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Abstract. This paper concerns periodic multiscale homogenization for fully

nonlinear equations of the form uε + Hε
(
x, x

ε
, . . . , x

εk
, Duε, D2uε

)
= 0. The

operators Hε are a regular perturbations of some uniformly elliptic, convex

operator H. As ε → 0+, the solutions uε converge locally uniformly to the

solution u of a suitably defined effective problem. The purpose of this paper is
to obtain an estimate of the corresponding rate of convergence. Finally, some

examples are discussed.

1. Introduction. For ε > 0 we consider the multiscale homogenization problem
for equations of the form

uε +Hε
(
x,
x

ε
, . . . ,

x

εk
, Duε, D2uε

)
= 0, x ∈ Rn. (1)

The operators Hε are periodic, uniformly elliptic, regular perturbations of some
convex operator H (namely, Hε → H locally uniformly as ε → 0+; for the precise
assumptions, see Section 2 below). It is well known that, as ε → 0+, the solution
uε of (1) converges locally uniformly to the solution of the effective problem (see
Alvarez, Bardi and the second author [4])

u+H
(
x,Du,D2u

)
= 0, x ∈ Rn (2)

where the effective Hamiltonian H is defined via iterative homogenization. The
purpose of this paper is to investigate the corresponding rate of convergence.

In the framework of viscosity solution theory (see the monographs by Braides
and Defranceschi [8], Bensoussan, J.L.Lions and Papanicolaou [9], Jikov, Kozlov and
Oleinik [19] for homogenization in the variational setting), the study of homogeniza-
tion started with the seminal paper by P.L. Lions, Papanicolaou and Varadhan [22]
concerning first order periodic Hamilton-Jacobi equations. A crucial advance was
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made by Evans [14, 15] with the introduction of the perturbed test function method.
By means of this very adaptable technique he proved that the solutions uε of prob-
lem (1) with two scales, i.e. k = 1, converge locally uniformly to the solution u
of (2) where the effective Hamiltonian H is defined by the following cell problem:
for every (x, p,X) ∈ Rn×Rn× Sn find the unique value H(x, p,X) such that there
exists a periodic solution w = w(y) (the so-called corrector) of

H(x, y, p,X +D2
yyw) = H(x, p,X), y ∈ Rn.

The effective Hamiltonian H can be also defined via the ergodic approximation:
H(x, p,X) is the uniform limit of −λwλ as λ → 0+, where the function wλ =
wλ(y;x, p,X) solves the approximated cell problem

λwλ +H(x, y, p,X +D2
yywλ) = 0, y ∈ Rn. (3)

The latter definition is more general than the former (see: [3, 6, 10] and references
therein). The homogenization theory for fully nonlinear equation has been extended
in several directions (see Alvarez and Bardi [2] for a general review) and also beyond
the periodic setting (see [23, 24, 10]).

The multiscale homogenization problem for fully nonlinear equations was recently
studied in [4, 5], respectively for second and first order equations. For problem (1),
it was ascertained that uε converges locally uniformly to the solution u of the
equation (2) with an effective operator H defined by an iterative homogenization
process (see Section 2 for the detailed calculations).

An interesting problem connected with the homogenization theory is the estima-
tion in terms of the scale parameter ε of the rate of convergence of the solutions of
the perturbed problem to the solution of the homogenized one. This question has
been tackled up for the first time by Capuzzo Dolcetta and Ishii [12] for first order
equations. For k = 1, they proved that uε converges uniformly to u with a rate of
order 1/3, namely ‖uε − u‖∞ ≤ Cε1/3. In [25], the same rate of convergence has
been obtained for the corresponding multiscale homogenization problem.

Concerning rates of convergence for second order problems, the two authors [11]
considered the case of convex uniformly elliptic equations. For k = 1, Hε ≡ H and
H of the form

H(x, y, p,X) := max
θ∈Θ
{−tr (a(x, y, θ)X)− f(x, y, θ) · p− l(x, y, θ)}

they proved that the solution uε to (1) converges uniformly to u and that there
exists a positive α such that ‖uε − u‖∞ ≤ Cεα, with α depending on the regularity
of uε and u.

The purpose of this paper is to obtain an estimate of the rate of convergence
for the multiscale homogenization of fully nonlinear uniformly elliptic equations. In
other words, we want to estimate ‖uε − u‖∞ where uε and u are respectively the
solution to problems (1) and (2). As an important byproduct, we shall obtain that,
in several cases, uε converges to u uniformly on the whole Rn.

In this respect this paper extends the results of our previous one [11] in two
directions: for k = 1 we consider Hamiltonian Hε which in general are nonconvex
(but they converge locally uniformly to a convex operator H) and, mainly, we
address the multiscale homogenization problem.

Let us stress some features of our arguments. Following the approach in [12] we
shall use the doubling of variables technique between the starting functions uε and
the effective one u perturbed with an approximated corrector λwλ. This latter term
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has the crucial role of linking the Hamiltonians Hε with the effective Hamiltonian H
(note that in general there is no estimate of the term Hε−H). In order to deal with
the dependance of wλ on the slow variables, we shall invoke the regularity theory
for convex uniformly elliptic equations (see the book by Gilbarg and Trudinger [18]
and also Safonov [26]). The exponent α in the rate of convergence εα we obtain
depends on the regularity of uε and u.

This paper is organized as follows: Section 2 is devoted to the homogenization
framework (in particular, the definition of H) and to state our main result. Since it
is used in the proof of the main result, the case with discount a and k = 1 is studied
in Section 3. Section 4 is devoted to the proof of the main result. In Section 5 we
illustrate the problem with some examples.

