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Abstract. An elastic medium with a large number of small axially symmetric

solid particles is considered. It is assumed that the particles are identically
oriented and under the influence of elastic medium they move translationally or

rotate around symmetry axis but the direction of their symmetry axes does not

change. The asymptotic behavior of small oscillations of the system is studied,
when the diameters of particles and distances between the nearest particles are

decreased. The equations, describing the homogenized model of the system,

are derived. It is shown that the homogenized equations correspond to a non-
standard dynamics of elastic medium. Namely, the homogenized stress tensor

linearly depends not only on the strain tensor but also on the rotation tensor.

1. Introduction. One of the fundamental postulates of the elastic medium me-
chanics is the statement that under small deformations the stress tensor σ[u] =
{σij [u]}3i,j=1 in the medium linearly depends on the strain tensor e[u] = {eij [u] =
1
2 ( ∂ui∂xj

+
∂uj
∂xi

)}3i,j=1 of the medium. Such a dependence is represented with the aid

of the elasticity tensor A = {anpqr(x, t)}3n,p,q,r=1. Namely, the following Hooke law
holds:

σ[u] = Ae[u], (1.1)

where u = u(x, t) is the displacement of the medium, and the fourth rank tensor
A = {anpqr(x, t)}3n,p,q,r=1 is symmetrical with respect to permutation of pairs of
subscripts and of subscripts in pairs themselves. This law is experimentally cor-
roborated for the wide class of the homogeneous elastic materials. It appears that
Hooke law also holds for many heterogeneous (composite) media with fine-dispersed
inclusions. In [5], for example, it is shown that in the medium with perfectly rigid
inclusions, the diameters of which tend to zero, the asymptotic behavior of solutions
of the elasticity theory equation is expressed by the homogenized equation

ρ
∂2u

∂t2
− divσ[u] = ρf.
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It is a common equation of the elasticity theory for anisotropic medium in which the
tensor σ[u] is determined by equality (1.1), where A is the effective elasticity tensor
of the composite medium, possessing all known symmetry properties of the effective
anisotropic medium. But the main thing of that equation is the fact that the stress
tensor linearly depends only on the strain tensor. However, in the literature we
have seen an increasing number of papers devoted to the study (both theoretical
and experimental) of complex substances the properties of which are essentially
different from the ones postulating in classical elasticity theory ([7], [9], [15], [17],
[18], [12]).

Particularly, the stress tensor in those papers depends not only on the strain

tensor but also on the rotation tensor ω[u] = {ωij [u] = 1
2 ( ∂ui∂xj

− ∂uj
∂xi

)}3i,j=1. Namely,

for such substances Hooke law holds in such a non-standard form:

σ[u] = ADe[u] +ARω[u], (1.2)

where the fourth-rank tensors AD and AR can be considered as the deformative and
rotational parts of the elasticity tensor respectively. Moreover, those parts don’t
possess the symmetry properties postulating in classical continuum mechanics.

The examples of such substances are some kinds of liquid crystals, polymers,
polycrystalline materials and so on ([12]). Analogous phenomena also occur in
some fluid media, for example, in suspensions of magnetizable prolate particles
subjected to the influence of strong magnetic fields. However, the characteristic of
the microstructure of such substances is not clearly discussed in all papers known
to us, thus the reasons of their mentioned behavior appear to be hidden.

In this paper we suggest the simplest example of an elastic composite material
for the homogenized motion model of which Hooke law of the form (1.2) holds.

Namely, we consider an elastic medium with a large number of small perfectly
rigid inclusions which are the prolate particles oriented along the fixed direction l.
Under the influence of the elastic medium the particles can move translationally
or rotate around symmetry axis but the direction of their symmetry axes does
not change. Such a motion of the composite can be realized, for example, if the
particles are strongly magnetizable and subjected to the influence of the strong
magnetic field, so that they are oriented along the field direction B (see Figure1).

We study the asymptotic behavior of such a composite when the diameters of
inclusions tend to zero and the inclusions are distributed in the whole volume. As
a result, we obtain the homogenized model of motion for which Hooke law of the
form (1.2) holds.

2. Statement of the problem. Consider a bounded domain Ω in R3 with smooth
boundary ∂Ω. Suppose that this domain is filled with composite substance consist-
ing of elastic medium and a large number Nε = O(ε−3) of small solids Qiε bounded
by smooth surfaces ∂Qiε. Further we will call them “the particles”.

Let Ωε = Ω \
N⋃
i=1

Qiε be a domain filled with the elastic medium, ρe and ρs be

the specific mass density of the elastic medium and of solid particles respectively,
{anpqr} be the fourth-rank tensor (elasticity tensor) which is supposed to be pos-

itive definite and bounded, σ[u] =
{
σnp[u] =

3∑
q,r=1

anpqreqr[u]
}3

n,p=1
be the stress

tensor in elastic medium, xiε be the position of the center of mass of Qiε, u
i
ε be the

displacement of the center of mass of Qiε, θ
i
ε be the rotation vector of Qiε, m

i
ε be the
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Figure 1. The elastic medium with oriented particles

mass of Qiε, I
i
ε be the inertia tensor of Qiε, and let uε = uε(x, t) be the displacement

of the elastic medium.
Consider the following system of equations:

ρe
∂2uε
∂t2

−
3∑

n,p,q,r=1

∂

∂xp

{
anpqreqr[uε]

}
en = ρefε, x ∈ Ωε; (2.3)

uε = uiε + θiε × (x− xiε), θiε = P dθiε, x ∈ ∂Qiε; (2.4)

mi
εü
i
ε +

∫
∂Qiε

σ[uε]ν ds =

∫
Qiε

ρsfε dx; (2.5)

P d
d

dt

[
Iiεθ̇

i

ε

]
+ P d

∫
∂Qiε

(x− xiε)× σ[uε]ν ds = P d
∫
Qiε

(x− xiε)× ρsfε dx, (2.6)

where f
ε

= f
ε
(x, t) is the external force acting on the composite, ν is the unit inner

normal vector to the surface ∂Qiε, and P d is a projection operator onto some fixed
d-dimensional subspace Sd ⊂ R3.

Depending on d, such a system describes non-stationary motions of elastic com-
posite under various regimes of particles rotations. Namely, if d = 3 then the
particles can rotate without any constraints. Such a situation was considered in
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[5]. If d = 0 then the particles move translationally without any rotations. In this
paper, we focuss on the non-standard cases where d = 1 or d = 2.

The case d = 1 can be realized, for example, if we consider strongly magnetizable
prolate ellipsoidal particles in the strong magnetic field directed along a constant
vector B. Then all the particles are aligned along B ([11]), and under the influence
of elastic forces they can move translationally or rotate only around their symmetry
axis l = B, but the direction of their symmetry axis does not change (see Figure1).
In this case, subspace S1 is a linear subspace spanned by vector l.

The case d = 2 can be realized, for example, if we consider strongly magnetizable
oblate ellipsoidal particles in the strong magnetic field. Moreover, it is assumed
that the particles are aligned in such a way that their symmetry axes are identically
oriented along the direction l perpendicular to the field direction B and they can
rotate both around their symmetry axis and around the field direction. In this case,
subspace S2 is a linear subspace spanned by vectors l and B. The result both in
case d = 1 and in case d = 2 is qualitatively the same: the stress tensor in the
homogenized material is expressed via the strain tensor and the rotation tensor in
accordance with (1.2).

