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Abstract. We present in this paper a review of some recent works dedicated
to the numerical interfacial coupling of fluid models. One main motivation
of the whole approach is to provide some meaningful methods and tools in
order to compute unsteady patterns, while using distinct existing CFD codes
in the nuclear industry. Thus, the main objective is to derive suitable boundary
conditions for the codes to be coupled. A first section is devoted to a review of
some attempts to couple: (i) 1D and 3D codes, (ii) distinct homogeneous two-
phase flow models, (iii) fluid and porous models. More details on numerical
procedures described in this section can be found in companion papers. Then
we detail in a second section a way to couple a two-fluid hyperbolic model and
an homogeneous relaxation model.

1. Introduction. We present in this paper a review of recent investigations carried
on within the framework of the NEPTUNE project ([21]). These aim at improving
the interfacial coupling of distinct existing CFD codes, for industrial purposes,
focusing on unsteady situations. Since most of the codes involved in this project
provide approximations of two-phase flow models, special emphasis is given on this
class of models.

Throughout the paper, we consider some computational domain Ω = ΩL ∪ΩR in
R2, where ΩL = ((x, y)/x < 0) and ΩR = ((x, y)/x > 0), and a coupling interface

standing at x = 0. We will focus on models of the form:

∂WL

∂t
+
∂(fL(WL))

∂x
+
∂(gL(WL))

∂y
= 0 for: x < 0,

and:
∂WR

∂t
+
∂(fR(WR))

∂x
+
∂(gR(WR))

∂y
= 0 for: x > 0,

where the state variables WL and WR are distinct and lie in Rp and Rq respec-
tively. The two fluxes fL(WL) and gL(WL) (resp. fR(WR) and gR(WR) ) also lie
in Rp (resp. in Rq). In some cases, the flux gL or gR will be set to zero, when
restricting to the one-dimensional framework. We insist that no thickening of the
coupling interface is used here. Hence, the main problem here is to prescribe suit-
able boundary conditions on both sides of the coupling interface x = 0, in order to
perform unsteady computations. Roughly speaking, we will enforce the continuity
of some specific quantities to be defined through the coupling interface. This will
be achieved thanks to a hyperbolic father model. The latter will naturally arise
in some cases (see for instance sections 2.2, 2.3 and 3); however, in a few cases,
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some alternative propositions may occur (see section 2.1 for instance). Once the
father model has been chosen, boundary conditions for x/t = 0− and x/t = 0+

are obtained in a straightforward manner, using the structure of the solution of the
one-dimensional Riemann problem associated with the father model. The problem
is indeed difficult, even in the scalar case (see [6, 9, 18, 30] among others). One
may for instance exhibit quite easily situations where the coupled Riemann prob-
lem is ill-posed. However, we have to build stable coupling procedures for industrial
applications and thus we need to study the case of systems. Most examples exam-
ined herein rely on models arising from the two-phase literature, and these will be
detailed in each section.

The first section is devoted to a review of some experiments on: (i) the numer-
ical coupling of 1D and 2D models, (ii) the simulation of flows coming from a free
medium and entering a porous medium, (iii) the coupling of two simple distinct
two-phase flow models. The second section examines the problem of the numeri-
cal coupling of two wide-spread two-phase flow models, namely the homogeneous
relaxation model and the two-fluid model. The list of references is obviously not
exhaustive, and we will insist on major conclusions, unexpected results, drawbacks
and weaknesses of the current work on this topic.

2. A review of some interfacial coupling experiments.

2.1. Coupling 1D and 2D models. The work described in [26] is basically moti-
vated by the fact that many CFD codes have been developped in the past, making
the assumption that flows in pipes may be represented by a pure one-dimensional
framework.

Thus, the left code provides approximations of the solutions of the governing set
of equations:

∂WL

∂t
+
∂(fL(WL))

∂x
= 0, (1)

in Ω′
L = ((x, 0)/x < 0) . We may set here for instance: fL(WL) = (ρu, ρu2 +

P, u(EL + P )), where WL = (ρ, ρu,EL) and ρ, u, P,EL respectively stand for the
state variable, the density, the velocity, the pressure and the total energy of the fluid.
The total energy is EL = ρ(e(P, ρ) + u2/2), and we get a closed set of equations
once the equation of state (EOS) e(P, ρ) has been provided by users.

Meanwhile, the flow properties in the right code, for (x, y) ∈ ΩR, issue from:

∂WR

∂t
+
∂(fR(WR))

∂x
+
∂(gR(WR))

∂y
= 0. (2)

The right state variable is: WR = (ρ, ρu, ρv, ER), right fluxes are fR(WR) =
(ρu, ρu2 +P, ρuv, u(ER +P )) and gR(WR) = (ρv, ρuv, ρv2 +P, v(ER +P )), where v
denotes the second velocity component, which has been set to 0 in the left code (and
thus omitted). Besides, ER is defined as ER = ρ(e(P, ρ)+(u2+v2)/2) = EL+ρv2/2.

The coupling technique requires to define in a suitable way left and right bound-
ary numerical fluxes for the interface connecting left and right codes. Two different
attempts have been made up to now: the first one is conservative with respect
to the momentum equation, the second one is not. These experiments have been
achieved assuming in each case that a prescribed father model governs evolutions
of the fluid around the coupling interface. Defining Z(x, y, t) = 0 for (x, y) ∈ ΩL



SOME ATTEMPTS TO COUPLE DISTINCT FLUID MODELS 651

and Z(x, y, t) = 1 for (x, y) ∈ ