1






≤ ε2/2

if δ is sufficiently small, this proves that (51) holds for δ sufficiently small.
Finally, we prove that (52) holds. Since W (x)/x → 0 with probability one,

W (h, ω) = h+ r can have no solution if h is sufficiently large, depending on ω and
r. Therefore, for any ε > 0, P(h0 ≥ K) ≤ ε if K is sufficiently large. Since h0 ≥ 0
and Hn(0) = h0/(κc

√
n), this implies that for any ε > 0, P(|Hn(0)| > ε) → 0 as

n→ ∞, which clearly implies (52). This completes the proof of Lemma 3.1.

4. Estimates for the supercritical solutions of the linear equation. Here
we prove some estimates that will enable us to compare solutions of the nonlinear
problem (1) to the functions ϕ(t, x, ω; γ) which solve the linearized problem (2). The
estimates are restricted to the supercritical regime γ ∈ (γ̄, γ∗), which corresponds to
fronts moving faster than the minimal speed, c(λ) > c∗. In the following analysis we
will be comparing two functions ϕ(t, x, ω; γ) and ϕ(t, x, ω; γ′) corresponding to two
values γ and γ′. With the parameter γ fixed, we will use the abbreviated notation
Y1(t) and ht to refer to

Y1(t, ω, γ) = sup {x ≥ 0 | ϕ(t, x, ω; γ) = 1}
and

ht(ω; γ) = Y1(t, ω; γ)− c(γ)t,

always with parameter γ, not γ′.

Lemma 4.1. Let γ ∈ (γ̄, γ∗) and µ = µ(γ). There are constants β > 0, γ′ ∈ (γ, γ∗),
and C3 > 1 such that the following holds with probability one: If for some time τ > 0
and some constants C1(ω), C2(ω) > 0, the function w(t, x, ω) satisfies

wt = wxx + g(x, ω)w, x > 0, t > τ

w(t, x, ω) ≤ C1(ω)ϕ(t, x, ω; γ), ∀ x ≥ 0, t ≥ τ.

w(τ, x, ω) ≤ C2(ω)(ϕ(τ, x, ω; γ))
2, ∀ x ≥ 0,

then,

w(t, x + Y1(t), ω) ≤ max(C1(ω), C2(ω)C3)
ϕ(t, x + Y1(t), ω; γ

′)

ϕ(τ, Y1(τ), ω; γ′)
(53)

and

w(t, x + Y1(t), ω) (54)

≤ max(C1(ω), C2(ω)C3)u(x, πY1(t)ω, γ
′)e−β(t−τ)E(t, τ, ω, γ, γ′)

hold for all t ≥ τ and x ≥ −Y1(t), where µ′ := µ(γ′) > µ and

E(t, τ, ω, γ, γ′) = exp (−µ′(ht(ω; γ)− hτ (ω; γ)) +R(Y1(t), ω, γ
′)−R(Y1(τ), ω, γ

′))

The constant C3 does not depend on ω or τ .

The significance of the bounds in Lemma 4.1 lies in the fact that γ′ > γ corre-
sponds to a wave moving more slowly than ϕ(t, x, ω; γ). Observe that γ′ appears in
(53) and (54), although Yt(t) corresponds to γ. Another important point is that the
terms in the exponent defining E grow at most sublinearly in t and τ . Consequently,
we have the following estimates on E which we use later:
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Proposition 2. Let E(t, τ, γ, γ′, ω) be defined as in Lemma 4.1. For any δ > 0,
the random variable

ξ(ω) = sup
t≥0

e−δtE(t, 0, γ, γ′, ω)

is finite with probability one, and for any ε > 0,

lim
t→∞

P(

∫ t

0

e−δ(t−τ)E(t, τ, γ, γ′, ω) dτ > eε
√
t) = 0. (55)