2. Mathematical framework and main result. We shall denote by Sn the space
of symmetric n×n real matrices endowed with the usual norm. For any continuous
function f , J+

x f and J−x f stand respectively for the super and the subdifferential
of f at the point x (we refer the reader to [13] for the precise definition and main
properties).

We shall assume that the Hamiltonians H, Hε : Rn ×Rnk ×Rn × Sn → R fulfill
the following hypotheses:

(A1) H is convex in X.
(A2) Hε is periodic in y1, . . . , yk and

|Hε(x, y1, . . . , yk, 0, 0)| ≤ C,
|Hε(x, y1, . . . , yk, p,X)−Hε(x, y1, . . . , yk, q,X)| ≤ C|p− q|,
|Hε(x1, y1, . . . , yk, p,X)−Hε(x2, z1, . . . , zk, p,X)| ≤

≤ C(1 + |p|+ ‖X‖)(|x1 − x2|+
k∑
i=1

|yi − zi|).

Moreover Hε is uniformly elliptic: there exists a positive constant ν such that,
for X ≥ Y , it verifies

ν−1‖X − Y ‖ ≤ Hε(x, y1, . . . , yk, p,X)−Hε(x, y1, . . . , yk, p, Y ) ≤ ν‖X − Y ‖.
(A3) There exists a continuous function ω = ω(ε, x) such that, for every x, yi, p ∈ Rn

and X ∈ Sn, there holds

|Hε (x, y1, . . . , yk, p,X)−H (x, y1, . . . , yk, p,X)| ≤ ω(ε, x) (1 + |p|+ ‖X‖) .
For the sake of simplicity, we shall consider in (A3) only functions ω having the
form

ω(ε, x) = ω1(ε) + ω2(ε)|x|2 (4)

where ωi are modulus of continuity. Actually, one can easily adapt our arguments to
the case of ω with different behavior as |x| → +∞ just modifying the penalization
term in the proof of Theorem 2.1.

We observe that, with assumptions (A1)–(A3), (1) admits a unique viscosity
solution (see [14, 15]).

The effective Hamiltonian H (see [4]) is defined via iterative homogenization as
follows:

Set H0 = H and, for i = 0, . . . , k − 1, fix x, y1, . . . , yk−i−1, p ∈ Rn and X̄ ∈ Sn; for
λ > 0 the problem

λv +Hi(x, y1, . . . , yk−i−1, z, p,X +D2
zzv) = 0 in Rn, v periodic
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admits exactly one solution v = v(z). As λ→ 0+, it turns out that λv(z) converges
uniformly to a constant that we denote by −Hi+1(x, y1, . . . , yk−i−1, p,X). Finally,

we define H := Hk.
Let us state our main result

Theorem 2.1. Under Assumptions (A1)-(A3), there exist a positive constant M
and α ∈ (0, 1) such that

|uε(x)− u(x)| ≤M
[
εα + ω1(ε) + ω2(ε)

(
1 + |x|2

)]
∀ε ∈ (0, 1), x ∈ Rn. (5)

The proof is deferred to Section 4.

Corollary 2.1. Under Assumptions (A1)-(A3) with ω2 ≡ 0 in (4), the function uε

converges to u uniformly on the whole Rn with the rate

‖uε − u‖∞ ≤M [εα + ω1(ε)].

3. Two scale case with discount a. This section is devoted to the case of two
scales with a discount a ∈ (0, 1), namely to equations of the form

auε +Hε
(
x,
x

ε
,Duε, D2uε

)
= 0, x ∈ Rn. (6)

A similar problem has been studied in [11] in the case a = 1. We will follow
the argument used there, but we will pay a particular attention to the constants
involved in the equation, especially to the influence of the parameter a on the rate
of convergence. In the following section this estimate will be an essential step in
the proof of Theorem 2.1.

It is well-known (see: [4] and also [2, 1, 14, 15] for the case Hε ≡ H) that, as
ε → 0+, the solution uε converges locally uniformly to u, solution to the effective
equation

au+H
(
x,Du,D2u

)
= 0 x ∈ Rn. (7)

The effective H is defined as follows: for every positive λ, the cell problem

λwλ +H(x, y, p,X +D2
yyw

λ) = 0 y ∈ Rn (8)

admits exactly one periodic solution wλ = wλ(y;x, p,X). As λ→ 0+, the function
λwλ converges to a constant that we denote by −H(x, p,X). Let us now state the
main result of this section.

Theorem 3.1. Assume hypotheses (A1)-(A3). Assume further

(A4) Hε = Hε(x, y, p,X) is periodic in x and ω2 ≡ 0 in (4).

Then there exist two positive constants M and α ∈ (0, 1) (both independent of a)
such that

sup
x∈Rn

|uε(x)− u(x)| ≤ M

a
[εα + ω(ε)] ∀ε ∈ (0, 1).

The proof is postponed at the end of this section. In the next two lemmas,
we recall some properties of the approximated corrector and respectively of the
effective Hamiltonian. We refer the reader to the papers [1, 2, 6, 14, 15] for the
detailed proof.

Lemma 3.2. Let wλ = wλ(y;x, p,X) be the solution of (8). There exists C1 > 0
such that

a) ‖λwλ(·;x, p,X)‖∞ ≤ C1(1 + |p|+ ‖X‖), ∀x, p,X;
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b) λ|DXw
λ|, λ|Dpw

λ| ≤ C1, λ|Dxw
λ(y;x, p,X)| ≤ C1(1+|p|+‖X‖) (in viscosity

sense);
c) for some α ∈ (0, 1), ‖wλ(·;x, p,X) − wλ(0;x, p,X)‖C2,α(RN ) ≤ C1(1 + |p| +
‖X‖), ∀x, p,X, λ;

d)
∣∣λwλ(y;x, p,X) +H(x, p,X)

∣∣ ≤ λC1(1 + |p|+ ‖X‖), ∀y, x, p,X.