The system of equations (2.3)-(2.6) is supplemented by the initial conditions

uε(x, 0) = uε0(x),
∂uε
∂t

(x, t)

∣∣∣∣
t=0

= vε0(x), x ∈ Ωε; (2.7)

uiε(0) = uiε0, u̇
i
ε(0) = viε, θ

i
ε(0) = θiε0 = P dθiε0, θ̇

i

ε(0) = ωiε = P dωiε (2.8)

(uε0(x) = uiε0 + θiε0× (x− xiε) and vε0(x) = viε +ωiε× (x− xiε) at x ∈ ∂Qiε) and the
boundary condition on ∂Ω

uε(x, t) = 0, x ∈ ∂Ω. (2.9)

Theorem 1. There exists a unique solution of the problem (2.3)− (2.9).

We do not give here the proof of the theorem. The main goal of the paper is to
study the asymptotic behavior of the problem (2.3)− (2.9) solution as ε→ 0.

Before formulating the main result we introduce some definitions and assump-
tions.

3. Additional assumptions and the main result. Let diε be the diameter of
ellipsoidal particle Qiε, B(Qiε) be a minimal ball containing Qiε, and Riε be the
distance from the ball B(Qiε) to other minimal balls and to the boundary ∂Ω. We
suppose that both diε and Riε satisfy the following inequalities:

C1ε ≤ diε, Riε ≤ C2ε, (3.1)

where constants C1 and C2 do not depend on ε (0 < C1 < C2 <∞).

Suppose that rotation of the particle Qiε is given by the vector θiε such that

θiε = P dθiε, where P d is the projection operator onto some fixed d-dimensional
subspace Sd ⊂ R3. Consider a cube Ky

h with the side length h (ε � h � 1)
centered at y ∈ Ω. We assume that the edges of this cube are parallel to the

coordinate axes. Let J θ̂ε [Ky
h ] be the following class of vector-functions:

J θ̂ε [Ky
h ] = {wε ∈ H1(Ky

h); wε(x) = wiε+[P dθiε+(1−P d)θ̂]×(x−xiε), x ∈ Qiε∩K
y
h},
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where wiε and θiε are arbitrary vectors, and θ̂ is a given vector. Consider a mini-
mization problem in this class for the following functional (mesocharacteristic):

Aγεh(wε, y, T ) = EKy
h
[wε, wε]+

+ P εhγ
Ky
h

[
wε(x)−

3∑
n,p=1

Tnpϕ
np(x− y), wε(x)−

3∑
q,r=1

Tqrϕ
qr(x− y)

]
, (3.2)

where

EG[uε, vε] =

∫
G

3∑
n,p,q,r=1

anpqrenp[uε]eqr[vε]dx, (3.3)

P εhγG [uε(x), vε(x)] = h−2−γ
∫
G

〈uε(x), vε(x)〉 dx, (3.4)

ϕqr(x) =
1

2
(xre

q + xqe
r), (3.5)

ekl[u] =
1

2

(∂uk
∂xl

+
∂ul
∂xk

)
, T = {Tqr} is an arbitrary symmetric second rank tensor,

and 0 < γ < 2 is a penalty parameter.
This mesocharacteristic plays the crucial role in our consideration. Roughly

speaking, it allows us to compute the energy of the composite in some mesoscopic
cube of size h (ε � h � 1), which is a so-called representative volume element.
In other words, if a composite can be described within the effective single medium
approach, then the elastic properties of the composite can be determined by calcu-
lation or measurements in some representative volume element of an intermediate
mesoscale h, which is why we choose cube Ky

h .
Next, observe that the first term (3.3) in (3.2) represents the energy of the

composite. The minimizer wε of (3.2) is “close”, up to an additive constant, to the
true global minimizer uε of the variational problem, which corresponds to (2.3)-
(2.9) if the tensor T is chosen appropriately. Now one should choose T . If the
single medium homogenized description is possible, then uε(x) is “close” to some
smooth (homogenized) vector-function u(x), which depends only on macroscopic
variable x and does not depend on ε, so that it does not vary on the microscale
ε. We then minimize the energy of the composite, adding the constraint that the
minimizer wε is “close” to the linear part (differential) of the global minimizer u,

so that |wε − u| = o(h) ∼ h1+ γ
2 for some γ > 0. This condition is imposed by

introducing the penalty term (3.4).
It can be proved that there exists the unique vector-function which minimizes

the functional (3.2); the minimal value of this functional is given by

min
wε∈J θ̂ε [Ky

h ]
Aγεh(wε, y, T ) =

3∑
n,p,q,r=1

a0,γ
npqr(y, S

d, ε, h)TnpTqr+

+ 2

3∑
n,p=1

3∑
q=1

bγnpq(y, S
d, ε, h)Tnpθ̂q +

3∑
q,r=1

cγqr(y, S
d, ε, h)θ̂q θ̂r, (3.6)

where a0,γ
npqr(y, S

d, ε, h), bγnpq(y, S
d, ε, h) and cγqr(y, S

d, ε, h) are the components of
the fourth-, third- and second-rank tensors respectively, defined as follows
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a0,γ
npqr(y, S

d, ε, h) = EKy
h
[wnp, wqr]+P εhγ

Ky
h

[
wnp(x)−ϕnp(x−y), wqr(x)−ϕqr(x−y)

]
,

(3.7)

bγnpq(y, S
d, ε, h) = EKy

h
[wnp, vq] + P εhγ

Ky
h

[
wnp(x)− ϕnp(x− y), vq(x)

]
, (3.8)

cγqr(y, S
d, ε, h) = EKy

h
[vq, vr] + P εhγ

Ky
h

[
vq(x), vr(x)

]
. (3.9)

Here wnp(x) is the vector-function that minimizes the functional (3.2) in J
0
ε [Ky

h ]

as T = Tnp =
1

2
(en ⊗ ep + ep ⊗ en), vq(x) is the vector-function minimizing the

functional (3.2) in J
eq

ε [Ky
h ] as T = 0, and en (n = 1, 2, 3) form an orthonormal basis

in R3.
Starting from the solution {uε(x, t), uiε, θ

i
ε = P dθiε, i = 1, Nε} of the problem

(2.3)− (2.5) we construct the vector function

ũε(x, t) = χε(x)uε(x, t) +

Nε∑
i=1

χiε(x)[uiε + θiε × (x− xiε)], (3.10)

where χε(x) is the characteristic function of the domain Ωε, filled with the elastic
media, and χiε(x) is the characteristic function of a particle Qiε. We also denote by

ρε(x) = ρeχε(x) + ρs

Nε∑
i=1

χiε(x)

the density of composite “the elastic media-the particles”.
We assume that the following conditions hold:

3.0) the sequence ρε(x) converges weakly* in L∞(Ω) to a function ρ(x) > 0 and
the sequence f

ε
(x) converges weakly in L2(Ω) to a vector-function f(x), as

ε→ 0.
3.1) the sequence of initial vector-functions ũε0(x) = ũε(x, 0) and ṽε0(x) =

∂ũε(x, t)

