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Abstract. We propose a mathematical model for the process of dry pasta

cooking with specific reference to spaghetti. Pasta cooking is a two-stage pro-
cess: water penetration followed by starch gelatinization. Differently from

the approach adopted so far in the technical literature, our model includes

free boundaries: the water penetration front and the gelatinization onset front
representing a fast stage of the corresponding process. Behind the respective

fronts water sorption and gelatinization proceed according to some kinetics.

The outer boundary is also moving and unknown as a consequence of swelling.
Existence and uniqueness are proved and numerical simulations are presented.

1. Introduction. The aim of cooking starch rich products (pasta, cereals, pota-
toes, etc.) is to convert starch to a digestible form through the so-called gelatiniza-
tion process. Starch is a polymer (C6H10O5)n whose chains come in two forms: amy-
lose and amylopectin. Gelatinization involves the breakage of intermolecular bonds
and the aggregation of water molecules. Such a process requires a sufficiently high
temperature and also a sufficiently large moisture content. It is believed that the
threshold temperature for gelatinization is a linear function of the moisture content
(see e.g. [4]). Of course this can be true only within some moisture range, because
the process does not take place at all if not enough water is available. Therefore dry
pasta has to be penetrated by water before gelatinization starts. Water penetration
occurs even at room temperature (although very slowly and with no gelatinization)
and is greatly facilitated in boiling water. Cereals are even more compact and need
longer soaking times ([7], [4]). In the technical literature water soaking has been
described on the basis of a supposed similarity with the process of the penetration
of solvents into glassy polymers. Accordingly, the governing equation for the water
motion has been assumed to be a nonlinear diffusion equation with a diffusivity de-
pending exponentially on the moisture concentration [6]. An alternative approach,
still based on diffusion, has been proposed in [1], where water diffusivity D is taken
piecewise constant, with two different values: D0 in the non-gelatinized region, and
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γD0, γ > 1, in the gelatinized region. Our model for dry pasta cooking adopts a
Darcyan mechanism for water transport and is based on the following observations:

1. Room temperature soaking leads to moderate volume increase.
2. In the normal cooking process the following stages can be observed:

i) A few seconds after immersion in boiling water spaghetti acquire enough
flexibility to be slightly bent, so to be fully immersed in the water. No
visible volume change takes place in this early stage. Since dry spaghetti
are rather brittle, it means either that some penetration has occurred,
in the sense that capillarity has driven water to saturate the material
without modifying its very low original porosity or the sudden raise of
temperature has modified the mechanical properties.

ii) During the following few minutes flexibility increases at a slow rate.
Spaghetti are still breakable beyond some curvature. More precisely, a
relatively stiff unpenetrated core can be seen, which is responsible for
breaking. The core radius reduces progressively, until very good flexibil-
ity is reached more or less after half of the suggested cooking time. This
means that massive soaking has progressed significantly.

iii) During the cooking process cross sections exhibit the following structure:
a whitish core, surrounded by a region of neutral colour, and an exter-
nal annulus which looks softer and slightly yellow. The three regions are
separated by visible interfaces. They can be identified with the not yet
soaked region (the core), the intermediate region, with a moisture con-
tent below the gelatinization threshold (at the temperature of the boiling
water, since the process is basically isothermal), and an external region
in which gelatinization is taking place. Such a structure is still visible at
the end of the cooking time, meaning that spaghetti “al dente” are still
far from full gelatinization.

3. Boiling potatoes is a different process, because the water utilized in the gela-
tinization is the one already present in the raw tuber. Therefore no soaking is
needed and gelatinization is triggered by the propagation of an isotherm (e.g.
75◦C).

4. Cooking fresh pasta is a different and much quicker process, which is achieved
in just a couple of minutes. For instance, the cooking time corresponds ap-
proximately (not differently from potatoes) to the propagation time of the
75◦C isotherm, meaning that the original water content is large enough for
gelatinization to take place.

We may conclude that
A) in spaghetti cooking there is a significant delay between the onset of soaking

and the onset of gelatinization,
B) a model including free boundaries is legitimate.

For this reason we will describe water penetration introducing a soaking front,
triggering some imbibition kinetics. Air contained in dry pasta (less then 1% in
volume) is not considered to affect any stage of the process. As we said, while the
study of the thermal field is essential in the cooking of larger bodies, as potatoes
or gnocchi, temperature can be considered uniform in spaghetti and equal to the
boiling temperature, since the propagation time of the 75◦C isotherm for spaghetti
of 1÷ 2 mm diameter and heat conductivity of 1.5 10−3cm2/sec is of the order of a
few seconds.
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Isotherm (◦C) Lasagna Spaghetti Gnocchi Potatoes
60 4.2 sec 2.2 sec 151 sec 604 sec
70 5.7 sec 2.9 sec 197 sec 790 sec
80 7.6 sec 3.7 sec 232 sec 930 sec
90 11 sec 5.0 sec 337 sec 1349 sec

Table 1. Isotherm penetration time for different geometries:
plane (lasagna, half thickness 1 mm), cylindrical (spaghetti, ra-
dius 1 mm), spherical (gnocchi, radius 1 cm) and small potatoes
(radius 2 cm).

Experimental evidence of a progressive gelatinization interface has been reported
in [5]. More references on penetration and gelatinization are [9], [3]. In the next
section we describe a mathematical model for soaking and gelatinization, charac-
terized by the presence of two interfaces: the water penetration front (carrying a
discontinuity of the water content) and the surface at which moisture reaches the
threshold for gelatinization to occur. Since in our setting both imbibitions and gela-
tinization are seen as processes evolving along the trajectories of the solid starch
particles, the introduction of a Lagrangian coordinate is very convenient. This is
the aim of Section 3. In Section 4 we will determine the behaviour of the soaking
front at the beginning of the process. The soaking process before the onset of gela-
tinization is studied in Section 5, where existence and uniqueness of the solution is
proved. The continuation of the solution in the presence of gelatinization is studied
in Section 6. A numerical scheme for the computation of the penetration front is
illustrated in Sect. 7. In Section 8 some numerical simulations are presented and
compared with the experimental data of [1] for spaghetti and for flat forms. The
very good agreement with experimental data confirms that the validity of our ap-
proach, which exhibits several differences with respect to the previous literature,
trying to be closer to the physics of the phenomenon. The aim of the Appendix is
to summarize the process in plane geometry, for which it is possible to perform an
analysis of the soaking kinetics, leading to the choice of some basic parameters that
has been adopted also in the case of spaghetti. The plane case has an interest in
itself, since it refers not only to pasta in the form of sheets (lasagna), but also to
other shapes (e.g. hollow cylinders) in which the thickness of the sample is much
smaller than its radius of curvature.

2. The mathematical model. According to the discussion in the previous sec-
tion, we start at time t = 0 with a fully saturated domain 0 < r < R with porosity
φ0 � 1; this pristine porosity is introduced for the sake of generality, in view of what
said under 2(ii), but it could be safely neglected, for practical purposes in the case of
dry pasta. The onset of the soaking process is immediate, while gelatinization will
start only after the porosity has reached some critical value φM . Correspondingly,
we have a soaking region S and a gelatinization region G. We consider just a cross
section far enough from the ends, exploiting the fact that the ratio radius/length is
very small for spaghetti.

