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ABSTRACT. We consider weak solutions of hyperbolic conservation laws as sin-
gular limits of solutions for associated complex regularized problems. We are
interested in situations such that undercompressive (Non-Laxian) shock waves
occur in the limit. In this setting one can view the conservation law as a
macroscale formulation while the regularization can be understood as the mi-
croscale model.

With this point of view it appears natural to solve the macroscale model by
a heterogeneous multiscale approach in the sense of E&Engquist[7]. We intro-
duce a new mass-conserving numerical method based on this concept and test
it on scalar model problems. This includes applications from phase transition
theory as well as from two-phase flow in porous media.

1. Introduction. We consider weak solutions of the initial-value problem
U+ fU), = 0 in Qp:=Rx(0,T), (1)
U(,00 = Uy in R (2)

for the scalar unknown U : R x (0,7) — U C R. Hereby Uy : R — U stands for
the initial datum and f € C3(i) is a nonlinear flux function: we assume that f”
vanishes only in finitely many points. The problem will be called the macroscale
problem in what follows.

It is well-known that solutions of (1), (2) can have discontinuous shock wave
solutions independently of the regularity of Ujy. These solutions are not uniquely
determined. For fluxes with f” # 0 uniqueness can be enforced if only shock waves
that satisfy the Lax condition are allowed. For the case of a discontinuous wave

U(z,t)=U forz—st<0 and U(x,t)=U" for z —st >0, (3)
with states U~, Ut € U, U~ # U™, and shock speed
s=s(U",U") =(fUT) - fU))/(UT=U"), (4)

the Lax condition reads as
fU)<s< f(U7). (5)
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Equivalently uniqueness is ensured if the entropy inequality
nU): +q(U)z <0 (6)

holds in the weak sense for at least one entropy pair (1, q) € (C?(U))?, i.e. functions
with n” > 0 and ¢ satisfying ¢' =7’ f'.

If the flux f has at least one inflection point one can construct discontinuous
waves U that violate exactly one of the conditions in (5) (with > instead of <)
but still satisfy (6) for one entropy pair. Such waves connect states such that f”
changes sign and are called undercompressive or nonclassical. There are various
applications where they have a crucial physical importance as phase boundaries,
detonation waves, infiltration fronts, or thin-film precursors. Unique solvability of
the initial value problem (1), (2) can again be guaranteed if only nonclassical waves
are allowed that satisfy an additional algebraic condition of type

@(UivUJr) =0, (7)

where the given function ¢ : 4% — R is called kinetic function. A wellposedness
theory based on kinetic functions has been developed by LeFloch ([16] and references
therein). Numerical schemes for nonclassical solutions of (1), (2) controlled by
kinetic functions have just recently been developed (e.g. in [5, 3]).

In many cases an explicit kinetic relation that determines the physically relevant
solution is either not known or cannot be written in closed algebraic form as in (7).
Alternatively one can obtain these solutions as the singular limit

U* := lim v (8)
e—0
of (unique) solutions to a family of associated regularized problem (referred to as
the microscale model)

Ui+ f), = B (> 0). )

Here RF[\;-] stands for a higher-order integro-differential operator which satisfies
RO[)\;] = 0 (formally). It is assumed to depend on some parameter A from a subset
of R. For many applications operators R°[)\; -] have been suggested and it has been
proven that the limit U* in (8) exists (at least for some subsequences) and contains
nonclassical waves. We will discuss various examples in Sect. 2.

While the regularization approach is natural from the modelling viewpoint di-
rect numerics for (9) with fixed 0 < e << 1 is computationally expensive: shock
wave layers (scaling with ) have to be resolved and in general time steps become
extremely small. Therefore we propose here a new Heterogeneous Multiscale
Method (HMM) in the sense of E&Engquist ([7] or [19] for a related application
for combustion fronts). This approach gives us the solution of the macro model (1)
via the limit (8). The micro model (9) is only solved explicitly in a small region
around a nonclassical wave in (1) while in the remaining domain any standard solver
can be used on a macroscale grid. Using the numerical fluxes developed in [3] we
construct a solver that is conservative on the macroscale. Let us emphasize that we
are not interested in the complete solution of the microscale model rather in the
correct behaviour of the solution on the macroscale.