Proof of Lemma 4.1: Using the upper bounds on w, we will show that we can fit
above w a wave that moves more slowly than ϕ(t, x, ω; γ). Let ε = γ − γ̄ > 0.
Because we have assumed γ ∈ (γ̄, γ∗), we may choose γ′ ∈ (γ,min(γ∗, γ + ε)) such
that c′ := c(γ′) < c(γ) and µ′ = µ(γ′) > µ(γ). Since ϕ(τ, Y1(τ, ω, γ), ω; γ) = 1, we
have, with probability one,

w(τ, x, ω) ≤ C2(ω)(ϕ(τ, x, ω, γ))
2

= C2(ω)
ϕ(τ, x, ω, γ′)

ϕ(τ, Y1(τ), ω; γ′)

(ϕ(τ, x, ω; γ))2

(ϕ(τ, Y1(τ), ω, γ))2
ϕ(τ, Y1(τ), ω; γ

′)

ϕ(τ, x, ω; γ′)

= C2(ω)
ϕ(τ, x, ω, γ′)

ϕ(τ, Y1(τ), ω; γ′)

(u(x− Y1(τ), πY1(τ)ω; γ))
2

u(x− Y1(τ), πY1(τ)ω; γ
′)

for all x ≥ Y1(τ) = Y1(τ, ω, γ). Since 2γ − γ′ > γ̄, we see from Lemma 2.5 that this
is bounded by

w(τ, x, ω) ≤ C2(ω)C3
ϕ(τ, x, ω, γ′)

ϕ(τ, Y1(τ), ω; γ′)
(56)

for a constant C3 that depends on γ and γ′, but not on ω or τ .
For 0 ≤ x ≤ Y1(τ, ω, γ), and t ≥ τ , Lemma 2.4 implies that

w(t, x, ω) ≤ C1(ω)ϕ(t, x, ω; γ) ≤ C1(ω)ϕ(t, x, ω, γ
′)
ϕ(t, Y1(τ), ω; γ)

ϕ(t, Y1(τ), ω; γ′)

= C1(ω)ϕ(t, x, ω, γ
′)
eγ(t−τ)ϕ(τ, Y1(τ), ω; γ)

eγ′(t−τ)ϕ(τ, Y1(τ), ω; γ′)

≤ C1(ω)
ϕ(t, x, ω, γ′)

ϕ(τ, Y1(τ), ω; γ′)
. (57)

The last inequality follows from the fact that ϕ(τ, Y1(τ), ω; γ) = 1. Combining this
with (56) and applying the maximum principle, we conclude that

w(t, x, ω) ≤ max(C1(ω), C2(ω)C3)
ϕ(t, x, ω; γ′)

ϕ(τ, Y1(τ), ω; γ′)
(58)

holds for all t ≥ τ and all x ≥ 0. This proves (53). The second bound (54) now
follows from this and Lemma 2.3:

ϕ(t, x+ Y1(t), ω, γ
′)

ϕ(τ, Y1(τ), ω; γ′)
=
eγ

′(t−τ)u(x, πY1(t)ω, γ
′)u(Y1(t), ω; γ′)

u(Y1(τ), ω, γ′)
. (59)

Using Y1(τ) = cτ + hτ (ω) in the last quotient, we obtain

ϕ(t, x+ Y1(t), ω, γ
′)

ϕ(τ, Y1(τ), ω; γ′)
= u(x, πY1(t)ω, γ

′)e−β(t−τ)E(t, τ, ω, γ, γ′) (60)

with β = µ′(c− c′) > 0 and

E(t, τ, ω, γ, γ′) = exp (−µ′(ht(ω)− hτ (ω)) +R(Y1(t), ω, γ
′)−R(Y1(τ), ω, γ

′)) .

This proves (54).
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Proof of Proposition 2: To see that the random variable ξ(ω) is almost surely fi-
nite, observe that the terms in the exponent defining E(t, 0, γ, γ′, ω) grow at most
sublinearly in t. Specifically, we have already established that

lim
t→∞

ht(ω)

t
= 0 (61)

holds almost surely. Also, R(y, ω, γ)/y → 0 as y → ∞ and Y1(t, ω, γ)/t → c(γ) as
t→ ∞, so that

lim
t→∞

R(Y1(t), ω, γ
′)

t
= lim

t→∞
R(Y1(t), ω, γ

′)

Y1(t)

Y1(t)

t
= c lim

t→∞
R(Y1(t), ω, γ

′)