∂t

∣∣∣∣
t=0

converges weakly in L2(Ω) to vector-functions u0(x) and v0(x)

respectively, as ε→ 0.
3.2) for some real number γ > 0 the following limits exist heterogeneously at x ∈ Ω:

a) lim
h→0

lim
ε→0

a0,γ
npqr(x, S

d, ε, h)

h3
= lim
h→0

lim
ε→0

a0,γ
npqr(x, S

d, ε, h)

h3
= a0

npqr(x, S
d),

b) lim
h→0

lim
ε→0

bγnpq(x, S
d, ε, h)

h3
= lim
h→0

lim
ε→0

bγnpq(x, S
d, ε, h)

h3
= bnpq(x, S

d),

c) lim
h→0

lim
ε→0

cγqr(x, S
d, ε, h)

h3
= lim
h→0

lim
ε→0

cγqr(x, S
d, ε, h)

h3
= cqr(x, S

d),

where {a0
npqr(x, S

d)}, {bnpq(x, Sd)}, {cqr(x, Sd)} are continuous tensors (at
x ∈ Ω).
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Note, that the existence of limits 3.2) is a general restriction on the spatial
distributions of the particles. Since we do not require any spatial periodicity, we
have to impose some conditions on these distributions. In section 7, we provide an
example where limits 3.2) are calculated explicitly.
Remark. If the limits in 3.2) exist for some γ > 0, then they exist for any γ > 0 and
the limiting tensors do not depend on γ; moreover, {a0

npqr(x, S
d)} and {cqr(x, Sd)}

are positive definite tensors (these facts can be proved analogously to [13]).
Now we are in a position to formulate the main mathematical result of this paper.

Theorem 2. Let conditions 3.0)-3.2) hold. Then the sequence of vector-functions
ũε(x, t), defined by (3.10), converges weakly in L2(Ω× [0,T]) (for any T > 0) to a
vector-function u(x, t), which is a solution of the following homogenized problem:

ρ
∂2u

∂t2
−

3∑
n,p,q,r=1

∂

∂xp

[
aDnpqr(x, S

d)eqr[u]+aRnpqr(x, S
d)ωqr[u]

]
en = ρf, x ∈ Ω, t > 0;

(3.11)

u(x, t) = 0, x ∈ ∂Ω, t > 0; (3.12)

u(x, 0) = u0(x),
∂u

∂t
(x, t)

∣∣∣∣
t=0

= v0(x), x ∈ Ω. (3.13)

Here

aDnpqr = a0
npqr +

1

2

3∑
l=1

bqrlεlnp, aRnpqr =
1

4

3∑
l,m=1

clmεlnpεmqr +
1

2

3∑
l=1

bnplεlqr,

(3.14)

ωqr[u] =
1

2

(∂uq
∂xr
− ∂ur
∂xq

)
, (3.15)

where {εlnp} is Levi-Civita permutation tensor.
The problem (3.11)− (3.13) has the unique solution.

The proof of this theorem is given in sections 4-6. First, in section 4, using
Laplace transform, we formulate a stationary version of the problem (2.3)–(2.9)
with the spectral parameter λ . Then we reduce it to a variational form for λ > 0.
In section 5, we study the asymptotic behavior of the solution of the variational
problem as ε → 0 by using a method close to the computation of a Γ-limit. We
find the homogenized variational functional and the system of Euler equations cor-
responding to this functional. Finally, in section 6 we study the analytic properties
of the solutions of these equations in the parameter λ, and, applying the inverse
Laplace transform, obtain the homogenized non-stationary problem (3.11) –(3.13).

4. Variational formulation of the stationary problem. Use the Laplace trans-
form of the functions to be found: uε(x, t)→ vε(x, λ), uiε(t)→ uiε(λ), θiε(t)→ θiε(λ).
Taking into account the properties of the Laplace transform, we rewrite the problem
(2.3)-(2.5) in the form
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λ2ρeuε −
3∑

n,p,q,r=1

∂

∂xp

{
anpqreqr[uε]

}
en = ρefε + λρeuε0(x) + ρevε0(x), x ∈ Ωε,

(4.1)

uε = uiε + θiε × (x− xiε), θiε = P dθiε, x ∈ ∂Qiε, (4.2)

λ2mi
εu
i
ε +

∫
∂Qiε

σ[uε]ν ds = λmi
εu
i
ε0 +mi

εv
i
ε +

∫
Qiε

ρsfε dx, (4.3)

λ2P d[Iiεθ
i
ε] + P d

∫
∂Qiε

(x− xiε)× σ[uε]ν ds

=λP d[Iiεθ
i
ε0] + P d[Iiεω

i
ε] + P d

∫
Qiε

(x− xiε)× ρsfε dx, (4.4)

uε(x) = 0, x ∈ ∂Ω, (4.5)

where Reλ > 0. We extend the displacement function uε(x, λ) onto the particles
Qiε according to (4.2) and keep the same notations for the extended function.

Fix now λ > 0. Then the problem (4.1)- (4.5) is equivalent to the variational
problem

Φε(uε) = min
u′ε∈

◦
Jε(Ω)

Φε(u
′
ε), (4.6)

where
◦
Jε (Ω) is the class of vector-functions from

◦
H1 (Ω) which are equal to aiε +

θiε × (x− xiε) on the particles Qiε (aiε and θiε = P dθiε are arbitrary vectors), and

Φε(uε) =

∫
Ω

{
λ2ρε〈uε, uε〉+

3∑
n,p,q,r=1

anpqrenp[uε]eqr[uε]−2ρε〈λuε0+vε0+f
ε
, uε〉

}
dx,

(4.7)
where λ > 0.

The main goal is to investigate the asymptotic behavior of the solution uε(x) of
minimization problem (4.6), as ε→ 0. To formulate the homogenization result, we
consider the minimization problem

Φ0(u) = min
u′∈

◦
H1(Ω)

Φ0(u′), (4.8)

where

Φ0(u)

=

∫
Ω

{
λ2ρ〈u, u〉+

3∑
n,p,q,r=1

a0
npqr(x)enp[u]eqr[u]− 2

3∑
n,p=1

3∑
q=1

bnpq(x)enp[u]
[1
2

rotu
]
q
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+

3∑
q,r=1

cqr(x)
[1
2

rotu
]
q

[1
2

rotu
]
r
− 2ρ〈f + λu0 + v0, u〉

}
dx. (4.9)

The minimizer of this problem is the solution of the following boundary value prob-
lem:

λ2ρu−
3∑

n,p,q,r=1

∂

∂xp

[
aDnpqr(x)eqr[u]+aRnpqr(x)ωqr[u]

]
en = ρf+λρu0 +ρv0, x ∈ Ω,

(4.10)

u(x, λ) = 0, x ∈ ∂Ω. (4.11)

The asymptotic behavior as ε → 0 of the solution of problem (4.6) is given by
the following theorem.

Theorem 3. Let conditions 3.0)-3.2) hold. Then the solution uε(x, λ) of the prob-
lem (4.6) for any λ > 0 converges strongly in L2(Ω) to the solution u(x, λ) of the
problem (4.8), as ε→ 0:

uε(x, λ) −−−→
ε→0

u(x, λ) strongly in L2(Ω).

The proof of this theorem is given in section 5.