This work is restricted to scalar equations. We expect that it can be extended to
systems’ cases. The main challenge will be to obtain a-priori knowledge on the exact
Riemann solution for the microscale problem, which allows a validated estimate on
the speed of the undercompressive wave which is then just one of several waves.
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Let us give a short outline on the rest of the paper. After the short discussion of
specific regularized models in Sect. 2, in Sect. 3 we present the concept of the new
HMM-algorithm. In Sect. 4 we test the HMM-algorithm on Riemann problems for
the examples from Sect. 2. In Sect. 5 we validate the HMM-algorithm and test it
for a more general initial condition in Sect. 6.

2. Model problems with nonclassical waves. In this section we recall three
microscale models which can be written in the form (9). Two of them provide toy
problems in the theory of phase transition dynamics, one describes two-phase flow
in porous media with rate-dependent capillary pressure.

2.1. Local diffusive-dispersive regularization. Compressible flow with liquid-
vapour transitions can be governed by the Navier-Stokes-Korteweg equations [2],
which contain second-order operators to model viscosity effects as well as third-
order terms for the effects of capillary forces close to phase boundaries. A standard
toy problem is given with the concave-convex flux f(U) = U? in (1), state space
U = R and the diffusive-dispersive operator

REN\ 1) = gy + A tppa, A € (0,00) (10)

in the microscale ansatz (9). For this model it has been proven in [9] that it
allows for traveling wave solutions connecting states U~ and U™ such that (3) is
undercompressive. Furthermore it is known that a subsequence of solutions u®*
converges to a weak solution U* of (1) for ¢ — 0. It is important to note that the
limit depends on the parameter \. This is also visible for the following special weak
solution for Riemann initial data that can be realized as the limit in (8) (cf. [13])

U! for x < sqt,
UMz, t) = { um = —U! + %\/g for sit <z < sot, (U'>0>U">u™) (11)
Uur for sot < .

The shock speeds are given by s; = s(U',u™), sy = s(u™,U") with the notation
from (4). Note that U" has to be sufficiently close to u™, for details see [13]. We will
use (11) as reference solution in Sect. 5. An approximation u®* of the solution U*
with the slow undercompressive shock wave is displayed in Fig. 3 (left viewgraph).

2.2. Nonlocal diffusive-dispersive regularization. In the theory of phase tran-
sitions in compressible media local differential operators as in (10) can be viewed
as an approximation to more general nonlocal operators [18]. We consider as an
instance the macroscale model (1) as in Sect. 2.1 but for the microscale model (9)
a nonlocal regularization given through

Re(\;u) i= ey, + )\[/Oo o (x —y)(u(y) —u(x)) dy] , A € (0,00). (12)

Here we have ¢.(z) := 1¢ (%) where ¢ is a nonnegative function which we will

e
always choose as

é(z) = exp (ﬁ) //11 exp <y2%1> dy for ze(-1,1), (13)

and equal to 0 elsewhere. For (12) analogous results as for the local choice are
known [17, 15]. We refer to Fig. 5, left viewgraph, for a typical solution with slow
undercompressive wave and fast rarefaction wave. However, it is not known whether
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the weak solution U generated by (8) with operator (12) can also be characterized
by a kinetic relation as in (7).

2.3. Two-phase flow process with rate-dependent capillary pressure. In
this part we consider two-phase flow in porous media. In the macroscale model (1)
we choose the convex-concave Buckley-Leverett flux

U2
U =
T = m -y
where U stands for the unknown water saturation and M > 1 describes the oil/water
viscosity ratio. For the regularization we use

R\ u] i= gy + N2 Upns (A € (0,00)). (15)

This type of rate-dependent regularization has been suggested in [12]. Tt extends
the static capillary pressure approach to model dynamic effects in the pressure
difference between the two phases.