Lemma 3.3. There exists C̃1 > 0 such that

a) |H(x, p1, X1)−H(x, p2, X2)| ≤ C̃1 (|p1 − p2|+ ‖X1 −X2‖);

b) |H(x1, p,X)−H(x2, p,X)| ≤ C̃1(1 + |p|+ ‖X‖)|x1 − x2|;
c) H is uniformly elliptic and convex with respect to X.

Remark 3.1. The effective problem (7) satisfies the hypothesis required for the
regularity result in Safonov [26]. It follows that there exist N > 0 and ᾱ ∈ (0, 1)
(both independent of a) such that:

‖u‖∞, ‖Du‖∞, ‖D2u‖∞ ≤ N
‖u‖C2,ᾱ(B(x,1)) ≤ N ∀x ∈ Rn.

(9)

Indeed the first inequality (i.e. ‖u‖∞ ≤ N) is obtained following the arguments
in [1, 6] (here, the periodicity assumption in (A4) plays a crucial role) while the
other inequalities are consequence of the first one and of the result by Gilbarg and
Trudinger [18] and Safonov [26].

It is expedient for our purpose to study the approximated cell problem

λwλε,r +Hε
r(y,Dyw

λ
ε,r, D

2
yyw

λ
ε,r;x, p,X) = 0 y ∈ Rn, wλε,r periodic, (10)

where λ > 0 and

Hε
r(y, q, Y ;x, p,X) := min

|ξ1|,|ξ2|≤r
Hε(x+ ξ1, y + ξ2, p+ εq,X + Y ).

This definition of Hε
r is in the same spirit of the approximated Hamiltonians intro-

duced in [3] and in the shaking of coefficients method by Krylov (see [20] and [7]); we
shall use these approximations in order to overcome the lack of uniform continuity
of Hε.

Let us observe that, owing to Assumptions (A1)-(A4), the operator Hε
r is periodic

in y and x and it is uniformly elliptic in Y . Furthermore, for some positive constant
C2, independent of ε and r, there holds∣∣Hε

r(y, q, Y ;x, p,X)−Hε
r(y
′, q′, Y ′;x, p,X)

∣∣ ≤ C2 (‖Y − Y ′‖+ ε|q − q′|)
+ C2|y − y′|

(
1 + |p|+ ε|q′|+ ‖X‖+ ‖Y ′‖

)
, (11)

C2ε|q|+ ω(ε)
(
1 + |p|+ ‖X‖+ ‖Y ‖

)
≥ Hε

r(y, q, Y ;x, p,X)−H(x, y, p,X + Y ) ≥
− C2ε|q| − (C2r + ω(ε))

(
1 + |p|+ ‖X‖+ ‖Y ‖

)
(12)

for every x, y, y′, q, q′, p ∈ Rn and X,Y, Y ′ ∈ Sn.
In the following Lemma, we collect some properties of wλε,r.

Lemma 3.4. There exists a unique bounded solution wλε,r(·;x, p,X) to (10). More-
over there exists a positive constant C3, depending only on the parameters entering
in Assumptions (A1)-(A4) (i.e., independent of λ, ε, r, x, p, X) such that

a) ‖λwλε,r(·;x, p,X)‖∞ ≤ C3(1 + |p|+ ‖X‖), ∀x, p,X;

b)
∣∣λwλε,r(y;x, p,X) +H(x, p,X)

∣∣ ≤ C3[ω(ε)+ε+r+λ](1+|p|+‖X‖) ∀y, x, p,X.
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Proof. We first establish that there exists a unique bounded solution wλε,r to (10).
To this end, we observe that a Comparison Principle holds for problem (10). For

τ := C̃3[ω(ε) + ε+ r](1 + |p|+ ‖X‖), the functions

w±(y) := wλ(y;x, p,X)± λ−1τ (13)

are respectively a super- and a subsolution to problem (10). Actually, for C̃3 :=
2(1 + C2)(1 + C1), we have

λw+ +Hε
r(y,Dyw

+, D2
yyw

+;x, p,X) = λwλ +Hε
r(y,Dyw

λ, D2
yyw

λ;x, p,X) + τ

≥ −[C2C1ε+ (C2r + ω(ε))(1 + C1)]
(
1 + |p|+ ‖X‖

)
+ τ ≥ 0

(here, the rightmost inequality of (12) and Lemma 3.2-(c) have been used) so our
claim for w+ is completely proved. Being similar, the proof that w− is a subsolution
is omitted. Applying the Perron method, one can establish that problem (10) admits
exactly one solution.

Let us now pass to the proof of estimates (a) and (b). The proof of point (a)
relies on the same arguments of those of Lemma 3.2-(a) and we refer to [2, 6] for
the proof.

(b). Let us first notice that, since w± in (13) are a super and a subsolution to
problem (10), there holds

λ sup
y

∣∣wλε,r(y;x, p,X)− wλ(y;x, p,X)
∣∣ ≤ C̃3[ω(ε) + ε+ r](1 + |p|+ ‖X‖) ∀λ, ε, r

(14)
for every (x, p,X). Hence Lemma 3.2-(d) and estimate (14) yield∣∣λwλε,r(y;x, p,X) +H(x, p,X)

∣∣ ≤ λ ∣∣wλε,r(y;x, p,X)− wλ(y;x, p,X)
∣∣+∣∣λwλ(y;x, p,X) +H(x, p,X)

∣∣ ≤ C3[ω(ε) + ε+ r + λ](1 + |p|+ ‖X‖)

for C3 = max{C̃3, C1}.