Y1(t)
= 0 (62)

holds almost surely. Thus ξ(ω) <∞ holds almost surely.
Now we prove (55). Let N > 0 and let τk = kt/N for k = 0, 1, 2, . . . , N . The

integral we wish to bound is:
∫ t

0

e−δ(t−τ)E(t, τ, γ, γ′, ω) dτ

=

N
∑

k=1

∫ τk

τk−1

e−δ(t−τ)E(t, τ, γ, γ′, ω) dτ

≤
N
∑

k=1

e−µ′(ht−hτk
)+R(Y (t))−R(Y (τk))eM(k,t,ω)

∫ τk

τk−1

e−δ(t−τ) dτ

where

M(k, t, ω) = max
τ∈[τk−1,τk]

µ′(hτ − hτk) + max
τ∈[τk−1,τk]

R(Y1(τk))−R(Y1(τ)).

(Recall that µ′ denotes the constant µ(γ′).) We claim that for any ε1 > 0 and
ε2 > 0, we may take N sufficiently large, so that

P

(

M(k, t, ω) ≤ ε1
√
t, ∀ k = 1, . . . , N

)

≥ 1− ε2 (63)

holds if t is sufficiently large. Therefore, with probability at least 1− ε2, we have
∫ t

0

e−δ(t−τ)E(t, τ, γ, γ′, ω) dτ

≤ δ−1eε1
√
t

N
∑

k=1

e−µ′(ht−hτk
)+R(Y (t))−R(Y (τk))e−δ(t−τk)

= δ−1eε1
√
t + δ−1eε1

√
t
N−1
∑

k=1

e−µ′(ht−hτk
)+R(Y (t))−R(Y (τk))e−δ(t−τk).

By taking α > 0 sufficiently large and then t sufficiently large, we also have

P

(

µ′|ht − hτk |√
t

≥ α,
|R(Y1(t)) −R(Y1(τk))|√

t
≥ α ∀ k = 1, . . . , N − 1

)

≤ ε2.

Therefore, with probability at least 1− 2ε2, we have

∫ t

0

e−δ(t−τ)E(t, τ, γ, γ′, ω) dτ ≤ δ−1eε1
√
t + δ−1eε1

√
t
N−1
∑

k=1

e2α
√
t−δ(t−τk)

≤ δ−1eε1
√
t + (N − 1)δ−1eε1

√
te2α

√
t−δt/N
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if t is sufficiently large, depending on ε1 and ε2. Hence,

P

(∫ t

0

e−δ(t−τ)E(t, τ, γ, γ′, ω) dτ ≥ 2δ−1eε1
√
t

)

≤ 2ε2 (64)

if t is sufficiently large. Since ε1 and ε2 were chosen arbitrarily, this implies (55).
Let us verify the claim (63). Observe that

R(Y1(τk))−R(Y1(τ))√
t

=
R(cτk)−R(cτ)√

t
+
R(Y1(τk))−R(cτk)√

t
+
R(cτ) −R(Y1(τ))√

t
(65)

Obviously (cτk − cτ)/t ≤ c/N for τ ∈ [τk−1, τk]. Also, Theorem 1.3 for Y1(t) and
(51) imply that

max
τ∈[τk−1,τk]

|(Y1(τ))/t− (cτ)/t| ≤ max
τ∈[0,t]

|(hτ )/t| ≤ 2c/N

with probability at least 1− ε3 if t is sufficiently large. Therefore, since the family
of processes x 7→ R(tx)/

√
t is tight in C([0, T ]) for any T , we see that

P

(

max
τ∈[τk−1,τk]

R(Y1(τk))−R(Y1(τ)) ≥ ε1
√
t

)

≤ 1− ε2 (66)

holds ifN is large, and then t is sufficiently large. Similar estimates hold for hτ−hτk ,
establishing the claim.