For the regularized problem (9) with (15) it is again known that traveling wave
solutions exist as profiles for undercompressive shock waves in the limit ¢ — 0
[6]. A typical solution for Riemann initial data with slow Laxian wave and fast
undercompressive wave is illustrated in Fig. 8 (left viewgraph). An explicit kinetic
relation as in (7) is not known up to our knowledge.

for Uel:=][0,1], (14)

3. Computation of nonclassical waves with a heterogeneous multiscale
method. Before we present our numerical approach let us note that a solution
which contains nonclassical waves cannot be approximated by a standard scheme
as e.g. a monotone Finite Volume method. These are constructed to converge to
the Kruzkov solution excluding such waves. Therefore special methods as in [5, 3]
have been constructed. However these methods rely on an explicitly given kinetic
relation while our approach utilizes the regularized model.

3.1. The heterogeneous multiscale algorithm. We determine the macroscale
approximation for (1) and the microscale approximation for (9) on a coarse and a
fine space-time grid, respectively.

We denote symbols of the macroscale model by capital letters and the ones of
the microscale model with lower case letters.

We use constant grid parameters AX > 0 and Az > 0 for the space discretization
both on the macroscale and on the microscale. Furthermore we set X; = jAX,
j € Z. The approximation of the macroscale solution at discrete times 0 =: 79 <
T! < T? < ... is a function constant on each cell C; = [X;_1/2,Xj41/2). For the
initialization of the Finite Volume type scheme on the macroscale we define the
sequence (Uao)jez of averaged values by

1
Uy = E/c Uo(x) dz.

Furthermore we collect all cell boundaries X;_ /5, say I' € N, such that f”(U. JO) and
J"(U?,,) have different sign in the set (X9),—1 _r of discrete front positions.
Algorithm 1 below determines for all times 7™ the macroscale approximation
U" := (U}");cy and the approximate front positions (X,’YL),Y:L___I for nonclassical
shock waves. The space-time domain for which the microscale problem has to be
solved is defined by DI := (a2, 22") x (T™,T™ + ) with 22! < X' < 22" and
5 > 0. We now give the main HMM-algorithm in a rather general manner. The
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algorithm will be commented and detailed below. For the sake of simplicity we
restrict ourselves to monotone increasing flux functions with at most one inflection
point U with f”/(U) > 0.

Algorithm 1. Input: n =0, &, X, (U})jez, (X9)y=1,..r, (X;)jez, DY

DO
{

1.

8.

}

The reconstruction. We reconstruct according to the location of the dis-
crete front X7, v =1,....T,

I
£
R

(2, T™) = g =iu,  for X <z,x€DY,
K UMy for z < X7,z € DI,

with X;} S [Xsfl/Q,XS+1/2).

. Solving the microscale model. For v =1,...,T" we solve (9) on D} with

the initial data u,(.,7™) and denote the solution by u. : DI — U.

. Approximate middle state/data analysis. Foryv = 1,...,T we determine

a middle state uZ' between the two (approximate) shock waves in the solution
u~ of the microscale model.

Computing the approximate front velocities. For v =1,...,T" we com-
pute the approximate velocity v of the fronts by

vy = (f(uy) = f(i)/ (uy — ulf).

. Computing the macroscale time step AT". We compute the macroscale

time step AT™ such that
AT™ | f'(ul})]

suw<1 and max ——————— <1
jeg AX y=1,...,» AX ,

and set 77 =T7 4+ AT™.

. Moving the fronts. With the front velocities from step 4 we obtain the new

location of the fronts by

XIH = XD 4ol AT, y=1,...,I.

. Updating the macroscale variable U". We get the new macroscale vari-

ables (U ;Hl)jez by evolving (1) with a Finite Volume scheme

AT
n+1 _ n n n .
Uj _Uj - AX (jJr%_fj,%)a ]GZ, (16)
where [, is a special numerical flux function (see (17) below).
2
n—n+1

UNTILT" >T.
It is necessary to make more precise some of the steps in Algorithm 1 but let us
make several notes in advance.

Remark 1. (i) The scaling parameter ¢ > 0 in Algorithm 1 has the role of

a discretization parameter: the smaller we choose it the more accurate is
the prediction of the front velocities and thus the error of the macroscale
approximation. Ideally this error is in the same range as the error induced by
the grid parameter AX. We show the effect of the choice of £ in Sect. 5.1.
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FIGURE 1. Macroscale computational domain €27 and microscale
computational domain DY for a propagating front v intersecting
the macroscale time levels 7" in X7
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FIGURE 2. Approximate middle state ul’ versus microscale time

steps for a whole macroscale time step AT™.