5. Proof of Theorem 3. Let uε(x, λ) be the solution of the problem (4.6). Since

0 ∈
◦
Jε (Ω), we have:

Φε(uε) ≤ Φε(0) = 0. (5.1)

Due to conditions 3.0)-3.1) and the first Korn’s inequality (see [16])

‖uε‖2◦
H1(Ω)

≤ 2

∫
Ω

3∑
n,p=1

e2
np[uε] dx, (5.2)

(4.7) and (5.1) give:

‖uε‖2H1(Ω) ≤ C. (5.3)

Therefore the set of vector-functions {uε(x, λ), ε > 0} is weakly compact in
H1(Ω). Due to the Embedding Theorem, this set is compact in L2(Ω). Hence,
there exists a subsequence {uεk(x, λ), ε > 0} which converges (weakly in H1(Ω)
and strongly in L2(Ω)) to some vector-function u(x, λ). As it is shown below, the
limiting vector-function u(x, λ) is a solution of the problem (4.8). It can be proved
(see Lemma 1) that ∫

Ω

[
aDnpqr + aRnpqr

]∂un
∂xp

∂uq
∂xr

dx ≥ ‖u‖2H1(Ω),

and hence, problem (4.8) has a unique solution. From this it follows that the
sequence {uε(x, λ), ε > 0} is also convergent:

uε ⇀ uweakly inH1(Ω), uε → u strongly inL2(Ω). (5.4)
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Clearly, u(x) ∈
◦
H1 (Ω). Show that for any vector-function w ∈

◦
H1 (Ω) the fol-

lowing inequality holds:

Φ0(u) ≤ Φ0(w). (5.5)

1. For any vector-function w ∈
◦
H1 (Ω)

⋂
C2

0 (Ω) we construct a special vector-

function wεh ∈
◦
Jε (Ω), such that

lim
h→0

lim
ε→0

Φε(wεh) ≤ Φ0(w). (5.6)

Now we describe this construction. Cover the domain Ω with cubes K
xα
h centered

at points xα ∈ Ω with the edges of length h, which are parallel to the coordinate
axis: Ω ⊂

⋃
α∈Λ

K
xα
h . Let the centers xα ∈ Ω of these cubes form a cubic lattice

of period h − h1+ γ
2 (0 < γ < 2), so that the cubes overlap. Due to the overlap

of the cubes, we can further select smaller cubes K
xα
h′

(with the edges of length

h
′

= h− 2h1+ γ
2 ) which are concentric to K

xα
h . It is well known (see [6]) that there

exists a set of functions {φεhα (x) ∈ C∞0 (Ω)}α∈Λ (called a special partition of unity)
such that

1) φεhα (x) =

{
1, x ∈ Kxα

h′

0, x 6∈ Kxα
h

, 2) 0 ≤ φεhα (x) ≤ 1, 3) |∇φεhα (x)| ≤ c

h1+ γ
2

,

4)
∑
α∈Λ

φεhα (x) ≡ 1, x ∈ Ω, 5) φεhα (x) = Ciε, x ∈ B(Qiε), (5.7)

where Ciε are the constants (0 ≤ Ciε ≤ 1), and B(Qiε) are the balls centered at
points xiε with the radii diε (see (3.1)), which contain the particles Qiε. For the
sake of simplicity, we will omit the superscripts ε and h where it will not cause any
confusion: φεhα (x) = φα(x).

For any vector-function w(x) ∈ C2
0 (Ω) we construct the vector-function

wεh(x) ∈
◦
Jε (Ω) possessing the following properties. First, it approximates (in

L2(Ω)) a given vector-function w(x) ∈
◦
H1 (Ω) for small ε and h. Second, it “al-

most” minimizes the functional (3.2).
Note that any vector-function w(x) ∈ C2(K

xα
h ) can be written in the form

w(x) = w(xα) +

3∑
n,p=1

(
enp[w(xα)]ϕnp(x− xα)+

+ wnp[w(xα)]ψnp(x− xα)
)

+ g
α

(x), x ∈ Kxα
h , (5.8)

where

enp[w(xα)] =
1

2

(∂wn
∂xp

(xα) +
∂wp
∂xn

(xα)
)
, wnp[w(xα)] =

1

2

(∂wn
∂xp

(xα)−
∂wp
∂xn

(xα)
)
,

the vector-function ϕnp(x) is defined in (3.5),

ψnp(x) =
1

2
(xpe

n − xnep), (5.9)
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and Dkg
α

(x) = O(h2−k), k = 0, 2. Define the quasi-minimizer wεh(x) as follows:

wεh(x) =
∑
α∈Λ

{
w(xα) +

3∑
n,p=1

enp[w(xα)]v
np, 0
α,εh (x)+

+

3∑
n,p=1

wnp[w(xα)]ψnp(x− xα)−
3∑
k=1

[1
2

rotw(xα)
]
k
vkα,εh

}
· φα(x), (5.10)

where the vector-functions v
np, 0
α,εh (x) are the minimizers of the functional (3.2) in

J
0
ε [Ky

h ] as T = Tnp =
1

2
(en ⊗ ep + ep ⊗ en), and vkα,εh(x) are the minimizers of the

functional (3.2) in J
ek

ε [Ky
h ] as T = 0.

It is obvious that wεh(x) ∈
◦
Jε (Ω). Let us calculate the functional (4.7) on the

vector-function wεh(x). To this end, we distinguish the leading term in ekl[wεh]:

ekl[wεh(x)] =
∑
α∈Λ

{ 3∑
n,p=1

enp[w(xα)]ekl[v
np, 0
α,εh (x)]+

−
3∑

m=1

[1
2

rotw(xα)
]
m
ekl[v

m
α,εh]

}
φα(x) + δεh(x), (5.11)

where lim
h→0

lim
ε→0
‖δεh‖L2(Ω) = 0 (for more details see, for example, [3] and [6]). Then,

using (5.7) and (5.11), similarly to [1], [2], [3], [4] and [6] we can show that

EΩ[wεh, wεh] =
∑
α∈Λ

3∑
n,p,q,r=1

enp[w(xα)]eqr[w(xα)]EKxα

h
′

[v
np, 0
α,εh , v

qr, 0
α,εh]−

− 2
∑
α∈Λ

3∑
n,p=1

3∑
q=1

enp[w(xα)]
[1
2

rotw(xα)
]
q
EKxα

h
′

[v
np, 0
α,εh , v

q
α,εh]+ (5.12)

+
∑
α∈Λ

3∑
q,r=1

[1
2

rotw(xα)
]
q

[1
2

rotw(xα)
]
r
EKxα

h
′

[vqα,εh, v
r
α,εh] + L(ε, h),

where lim
h→0

lim
ε→0

L(ε, h) = 0.

From (5.12), taking into account (3.7)-(3.9), we obtain

EΩ[wεh, wεh] ≤
∑
α∈Λ

{ 3∑
n,p,q,r=1

a0,γ
npqr(xα, ε, h)enp[w(xα)]eqr[w(xα)]−

−2

3∑
n,p=1

3∑
q=1

bγnpq(xα, ε, h)enp[w(xα)]
[1
2

rotw(xα)
]
q
+

+

3∑
q,r=1

cγqr(xα, ε, h)
[1
2

rotw(xα)
]
q

[1
2

rotw(xα)
]
r

}
+ o(1) (ε� h� 1). (5.13)

Here we add in the RHS of (5.12) the positive term
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∑
α∈Λ

P εhγ
K
xα
h

[
3∑

n,p=1

(
v
np,0
α,εh − ϕ

np(x− xα)
)
enp[w(xα)]−

3∑
n=1

vnα,εh
[1
2

rotw(xα)
]
n
,

3∑
q,r=1

(
v
qr,0
α,εh − ϕ

qr(x− xα)
)
eqr[w(xα)]−

3∑
q=1

vqα,εh
[1
2

rotw(xα)
]
q

]
corresponding to the penalty terms in (3.7)-(3.9). Now we make use of inequality
(5.13) to estimate the functional (4.7):