Proof of Theorem 3.1. Fix ε ∈ (0, 1). For every λ, r ∈ (0, 1), λ ≥ ε2, let us introduce
the function

ϕ(x) := uε(x)− u(x)− ε2wλε,r
(x
ε

; [u](x)
)

(15)

where

wλε,r (y; [u](x)) := wλε,r
(
y;x,Du(x), D2u(x)

)
.

The Comparison Principle for problems (6) and (7) ensures that uε and u are
bounded, moreover it is easy to see that by (A4) uε and u are periodic. By bounds
in (3.1), Lemma 3.4-(a) and the periodicity of u and uε, the function wλε,r(·/ε; [u](·))
is bounded. Hence, there exists a point x̂ where the function ϕ attains its maximum.

For each τ ∈ (0, 1), set c := 3C3(1 +N) ε2

λτ2 and introduce the function

ϕ̃(x) := uε(x)− u(x)− ε2w
(x
ε

)
− c|x− x̂|2 (16)

with w := wλε,r (·; [u](x̂)). We notice that there holds: ϕ̃(x̂) = ϕ(x̂) and, for x ∈
∂B(x̂, τ),

ϕ̃(x̂)− ϕ̃(x) = [ϕ(x̂)− ϕ(x)]− ε2
[
wλε,r(x/ε; [u](x))− wλε,r(x/ε; [u](x̂))

]
+ cτ2

≥ −ε2
[
wλε,r(x/ε; [u](x))− wλε,r(x/ε; [u](x̂))

]
+ cτ2

≥ −2C3(1 + ‖Du‖∞ + ‖D2u‖∞)
ε2

λ
+ 3C3(1 +N)

ε2

λ
> 0
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(here, Lemma 3.4-(a) and relations (9) have been used). Whence, the function ϕ̃
has a maximum at some point x̃ ∈ B(x̂, τ), that we can assume to be strict by
adding to uε a smooth function vanishing with its first and second derivatives at x̃.
Hence, by standard arguments, we infer that, for every positive parameter σ, the
function

Φ(x, ξ) := uε(x)− u(x)− ε2w
(
ξ

ε

)
− c|x− x̂|2 − σ

2
|x− ξ|2 (17)

attains a maximum value in some point (xσ, ξσ), with

xσ, ξσ → x̃ as σ → +∞. (18)

Let us now claim that there exists a positive constant C4 such that, for every
η > 0, there exists two matrices X1, X2 ∈ Sn such that there holds

(Du(xσ) + 2c(xσ − x̂) + σ(xσ − ξσ), X1) ∈ J+
xσu

ε, (19)

(
σ

ε
(xσ − ξσ), X2) ∈ J−ξσ/εw, (20)

X1 −X2 ≤ D2u(xσ) + (2c+ ηC4)I. (21)

In fact, applying [13, Thm 3.2] to uε and W (ξ) := ε2w(ξ/ε) with the penalization
term ψ(x, ξ) := u(x) + c|x− x̂|2 + σ

2 |x− ξ|
2, we deduce that, for each η > 0, there

exist two matrices X1 and X2 such that

(Dxψ(xσ, ξσ), X1) ∈ J+
xσu

ε, (−Dξψ(xσ, ξσ), X2) ∈ J−ξσW(
X1 0
0 −X2

)
≤ D2ψ(xσ, ξσ) + η

(
D2ψ(xσ, ξσ)

)2
.

By the first two relations, properties (19) and (20) follow; indeed, (p,X) belongs to
J−ξσW if, and only if, (ε−1p,X) belongs to J−ξσ/εw. Furthermore, applying the last

inequality to the vector (v, v), we infer

X1 −X2 ≤ D2u(xσ) + 2cI + η‖(D2ψ(xσ, ξσ))2‖I;

in particular, for C4 := ‖(D2ψ(xσ, ξσ))2‖, inequality (21) is established.
Taking into account that uε is a subsolution to (6) and relation (19), we can

write

0 ≥ auε(xσ) +Hε (xσ, xσ/ε,Du(xσ) + 2c(xσ − x̂) + σ(xσ − ξσ), X1)

≥ auε(xσ) +Hε (xσ, xσ/ε,Du(xσ) + 2c(xσ − x̂) + σ(xσ − ξσ),

X2 +D2u(xσ) + (2c+ ηC4)I
)

≥ auε(xσ) +Hε
(
xσ, xσ/ε,Du(xσ) + σ(xσ − ξσ), X2 +D2u(xσ)

)
−C [c|xσ − x̂|+ c+ ηC4]

where the last two inequalities are due to relation (21) and Assumption (A2). More-
over, by relations (9), for σ sufficiently large, we deduce

0 ≥ auε(xσ) +Hε
(
xσ, xσ/ε,Du(x̂) + σ(xσ − ξσ), X2 +D2u(x̂)

)
− C

[
N |x̂− xσ|ᾱ + c|xσ − x̂|+ c+ ηC4

]
On the other hand, being a solution to the (λ, ε, r)-cell problem (10) centered in
(x̂, Du(x̂), D2u(x̂)), by relation (20), the function w verifies

0 ≤ λw
(
ξσ
ε

)
+Hε

r

(
ξσ
ε
,
σ

ε
(xσ − ξσ), X2; x̂, Du(x̂), D2u(x̂)

)
.
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We choose r = 2τ and we notice that, by (18) for σ sufficiently large, there holds

Hε
r

(
ξσ
ε
,
σ

ε
(xσ − ξσ), X2; x̂, Du(x̂), D2u(x̂)

)
≤

Hε
(
xσ,

xσ
ε
,Du(x̂) + σ(xσ − ξσ), D2u(x̂) +X2

)
.