In the reconstruction (step 1) we use for the states u- and uZ the values U,
and U7, respectively (instead of the apparently more natural value U for
one of the two states). This enables us to use a numerical flux (cf. (17) below)
in step 7 which guarantees mass conservation (for a detailed explanation see
discussion at the end of the section).
We have not said how to solve numerically the micro model in step 2. This
depends in fact on the micro model under study. In Sect. 4 we present some
adequate numerical schemes. Let us note that there are completely different
possibilities as the numerical use of the Dafermos regularization [1].
The computational success of Algorithm 1 hinges on the size of the microscale
domains DY. In particular the microscale time ¢J has to be small to limit
the expensive microscale computations. We illustrate this in Fig. 1. On the
other hand we have to determine the middle state v from the computation.
This is done by some data analysis which gives more stable results with an
increasing number of microscale time steps. This is visualized in Fig. 2, where
the middle state w7 is computed over a whole macroscale time step AT™.
For simplicity we have used in our computations for n € N the same size
of the microscale domain D7, placed at the corresponding front position X
In Sect. 4.1 - 4.3 the respective sizes of the domain DY are stated. There one
can see well that the size of the microscale domain depends strong from the
considered problem and make use of experienced data. In general the domain
has to be at least as big as a constant middle state can be build out.
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(v) In Algorithm 1 we have supposed implicitly that the number of fronts remains
constant, equal to I'. If two nonclassical shocks join to one Algorithm 1 has
to be modified in a straightforward way.

(vi) In case the kinetic function is known the HMM do not have an advantage
over the algorithm proposed in [3]. The computational overhead is exactly
the time needed for solving the microscale model in step 2 and computing
the middle state 7" in step 3 which corresponds the kinetic relation. On the
other hand the algorithm proposed in [3] cannot be used for problems with

unknown kinetic function, this is exactly one of the motivations of the HMM.

In Step 3 of Algorithm 1 we determine the middle state ul' through some data
analysis. What is meant is that the results of the microscale computation at time
T™ + 1t are scanned: the value with the smallest absolute discrete slope (and not
close to u,jyt) is chosen as uZ'. This step requires definitely some a-priori knowledge
of the exact microscale solution.

It remains to define the numerical fluxes in step 7. Here we follow the construction
in [3], precisely

AT T, = (17)
min (ATjJr%,AT”) F(U,) + max (AT” - ATj+%,0) For), 4 e,
AT™ f(U}), else,

with
ATj+1/2 = WAX, gl = =1 Uj-,?“ = ’U,,Y . (18)
2,00 79,

We used d} = (U, —U}) /(U — UZy) and s(U},, UT,) is given in (4).

This flux function has been introduced in [3] to compute solutions of (1) with
nonclassical waves that satisfy a kinetic relation like in (7). However in the original
flux the kinetic relation is just used to compute the middle states like our value
ul'. Due to this observation we can also make use of the approach and can benefit
from its advantages: the Finite Volume like scheme in step 7 conserves mass, i.e.

(cf. Property 2 in [3]):

_ 0
dNur=> U VneN,.
JEL JEL
Another important feature of the scheme is that by construction the nonclassical

wave is only smeared out on three cells with exactly one cell average in this discrete
layer (see also Remark 1(ii) on the choice of the reconstruction).

4. Heterogeneous multiscale algorithm for model problems with nonclas-
sical waves. In this part we use Algorihm 1 from Sect. 3 for the model problems
introduced in Sect. 2. For every example we give first the discretization of the
microscale model, and then present some numerical examples.

For the sake of simplicity we use Finite Difference methods for the microscale
problem. Let us stress that the heterogeneous approach can be improved consider-
ably if more efficient schemes are used for the computation of the smooth solution of
the microscale problem, as e.g. high-order Discontinuous Galerkin methods (cf. [11]
for the application of this method on the model problems for phase transition).
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4.1. Local diffusive-dispersive regularization. For the discretization of (9)
with (10) we use a fourth-order discretization for the flux function suggested by
Hayes and LeFloch [10]. The complete scheme has then the form