2.1. The soaking process. If we denote by φ the liquid volume fraction and by
φS the solid volume fraction, we have that in the region S in which φ ∈ (φ0, φM )
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φ+ φS = 1. (1)

We describe soaking to be very fast during a first stage, accordingly described as
a penetration front accompanied by a jump of φ, then followed by a slower process.

Before the onset of gelatinization, the region S is bounded between two unknown
radii: the penetration front r = s(t), and the outer boundary, x = σ(t). The latter
will be replaced by the S/G interface r = h(t), from the moment it appears (see
Fig. 1).

low porosity core

swelling region r

gelatinized region

Water imbibition: s(t) < r < h(t)

Gelatinization: h(t) < r < σ(t)

outer boundary σ(t)

gelatinization front h(t)

water penetration front s(t)

Figure 1. Sketch of the geometry of the problem

Instead of using the nonlinear diffusion equation which in the literature has been
mutuated from the penetration of solvents into glassy polymers, here we describe
the residual soaking as a relaxation process, following the kinetics

φ̇ = F (φ), (2)

where φ̇ is the Lagrangian derivative along the motion of the solid particles (the
region S moves due to the swelling) and F is positive continuous in [0, 1] and
smooth for φ < φM , such that F ′(φ) < 0 for φ ∈ [0, φM ]. Of course F depends on
the temperature but this is not important here. The selection of the function F
is very delicate. We will discuss some aspects related to it in the Appendix with
reference to the problem in a plane geometry.

Denoting by u(r, t) the velocity of the solid particles and by v(r, t) the velocity
of the water, we write the mass balance equation for the two species in the region
S:

∂φS
∂t

+
1

r

∂

∂r
(ruφS) = 0, (3)

∂φ

∂t
+

1

r

∂

∂r
(rvφ) = 0. (4)

Remembering (1) we deduce the global incompressibility condition

∂

∂r
[r(uφS + vφ)] = 0. (5)
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Now we rewrite (2) in the form

∂φ

∂t
+ u

∂

∂r
(φ) = F (φ), (6)

which, together with (1), (3) yields

φS
1

r

∂

∂r
(ru) = F (φ). (7)

Similarly we deduce

φ
1

r

∂

∂r
(rv) = −F (φ). (8)

Finally, Darcy’s law provides the equation for the motion of the water relative
to the solid:

φ(v − u) = −κ(φ)
∂p

∂r
, (9)

where κ(φ) is he hydraulic conductivity (also depending on the temperature), and
p is pressure. We set the atmospheric pressure equal to zero, and we impose the
conditions

p(σ(t), t) = 0, (10)

p(s(t), t) = −p0, (11)

where p0 is the (temperature dependent) capillary pressure.
At the penetration front we suppose that φ jumps from φ0 to a larger value φW :

φ(s(t)+, t) = φW . (12)

Consistently with the experimental observation that gelatinization seems to be
substantially delayed with respect to soaking, we must assume that φW is still well
below the threshold φM making the onset of gelatinization.

In the following the jump of a function f(r, t) across an interface r = ρ will be
denoted by [f ], i.e. [f ] = f(ρ+, t)− f(ρ−, t).

The Rankine-Hugoniot condition associated to (3) reads

[φS ]ṡ = [uφS ]⇒ (φW − φ0)ṡ(t) = −(1− φW )u(s(t)+, t), (13)

relating the swelling velocity at the front with the front speed:

u(s(t), t) = −φW − φ0

1− φW
ṡ(t). (14)

The analogous balance for the liquid gives

[φ]ṡ = [vφ]⇒ (φW − φ0)ṡ(t) = φW v(s(t)+, t), (15)

or

v(s(t), t) =
φW − φ0

φW
ṡ(t) (16)

(of course, if the pristine porosity φ0 is neglected, then the front is a material surface,
i.e. it moves with the same speed as the water molecules).

We can now observe that the compound velocity φSu + φv evaluated at the
penetration front is zero. Thus (5) implies that it has to vanish everywhere:
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(1− φ)u+ φv = 0. (17)

The initial conditions for the fronts x = σ(t), x = s(t) are obviously

σ(0) = s(0) = R. (18)

Another obvious feature of the soaking model is that ṡ < 0 (the converse would
require water desorption).

As we shall see in the next section (remark 2), the global mass balance of the
solid implies that the external surface moves with the speed u of the solid particles.

2.2. Gelatinization. It is convenient to model gelatinization as a two-step process,
like we have done for soaking. A first stage fast enough to be considered concen-
trated at the boundary r = h(t), followed by a second stage evolving according to
some kinetics.

We neglect the possible volume change accompanying the water molecules re-
arrangement, since the absence of swelling in boiled potatoes suggests that gela-
tinization does not produce any appreciable density change. Since water is partly
immobilized in the gelatinization process, we have to split the water volume fraction
into the sum φ+ η of the free and bound components, respectively.

We must impose that

φ+ η + φS = 1. (19)

We can write down the balance equation for free and bound water respectively

∂φ

∂t
+

1

r

∂

∂r
(rφv) = −δφS , (20)

∂η

∂t
+

1

r

∂

∂r
(rηu) = δφS , (21)

where δ represents the transfer rate φ → η per unit volume of the solid. We may
assume that the process is governed by a known kinetics:

δ = G(η) (22)

with G(η) defined for η ∈ [η0, ηM ], positive and smooth for η < ηM , and decreasing
to zero as η → ηM . In our setting η0 is the jump experienced by η at the interface
r = h(t). Of course the model is flexible enough to exclude either the first stage
(η0 = 0) or the second stage (η = ηM ). The ratio η/ηM can be considered as an
index of gelatinization.

The interface r = h(t) is identified with the level set φ = φM . We remark that
the continuity of φS across r = h(t) implies the continuity of u:

[φS ] = [u] = 0. (23)

From (19) we have

[φ] = −[η] = −η0, (24)

so the Rankine-Hugoniot condition for (20), gives1

− η0ḣ = (φM − η0)v+ − φMv−. (25)

1From now on we use the obvious notation v± = v(s(t)±, t), u± = u(s(t)±, t)
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The r.h.s. of (25) is the difference between the free water fluxes on the right and
on the left of the front, while the l.h.s. is the free water loss rate accompanying the
front displacement.

Having neglected any further swelling, we write φ̇S = 0 in the gelatinization
region, implying

φS = 1− φM , h(t) ≤ r ≤ σ(t) (26)

and ∇ · u = 0, i.e.

ru(r, t) = h(t)u(h(t), t), h(t) ≤ r ≤ σ(t). (27)

Clearly (26) is equivalent to φ + η = φM and therefore the field φv + ηu is
divergence free:

r(φv + ηu) = h(t){(φM − η0)v+ + η0u
+}

= h(t){φMv− − η0(ḣ− u+)}, h < r < σ, (28)

where we have used (25). Of course (φM − η0)v+ + η0u
+ is the total water flux.

Darcy’s law has still the form (9) and continuity of pressure is imposed across
r = h(t).