Φε(wεh) ≤
∑
α∈Λ

h3
{ 3∑
n,p,q,r=1

a0,γ
npqr(xα, ε, h)

h3
enp[w(xα)]eqr[w(xα)]−

−2

3∑
n,p=1

3∑
q=1

bγnpq(xα, ε, h)

h3
enp[w(xα)]

[1
2

rotw(xα)
]
q
+

+

3∑
q,r=1

cγqr(xα, ε, h)

h3

[1
2

rotw(xα)
]
q

[1
2

rotw(xα)
]
r

}
+

+λ2

∫
Ω

〈ρεwεh, wεh〉dx−2

∫
Ω

ρε〈λuε0+vε0+f
ε
, wεh〉 dx+o(1) (ε� h� 1). (5.14)

Using (5.8), (5.10) and taking into account the fact that the minimizers v
np, 0
α,εh (x)

and vkα,εh(x) are close, in some sense, to ϕnp(x − xα) and 0 respectively, we can

show that (for more details see, for example, [1] and [3])

lim
h→0

lim
ε→0
‖wεh − w‖L2(Ω) = 0. (5.15)

Then, passing to the limit in (5.14) as ε→ 0 and h→ 0 and taking into consideration
3.0)-3.2) and the fact that w(x) ∈ C2(Ω), we obtain

lim
h→0

lim
ε→0

Φε(wεh) ≤ Φ0(w).

Thus, inequality (5.6) is proved. Next, from (5.6) and an obvious inequality
Φε(uε) ≤ Φε(wεh) there follows the upper bound:

lim
ε→0

Φε(uε) ≤ Φ0(w), ∀w ∈
◦
H1 (Ω). (5.16)

2. Prove now the lower bound

Φ0(u) ≤ lim
ε→0

Φε(uε), (5.17)

where the vector-function u(x) is defined in (5.4). For the sake of simplicity we first

assume that the limiting vector-function is smooth enough: u(x) ∈
◦
H1 (Ω)

⋂
C2

0 (Ω).
Consider a partition of the domain Ω by non-intersecting cubes K

xα
h aligned

along the coordinate axes and centered at the points xα forming a cubic lattice of
period h. In each cube the vector-function u(x) can be written in the form
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u(x) = u(xα) +

3∑
n,p=1

(
enp[u(xα)]ϕnp(x− xα)+

+ wnp[u(xα)]ψnp(x− xα)
)

+O(h2), x ∈ Kxα
h . (5.18)

Then, in every internal with respect to Ω cube K
xα
h (which does not intersect the

boundary ∂Ω) consider a vector-function

uαε (x) = uε(x)− u(xα)−
3∑

n,p=1

wnp[u(xα)]ψnp(x− xα). (5.19)

It is clear that uαε (x) ∈ J
θ̂
α

ε [K
xα
h ], where θ̂

α
= −1

2
rotu(xα), and enp[u

α
ε ] =

enp[uε] in K
xα
h . Therefore, from (3.2) and (3.6) for Tnp = enp[u(xα)] we obtain

EKxα
h

[uε, uε]+

+P εhγ
Ky
h

[
uαε (x)−

3∑
n,p=1

enp[u(xα)]ϕnp(x−xα), uαε (x)−
3∑

n,p=1

enp[u(xα)]ϕnp(x−xα)
]
≥

≥
3∑

n,p,q,r=1

a0,γ
npqr(xα, ε, h)enp[u(xα)] · eqr[u(xα)]−

−2

3∑
n,p=1

3∑
q=1

bγnpq(xα, ε, h)enp[u(xα)]
[1
2

rotu(xα)
]
q
+

+

3∑
q,r=1

cγqr(xα, ε, h)
[1
2

rotu(xα)
]
q

[1
2

rotu(xα)
]
r
. (5.20)

Estimate now the second term in the LHS of inequality (5.20). Taking into account
(3.4), (5.4), (5.18) and (5.19), we have∫

K
xα
h

uαε (x)−
3∑

n,p=1

enp[u(xα)]ϕnp(x− xα)
2
dx = O(h7). (5.21)

Sum up inequality (5.20) over all cubes of our partition. Using (5.20)-(5.21) we
obtain

Φε(uε) ≥
∑
α∈Λ

h3
{ 3∑
n,p,q,r=1

a0,γ
npqr(xα, ε, h)

h3
enp[u(xα)]eqr[u(xα)]−

−2

3∑
n,p=1

3∑
q=1

bγnpq(xα, ε, h)

h3
enp[u(xα)]

[1
2

rotu(xα)
]
q
+

+

3∑
q,r=1

cγqr(xα, ε, h)

h3

[1
2

rotu(xα)
]
q

[1
2

rotu(xα)
]
r

}
+

+λ2

∫
Ω

〈ρεuε, uε〉dx−2

∫
Ω

ρε〈λuε0+vε0+f
ε
, uε〉 dx+O(h2−γ) (ε� h� 1). (5.22)
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Then, passing to the limit as ε→ 0 and h→ 0 in (5.22), and taking into account
3.0)-3.2), the fact that u(x) ∈ C2(Ω) and γ < 2, we obtain

lim
ε→0

Φε(uε) ≥

≥
∫
Ω

{ 3∑
n,p,q,r=1

a0
npqr(x)enp[u(x)]eqr[u(x)]− 2

3∑
n,p=1

3∑
q=1

bnpq(x)enp[u]
[1
2

rotu
]
q
+

+

3∑
q,r=1

cqr(x)
[1
2

rotu
]
q

[1
2

rotu
]
r

+ λ2〈ρu, u〉 − 2ρ〈λu0 + v0 + f, u〉
}
dx = Φ0(u).

Thus, the required inequality (5.17) is obtained under the assumption that the

limiting vector-function u(x) is smooth. The proof for a non-smooth case u(x) ∈
◦
H1

(Ω) is more technical, though its scheme is the same. Namely, it is necessary to
construct smooth approximations uσ(x) of the limiting vector-function, then to
obtain for these approximations inequality, which is analogous to (5.17), and to
pass to the limit as σ → 0. The details of this construction are presented in [4].

The inequality (5.5) follows from (5.16) and (5.17). Theorem 3 is proved. �

6. Proof of Theorem 2. Note, that the convergence in Theorem 3 was proved
for λ > 0 only. To prove the main Theorem 2, we need to apply the inverse Laplace
transform to get the convergence of uε(x, t) to u(x, t). To this end, we need to
extend these vector-functions analytically into the complex right half-plane and to
establish their behavior as λ→∞.

Lemma 1. For any vector-function u ∈
◦
H1 (Ω) the following inequality holds:∫

Ω

[
aDnpqr + aRnpqr

]∂un
∂xp

∂uq
∂xr

dx ≥ ‖u‖2H1(Ω), (6.1)

where aDnpqr and aRnpqr are defined by (3.14).

Proof. For a given vector-function u ∈
◦
H1 (Ω) we construct a sequence uεh(x) ∈

◦
Jε

(Ω) in accordance with (5.10). Using (5.13) and Korn’s inequality (5.2), it is easy
to see that

lim
h→0

lim
ε→0
‖uεh‖2H1(Ω) ≤

∫
Ω

[
aDnpqr + aRnpqr

]∂un
∂xp

∂uq
∂xr

dx ≤ C‖u‖2H1(Ω). (6.2)

Taking into account (6.2) and (5.15), we conclude that the sequence uεh(x) (up to
subsequence) converges weakly in H1(Ω) to u(x). Therefore

‖u‖2H1(Ω) ≤ lim
h→0

lim
ε→0
‖uεh‖2H1(Ω) ≤

∫
Ω

[
aDnpqr + aRnpqr

]∂un
∂xp

∂uq
∂xr

dx.