5. CLT for solutions of the nonlinear equation. Finally, we shift attention to
solutions of the nonlinear problem (1), and we prove Theorem 1.4. We suppose that
the initial condition v(0, x, ω) = v0(x, ω) satisfies (9) and (13) for some γ ∈ (γ̄, γ∗).
For r ∈ (0, 1), let Xr(t, ω) be the interface position associated with v(t, x, ω):

Xr(t, ω) = sup {x ∈ R | v(t, x, ω) = r} .
We have already proved Theorem 1.3 for solutions of the linearized equation. So,
if for almost every ω we could show that Xr(t, ω) stays sufficiently close to Yr(t, ω)
as t→ ∞, the CLT would follow for the solutions of the nonlinear equation (recall
Yr defined at (44)).

For simplicity, we now suppose that v0(x, ω) = min(1, ϕ(0, x, ω; γ)) for x > 0
and that v0(x, ω) = 1 for x < 0. The more general case (13) – where v0 is trapped
between two fronts – follows readily from this. The maximum principle implies that
v(t, x, ω) ≤ ϕ(t, x, ω; γ) for all t ≥ 0 and x ≥ 0. So, for any r ∈ (0, 1) we have

Xr(t, ω) ≤ Yr(t, ω) (67)

for all t ≥ 0. However, since v(t, x, ω) is merely a subsolution of the linearized
equation, Xr(t, ω) might lag behind Yr(t, ω). So, in order to obtain a CLT for Xr(t)
by comparing with Yr(t), we need to show that Xr(t) stays sufficiently close to Yr(t)
with high probability. Actually, we’ll need to introduce a time delay: Xr(t+h) stays
sufficiently close to Yr(t) with high probability, if h is sufficiently large.

Lemma 5.1. Let γ ∈ (γ̄, γ∗). Suppose that v0(x, ω) = min(1, ϕ(0, x, ω; γ)) for
x > 0 and v0(x) = 1 for x < 0. For any ε > 0,

lim
t→∞

P

(

X1/2(t+ ε
√
t, ω)− Y1/2(t)(ω) ≥ 0

)

= 1. (68)
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Before proving this lemma, let us show how (68) and (67) imply Theorem 1.4.
For h > 0, let G(t, h) ⊂ Ω be the set G(t, h) = {ω ∈ Ω | X1/2(t+h, ω) ≥ Y1/2(t)(ω)}.
Then for any α ∈ R

P

(

X1/2(t+ h, ω)− (t+ h)c√
t+ h

> α

)

≥ P

(

Y1/2(t)(ω)− (t+ h)c√
t+ h

> α

)

−P(G(t, h)C)

= P

(

Y1/2(t)(ω)− tc√
t

> α

√
t+ h√
t

+
hc√
t

)

−P(G(t, h)C).

Therefore, if we set h = ε
√
t for some ε > 0, Theorem 1.3 implies

lim inf
s→∞

P

(

X1/2(s, ω)− sc√
s

> α

)

≥ 1− Φ(α/κ+ εc/κ)− lim sup
t→∞

P(G(t, ε
√
t)C)

with κ = σµ−1c. However, by (68), P(G(t, ε
√
t)C) → 0 as t→ ∞, so we must have

lim inf
s→∞

P

(

X1/2(s, ω)− sc√
s

> α

)

≥ 1− Φ(α/κ)

since ε is arbitrary.
An upper bound on this probability follows easily from (67):

P

(

X1/2(s, ω)− sc√
s

> α

)

< P

(

Y1/2(s, ω)− sc√
s

> α

)

and the latter converges to 1− Φ(α/κ) as s→ ∞. This proves Theorem 1.4.
In the proof of Lemma 5.1, the following estimate plays a key role. It gives

a lower bound on the leading edge of the nonlinear wave in terms of the leading
edge of the linear wave. The proof relies on Lemma 4.1 and works only for the
supercritical regime.