Combining Darcy’s law with (28) (or (25)), we see that across r = h(t)[
−κ∂p

∂r

]
= η0(u+ − ḣ). (29)

Using the fact that φv + (η + φS)u is divergence free, we easily get, in addition
to (28):

r(φv + (η + φS)u) = −hη0{ḣ− u+}, (30)

owing to the fact that φMv
− + (1− φM )u vanishes.

Remark 1. The problem with η0 = 0 is greatly simplified , since not only φS and u
are continous across r = h(t), but also φ and v (and consequently also the pressure
gradient). In particular (30) provides

φv + (η + φS − 1)u = 0⇒ φ(v − u) + u = 0.

3. Describing the motion of solid particles: A Lagrangian coordinate.
Let us denote by ξ the radial coordinate of the solid particles at time t = 0, i.e.
prior to water penetration with swelling (soaking). This quantity plays the role of
a Lagrangian coordinate during the entire motion. The mass conservation of the
solid implies that for any (r, t) in the region S∫ r

s(t)

r′φS(r′, t)dr′ =
1

2
(1− φ0)(ξ2 − s2(t)), s(t) < r < h(t). (31)

Remark 2. Setting r = σ(t) and ξ = R, (31) is shown to be equivalent to u|r=σ = σ̇.

We can differentiate w.r.t. r and t, obtaining:

(1− φ0)ξ
∂ξ

∂r
= rφS , (32)
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t

r
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S

(r, t)

h

G

σ

s(t) ξ R0

τ

Figure 2. Scheme of the soaking region (S), gelatinization region
(G), showing the free boundaries (s, h, σ) and the Lagrangian co-
ordinate ξ.

(1− φ0)ξ
∂ξ

∂t
= −rφSu, (33)

compatible with ξ̇ = 0.
To the Lagrangian coordinate ξ we may also associate the time variable τ (Fig.

2), corresponding to the time instant at wich the soaking front reaches the location
ξ:

s(τ) = ξ. (34)

We may transform the unknowns φ(r, t), φS(r, t) to Φ(ξ, t), ΦS(ξ, t), and this
facilitates the integration of equation (2).

For instance, we may select

F (Φ) = A(φ∗ − Φ)n, with φ∗ > φM , n ≥ 2, A > 0. (35)

This choice of F is justified on the basis of the analysis of the one-dimensional
plane geometry (illustrated in the appendix). Indeed

Φ(ξ, t) = φ∗ − {(φ∗ − φW )−n+1 + (n− 1)A(t− τ)}−
1

n−1 (36)

so that the time tg needed for gelatinization is

tg =
1

(n− 1)A
{(φ∗ − φM )−n+1 − (φ∗ − φW )−n+1}. (37)

To be specific, if we take n = 2, φ∗ = 0.8, φM = 0.75, φW = 0.6 and we want
tg = 300 sec, we need A = 5 · 10−2 sec−1.

In the region G the global balance of the solid takes the form∫ h(t)

s(t)

rφS(r, t)dr + (1− φM )
1

2
(r2 − h2) =

1

2
(1− φ0)(ξ2 − s2(t)), (38)
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so that (32), (33) become

(1− φ0)ξ
∂ξ

∂r
= (1− φM )r, (39)

(1− φ0)ξ
∂ξ

∂t
= (1− φ0 − φW )sṡ (40)

We remark that, from (27)

σ(t)σ̇(t) = h(t)u(h(t), t). (41)

t

tg

R0

Outer Surface

ξ = s(t)

ξ = ĥ(t)

ξ

Figure 3. In the (ξ, t)plane the gelatinization front is just a trans-
lation of the water penetration front.

The time taken to complete the transition φW → φM is independent of ξ. Thus

in the (ξ, t) plane the S/G interface ξ = ĥ(t) is simply obtained by means of a time
translation of ξ = s(t) by the amount tg (Fig.3):

ξ = ĥ(t) = s(t− tg), t > tg. (42)

The velocity fields in the region S can be found once the function Φ(ξ, t) is known.
Note that (32) guarantees that the mapping ξ → r is 1 : 1 for each t. To find its
inverse we can use (32), defining the function

Ψ(ξ, t) =

∫ R

ξ

1− φ0

1− Φ(ξ′, t)
ξ′dξ′, (43)

which allows to derive from (32) that

r2 = σ2(t)− 2Ψ(ξ, t), t ≤ tg. (44)

At this point, we introduce the transforms U(ξ, t), V (ξ, t), P (ξ, t) of u(r, t),
v(r, t), p(r, t), respectively. Combining (9), (17) and (32), we deduce
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U(ξ, t) = k(Φ)
r(ξ, t)

ξ

1− Φ

1− φ0

∂P

∂ξ
. (45)

The expression of U(ξ, t) can be found by integrating (7) and recalling (14):

U(ξ, t) =
1

r(ξ, t)

{
−φW − φ0

1− φW
sṡ+

∫ ξ

s(t)

(1− φ0)ξ′

[1− Φ(ξ′, t)]2
F [Φ(ξ′, t)]dξ′

}
, (46)

so that (42) can be used to obtain the pressure field P (ξ, t), exploiting the boundary
condition (11).

The fluid velocity field is simply

V (ξ, t) = −1− Φ

Φ
U. (47)

It is interesting to remark that the setting of the soaking model suggests that
the velocity fields can be found without using Darcy’s law, whose role seems to be
reduced to the determination of the pressure field. In other words, pressure looks
like to be automatically adjusted to fit the prescribed soaking kinetics. Nevertheless,
pressure is not just an optional quantity. Indeed the motion of the soaking front has
still to be determined and to this aim it is necessary to use the boundary condition
(11), so that Darcy’s law fully comes into play.

Returning to the original variables, the velocity field u(r, t) becomes

u(r, t) =
1

r

{
−φW − φ0

φW
sṡ+

∫ r

s

r′

1− φ(r′, t)
F [φ(r′, t)]dr′

}
(48)

and we may write

p0 =

∫ σ(t)

s(t)

u(r, t)

k[φ(r, t)]
dr, (49)

to be interpreted as a functional equation for s(t), since in turn the boundary σ(t)
is implicitly defined putting ξ = R in (31):∫ σ(t)

s(t)

r[1− φ(ξ, t)]dr =
1

2
(1− φ0)(R2 − s2(t)). (50)

Since 1 − φ < 1 − φ0, (50) has a unique solution σ(t) > R, ∀t > 0. The system
(49), (50) is more complicated than it looks, since we must remember that φ depends
explicitly on the time τ , and through it on s. We remind that it has to be used in
the stage preceding gelatinization.

After the appearence of the region G, as we have seen, the relationship between
r and ξ is more complicated. On the basis of (38) and (31) we deduce that in G
the inverse mapping ξ → r can be expressed as

σ2 − r2 =
1− φ0

1− φM
(R2 − ξ2), ĥ(t) ≤ ξ ≤ R, (51)

where ξ = ĥ(t) corresponds to r = h(t), namely

ĥ(t)2 = R2 − 1− φM
1− φ0

(σ2 − h2). (52)

For ξ < ĥ, we have instead
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h2 − r2 = 2

∫ ĥ(t)

ξ

1− φ0

1− Φ(ξ′, t)
ξ′dξ′, t > tg. (53)

As we have pointed out, the curve ξ = ĥ(t) is nothing but ξ = s(t− tg) for t > tg.
Thus (52) can be used as the formula giving h(t) in terms of σ(t) and of s(t− tg),
for t > tg.