U, = — A (gi+1/2 - gi—1/2) + 5@ (Ui+1 = 2u + Uifl)
At n n n n
+ )‘Ezm (Ui+2 = 2ugy g +2uiy — ui72)
with the fourth-order flux
1

gi+1/2 = 15 (—(u?+2)3 + 7(U?+1)3 + 7(u)? — (Ull)s) .
In Fig. 3 we consider results of Algorithm 1 with the initial datum
Up(x) =U'=4,0forz <0 and Up(z)=U" = —2,5for x >0, (19)
discretization data
e=10"°, A=4, Az =4-10"% AX =0,01, (20)

and a space-time domain DI with |27 — 22| = 200Az, 2 = T000AL.
The exact limit solution is given by (11). The second and third viewgraph show
for two different times the propagation of a nonclassical and a fast classical shock
wave. As (constant) time step on the macroscale we get AT = 2,0-107%. In the
first viewgraph we present a result of a separate computation for the microscale
model with the same data. One observes that due to the upscaling process in
Algorithm 1 details of the microscale solution as the oscillations around the Laxian
wave are suppressed. Note that this calculation leads to the microscale time step
At=3,2-1077.

In Fig. 4 we show analogous results with the same data as in (19), (20) but for
the initial condition

Up(z) =4,0for t <0 and Up(z)= —5,0for z >0,

and |27 — 2!| = 300Az, 2 = T000At for the domain DZ.
The solution consists now of a nonclassical shock wave and a rarefaction wave.

microscale model HMM - macroscale HMM - macroscale
T=224.10° T=01 T-05
4 initial condition 4t - .. initial condition 4 __ _ initial condition
numer;al solution| 3 E —— exact solution 3 E —— exact solution
2 H " microscale model o) — numerical solution| of! —— numerical solution|
i i
0 0 o
b Al
2 ol ol
3 3
) N “
o 5 10 0 5 10 15 0 5 10 15

X
T 27000 At T 2505AT T2 2526 AT

FIGURE 3. Shock-shock solution for local regularization (10).
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microscale model

HMM - macroscale

HMM - macroscale

669

T=37333-10° T=01 T=05
4 —__ initial condition ___ initial Eondition _ _ _initial Eondition
' Z =0 -0
___numerical solution| ~—— exact solution ) ~—— exact solution .
2 microscale model —— numerical solution| —— numerical solution|
0
-2
4 ___\_
-6 S A A
0 2 4 6 0 10 20 30 40 5( 0 10 20 30 40 50
x 10
T 27000 At T 2789 AT T2 3947 AT

FIGURE 4. Shock-rarefaction solution for local regularization (10).

4.2. Nonlocal diffusive-dispersive regularization. For the microscale model
(9), (12) with f(U) = U? we use upwinding for the fluxes and discretize the integral
with a one-point rule in the cell boundaries. This results in the scheme

ultt =l — s (fu) = fluiy)) + Ew (wir = 2u +uiy)
+ AAt Z uly, G5 — /\% (uj —uj ),

k=—m

with the weights G5 = ¢ (azj+%) — ¢ (xj_%) (cf. (13)) [14]. One can check that
this choice implies that the scheme is in particular conservative.

In the same format as in Sect. 4.1 we display numerical results in Fig. 5 for initial
datum

Up(z) =4,0for t <0 and Up(z)= —2,0for z >0, (21)
discretization data
e=10* A=15 Az =5,7-10"%, AX =0,01, (22)
and [22" — 2| = 600Az, 2 = 2000At.
For Fig. 6 the same parameters are used but for initial datum
Up(z) =4,0for t <0 and Up(z)= —5,0for z > 0, (23)

and [zl)" — x:l| = 1500Az, 7 = 2000At.

For the nonlocal case no exact limit solutions like (11) are known but we observe
qualitatively the same effects. In Fig. 7 the dependence of the estimated state ul?
on the microscale parameter € is visualized for different parameters \.