Lemma 5.2. Let γ ∈ (γ̄, γ∗). Suppose that v0(x, ω) = min(1, ϕ(0, x, ω; γ)) for
x > 0 and v0(x) = 1 for x < 0. Then there is a constant δ > 0 and a random
variable θt(ω) > 0 such that

v(t, x+ Y1(t), ω) ≥ ϕ(t, x + Y1(t), ω; γ)(1− e−δxθt(ω)) (69)

holds for all x ≥ 0 and t ≥ 0, and for any ε > 0,

lim
t→∞

P(θt(ω) ≤ eε
√
t) = 1. (70)

Proof of Lemma 5.2: The strategy here is inspired by [1]. The idea is to think of
the nonlinear equation as an inhomogeneous linear equation. The nonlinear term
is then controlled through the Duhamel expansion and the estimates of Section 4.
Let us define the difference ψ(t, x, ω) := ϕ− v, which satisfies the equation

∂tψ − ψxx − g(x, ω)ψ = g(x, ω)v2 ≤ gmaxv
2, x > 0, t > 0.

By the maximum principle, v(t, x) ≤ min(1, ϕ(t, x, ω; γ)) for all t ≥ 0, x ≥ 0.
Therefore, gmaxv

2 ≤ gmaxmin(1, ϕ2) = K(t, x, ω). So, for x > 0, we have ψ ≤
ψ1 + ψ2 where ψ1(t, x) solves

(ψ1)t = (ψ1)xx + g(x, ω)ψ1, x > 0, t > 0

ψ1(t, 0) = eγt, t > 0; ψ1(0, x) = max(0, ϕ(0, x, ω; γ)− 1), x > 0 (71)
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and ψ2(t, x) solves

(ψ2)t = (ψ2)xx + g(x, ω)ψ2 +K(t, x), x > 0, t > 0

ψ2(t, 0) = 0, t > 0; ψ2(0, x) = 0, x > 0. (72)

We will apply Lemma 4.1 to both ψ1 and ψ2. For ψ1 we apply the lemma with
τ = 0, C1 = 1, and C2 = 1 to obtain the bound

ψ1(t, x+ Y1(t)) ≤ C3u(x, πY1(t)ω, γ
′)e−βtE(t, 0, ω, γ, γ′).

By Proposition 2, the quantity

ξ(ω) = sup
t≥0

e−βt/2E(t, 0, ω, γ, γ′) (73)

is finite with probability one. Therefore, for all t > 0 and x ≥ 0,

ψ1(t, x+ Y1(t), ω) ≤ C3u(x, πY1(t)ω, γ
′)e−βt/2ξ(ω)

≤ C3e
−δxu(x, πY1(t)ω, γ)e

−βt/2ξ(ω).

The last bound follows from Lemma 2.7 with δ =
√
γ′ − gmin −√

γ − gmin.
Now we bound ψ2. For each τ ∈ [0, t), let ρ(s, x, ω; τ) : [τ,∞)× [0,∞)× Ω → R

solve

ρs = ρxx + g(x, ω)ρ, x > 0, s ≥ τ

ρ(s, 0) = 0, s ≥ τ

ρ(τ, x) = K(τ, x, ω), x > 0. (74)

Then ψ2 is given by the integral

ψ2(t, x, ω) =

∫ t

0

ρ(t, x, ω; τ) dτ. (75)

Since K(τ, x, ω) ≤ gmaxmin(1, ϕ2(τ, x, ω; γ)) and K(t, x, ω) ≤ gmaxϕ(t, x, ω; γ), we
apply Lemma 4.1 to ρ (with C1 = gmax and C2 = gmax) and obtain:

ρ(t, x+ Y1(t); τ) ≤ C3gmaxu(x, πY1(t), ω; γ
′)e−β(t−τ)E(t, τ, ω, γ, γ′). (76)

Consequently, using Lemma 2.7 we see that

ψ2(t, x+ Y1(t), ω) ≤ C3gmaxu(x, πY1(t), ω; γ
′)

∫ t

0

e−β(t−τ)E(t, τ, ω, γ, γ′) dτ

≤ C3gmaxe
−δxu(x, πY1(t), ω; γ)

∫ t

0

e−β(t−τ)E(t, τ, ω, γ, γ′) dτ

holds for all x ≥ 0 and t ≥ 0, where

E(t, τ, ω, γ, γ′) = exp (−µ′(ht(ω; γ)− hτ (ω; γ)) +R(Y1(t), ω, γ
′)−R(Y1(τ), ω, γ

′)) .