4. A-priori properties of the water penetration front. We can easily deduce
the behaviour of s(t) and σ(t) for small t, taking the approximation φ ∼ φW in (49)
and (50). First of all we deduce the asymptotic relationship:

σ2(t) ≈ 1

1− φW
[(1− φ0)R2 − (φW − φ0)s(t)2], (54)

or, to the first order in σ −R or R− s,

σ −R ≈ φW − φ0

1− φW
(R− s). (55)

Clearly, since σ − s ≈ 1−φ0

1−φW
(R − s), in order to satisfy (49), u must exhibit a

singularity of the order 1
R−s , which in (48) can only be attributed to ṡ. Hence, if

we want −ṡ = d
dt (R− s) to behave as (R− s)−1, we must take the ansatz:

s(t) ' R(1− α
√
t)⇒ σ(t) ' R

(
1 +

φW − φ0

1− φW
α
√
t

)
(56)

and we can keep just the singular term of u to perform the calculation in (49),
obtaining the coefficient α:

α =

[
2k(φW )p0

(φW − φ0)(1− φ0)

]1/2
1− φW
R

. (57)

The soaking processes is related to the efficiency of water transport, besides
the intensity of the capillarity (expressed by p0). Indeed, coupling the equations
u = k∇p and div(u) = F/φS , we see that pressure satisfies the elliptic equation

div(k(φ)∇p) =
F (φ)

1− φ
, s(t) < r < σ(t). (58)

Using the expression (14) of u on the soaking front, we get the Stefan condition

− φW − φ0

1− φS
ṡ = k(φW )

∂p

∂r
|r=s(t). (59)

The quantity

β = k(φW )
∂p

∂r
|r=s(t) (60)

can be calculated integrating twice (58) and imposing the two boundary conditions
for pressure:

β

∫ σ

s

dr

k(φ)
= p0 −

∫ σ

s

1

k(φ)

(∫ r

s

r′F

1− φ
dr′
)
dr, (61)

leading to the estimate
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β <
p0kmax
σ − s

− Fmin
1− φW

σ2 − s2 + s(σ − s)
6

(62)

Using the inequalities (see (50))

(σ2 − s2)(1− φM ) < (1− φ0)(R2 − s2) < (σ2 − s2)(1− φW ), (63)

it is possible to derive from (60), (62) a differential inequality for s.

5. Study of the water penetration stage. Going back to equation (2), we
immediately realize that, introducing the function

Q(y) =

∫ y

φW

dz

F (z)
(64)

we obtain the integral

Φ(ξ, t) = Z(t− τ(ξ)), (65)

with Z = Q−1, emphasising the dependence on the difference t− τ(ξ). The use of
the Lagrangian variable ξ seems more natural if we want to study equation (49).
Once more, from (32)

dr =
1− φ0

1− φ
ξ

r(ξ, t)
dξ for fixed t,

and we can write (49) as

p0 =

∫ R

s(t)

U(ξ, t)

k(Φ(ξ, t))

1− φ0

1− Φ(ξ, t)

ξ

r(ξ, t)
dξ, (66)

where U(ξ, t) is given by (46), Φ by (65) and r(ξ, t) by (43) and (44).
Hence

p0 = − (1− φ0)(φW − φ0)

1− φW
s(t)ṡ(t)

∫ R

s(t)

ξdξ

r2k(Φ)(1− Φ)
+

(1− φ0)2

∫ R

s(t)

ξdξ

r2k(Φ)(1− Φ)

∫ ξ

s(t)

ξ′

[1− Φ(ξ′, t)]2
F [Φ(ξ′, t)]dξ′. (67)

It is now convenient to use the transformation ξ = s(τ), ξ′ = s(τ ′):

p0 =
(1− φ0)(φW − φ0)

1− φW
s(t)ṡ(t)

∫ t

0

s(τ)ṡ(τ)dτ

r2k[Z(t− τ)][1− Z(t− τ)]
+

(1− φ0)2

∫ t

0

{
s(τ)ṡ(τ)dτ

r2k[Z(t− τ)][1− Z(t− τ)]
·∫ t

τ

s(τ ′)ṡ(τ ′)

[1− Z(t− τ ′)]2
F [Z(t− τ ′)]dτ ′

}
dτ (68)

where (after the usual transformation in (44))

r2(s(τ), t) = σ2(t) + 2

∫ τ

0

1− φ0

1− Z(t− τ ′)
s(τ ′)ṡ(τ ′)dτ ′ (69)

and σ(t) is expressed through s(t) by means of
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σ(t) = R+

∫ t

0

U(R, τ)dτ, (70)

namely (see 46)

σ(t) = R+

∫ t

0

1

σ(τ)

{
−φW − φ0

1− φW
s(τ)ṡ(τ)−∫ τ

0

(1− φ0)s(τ ′)ṡ(τ ′)

[1− Z(t− τ ′)]2
F [Z(t− τ ′)]dτ ′

}
dτ, (71)

i.e. a nonlinear Volterra integral equation, with the product sṡ entering the kernel
(which is weakly singular).

Therefore the r.h.s. of (68) can be regarded as an operator applied to the product
sṡ.

Now we prove the following

Theorem 5.1. The functional equation (68) has a unique solution s(t), continu-
ously differentiable for t > 0 and continuous for t = 0.

Proof. Let us define

− sṡ
√
t = Σ(t), (72)

and

B(t, τ ; Σ) =

∫ t

τ

Σ(τ ′)√
τ ′

dτ ′

r2(s(τ ′), t)k[Z(t− τ ′)][1− Z(t− τ ′)]
, (73)

where r2 is defined in terms of Σ via (69), (71), (72).
We may rewrite equation (68), using the quantities above and interchanging the

order of integration in the double integral:

p0 =
(1− φ0)(φW − φ0)

1− φW
Σ(t)

1√
t
B(t, 0; Σ) +

(1− φ0)2

∫ t

0

Σ(τ)√
τ

F [Z(t− τ)]

[1− Z(t− τ)]2
B(t, τ ; Σ)dτ (74)

We consider the set

S =

{
Ξ ∈ C[0, T ]| Ξ(0) =

1

2
αR2, 0 < µ0 ≤ Ξ ≤ µ1

}
, (75)

where T , µ0, µ1 are parameters to be chosen (more restrictions will be imposed in
the course of the proof).