Lemma is proved.

Analogously to [1], [2], [3], [4] and [6], it may be shown that the family of solutions
uε(x, λ) of the problem (4.1)-(4.5) is analytic in the domain {Reλ > 0}. Moreover,
in this domain the following estimate holds:



NON-STANDARD DYNAMICS OF ELASTIC COMPOSITES 103

‖uε(x, λ)‖L2(Ω) ≤
C

|λ|
, (6.3)

where the constant C does not depend on ε.
Thus, taking into account Theorem 3, the analyticity of uε(x, λ) in {Reλ > 0}

and the uniform bound (6.3), with the help of Vitali’s theorem (see [14]) we conclude
that uε(x, λ) converges in L2(Ω) to some vector-function w(x, λ), uniformly with
respect to λ in any compact subset of the domain {Reλ > 0}. Moreover, this vector-
function is a solution of the problem (4.10)-(4.11) for λ > 0, analytic in the domain
{Reλ > 0}, and in this domain

‖w(x, λ)‖L2(Ω) ≤
C

|λ|
. (6.4)

Show that problem (4.10)-(4.11) has a unique analytic solution for all Reλ > 0.
This problem can be written in the following weak form:

Lλ[u, v] = Fλ[v],∀v ∈
◦
H1 (Ω),

where

Lλ[u, v] = λ

∫
Ω

ρu · v dx+
1

λ

∫
Ω

[
aDnpqr + aRnpqr

]∂un
∂xp

∂vq
∂xr

dx

and

Fλ[v] =
1

λ

∫
Ω

〈
ρf + λρu0 + ρv0, v

〉
dx.

It is easy to see that

|Lλ[u, v]| ≤ C‖u‖H1(Ω)‖v‖H1(Ω), Fλ[v] ≤ C‖v‖H1(Ω), Reλ > 0. (6.5)

Moreover, taking into account (6.1) and identity aDnpqr + aRnpqr = aDqrnp + aRqrnp, we
obtain that

|Lλ[u, v]| ≥ C‖u‖2H1(Ω), Reλ > 0. (6.6)

Combining now (6.5)-(6.6) and using the Lax-Milgram Theorem, we conclude
that there exists a unique solution u(x, λ) of problem (4.10)-(4.11) for any Reλ > 0.
Moreover, this solution is analytic in right half-plane {Reλ > 0}, since the form
Lλ[u, v] is analytic (see [10]). From this it follows that w(x, λ) = u(x, λ) in {Reλ >
0}.

Due to the estimates (6.3) and (6.4), we can apply the inverse Laplace transform
(see, for example, [14] and [8]) and prove, thereby, the statement of Theorem 2 (see
details in [1], [2], [3], [4] and [6]). �

7. Explicit formulas for the elastic modules for periodic array of particles.
We now show the existence of the limits in condition 3.2) for a particular example of
a periodic cubic lattice. Namely, let the particles Qiε be the ellipsoids of revolution

with the same semi-axes aiε = biε = aε and diε = dε respectively (a � d <
1

8
). We

suppose that all the particles Qiε are aligned along the direction l and their centers
xiε form a cubic lattice of period ε.
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Let Ki
ε be a cube of side length ε centered at the point xiε and containing a

particle Qiε. Then Di
ε = Ki

ε \Qiε is a periodicity cell filled with the elastic medium.
To obtain the standard unit cell we rescale Di

ε by the factor ε−1 and shift its center
to the origin. Then the domain D = K \ Q is a unit periodicity cell where K is a
cube of side length 1 centered at the origin and Q is an ellipsoid of revolution in K

with the semi-axes a = b and d respectively (a� d <
1

8
).

We prove the following.

Theorem 4. For the cubic lattice described above the limits in condition 3.2) ex-
ist, the functions a0

npqr(y), bnpq(y) and cqr(y) are constants and are given by the
following formulas:

a0
npqr = anpqr +

∫
K

3∑
k,l,s,t=1

aklstekl
[
wnp(z)

]
est
[
wqr(z)

]
dz,

bnpq =

∫
K

3∑
k,l,s,t=1

aklstekl
[
wnp(z)

]
est
[
uq(z)

]
dz,

cqr =

∫
K

3∑
k,l,s,t=1

aklstekl
[
uq(z)

]
est
[
ur(z)

]
dz,

where wnp(z) and uq(z) are the solutions of the following problems, respectively:

−
3∑

k,l,s,t=1

∂

∂zs

{
aklstekl[w

np(z)]
}
et = 0, z ∈ K \Q,

wnp(z) = −ϕnp(z) + θnpl × z, z ∈ Q,
P l
∫
∂Q

z × σ[wnp]ν dz = 0,

wnp
∣∣∣
F+
i

= wnp
∣∣∣
F−i

, σ[wnp]
∣∣∣
F+
i

= σ[wnp]
∣∣∣
F−i

,

(7.1)

and 

−
3∑

k,l,s,t=1

∂

∂zs

{
aklstekl[u

q(z)]
}
et = 0, z ∈ K \Q,

uq(z) = [θql + (1− P l)eq]× z, z ∈ Q,
P l
∫
∂Q

z × σ[uq]ν dz = 0,

uq
∣∣∣
F+
i

= uq
∣∣∣
F−i

, σ[uq]
∣∣∣
F+
i

= σ[uq]
∣∣∣
F−i

.

(7.2)

Here P l is a projection operator onto l, F+
i and F−i are opposite faces of the cube

K (i = 1, 3).

Proof. Let K
y

h be a cube of side length h (h � ε) centered at the point y ∈ Ω.

We seek a function unpε (x) minimizing functional (3.2) in J
0
ε [Ky

h ] as T = Tnp =
1

2
(en ⊗ ep + ep ⊗ en) in the form

unpε (x) = Unpε (x) + vnpε (x), (7.3)

where
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Unpε (x) = ϕnp(x− y
ε
) + εw̃npε

(x− y
ε

ε

)
. (7.4)

Here w̃np(x) is a periodic extension of the function wnp(x) and y
ε

= xiε is the

nearest to y center of particles Qiε (for the sake of simplicity we assume that y
ε

= y).

Using the properties of the functions ϕnp(x) and wnpε (x), we have

Unpε (x) = ϕnp(xjε − yε) + θnpl × (x− xjε), x ∈ Qjε. (7.5)

Analogously, we seek a vector-function wqε(x) minimizing functional (3.2) in

J
eq

ε [Ky
h ] as T = 0 in the form

wqε(x) = W q
ε(x) + hqε(x), (7.6)

where W q
ε(x) = εũq

(x− y
ε

ε

)
, and ũq(x) is a periodic extension of the function

uq(x).
Next we obtain variational problems for the correctors vnpε (x) and hqε(x). Analysis

of those problems and substitution of (7.3)-(7.6) into (3.7)-(3.9), together with a
periodicity of the structure, give

1

h3
a0,γ
npqr(y, ε, h) =

1

h3
EKy

h
[Unpε , Uqrε ] + o(1) (ε� h� 1),

1

h3
bγnpq(y, ε, h) =

1

h3
EKy

h
[Unpε ,W q

ε] + o(1) (ε� h� 1),

1

h3
cγqr(y, ε, h) =

1

h3
EKy

h
[W q

ε,W
r
ε] + o(1) (ε� h� 1).