Recall that µ′ refers to the constant µ(γ′).
Combining the estimates for ψ1 and ψ2 we conclude that for x > 0,

v(t, x+ Y1(t), ω) = ϕ(t, x+ Y1(t), ω; γ)− ψ(t, x+ Y1(t), ω)

≥ ϕ(t, x+ Y1(t), ω; γ)− C3e
−δxu(x, πY1(t)ω, γ)e

−βt/2ξ(ω)

−C3gmaxe
−δxu(x, πY1(t), ω; γ)

∫ t

0

e−β(t−τ)E(t, τ, ω, γ, γ′) dτ

= u(x, πY1(t)ω; γ)
(

1− e−δxθt(ω)
)

= ϕ(t, x+ Y1(t), ω; γ)
(

1− e−δxθt(ω)
)

(77)
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where

θt(ω) = C3e
−βt/2ξ(ω) + C3gmax

∫ t

0

e−β(t−τ)E(t, τ, ω, γ, γ′) dτ.

Finally, the fact that limt→∞ P(θt(ω) ≤ eε
√
t) = 1 holds for any ε > 0 follows

immediately from Proposition 2 and the definition of θt(ω).

Proof of Lemma 5.1: Here is the strategy for proving Lemma 5.1. Lemma 5.2 im-
plies that if x̄ is sufficiently large, v(t, x̄ + Y1(t), ω) ≥ 1

2ϕ(t, x̄ + Y1(t), ω; γ) holds

with high probability. So for ` = 1
2ϕ(t, x̄ + Y1(t), ω; γ), we have a lower bound

X`(t) ≥ x̄+ Y1(t). If this level ` is not too small, then v will be larger than 1/2 at
this point x̄+Y1(t) if we wait only a little longer. This would give us a bound of the
form X1/2(t+ h) ≥ x̄+ Y1(t). Choosing x̄ larger, if necessary, the latter is bounded
below by Y1/2(t). However, the necessary lag time h is random since it depends on
`, which depends on the behavior of ϕ ahead of the point Y1(t).

With θt(ω) defined by Lemma 5.2, define

x̄ = x̄t(ω) = max
(

δ−1 log(2θt), Y1/2(t)− Y1(t)
)

and

`t(ω) = ϕ(t, x̄+ Y1(t), ω; γ)(1− e−δx̄θt(ω)).

Observe that if δ−1 log(2θt) ≤ Y1/2(t) − Y1(t), then x̄ = Y1/2(t) − Y1(t) so that
`t(ω) ≥ 1/4. Otherwise `t may be small. By Lemma 5.2 and the definition of x̄,

X`t(t) ≥ x̄+ Y1(t) ≥ Y1/2(t). (78)

So, we have a bound on the position of the `t-level set of v in terms of Y1/2(t). Since
v(t, x̄+Y1(t), ω) ≥ `t, the Harnack inequality implies that there is a constant κ > 0
such that

v(t+ 1, x, ω) ≥ κ`t(ω), ∀x ∈ [x̄+ Y1(t)− 1, x̄+ Y1(t) + 1].

This constant may be chosen independently of ω and t. Now we wish to bound the
first time s ≥ t at which v(s, x̄ + Y1(t), ω) ≥ 1/2. To this end, define η(s, x) which
satisfies

ηs = ηxx + f1/2η x ∈ R, s > 0

with η(0, x) = 1 for |x| ≤ 1 and η(0, x) = 0 for |x| > 1. Here we choose f1/2 =
1
2f(1/2) so that f(v) = gminv(1 − v) ≥ f1/2v for v ∈ [0, 1/2]. The maximum
principle implies that

v(t+ 1 + s, x, ω) ≥ κ`t(ω)η (s, x− (x̄+ Y1(t)))

holds for x ∈ R and s ≥ 0 as long as κ`t(ω)η (s, x− (x̄+ Y1(t))) ≤ 1/2 (before
this time occurs, (s, x) 7→ κ`tη(s, x) is a subsolution of the nonlinear equation). By
symmetry, η has a global maximum at x = 0. Therefore, if we define the function
T : (0, 1) → R by

T (`) = inf{s ≥ 0 | η(s, 0) ≥ 1/(2κ`)},
we have v(t + 1 + s, x̄ + Y1(t), ω) ≥ 1/2 for all s ≥ T (`t(ω)). So, for all h ≥
1 + T (`t(ω)), we have

X1/2(t+ h, ω) ≥ x̄+ Y1(t) ≥ Y1/2(t).