Taken Ξ ∈ S, we use it to compute B(t, τ ; Ξ), according to (73), with Ξ replacing
Σ also in (69), (71), and we define the mapping M : Ξ 7−→ Σ by means of the
Volterra equation

p0 =
(1− φ0)(φW − φ0)

1− φW
Σ(t)

1√
t
B(t, 0; Ξ) +

(1− φ0)2

∫ t

0

Σ(τ)√
τ

F [Z(t− τ)]

[1− Z(t− τ)]2
B(t, τ ; Ξ)dτ (76)
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(whose solvability is immediately established by means of a contractive mapping
argument). Note that t−1/2B(t, 0; Ξ) is uniformly bounded for ξ ∈ S if we restrict
T in such a way that r, as given by (69), is greater than a given fraction of R, i.e.
R/N with N > 1. For instance, a rough estimate of such time TN can be

R2

N2
≤ R2 − 2

∫ TN

0

1− φ0

1− φM
µ1√
τ
dτ,

hence

TN ≤
[
R2

4µ1

(
1− 1

N2

)
1− φM
1− φ0

]2

, (77)

implying that, for t ∈ (0, TN ),

1√
t
B(t, 0; Ξ) <

2µN2

R2kmin(1− φM )
=: BM . (78)

We can also say that t−1/2B(t, 0; Ξ) is uniformly bounded away from zero, since

1√
t
B(t, 0; Ξ) >

µ0√
t

∫ t

0

1

R2kmax

1√
τ
dτ =

2µ0

R2kmax
=: Bm. (79)

Coming back to equation (76), since both terms on the r.h.s. are positive, we
can derive the following estimates:

Σ(t) <
p0(1− φW )

(1− φ0)(φW − φ0)

R2kmax
2µ0

, (80)

Σ(t) >
p0(1− φW )

(1− φ0)(φW − φ0)

R2kmin(1− φM )

2µ1N2
− (1− φ0)2

1− φM
Fmax2t sup

[0.T ]

Σ(t) (81)

so we can possibly reduce T so to guarantee that Σ(t) is greater than a given fraction
of Σ(0).

Unfortunately, (80), (81) just say that Σ is bounded, but they are unsuitable to
show that M maps S into itself.

Therefore, let us take the subset Ŝ ⊂ S in which we impose the further require-
ment that Ξ is Lipschitz continuous in any interval [ε, T ], with ε > 0 and Lipschitz
constant L(ε), unbounded for ε→ 0 and decreasing in ε.

Since we will prove that the limit Σ(t)→ Σ(0) as t→ 0+ is uniform for Ξ in Ŝ,
the structure we have given to S guarantees the existence of a fixed point of the
mapping M, using Schauder’s theorem in a suitable way, provided we prove that
MŜ ⊂ Ŝ and that M is continuous in Ŝ w.r.t. the sup norm.

With this aim, and keeping in mind all the restrictions we have imposed on T ,
let us compute the difference Σ(t1)− Σ(t2), e.g. with t1 > t2. From (76), setting:

a =
(1− φ0)(1− φW )

φW − φ0
, F(Z) =

F (Z)

(1− Z)2
, ‖Σ‖ = sup

(0,T )

Σ(τ)

K(Z) = [k(Z)(1− Z)]−1, F∗ = sup
Z∈(0,φM )

|F ′|, K∗ = sup
Z∈(0,φM )

|K′|,

FM = sup
y∈(0,φM )

F (y), 0 < Bm = inf
B√
t

for any Ξ ∈ S,

we get
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|Σ(t1)− Σ(t2)| ≤ ‖Σ‖
∥∥∥∥ 1√

t1
B(t2, 0; Ξ)− 1√

t2
B(t2, 0; Ξ)

∥∥∥∥+

a

Bm

∥∥∥∥∫ t2

0

Σ(τ)√
τ
F ′(Z̄)[Z(t1 − τ)− Z(t2 − τ)]B(t1, τ ; Ξ)dτ +∫ t2

0

F(Z(t2 − τ))[B(t1, τ ; Ξ)−B(t2, τ ; Ξ)]dτ

∥∥∥∥+

a

Bm

∫ t2

t1

Σ(τ)√
τ
F(Z(t1 − τ))B(t1, τ ; Ξ)dτ,

(82)

with t1 > t2 > ε.
Using the estimates

|σ(t1)− σ(t2)| ≤ µ1

R

φW − φ0

1− φW
1

2
√
t2

(t1 − t2) (83)

(deducible from (71), for T sufficiently small)

|r2(s(τ), t1)− r2(s(τ), t2)| ≤ µ1
φW − φ0

1− φW
1√
t2

(t1 − t2)+

4(1− φ0)µ1
1

(1− φM )2
FM (t1 − t2)

√
τ ,

(84)

(deducible from (69)) we get the inequality∣∣∣∣ 1√
t1
B(t1, 0; Ξ)− 1√

t2
B(t2, 0; Ξ)

∣∣∣∣ ≤ Cµ1
t1 − t2
t2

, t1 > t2 > ε, (85)

valid for T sufficiently small and a suitable constant C, independent on T , µ1. The
other terms in (82) are less important, due to the presence of the integral, so we
can say that

|Σ(t1)− Σ(t2)| ≤ C‖Σ‖µ1
t1 − t2
t2

, t1 > t2 > ε, (86)

for some other constant C.
Now we can use the estimate (80) for ‖Σ‖ to derive the expression of L(ε) in

terms of µ1. The above estimate is too crude near the origin because it cumulates
singularities that instead should cancel. Therefore the analysis near t = 0 should
be performed more carefully.

We are just interested in the lowest order of the increment. Let us add one more
restriction to the set of functions Ξ, requiring that

|Ξ(t)− Ξ(0)| ≤ λ
√
t, (87)

where λ must be established so that the same inequality is true for the function
Σ(t) =MΞ.

The difference Σ(t) − Σ(0) can be evaluated directly from (76). We realise im-
mediately that

Σ(t)
1√
t
B(t, 0; Ξ)− Σ(0)C = O(t), (88)
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where

C = lim
t→0

B√
t

=
2Σ(0)

R2k(φW )(1− φW )
.

Since we are interested in the
√
t term only, we may say that

|Σ(t)− Σ(0)| ≈ 1

C

∣∣∣∣ 1√
t
B(t, 0; Ξ)− C

∣∣∣∣Σ(t). (89)

On the right hand side we may replace Σ(t) by Σ(0), once we have checked that
Σ(t)− Σ(0) = O(

√
t).

Let us now compute:∣∣∣∣ 1√
t
B(t, 0; Ξ)− C

∣∣∣∣ =
1√
t

∣∣∣∣∫ t

0

1√
τ

{
Ξ(τ)

r2k(Z)(1− Z)
− Ξ(0)

R2k(φW )(1− φW )

}
dτ

∣∣∣∣
≤ Σ(0)√

t

∫ t

0

1√
τ

∣∣∣∣ 1

r2k(Z)(1− Z)
− 1

R2k(φW )(1− φW )

∣∣∣∣ dτ +

λ√
t

∫ t

0

dτ

r2k(Z)(1− Z)
.

Neglecting some O(t) terms, the last member of the above inequality is

1

R2k(φW )(1− φW )

{
Σ(0)√
t

∫ t

0

1√
t

|R2 − r2|
R2

dτ + λ
√
t

}
From (69) and (71) we see that

r2(s(t), t)−R2 = 2R

∫ t

0

U(R, τ)dτ − 2

∫ t

0

1− φ0

1− Z
Ξ(τ ′

τ ′
dτ ′

with ∫ t

0

U(R, τ)dτ = 2
Σ(0)

R

φW − φ0

1− φW
√
t+O(t).

Therefore after some algebra we obtain that

r2(s(t), t)−R2 = −4Σ(0)
√
t+O(t).

Summing up the above results and remembering that

Σ(0)

C
=
R2k(φW )(1− φW )

2
,

we reach the conclusion

|Σ(t)− Σ(0)| ≈
{

4Σ(0)

R2
+ λ

}√
t

=

(
α+

1

2
λ

)√
t. (90)

Therefore Σ(t) satisfies the same inequality (87) as Ξ(t) provided that α+λ/2 ≤
λ, meaning that we have simply to choose λ ≥ 2α.