The last three inequalities guarantee the following one:

0 ≥ auε(xσ)− λw(ξσ/ε)− C
[
N |x̂− xσ|ᾱ + c|xσ − x̂|+ c+ ηC4

]
≥ auε(xσ) +H(x̂, Du(x̂), D2u(x̂))− C3(1 + 2N)[ω(ε) + ε+ 2τ + λ]

−C
[
N |x̂− xσ|ᾱ + c|xσ − x̂|+ c+ ηC4

]
(in the last relation Lemma 3.4-(b) and estimates (9) have been applied). Since u
is a classical solution to the effective problem (7), we infer

a[uε(xσ)− u(x̂)] ≤ C3(1 + 2N)[ω(ε) + ε+ 2τ + λ]

+ C
[
N |x̂− xσ|ᾱ + c|xσ − x̂|+ c+ ηC4

]
.

Letting η → 0 and σ → +∞, by the limits (18), we obtain

a[uε(x̃)− u(x̂)] ≤ C5[ω(ε) + ε+ τ ᾱ + λ+ c]

where the constant C5 is independent of a, λ, ε and τ .
We choose λ = εθ1 , τ = εθ2 . Recalling the definition of c (c = 3C3(1 +

N)ε2λ−1τ−2) we infer

a[uε(x̃)− u(x̂)] ≤ C5[ω(ε) + ε+ εθ2ᾱ + εθ1 + 3C3(1 +N)ε2−θ1−2θ2 ].

Finally, relation aϕ̃(x̃) ≥ aϕ̃(x̂) = aϕ(x̂) ≥ aϕ(x) entails

a[uε(x)− u(x)] ≤ a[uε(x̃)− u(x̂)] + a[u(x̂)− u(x̃)]+

ε2a

[
wλε,r

(x
ε

; [u](x)
)
− wλε,r

(
x̃

ε
; [u](x̂)

)]
.

Combining the previous two inequalities, estimates (9), Lemma 3.4-(a), for some
constant C6 with the same properties of C5 (namely, it is independent of a, ε, θ1, θ2)
there holds

a[uε(x)− u(x)] ≤ C6[ω(ε) + ε+ εθ2ᾱ + εθ1 + ε2−θ1−2θ2 ].

By the arbitrariness of x, taking θ1 = ᾱ
ᾱ+1 and θ2 = 1

ᾱ+1 , we get the bound

a[uε(x)− u(x)] ≤ C6[ω(ε) + ε
ᾱ
ᾱ+1 ].

The proof of the bound for u− uε is similar and we shall omit it.

Remark 3.2. Let us observe that by the above calculation α = ᾱ
ᾱ+1 where ᾱ is

the Hölder exponent of u, see (9).

4. Proof of Theorem 2.1. This section is devoted to the proof of our main result
stated in Theorem 2.1. For simplicity, we shall consider only the case k = 2 since
the general case can be dealt in a similar manner. In this case the construction of
the effective Hamiltonian H requires two steps:
i) Fix (x, y, p,X) and, for every positive λ, consider the microscopic cell problem

λwλ +H(x, y, z, p,X +D2
zzw

λ) = 0 y ∈ Rn, wλ periodic. (22)
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This problem admits exactly one periodic solution wλ = wλ(z;x, y, p,X). As λ →
0+, the function λwλ converges (uniformly in z) to some constant −H1(x, y, p,X).
ii) Fixed (x, p,X), for each positive λ, let Wλ = Wλ(y;x, p,X) be the solution of
the mesoscopic cell problem

λWλ +H1(x, y, p,X +D2
yyW

λ) = 0 y ∈ Rn, Wλ periodic. (23)

As before (since the operator H1 enjoys the same properties of H, see [6] and
also Lemma 3.3), as λ → 0+, the function λWλ converges (uniformly in y) to
−H(x, p,X).

The function Wλ satisfies regularity result similar to Lemma 3.2-(c):

Lemma 4.1. There exist a positive constant C1, depending only on the Assumptions
(A1)-(A3), and a parameter α̃ ∈ (0, 1), depending continuously on (p,X), such that

‖Wλ(·;x, p,X)−Wλ(0;x, p,X)‖C2,α̃ ≤ C1

(
1 + |p|+ ‖X‖

)
∀λ, (x, p,X).

For our purpose, it is expedient to introduce the operators

Hε
r(y, z, q, Y ;x, p,X) := min

|ξ1|,|ξ2|,|ξ3|≤r
Hε(x+ ξ1, y + ξ2, z + ξ3, p+ εq,X + Y )

and, for λ > 0, the approximated multiscale cell problem

λwλε,r +Hε
r

(
y,
y

ε
,Dyw

λ
ε,r, D

2
yyw

λ
ε,r;x, p,X

)
= 0 y ∈ Rn, wλε,r periodic. (24)

We shall denote a solution of (24) by wλε,r(y;x, p,X) in order to display its depen-

dence on the (fixed) parameters (x, p,X). Some properties of wλε,r are collected in
the following statements

Lemma 4.2. Assume (A1)-(A3). There exists a unique periodic solution of (24).
Moreover, there exists a positive constant C2, independent of λ, ε, r, x, p and X,
such that

‖λwλε,r(·;x, p,X)‖∞ ≤ C2(1 + |p|+ ‖X‖), ∀λ, ε, r, x, p,X.

Since the proof of the previous lemma follows the same arguments of those of
Lemma 3.4, we shall omit it.