The statement of Theorem 4 follows from the above representation.

8. Asymptotic formulas for the elastic modules
for small particles. Note, that even in periodic case the obtained formulas for
coefficients defined in condition 3.2) do not clarify their dependence on the particles
orientation. Meanwhile, if the volume fraction of the particles are rather small then
a0
npqr(x, l) = anpqr, bnpq(x, l) = 0, cqr(x, l) = 0. Therefore, it would be interest-

ing to obtain asymptotic expressions of smaller order for those coefficients which
ascertain their dependence on the particles orientation.

To do this, we consider ellipsoidal particles oriented along vector l and suppose

that their diameters are of order εα (α >
5

3
). We prove the following theorem.

Theorem 5. For small volume fraction of the particles the following asymptotic
formulas hold:

ãnpqr(y, l, ε, h)
def
=

a0,γ
npqr(y, l, ε, h)

h3
= anpqr+

+τε

{[
A1(δnqδpr + δnrδpq) +A2δnpδqr

]
+B

[
lnlqδpr + lplqδnr + lnlrδpq + lplrδnq

]
+

+C
[
lnlpδqr + lqlrδnp

]
+Dlnlplqlr

}
+ o(τε),

b̃npq(y, l, ε, h)
def
=

bγnpq(y, l, ε, h)

h3
= τεb

3∑
k=1

(lnlkεkpq + lplkεknq) + o(τε),
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c̃qr(y, l, ε, h)
def
=

cγqr(y, l, ε, h)

h3
= τεc(δnp − lnlp) + o(τε),

where τε =
∑
i Ky

h

|Qiε|
h3

is a volume fraction of the particles located in Ky
h (which is

supposed to be of order εβ , β > 2), and constants A1, A2, B, C, D, b and c depend
on the form of solid Q (of unit diameter) oriented along axis e1.

Sketch of the proof. For a single fixed ellipsoidal solid Q oriented along axis e1

we consider the following boundary-value problems:

−
3∑

k,l,s,t=1

∂

∂zs

{
aklstekl[w

np(z)]
}
et = 0, z ∈ R3 \Q,

wnp(z) = ϕnp(z) + anp + θnpe1 × z, z ∈ ∂Q,∫
∂Q

σ[wnp]ν dz =
〈 ∫
∂Q

z × σ[wnp]ν dz, e1
〉

= 0,

wnp = O
( 1

|x|2
)
, |x| → ∞,

(8.1)

and 

−
3∑

k,l,s,t=1

∂

∂zs

{
aklstekl[u

q(z)]
}
et = 0, z ∈ R3 \Q,

uq(z) = aq + [eq(1− εq23) + θqe1]× z, z ∈ ∂Q,∫
∂Q

σ[uq]ν dz =
〈 ∫
∂Q

z × σ[uq]ν dz, e1
〉

= 0,

uq = O
( 1

|x|2
)
, |x| → ∞.

(8.2)

There exist a unique solution (wnp, anp, θnp) of problem (8.1) and a unique solution
(uq, aq, θq) of problem (8.2). Moreover, from the symmetry of problems (8.1)-(8.2)
it follows that anp = 0, θnp = 0, aq = 0, θq = 0 for all n, p, q = 1, 3, and u1 ≡ 0.

Introduce the following fourth-, third- and second-rank tensors corresponding to
Q:

anpqr(Q) =

∫
R3\Q

3∑
i,k=1

eik[wnp, wqr] dx,

bnpq(Q) =

∫
R3\Q

3∑
i,k=1

eik[wnp, uq] dx, cnp(Q) =

∫
R3\Q

3∑
i,k=1

eik[un, up] dx. (8.3)

It is clear that anpqr(Q) = apnqr(Q) = aqrnp(Q), bnpq(Q) = bpnq(Q) and cnp(Q) =
cpn(Q). Moreover, taking into account the symmetry of problems (8.1)-(8.2) and
orientation of Q, it can be proved that

a2222(Q) = a3333(Q), a1122(Q) = a1133(Q),

a1212(Q) = a1313(Q), a2222(Q) = a2233(Q) + 2a2323(Q),

b123(Q) = −b132(Q), bnpq(Q) = 0 in all other cases,

c22(Q) = c33(Q), cnp(Q) = 0 in all other cases. (8.4)

Let Qiε be a particle oriented along l with diameter diε. Consider the following
boundary-value problems:
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

−
3∑

k,l,s,t=1

∂

∂zs

{
aklstekl[w

i,np
ε (z)]

}
et = 0, z ∈ R3 \Qiε,

wi,npε (z) = ϕnp(z) + ai,npε + θi,npε l × z, z ∈ ∂Qiε,∫
∂Qiε

σ[wi,npε ]ν dz = P l
∫
∂Qiε

z × σ[wi,npε ]ν dz = 0,

wi,npε = O
( 1

|x|2
)
, |x| → ∞,

(8.5)

and 

−
3∑

k,l,s,t=1

∂

∂zs

{
aklstekl[u

i,q
ε (z)]

}
et = 0, z ∈ R3 \Qiε,

ui,qε (z) = ai,qε + [θi,qε l + (1− P l)eq]× z, z ∈ ∂Qiε,∫
∂Qiε

σ[ui,qε ]ν dz = P l
∫
∂Qiε

z × σ[ui,qε ]ν dz = 0,

ui,qε = O
( 1

|x|2
)
, |x| → ∞.

(8.6)

Introduce the following fourth-, third- and second-rank tensors corresponding to
Qiε:

anpqr(Q
i
ε) =

∫
R3\Qiε

3∑
i,k=1

eik[wi,npε , wi,qrε ] dx,

bnpq(Q
i
ε) =

∫
R3\Qiε

3∑
i,k=1

eik[wi,npε , ui,qε ] dx, cnp(Q
i
ε) =

∫
R3\Qiε

3∑
i,k=1

eik[ui,nε , ui,pε ] dx.

(8.7)
It is clear, that up to rescaling and rotations problems (8.5) and (8.6) coincide with
problems (8.1) and (8.2), respectively. Using this fact and (8.4), it can be proved
that

anpqr(Q
i
ε) = (diε)

3
{[
Á1(δnqδpr + δnrδpq) + Á2δnpδqr

]
+

+B́
[
lnlqδpr + lplqδnr + lnlrδpq + lplrδnq

]
+ Ć

[
lnlpδqr + lqlrδnp

]
+ D́lnlplqlr

}
,

bnpq(Q
i
ε) = (diε)

3b́

3∑
k=1

(lnlkεkpq + lplkεknq), cqr(Q
i
ε) = (diε)

3ć(δnp − lnlp),

where Á1 = a2323(Q), Á2 = a2233(Q), B́ = a1212(Q) − a2323(Q), Ć = a1122(Q) −
a2233(Q), D́ = a1111(Q) + a2222(Q) − 2a1122(Q) − 4a1212(Q), b́ = b123(Q) and ć =
c22(Q).