It is worth noting that λ can now be selected independently of the other param-
eters entering the definition of the set Ŝ, thus providing uniform bounds for Ξ for
some other interval Tλ. Since the O(t) terms depend on µ1, the length of this time
interval may depend on µ1.
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From what we have seen, we want in practice that λ
√
Tλ > Cµ1Tλ, for some C

independent of µ1, implying that Tλ < (λ/Cµ1)2. We may choose µ1 = 2Σ(0) =
αR2. Next, using the Lipschitz estimate we can look for a time T1 > Tλ such
that over (Tλ, T1), Σ(t) has a further decrement less than Σ(0): 3Σ(0)C1(T1 −
Tλ)T−1

λ < Σ(0), for a suitable C1 independent of ‖Σ‖. Thus we find (T1−Tλ)t−1
λ <

(3C1)−1. Allowing a further decrement not exceeding Σ(0), we can look for T2 such
that 4Σ(0)C1(T2 − T1)T−1

1 < Σ(0), i.e. (t2 − T1)T−1
1 < (4C1)−1. Continuing this

procedure, we may say that Σ(t) < (n+ 2)Σ(0) for t < Tn = Πn
j=3(1 + (jC1)−1)Tλ.

In this way, we may select µ1 and T (and consequently µ0 and L(ε)), i.e. all the

parameters in the set Ŝ, so to guarantee that MŜ ⊂ Ŝ.
Let’s turn our attention to the continuity of M. This is easy, since from (69),

(71), (73) (76) we obtain the estimate

‖Σ1 − Σ2‖ ≤ X
√
T‖Ξ1 − Ξ2‖, (91)

where X is a constant depending on the parameters defining Ŝ. Thus M is not
only Lipschitz continous, but even contractive for T small enough.

Remark 3. Existence and uniqueness can be easily extended up to the time tg
at which φ reaches ΦM and that we suppose to be such that s(tg) > 0. Indeed in
practical cases gelatinization has to start much before water reaches the axis.

6. Study of the gelification stage. For the sake of brevity we confine to the
case η0 = 0, characterized by the continuity of all quantities through the interface
r = h(t).

Recalling (30), we see that the equation

k(φ)
∂p

∂r
= u

extends in the region G. Consequently, equation (49) is still valid.
Concerning the link between σ(t) and s(t), we see from (42), (51) and (53) that

it can be written as

σ2(t)− s2(t) = 2

∫ R

s(t)

1− φ0

1− Φ̃(ξ, t)
ξdξ, (92)

where

Φ̃(ξ, t) =

{
Φ(ξ, t), s(t) ≤ ξ ≤ ĥ(t)

φM , ĥ(t) ≤ ξ ≤ R.
(93)

We recall that ĥ(t) = s(t− tg), so that (92) really provides the mapping s→ σ.
The expression of the velocity field u(r, t) is

ru(r, t) = −φW − φ0

1− φW
sṡ+

∫ r

s

r′

1− φ(r′, t)
F (φ(r′, t))dr′, s ≤ r ≤ h, (94)

as before, and

ru(r, t) = −φW − φ0

1− φW
sṡ+

∫ h

s

r

1− Φ(r, t)
F (φ(r))dr, h ≤ r ≤ σ, (95)

owing to (27). Remembering (44), we have that (95) is also the expression of σσ̇.
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It is advantageous to use the Lagrangian variable ξ because the function φ(r, t)
has a simpler expression. We just have to modify the definition (65) of Φ(ξ, t) as
follows,

Φ(ξ, t) =

{
Z(t− τ(ξ)), ξ ≤ ĥ(t)

φM , ξ ≥ ĥ(t).
(96)

In this way we can write the explicit form of the functional equation for the free
boundary s(t) and we realise that it is formally identical to the one of the soaking
stage with the only change that Φ is defined as in (96) and F (Φ) is consequently
frozen to zero in the gelatinization region.

Therefore the existence proof is very similar to the one illustrated in detail in
sect. 5.

7. A numerical scheme. We recall that (56), (57) give a good representation of
s(t), σ(t) for t� α−2. Thus, we select a partition

(0, tg) = ∪N−1
i=1 (ti, ti+1)

with t0 = 0, t1 � α−2, TN = tg, and we identify s(t), σ(t) with their approximations
(56) in the first interval (0, t1), which we call s0(t), σ0(t):

s0(t) = R(1− α
√
t), σ0(t) = R

(
1 +

φW − φ0

1− φW
α
√
t

)
. (97)

According to (69), the corresponding O(
√
t) approximation of ε2 for 0 < τ < t <

t1 is

r2 ≈ σ2
0(t)− 1− φ0

1− φW
(R2 − s2

0(τ))

≈ R2

{
1 +

2α

1− φW
[(φW − φ0)

√
t− (1− φ0)

√
τ ]

}
,

(98)

where we have used the approximation Z ≈ φW .
Before we proceed further, it is convenient to take nondimensional variables,

rescaling lengths by R (r = r̃R, s = s̃R, σ = σ̃R) and time by t0 = α−2, so

that α
√
t =
√
t̂, α
√
τ =

√
τ̂ . We rescale k by kW = k(φW ) and we introduce the

nondimensional quantity

Θ = Aα−2 (99)

(note that Θ is the ratio between the time scale α−2 associated with the front
penetration and the time scale A−1 associated to the soaking kinetics). Moreover,
we write

s̃(t̃)
ds̃

dt̃
= − S̃(t̃)

2
√
t̃
.

Remembering (57) we can now write the non-dimensional form of (68) in the
following form, where all tildes have been omitted to simplify notations:
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1 =
S(t)√
t

∫ t

0

1

r2

S(τ)

2
√
τ

1

k[Z(t− τ)]

1− φW
1− Z(t− τ)

dτ+

2Θ
1− φ0

φW − φ0

∫ t

0

{
S(τ)

r
√
τ

1

r2

1

k[Z(t− τ)]

1− φW
1− Z(t− τ)

·

·
∫ t

τ

S(τ ′)

2
√
τ ′

[φ∗ − Z(t− τ ′)]2 1− φW
[1− Z(t− τ)]2

dτ ′
}
dτ

(100)

Note that we have specified n = 2 in (100).
In the new variable, starting from s0 = 1 −

√
t we define S0 = 1 −

√
t and we

may decide to approximate S(t) in (t1, t2) by the constant S1 obtained from (100)
taking t = t1, S(t) = S1 and keeping just the approximation O(

√
t1):

S1 ≈ 1 +

(
1

2
+ 2

φW − φ0

1− φ0
− 1− φ0

2

)√
t1, (101)

where we have used the nondimensional approximations

σ0(t) ≈ 1 +
φW − φ0

1− φW
√
t, (102)

r2 ≈ 1 + 2
φW − φ0

1− φW
t− 2

1− φ0

1− φW
√
τ . (103)

We can proceed in a recursive way to derive a constant approximation for S(t),
that we call sn, in the interval (tn, tn+1).