Proposition 4.1. Under assumptions (A1)-(A3), there exist two positive constants
M1 and α1 = α̃

α̃+1 ∈ (0, 1
2 ) (where α̃ as in Lemma 4.1) depending continuously and

only on |p|, ‖X‖ and on the parameters entering in Assumption (A1)-(A3) (in
particular, independent of λ, ε, r, x) such that

|λwλε,r(y;x, p,X) +H(x, p,X)| ≤M1[εα1 + r + ω(ε, x) + λ], ∀y ∈ Rn.

Proof. We claim that there exist a positive constant M̃ and α1 ∈ (0, 1), depending
continuously and only on |p|, ‖X‖ and on Assumption (A1)-(A3) (in particular,
independent of λ, ε, r, x) such that

λ|wλε,r(y;x, p,X)−Wλ(y;x, p,X)| ≤ M̃ [εα1 + r + ω(ε, x)], ∀y ∈ Rn, λ ∈ (0, 1)
(25)

where Wλ is the solution to the mesoscopic cell problem (23) centered in (x, p,X).

Actually, one can easily check that there exists a positive constant C̃, independent
of ε, r and (x, p,X), such that∣∣Hε

r(y, z, q, Y ;x, p,X)−H(x, y, z, p,X + Y )
∣∣ ≤ C̃(ε+ r + ω(ε, x))[C0 + |q|+ ‖Y ‖]
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with C0 := 1+|p|+‖X‖. It follows that, since Hε
r(y, z, q, Y ;x, p,X) converges locally

uniformly to H(x, y, z, p,X+Y ) as (ε, r)→ (0, 0), the homogenized Hamiltonian of
Hε
r with respect to z coincides with the one of H with respect to the same variable

and therefore is given by H1(x, y, p,X + Y ). By applying Theorem 3.1 with ω(ε),

a, uε, u replaced respectively by ω̃ := C̃C0[ε+ r + ω(ε, x̄)], λ, wλε,r, W
λ and taking

into account Remark 3.2 we infer our claim (25).
On the other hand, following the same arguments as in the proof of Lemma 3.4-

(b) with H1 in place of Hε
r (hence the corresponding estimate does not depend on

ε and r) and using Lemma 4.1, we notice that there exists a positive constant M1,
independent of λ and (x, p,X), such that∣∣λWλ(y;x, p,X) +H(x, p,X)

∣∣ ≤M1λ(1 + |p|+ ‖X‖) ∀λ, y, (x, p,X). (26)

Finally, let us observe that there holds

|λwλε,r(y;x, p,X) +H(x, p,X)| ≤ λ|wλε,r(y;x, p,X)−Wλ(y;x, p,X)|+

|λWλ(y;x, p,X) +H(x, p,X)|;

substituting inequalities (25) and (26) in the previous one, we accomplish the proof
of our statement.

Proof of Theorem 2.1. We shall argue as in the proof of Theorem 3.1. Fix ε ∈ (0, 1).
For every λ, γ, r ∈ (0, 1), λ ≥ ε2, let us introduce the function

ϕ(x) := uε(x)− u(x)− ε2wλε,r
(x
ε

; [u](x)
)
− γ

2
|x|2 (27)

where

wλε,r (y; [u](x)) := wλε,r
(
y;x,Du(x), D2u(x)

)
.

The Comparison Principle ensures that uε and u are bounded. In fact, invoking the
result by Safonov [26], one can prove that there exist N > 0 and ᾱ ∈ (0, 1) such
that:

‖u‖∞, ‖Du‖∞, ‖D2u‖∞ ≤ N, ‖u‖C2,ᾱ(B(x,1)) ≤ N ∀x ∈ Rn. (28)

By these estimates and Lemma 4.2, the function wλε,r(·/ε; [u](·)) is bounded. Hence,
there exists a point x̂ where the function ϕ attains its maximum.

Set τ := r/2 and c := 3C2(1 +N) ε2

λτ2 , and introduce the function

ϕ̃(x) := uε(x)− u(x)− ε2w
(x
ε

)
− γ

2
|x|2 − c|x− x̂|2 (29)

with w := wλε,r (·; [u](x̂)). Arguing as before, by Lemma 4.2, one can easily check
that the function ϕ̃ has a maximum in some point x̃ ∈ B(x̂, τ), that we can assume
to be strict by adding to uε a smooth function vanishing with its first and second
derivatives at x̃. By standard arguments in viscosity solution theory, we infer that,
for every positive parameter σ, the function

Φ(x, ξ) := uε(x)− u(x)− ε2w
(
ξ

ε

)
− γ

2
|x|2 − c|x− x̂|2 − σ

2
|x− ξ|2 (30)

attains a maximum value in some point (xσ, ξσ), with

xσ, ξσ → x̃ as σ → +∞. (31)
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Applying again [13, Thm 3.2] (now, the penalization term is ψ(x, ξ) := u(x) +
γ
2 |x|

2 + c|x− x̂|2 + σ
2 |x− ξ|

2), we infer that there exists a positive constant C̃ such
that, for every η > 0, there exists two matrices X1, X2 ∈ Sn such that there holds

(Du(xσ) + γxσ + 2c(xσ − x̂) + σ(xσ − ξσ), X1) ∈ J+
xσu

ε, (32)

(
σ

ε
(xσ − ξσ), X2) ∈ J−ξσ/εw, (33)

X1 −X2 ≤ D2u(xσ) + (γ + 2c+ ηC̃)I. (34)

From now on the letter M̄ stands for a positive constant, dependent only on the
parameters entering in Assumptions (A1)-(A3) (i.e., independent on λ, ε, r, σ and
τ) which may change from line to line.