Let K
y

h be a cube of side length h (h� ε) centered at the point y ∈ Ω. Suppose

that the diameters diε of the particles Qiε are of order O(εα), α >
5

3
. We seek a

vector-function vnpεh(x) minimizing functional (3.2) in J
0
ε [Ky

h ] as T = Tnp =
1

2
(en ⊗

ep + ep ⊗ en) in the form

vnpεh(x) = V npε (x) + wnpεh(x), (8.8)

where
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V npε (x) = ϕnp(x− y)−
∑
i

′

Ky
h

wi,npε (x)φiε(x). (8.9)

Here wi,npε (x) is a solution of problem (8.5),
∑
i

′

Ky
h

stands for summation over all

particles Qiε located in Ky
h′ (h′ = h− 2h1+ γ

2 , γ > 0) and

φε(x) = φ
( |x− xiε|

Riε

)
, φ(t) =

{
1, t ≤ 1

4 ,

0, t > 1
2

∈ C2(R+).

Using the properties of the functions ϕnp(x), wi,npε (x) and φ(t), we conclude that

V npε (x) ∈ J0
ε [Ky

h ].
Analogously, we seek a vector-function vqε(x) minimizing functional (3.2) in

J
eq

ε [Ky
h ] as T = 0 in the form

vqε(x) = V qε(x) + hqε(x), (8.10)

where

V qε(x) =
∑
i

′

Ky
h

ui,qε (x)φiε(x). (8.11)

Here ui,qε (x) is a solution of problem (8.6). Using the properties of the functions

ui,qε (x) and φ(t), we conclude that V qε(x) ∈ Je
q

ε [Ky
h ].

Next we obtain variational problems for the correctors vnpε (x) and hqε(x). Analysis
of those problems and substitution of (8.8)-(8.11) into (3.7)-(3.9) give

ãnpqr(y, l, ε, h) =
1

h3
EKy

h
[V npε , V qrε ] + o(τε) (ε� h� 1),

b̃npq(y, l, ε, h) =
1

h3
EKy

h
[V npε , V qε] + o(τε) (ε� h� 1),

c̃np(y, l, ε, h) =
1

h3
EKy

h
[V nε , V

p
ε ] + o(τε) (ε� h� 1).

The statement of Theorem 5 with

A1 =
Á1

|Q|
, A2 =

Á2

|Q|
, B =

B́

|Q|
, C =

Ć

|Q|
, D =

D́

|Q|
, b =

b́

|Q|
, c =

ć

|Q|

follows from the above representation.

Acknowledgments. The work of M. Berezhnyi was partially supported by the
Akhiezer fund and by joint Franco-Ukrainian research project “PICS 2009-2011.
Mathematical Physics: Methods and Applications”. The work of E. Khruslov was
supported in part by joint Franco-Ukrainian research project “PICS 2009-2011.
Mathematical Physics: Methods and Applications”.



NON-STANDARD DYNAMICS OF ELASTIC COMPOSITES 109

REFERENCES

[1] M. A.Berezhnyy and L. V.Berlyand, Continuum limit for three-dimensional mass-spring net-
works and discrete Korn’s inequality, Journal of the Mechanics and Physics of Solids, 54

(2006), 635–669.

[2] M. A. Berezhnyi, The asymptotic behavior of viscous incompressible fluid small oscillations
with solid interacting particles, Journal of Mathematical Physics, Analysis, Geometry, 3

(2007), 135–156.

[3] M. Berezhnyi, L. Berlyand and E. Khruslov, The homogenized model of small oscillations of
complex fluids, Networks and Heterogeneous Media, 3 (2008), 835–869.

[4] M. Berezhnyi, “Homogenized Models of Complex Fluids,” PhD The-

sis, ILTPE, 2009 (in ukrainian), 159 p. URL: http://www.dlib.com.ua/

useredneni-modeli-strukturovanykh-ridyn.html.

[5] L. V. Berlyand and A. D. Okhotsimskii, Averaged description of an elastic medium with

a large number of small absolutely rigid inclusions, Dokl. Akad. Nauk SSSR, 268 (1983),
317–320 (in Russian).

[6] L. Berlyand and E. Khruslov, Homogenized non-Newtonian viscoelastic rheology of a sus-
pension of interacting particles in a viscous Newtonian fluid , SIAM, Journal of Applied

Mathematics, 64 (2004), 1002–1034.
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Birkhäuser, Boston, 2006, 401 p.

[14] A. I. Marcushevich, “Theory of Analytic Functions: Brief Course,” Mir, Moscow, 1983.
[15] R. D. Mindlin and H. F. Tiersten, Effects of couple-stresses in linear elasticity, Archive for

Rational Mechanics and Analysis, 11 (1962), 415–448.

[16] O. A. Oleinic, A. S. Shamaev and G. A. Iosif’yan, “Mathematical Problems in Elasticity
and Homogenization,” in “Studies in Mathematics and its Applications,” 26, North-Holland

Publishing Co., Amsterdam, 1992, 398 p.

[17] I. Y. Smolin, P. V. Makarov, D. V. Shmick and I. V. Savlevich, A micropolar model of plastic
deformation of polycrystals at the mesolevel , Computational Materials Science, 19 (2000),

133–142.

[18] X. Zhang and P. Sharma, Inclusions and inhomogeneities in strain gradient elasticity with
couple stresses and related problems, International Journal of Solids and Structures, 42 (2005),

3833–3851.

Received April 2010; revised November 2010.

E-mail address: berezhnyi@mathematik.tu-darmstadt.de

E-mail address: khruslov@ilt.kharkov.ua

http://www.ams.org/mathscinet-getitem?mr=MR2206053&return=pdf
http://dx.doi.org/10.1016/j.jmps.2005.09.006
http://dx.doi.org/10.1016/j.jmps.2005.09.006
http://www.ams.org/mathscinet-getitem?mr=MR2338184&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2448943&return=pdf
http://www.dlib.com.ua/useredneni-modeli-strukturovanykh-ridyn.html
http://www.dlib.com.ua/useredneni-modeli-strukturovanykh-ridyn.html
http://www.ams.org/mathscinet-getitem?mr=MR0688245&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2068451&return=pdf
http://dx.doi.org/i:10.1137/S0036139902403913
http://dx.doi.org/i:10.1137/S0036139902403913
http://www.ams.org/mathscinet-getitem?mr=MR0196422&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR0115342&return=pdf
http://dx.doi.org/10.1007/BF02414525
http://www.ams.org/mathscinet-getitem?mr=MR1335452&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR0093319&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2428102&return=pdf
http://dx.doi.org/10.1007/s11040-008-9041-z
http://www.ams.org/mathscinet-getitem?mr=MR2182441&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR0708893&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR0144513&return=pdf
http://dx.doi.org/10.1007/BF00253946
http://www.ams.org/mathscinet-getitem?mr=MR1195131&return=pdf
http://dx.doi.org/10.1016/S0927-0256(00)00148-8
http://dx.doi.org/10.1016/S0927-0256(00)00148-8
http://dx.doi.org/10.1016/j.ijsolstr.2004.12.005
http://dx.doi.org/10.1016/j.ijsolstr.2004.12.005
mailto:berezhnyi@mathematik.tu-darmstadt.de
mailto:khruslov@ilt.kharkov.ua

	1. Introduction
	2. Statement of the problem
	3. Additional assumptions and the main result
	4. Variational formulation of the stationary problem
	5. Proof of Theorem 3
	6. Proof of Theorem 2
	7. Explicit formulas for the elastic modules for periodic array of particles
	8. Asymptotic formulas for the elastic modules for small particles
	Acknowledgments
	REFERENCES