To this end we need the non-dimensional version of (69), (71), namely (with a
slight abuse of notation)

r2(τ, t) = σ2(t)− (1− φ0)

∫ τ

0

S(τ ′)√
τ ′

1

1− Z(t− τ ′)
dτ ′, (104)

σ =1 +

∫ t

0

1

σ(τ)

{
φW − φ0

1− φW
S(τ)

2
√
τ

+

Θ

∫ τ

0

1− φ0

1− Z
S(τ ′)

2
√
τ ′

[φ∗ − Z(t− τ ′)]
1− Z(t− τ ′)

dτ ′
}
dτ

(105)

The recursive system for the determination of the triples (Sn, rn, σn) is the fol-
lowing

1 =Sn

n−1∑
i=0

Si
r2
i,n

1

ki

1− φW
1− Zi,n

√
ti+1 −

√
ti√

tn
+

2Θ
1− φ0

φW − φ0

n−1∑
i=0

Si
r2
i,n

1

ki

1− φW
1− Zi,n

(
√
ti+1 −

√
ti)·

·


n−1∑
j=i

Sj
1− φW
1− Zj,n

(φ∗ − Zj , n)2(
√
tj+1 −

√
tj)


(106)

where Zi,n = Z(tn − ti),
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r2
i,n = σn − (1− φ0)

i−1∑
j=0

Sj
1

1− Zj,n
(
√
tj+1 −

√
tj), (107)

σn =1 + (
√
ti+1 −

√
ti)

{
n−1∑
i0

Si
σi

φW − φ0

1− φW
(
√
ti+1 −

√
ti)+

(1− φ0)Θ

n−1∑
i=0

1

σi

i−1∑
j=0

Sj
1− Zj,n

[φ∗ − Zj,n]2

1− Zj,n
(
√
tj+1 −

√
tj)

 .

(108)

Once (106-108) has been solved, the approximations sn are obtained via

sn =

{
R2 − 2

n−1∑
i=0

Si(
√
ti+1 −

√
ti)

} 1
2

. (109)

8. Comparison with experiments. In [1] measures of total water intake are
reported with reference to several different geometries.

Using the asymptotic analysis of Section 4, we deduce the total water intake
during the first stage of the process, during which the progression of the water
penetration front has the behaviour s(t) ≈ R − α

√
t, we can easily calculate the

total water intake as a function of time. Indeed, from (56) we deduce a simple
expression for σ(t), s(t). To be consistent with this approximation, we take φ ≈ φW
and we just neglect the pristine porosity φ0 which is very small.

The volume of water present in the sample at time t is π[σ2(t) − s2(t)]. Thus,
taking into account (56), (57) (with φ0 = 0), the mass of water uptaken per unit
length, computed at the O(

√
t) order, is

M(t) = 2πRρW
α

1− φW
√
t, (110)

where ρW is the water density and α is given by (57).
The same quantity, divided by the mass of pasta per unit length, i.e. πρstarchR

2,
is plotted in Fig. 4, in which the experimental data from [1] are shown. The fitting
of the coefficient

a = 2
ρW

ρstarch

φW
R

α

1− φW
by the least squares method gives a = 0.048 sec−1/2.

Taking φW = 0.35, ρW = 1g cm−3, ρstarch = 1.4g cm−3 (as in [6]), and R =
0.07cm (as in [1]), this value of a corresponds to p0kW ≈ 7.6 · 10−6cm2sec−1, which
in our scheme is the driving quantity.

We took advantage of the fact that in [1] there also the water intake results for
plane geometry and we perform tha same data fitting procedure, this time based
on the formula (see the Appendix, formula (113), and consider that −σ ≈ φW

1−φW
s)

M(t) = ρW
φ

1− φW
α
√
t, α = (1− φW )

√
2p0kW
φW

.

The quantity to be compared with the data is M(t)
ρstarchL

, L being the half thickness

of the sample (L = 0.025cm). The value identified for the coefficient of
√
t is
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Figure 4. Early stage of water penetration in cylindrical symme-
try (spaghetti) vs. experimental data. On the vertical axis the

quantity M(t)
πρstarchR2 is plotted, on the horizontal axis we have time

in seconds. The solid line represents model simulation, the dotted
curve is experimental.
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Figure 5. Early stage of water penetration in plane symmetry
(lasagna) vs. experimental data. On the vertical axis the quantity
M(t)

ρstarchL
is plotted, on the horizontal axis we have time in seconds.

The solid line represents model simulation, the dotted curve is ex-
perimental.
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a = 0.07sec−1/2, corresponding to p0kW = 1.5 · 10−6cm sec−1, which is not much
different from the previous one (see Fig. 4). Part of the discrepancy could be
attributed to the longitudinal expansion of spaghetti, which has been neglected
here, but also to very small thickness of the flat pasta sample that has been used.

Appendix. Plane geometry and qualitative remarks. We deal briefly with
the case of plane geometry with the main scope of emphasizing the influence of some
parameters on the soaking process, taking advantage of the much simpler structure
of the equations. The problem with a plane geometry has a practical interest, as
we pointed out in the introduction.

Confining to the water invasion stage, we choose the space coordinate x so that
the moisturised region is σ(t) < 0 < x < s(t), for t > 0, and σ(0) = s(0) = 0. We
keep all other symbols used so far, and in particular the form (35) of the function
determining the soaking kinetics:

φ̇ = A(φ∗ − φ)n, φ∗ ≥ φM , n > 0, A > 0. (111)

We want to examine the influence of the exponent n, here allowed to be any
positive number.

The equation replacing (68) turns out to be

p0 =
(1− φ0)(φW − φ0)

1− φW
ṡ(t)

∫ t

0

ṡ(τ)

k[Z(t− τ)][1− Z(t− τ)]
dτ+

(1− φ0)2A

∫ t

0

ṡ(τ)

k[Z(t− τ)][1− Z(t− τ)]

∫ t

τ

[φ∗ − Z(t− τ ′)]n

[1− Z(t− τ ′)]2
ṡ(τ ′)dτ ′dτ,

(112)

which again gives a singular asymptotic behaviour for small time:

s(t) ≈ αt 1
2 , α =

√
2

(1− φW )2k(φW )

(φW − φ0)(1− φ0)
p0 (113)

(see Fig. 5).
Equation (112) is much simpler than equation (68) because the latter involved

also the function r(ξ, t) and consequently also σ(t). Therefore the argument used
to prove existence for equation (68) applies to (112) too with great simplifications.

Numerical computations performed on (112) show that a non-monotone be-
haviour for s(t) is possible for n ≤ 1. A possible inversion of the front motion,
although not expected in practice, fits the physics of the model. Indeed we have
assumed that, while water is driven in the medium by capillarity, it is also required
to feed the imbibition process at each point. The need of water required by the
latter may not be matched by the transport mechanism (which is Darcyan in our
scheme). When this happens water can be forced to invert its motion. Of course
this is not the kind of behaviour we expect for pasta cooking and we must select
the parameter so to guarantee monotonicity. A crucial parameter is the exponent n
in the kinetics of imbibition. Taking n < 1 accelerates imbibition to the point that
a front regression can be induced.