Being a solution to the starting problem (1) with k = 2, by relation (32), the
function uε verifies

0 ≥ uε(xσ) +Hε
(
xσ,

xσ
ε
,
xσ
ε2
, Du(xσ) + γxσ + 2c(xσ − x̂) + σ(xσ − ξσ), X1

)
≥ uε(xσ) +Hε

(
xσ,

xσ
ε
,
xσ
ε2
, Du(xσ) + σ(xσ − ξσ), X2 +D2u(xσ)

)
−M̄

[
γ|xσ|+ c|xσ − x̂|+ γ + c+ ηC̃

]
where the last inequality is a consequence of relations (34) and the uniform ellipticity
of Hε. Moreover, for σ sufficiently large, relations (28) entail

0 ≥ uε(xσ) +Hε
(
xσ,

xσ
ε
,
xσ
ε2
, Du(x̂) + σ(xσ − ξσ), X2 +D2u(x̂)

)
− M̄

[
|x̂− xσ|ᾱ + γ|xσ|+ c|xσ − x̂|+ γ + c+ ηC̃

]
On the other hand, problem (24) centered in (x̂, Du(x̂), D2u(x̂)) and relation (33),

imply that the function w verifies for σ sufficiently large

0 ≤ λw(ξσ/ε) +Hε
r

(
ξσ
ε
,
ξσ
ε2
,
σ

ε
(xσ − ξσ), X2; x̂, Du(x̂), D2u(x̂)

)
≤ λw(ξσ/ε) +Hε

(
xσ,

xσ
ε
,
xσ
ε2
, Du(x̂) + σ(xσ − ξσ), X2 +D2u(x̂)

)
,

where the latter inequality is due to our choice of r (and τ) and to the limits (31).
The last two inequalities ensure the following one:

0 ≥ uε(xσ)− λw(ξσ/ε)− M̄
[
|x̂− xσ|ᾱ + γ|xσ|+ c|xσ − x̂|+ γ + c+ ηC̃

]
.

Moreover, owing to Proposition 4.1 and to estimates (28), we have

−λw(ξσ/ε) ≥ H(x̂, Du(x̂), D2u(x̂))− M̄ [εα1 + r + ω(ε, x̂) + λ]

≥ −u(x̂)− M̄ [εα1 + r + ω(ε, x̂) + λ]

(in the last inequality, equation (2) has been used) where α1 ∈ (0, 1) is a constant
depending only on the parameters entering in the starting Assumptions (A1)-(A3)
(i.e., independent on λ, ε, r, σ and τ).

Substituting the last inequality in the previous one, we obtain

uε(xσ)− u(x̂) ≤M̄
[
εα1 + r + ω(ε, x̂) + λ+ |x̂− xσ|ᾱ

+γ|xσ|+ c|xσ − x̂|+ c+ γ + ηC̃
]
.

Letting η → 0, we deduce

uε(xσ)− u(x̂) ≤ M̄
[
εα1 + r + ω(ε, x̂) + λ+ |x̂− xσ|ᾱ + γ|xσ|+ c|xσ − x̂|+ c+ γ

]
;
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as σ → +∞, taking into account the definition of r, by (31) we obtain

uε(x̃)− u(x̂) ≤ M̄
[
εα1 + ω(ε, x̂) + λ+ τ ᾱ + γ|x̃|+ cτ + c+ γ

]
.

Choose λ = εθ1 , τ = εθ2 for some positive parameters θ1 and θ2. By the definition
of c, we have

uε(x̃)− u(x̂) ≤ M̄
[
εα1 + ω(ε, x̂) + εθ1 + εθ2ᾱ + γ|x̃|+ γ + ε2−θ1−2θ2

]
.

In conclusion, relation ϕ̃(x̃) ≥ ϕ̃(x̂) = ϕ(x̂) ≥ ϕ(x) yields

uε(x)− u(x) ≤ [uε(x̃)− u(x̂)] + [u(x̂)− u(x̃)]+

ε2
[
wλε,r

(x
ε

; [u](x)
)
− wλε,r

(
x̃

ε
; [u](x̂)

)]
+
γ

2

(
|x|2 − |x̃|2

)
.

Taking into account the previous two inequalities, estimates (28) and Lemma 4.2,
we obtain

uε(x)−u(x) ≤ M̄
[
εα1 + ω(ε, x̂) + εθ1 + εθ2ᾱ + γ|x̃|+ γ + ε2−θ1−2θ2

]
+
γ

2

(
|x|2 − |x̃|2

)
.

Recall that the function ω has the form given in (4) and choose γ = 8M̄ω2(ε).
Hence, our choice of τ and a simple calculation give

M̄ [ω(ε, x̂) + γ|x̃|]− γ

2
|x̃|2 = M̄ω1(ε) + M̄ω2(ε)

[
|x̂|2 + 8M̄ |x̃| − 4|x̃|2

]
≤ M̄ [ω1(ε) + 2|x̂− x̃|2] + M̄ω2(ε)

[
−2|x̃|2 + 8M̄ |x̃|

]
≤ M̄ [ω1(ε) + 2ε2θ2 ] + 8M̄3ω2(ε).

Substituting this inequality in the previous one, we obtain

uε(x)− u(x) ≤ M̄
[
εα1 + ω1(ε) + ω2(ε) + εθ1 + εθ2ᾱ + ω2(ε)|x|2 + ε2−θ1−2θ2

]
∀x.

In conclusion, for θ1 and θ2 sufficiently small, the proof of one side of the inequality
is accomplished. The other part can be proved in parallel and we shall omit it.

Remark 4.1. Choosing θ1 = ᾱ/(1 + ᾱ) and θ2 = 1/(1 + ᾱ), in equation (5) we

obtain α = min
{

α̃
α̃+1 ,

ᾱ
ᾱ+1

}
, where ᾱ and α̃ are the Hölder regularity exponents

for the effective problem (2) (see Remark 3.1) and respectively for the mesoscopic
cell problem (23) (see Lemma 4.1 and Prop. 4.1).