4.3. Two-phase flow process with rate-dependent capillary pressure. To
discretize the microscale model (9) with regularization (15) we rewrite it in the form

(I - 62)\d—2> W = ey, + f(u)
d:z:‘2 xrx X

A straightforward Finite Difference discretization of the second equation in (24)
leads at each microscale time level to a linear system for the w;'’s. For a uniform grid
the system matrix is a tridiagonal matrix for which the inverse can be determined
with the so-called HMGTT algorithm from [8]. We use this algorithm and update
the u’s by an explicit Euler step for the first equation in (24). Note that the flux
from (14) is convex-concave, we have f”(U) < 0 in the unique inflection point

(24)

W = Uy,
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microscale model HMM - macroscale HMM - macroscale
T=8.6168 - 10° T=01 T=05
4 ___initial condition 4 - - - Initial condition 4 . milialT one
H o numeric=al solution 3 E —— numerical solution 3 E B numgrical
2 H microscale model ol 1 ol 1 solution
. 1 E 1 E
0 . of i ot}
! 1 At
2 oo P A S
i -3 3 J
bs 0 0s 1 15 2 25 . 0 2 4 6 8 10 1 0 2 4 6 8 10 12
x 10
T 2 2000 At T 2 505 AT T2 2526 AT
FIGURE 5. Shock-shock solution for nonlocal regularization (12).
microscale model HMM - macroscale HMM - macroscale
T=6.03178- 10" T=01 T=05
4 initial condition 4 - - - initial condition 44— _ __ initial condition
E o numeri:al solution| A \ — nume;cal solution| \ 7 nume;cal solution|
2 H microscale model ' '
o of of
2 E 24 24
“ : 4 " 4 " \
' - Ry
6 K K
0 2 4 6 L ©o 10 20 30 40 s o 10 20 30 40 50
x 10
T 2 2000 At T 2789 AT T2 3947 AT

FIGURE 6. Shock-rarefaction solution for nonlocal regularization (12).

-2.25
A=T7

——A=10
—A=15
—\ = 20|
——A=25

E5> -2.8251- B

0.1 02 03 0.4 05 06 07 0.8 09 1
£ x10™"

FIGURE 7. Dependence of the estimated state u7' on the microscale
parameter e.

U € (0,1). Therefore we have to exchange u; with uf in Step 4 of Algorithm 1. In
addition we have to use U} = ul} and U}, = U}, in (18) for the computation of
the numerical flux in step 7 of Algorithm 1.

In Figs. 8 and 9 we consider in the format as in Sect. 4.1 results of Algorithm 1

with the initial data

Up(z) =0,8for x <0 and Up(z) =0 for z > 0 (Fig. 8),

Up(z) =1,0for x <0 and Up(zx) =0 for z >0 (Fig. 9), (25)

and discretization data

e=10%A=5,M=2 Az =1,5-10"° AX =0,02.
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The parameters for the domain DI are [z — z2°!| = 450Az, 2 = T00A¢ (Fig. 8)
and [zl)" — :1:;”| = 300Aw, I} = 400At (Fig. 9) respectively.

We now see that the nonclassical wave acts as the (fast) precursor front for the
invading water phase. It is interesting to see that in the microscale computation in
the mostleft viewgraph of Fig. 8 the data do not oscillate and do not take values
outside U = [0, 1]. Compare the result with the corresponding plots in Figs. 3, 5.

microscale model HMM - macroscale HMM - macroscale

T =0.0048 T=1 T=5
1

_ _ _ initial condition

—— numerical solution|

0.8'I

06!

0.4h

'
1| _ _ _initial condition
H T

0.2h =0 0.20--- initial condition
H ____numerical solution ' T=0
o L mcroscalo model || — numerical solution
0 1 2 3 4 5 6 . 0 1 2 3 4 5 6 0 0 2 4 6
x10"
T 2700 At T2 110 AT T2 548 AT

FIGURE 8. Invading water front with overshoot for regularization (15).

microscale model HMM - macroscale HMM - macroscale
T=0.0027 T=1 T=5

. - initial condition

— numerical solution

"

\| _ - _ initial condition
0.23 T=0 " 0.2[3| _ _ _initial condition

1| ____numerical solution H -

ol microscale model : ~——— numerical solution
0
0 1 2 3 4 0 1 2 3 4 5 6 0 1 2 3 4 5 6
x 10"
T 2400 At T 2110 AT T2 548 AT

FIGURE 9. Invading water front with trailing wave for regulariza-
tion (15).

5. Performance of the heterogeneous multiscale method. In this section we
examine Algorithm 1 on aspects of convergence, mass conservation, and computa-
tional complexity.