In order to have an idea of how the selection of n influences the solution we can
argues as follows. Put ω(t) = ṡ(t) in (112) and suppose that ω(t) vanishes for the
first time at some instant t̄ > 0. If we differentiate (112) w.r.t. t and we take t = t̄,
thanks to the fact ω(t̄) = 0 and ω̇(t) ≤ 0, we obtain
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0 = Θ1 + Θ2,

where Θ1, Θ2 come from the differentiation of the first and of the second term on
the r.h.s., respectively. It is easily seen that Θ1 ≤ 0, thanks to ω̇(t) ≤ 0 and to
ω(t) = 0 in t̄.

Therefore, if we want to contradict the assumption ω(t̄) = 0, we need Θ2 < 0.
Consider for simplicity the case k = constant . The computation of Θ2 leads to

kΘ2

(1− φ0)2
=

∫ t̄

0

ω(τ)

[1−Ψ(t̄− τ ]2
Ψ̇(t̄− τ)

∫ t̄

τ

[φ∗ −Ψ(t̄− τ ′)]n

[1−Ψ(t̄− τ ′)]2
ω(τ ′)dτ ′dτ+∫ t̄

0

ω(τ)

[1−Ψ(t̄− τ)]
·{∫ t̄

τ

Ψ̇(t̄− τ ′)[φ∗ −Ψ(t̄− τ ′)]n−1

[1−Ψ(t̄− τ ′)]3
[−n(1−Ψ(t̄− τ ′) + 2(φ∗ −Ψ(t̄− τ ′)))] dτ ′

}
dτ

(114)

This formula emphasizes that a necessary condition for Θ2 < 0 is that

n

2
>
φ∗ − Z
1− Z

.

For Z ∈ (φW , φM ) we have

φ∗ − φM
1− φM

<
φ∗ − Z
1− Z

<
φ∗ − φW
1− φW

< 1.

Although this is not a conclusive argument, it suggests that acceptable values for n
are in the range n ≥ 2.

From (112) we can also obtain an indication of how the coefficient A influences
the solution. Setting ωA= ∂ω

∂A , by differentiation w.r.t. A we obtain

0 =
φW − φ0

1− φW

{
ωA(t)

∫ t

0

ω(τ)

k(Z)(1− Z)
dτ + ω(t)

∫ t

0

ωA(t)

k(Z)(1− Z)
dτ

}
+

(1− φ0)

∫ t

0

ω(τ)

k(Z)(1− Z)

{∫ t

τ

(φ∗ − Z)n

(1− Z)2
ω(τ ′)dτ ′+

A

∫ t

τ

(φ∗ − Z)n

(1− Z)2
ωA(τ ′)dτ ′

}
dτ+

(1− φ0)A

∫ t

0

ωA(τ)

k(Z)(1− Z)

∫ t

τ

(φ∗ − Z)n

(1− Z)2
ω(τ ′)dτ ′dτ.

(115)

This is a linear integral equation in ωA, which allows to conclude that ωA < 0 as
long as ω > 0.

The physical implication is that increasing the coefficient A (i.e. that local im-
bibition rate) reduces the front speed. Indeed, as we said, the two processes are in
mutual competition.

In the same way it is possible to show the following. If we write k(Z) = k0k̃(Z)
and we investigate the dependence of ω on k0, we conclude that ω increases if
k0 increases. The results agree with physical intuition, since enhancing the water
transport accelerates the front penetration.



60 ANTONIO FASANO, MARIO PRIMICERIO AND ANDREA TESI

REFERENCES

[1] S. Cafieri, S. Chillo, M. Mastromatteo, N. Suriano and M. A. Del Nobile, A mathematical
model to predict the effect of shape on pasta hydration kinetic during cooking and overcooking,

J. Cereal Science, (2008).

[2] E. Cocci, G. Sacchetti, M. Vallicelli and M. Dalla Rosa, Spaghetti cooking b microwave oven:
Cooking kinetics and product quality, J. Food Eng., 85 (2008), 537–546.

[3] S. E. Cunningham, W. A. M. Mcminn, T. R. A. Magee and P. S. Richardson, Modelling water

absorption of pasta during soaking, J. Food. Eng., 82 (2007), 600–607.
[4] M. J. Davey, K. A. Landman, M. J. McGuinness and H. N. Jin, Mathematical modelling of

rice cooking and dissolution in beer production, AIChE Journal, 48 (2002), 1811–1826.

[5] R. A. Grzybowski and B. J. Donnelly, Starch gelatinization in cooked spaghetti , J. Food
Science, 42 (1977), 1304–1315.

[6] M. J. McGuinness, C. P. Please, N. Fowkes, P. McGowan, L. Ryder and D. Forte, Modelling

the wetting and cooking of a single cereal grain, IMA J. Math. Appl. Business and Industry,
11 (2000), 49–70.

[7] A. G. F. Stapley, P. J. Fryer and L. F. Gladden, Diffusion and reaction in whole wheat grains
during boiling, AIChE Journal, 44 (1998), 1777–1789.

[8] A. K. Syarief, R. J. Gustafson and R. V. Morey, Moisture diffusion coefficients for yellow-dent

corn components, Trans. ASAE, 30 (1987), 522–528.
[9] Ch. Xue, N. Sakai and M. Fukuoka, Use of microwave heating to control the degree of starch

geletinization in noodles, J. Food. Eng., 87 (2007), 357–362.

[10] Tain-Yi Zhang, A. S. Bakshi, R. J. Gustafson and D. B. Lund, Finite element analysis of
nonlinear water diffusion during rice soaking, J. Food Science, 49 (1984), 246–277.

Received January 2010; revised November 2010.

E-mail address: antonio.fasano@math.unifi.it

E-mail address: primicer@math.unifi.it

E-mail address: andrea.tesi@yahoo.it

http://dx.doi.org/oi:10.1016/j.jfoodeng.2007.08.013
http://dx.doi.org/oi:10.1016/j.jfoodeng.2007.08.013
http://dx.doi.org/10.1016/j.jfoodeng.2007.03.018
http://dx.doi.org/10.1016/j.jfoodeng.2007.03.018
http://dx.doi.org/10.1002/aic.690480821
http://dx.doi.org/10.1002/aic.690480821
http://dx.doi.org/10.1111/j.1365-2621.1977.tb14483.x
http://www.ams.org/mathscinet-getitem?mr=MR1791573&return=pdf
http://dx.doi.org/10.1002/aic.690440809
http://dx.doi.org/10.1002/aic.690440809
http://dx.doi.org/10.1016/j.jfoodeng.2007.12.017
http://dx.doi.org/10.1016/j.jfoodeng.2007.12.017
http://dx.doi.org/10.1111/j.1365-2621.1984.tb13719.x
http://dx.doi.org/10.1111/j.1365-2621.1984.tb13719.x
mailto:antonio.fasano@math.unifi.it
mailto:primicer@math.unifi.it
mailto:andrea.tesi@yahoo.it

	1. Introduction.
	2. The mathematical model.
	2.1. The soaking process.
	2.2. Gelatinization

	3. Describing the motion of solid particles: A Lagrangian coordinate
	4. A-priori properties of the water penetration front
	5. Study of the water penetration stage
	6. Study of the gelification stage.
	7. A numerical scheme
	8. Comparison with experiments
	Appendix. Plane geometry and qualitative remarks
	REFERENCES