5. Examples. This Section is devoted to illustrate two examples; in the first one,
an explicit estimate for the exponent α in (5) is exhibited. In the second we apply
our results to an unfair stochastic differential game and in particular to stochastic
optimal control problems.

Example 1 Let us consider the following problems with three scales

uε − tr
[
a(x)D2uε

]
+ F1

(
x,
x

ε
,Duε

)
+ F2

(
x,
x

ε2
, Duε

)
= 0

where a ∈ C1,α∗
with α∗ ∈ (0, 1), a ≥ νI and Fi = Fi(x, y, p) fulfill assump-

tions (A1) and (A2) (for i = 1, 2). In this case, the microscopic cell problem (22)
centered in (x̄, ȳ, p̄, X̄) reads

λwλ − tr
[
a(x̄)D2wλ

]
+ F2(x̄, z, p̄) + F1(x̄, ȳ, p̄)− tr

[
a(x̄)X̄

]
= 0.

Then the mesoscopic Hamiltonian (see [3]) H1 has the form

H1(x, y, p,X) = −tr [a(x)X] + F1 (x, y, p) +

∫
[0,1)n

F2 (x, z, p) dz;
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furthermore, the mesoscopic cell problem (23) centered in (x̄, p̄, X̄) reads

λWλ − tr
[
a(x̄)D2Wλ

]
+ F1(x̄, y, p̄)− tr

[
a(x̄)X̄

]
+

∫
[0,1)n

F2 (x̄, z, p̄) dz = 0.

Since the coefficient of the second order term is constant, the regularity theory
for elliptic equations (see [21, Chap. IV, Thm 6.3]) ensures that the solution Wλ

belongs to C2,α̃ for every α̃ ∈ (0, 1) (namely, Lemma 4.1 holds for every α̃ ∈ (0, 1));
moreover, the effective problem is

u− tr
[
a(x)D2u

]
+

∫
[0,1)n

[F1(x, z,Du) + F2 (x, z,Du)] dz = 0.

Invoking again the regularity theory for elliptic equations, we infer that the effective
solution u belongs to C2,ᾱ. Hence, Theorem 2.1 and Remark 4.1 guarantee that,
for some positive M , there holds

sup
x∈Rn

|uε(x)− u(x)| ≤Mε
ᾱ
ᾱ+1 .

Furthermore, let us notice that, for a ∈ C2,β and Fi ∈ C1,β (i = 1, 2) with β ∈ (0, 1),
the solution u belongs to C3,β ; hence, for every α ∈ (0, 1

2 ), there exists a constant
Mα such that

sup
x∈Rn

|uε(x)− u(x)| ≤Mαε
α.

Example 2 Let us consider a stochastic differential game whose state variable
evolves in a medium displaying heterogeneities of different scales and where a player
may only “disturb” the other one. The dynamics are given by the stochastic differ-
ential equation

dxs = f ε
(
xs,

xs
ε
, . . . ,

xs
εk
, θs, βs

)
ds+ σε

(
xs,

xs
ε
, . . . ,

xs
εk
, θs, βs

)
dWs, x0 = x

where (Ω,F , P ) is a probability space, endowed with a continuous right filtration
(Ft)0≤t<+∞ and a p-adapted Brownian motion Wt. The control law θ (respec-
tively, β) belongs to the set T (resp., B) of progressively measurable processes
which take values in the compact set Θ (resp., B). The two controls θ and β are
chosen respectively by the first and the second player whose purpose are opposite.
The former wants to minimize the following cost function

P (x, θ, τ) := Ex
∫ +∞

0

`ε
(
xs,

xs
ε
, . . . ,

xs
εk
, θs, βs

)
e−s ds

while the latter’s aim is to maximize it. For ϕ = f, σ, `, we shall assume

ϕε(x, y1, . . . , yk, θ, β) = ϕ1(x, y1, . . . , yk, θ) + ω(ε)ϕ2(x, y1, . . . , yk, θ, β)

(note that ϕ1 is independent of the control β) where ω is a modulus of continuity.
It is well known (see: [16, 17]) that the value function

uε(x) := inf
θ∈Γ

sup
β∈B

P (x, θ[β], β)

is a viscosity solution to problem (1) with

Hε(x, y1, . . . , yk, p,X) := min
β∈B

max
θ∈Θ
{−tr (aε(x, y1, . . . , yk, θ, β)X)

−f ε(x, y1, . . . , yk, θ, β) · p− `ε(x, y1, . . . , yk, θ, β)} ,
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here aε = σε(σε)T /2 while Γ stands for the set of admissible strategies of the first
player (namely, nonanticipating maps θ : B → T ; for the precise definition and main
properties, see [17]). We observe that, as ε→ 0, Hε converges locally uniformly to
the operator

H(x, y1, . . . , yk, p,X) = max
θ
{−tr (a1X)− f1 · p− `1} with a1 = σ1(σ1)T /2.

Invoking Corollary 2.1, we deduce that the value function uε converges uniformly
in Rn to the solution u to the effective problem (2) with the rate

sup
x∈Rn

|uε(x)− u(x)| ≤M [εα + ω(ε)] .

Remark 5.1. Let us emphasize that the latter example encompasses stochastic
optimal control problems. Indeed, in these cases, the second player is missing
(that is, the set B reduces to a singleton). Moreover, in this context, the regular
perturbation of the Hamiltonians (namely the fact that Hε → H locally uniformly)
can be interpreted as a lack of information on the features of the problem.

Acknowledgments. The two authors are grateful to the referees for several com-
ments and suggestions.
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