We use the regularized problem (10) with the cubic flux f(U) = U? together
with the initial datum from (19) as the test problem to validate our approach. In
this case we can use (11) as the exact solution of the macroscale problem in the
sense of the limit in (8).

5.1. Convergence and conservation of mass. We compute the solution for (1)
with the regularization (10) with different macroscale grid sizes AX € {0.5,...,0.01}.
The solutions are depicted in Fig. 10 with appropriate zooms into the shock waves.
One can see well that for smaller macroscale grid size AX the shock waves are
better resolved and we can observe convergence of the scheme.
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In Fig. 11 (left) the error between the numerical solution for different macroscale
grid sizes and the limit solution (11) is plotted in the L'-norm. We observe that
the L'-error decreases followed by a saturation effect. This means that it doesn’t
make sense anymore to refine the macroscale grid from AX = 0.1 because the error
in the L'-norm is dominated by the error which arises by the calculation of the
value ul' at the microscale, see Remark 1(i), and we should instead scale down the
parameter . The slight increase of the error in Fig. 11 (left) is caused by the value
lying in the layer of the nonclassical shock on the macroscale.

Furthermore we have checked the conservation of mass of the scheme for the
update on the macroscale of step 7 in Algorithm 1. The result confirms what we

know from the construction of the numerical flux in (17), see Fig. 11 (right).
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FIGURE 10. Macroscale approximation with ¢ = 107°, X = 4,
zooms into the shock waves for different grid sizes.

error conservation of mass
1.8 T -37.9925
—@&—L" - errol
1.6
1.4
-37.9925
1.2
1
0.8 -37.9925
0.6
0.4
-37.9925
0% 20 40 60 80 100 0 500 1000 ~ 1500 2000 2500
1A X N,

FIGURE 11. Error in L'-norm (left) and mass conservation (right).

5.2. Computational complexity for the heterogeneous multiscale
approach. As long as an explicit kinetic relation as in (7) is not known the limit
solution U* from (8) can only be approximated by solving the microscale model
(9) on the complete macroscale computational domain with some scheme (direct
approach). Algorithm 1 using the same scheme on the microscale should be at least
more efficient than the direct approach. In Table 1 we present a comparison of
cpu-times which underlines the efficiency of Algorithm 1. For the grid sizes of the
computation we use the same values as in Sect. 4.1. Note that the cpu-times for
the microscale model on the macroscale domain are estimated values. They have
been extrapolated from computations on a smaller space-time domain.

One could argue that the use of an adaptive solver for the microscale computation
could lead to a worse performance of Algorithm 1. But note that we can also use
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this solver within the Heterogeneous Multiscale Method. Moreover it has to be
stressed that the time length of the microscale domain D7 is much smaller than the
macroscale time step. This can not be achieved for the direct approach.

T macroscopic model microscopic model
Nt cpu-time Nt cpu-time
1,98-10" 4 1 7,52sec. | 6,19-10* | 9,2-10° sec.= 11 days
0,1 505 20, 41 sec. 3,13-10" | 4,6-10% sec.= 15 yeas
0,5 2526 22,76 sec. 1,56-108 | 2,3-10° sec.= 73 yeas
Nx = 1650, ny = 400 ny = 4125000

TABLE 1. Cpu-time for Algorithm 1 versus cpu-time for direct ap-
proach. Np (nr) stands for the number of macroscale (microscale)
time steps, N, (n,) for the number of macroscale (microscale) cells.

6. Heterogeneous multiscale method for Non-Riemann initial data. Up
to now we only have considered Riemann problems. This was helpful since we knew
the exact solution in some cases and could validate Algorithm 1. Finally we consider
a problem for (10) with more general initial data, namely

Uo(z) = 4sin (2nz) for x € (0,1) and Uy = 0 elsewhere. (26)

All other parameters are as in Sect. 4.1.

We can observe from Fig. 12 that the approximation firstly rears up and forms
a front from the continuous initial function. After this the solution develops a
nonclassical shock wave, forms a nonclassical shock-rarefaction pattern, a classical
shock and again a rarefaction and classical shock wave.
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FIGURE 12. Solution of the Cauchy problem for (26) at different times.
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