We now have shown that

P

(

X1/2(t+ ε
√
t, ω) ≥ Y1/2(t)(ω)

)

≥ P

(

T (`t(ω)) ≤ ε
√
t− 1

)

.
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Therefore, to finish the proof we must bound the distribution of T (`t(ω)). It is
not difficult to show that η grows exponentially so that for any ` > 0, T (`) ≤
k1 + k2|log(`)| for some constants k1, k2 depending only on κ and f1/2. Therefore,

P

(

X1/2(t+ ε
√
t, ω) ≤ Y1/2(t)(ω)

)

≤ P

(

`t(ω) ≤ exp(−ε
√
t/k2 − (1 + k1)/k2)

)

.

Lemma 5.1 now follows immediately from Lemma 5.3 below, which shows that the
level `t cannot vanish too quickly as t→ ∞.

Lemma 5.3. With `t(ω) defined as above,

lim
t→∞

P

(

`t(ω) ≤ exp(−ε
√
t)
)

= 0

holds for any ε > 0.

Proof. By definition,

`t(ω) = ϕ(t, x̄ + Y1(t), ω; γ)(1− e−δx̄θt(ω)) = u(x̄, πY1(t)ω; γ)(1− e−δx̄θt(ω))

≥ 1

2
u(x̄, πY1(t)ω; γ) (79)

with x̄ = x̄t(ω) = max
(

δ−1 log(2θt), Y1/2(t)− Y1(t)
)

. If Y1/2(t) − Y1(t) ≥
δ−1 log(2θt), then x̄ = Y1/2(t) − Y1(t) so that `t(ω) ≥ 1/2ϕ(t, Y1/2(t), ω; γ) = 1/4.
So, it suffices to show that

lim
t→∞

P

(

{ω | u(δ−1 log(2θt), πY1(t)ω; γ) < exp(−ε
√
t), θt(ω) ≥ 1/2}

)

= 0 (80)

holds. For ε ∈ (0, 1), u(δ−1 log(2θt), πY1(t)ω; γ) < exp(−ε
√
t) holds if and only if

µδ−1 log(2θt)−R
(

δ−1 log(2θt), πY1(t)ω; γ
)

> ε
√
t.

On the other hand, from the bounds (22) and (23) on u, we know that there is a
constantM such that |R(x, ω; γ)| ≤M(x+1) holds with probability one. Therefore,
if θt ≥ 1/2,

µδ−1 log(2θt)−R
(

δ−1 log(2θt), πY1(t)ω; γ
)

≤ (µ+M)δ−1 log(2θt) +M < ε
√
t

holds for t sufficiently large, if θ ≤ 1
2 exp(ε

√
t/p) with p = 2(µ+M)δ−1. Therefore,

by (70),

lim
t→∞

P

(

{ω | u(δ−1 log(2θt), πY1(t)ω; γ) < exp(−ε
√
t), θt(ω) ≥ 1/2}

)

≤ lim
t→∞

P

(

θt(ω) ≥
1

2
exp(ε

√
t/p)

)

= 0.

Remark 1. Let us point out that if the statement

P

(

lim inf
t→∞

X1/2(t+ ε
√
t, ω)− Y1/2(t)(ω) ≥ 0

)

= 1, (81)

holds (which is stronger than Lemma 5.1), then tightness of the renormalized process
(X(nt)− cnt)/√n would follow from that of Zn(t, ω; γ). Thus, we would have weak
convergence of the process (X(nt)−cnt)/(µ−1c

√
n) to Brownian motion as n→ ∞.
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The main issue is whether the estimate (55) can be improved to the statement that,
almost surely,

∫ t

0

e−δ(t−τ)E(t, τ, γ, γ′, ω) dτ = o(eε
√
t), as t→ ∞.
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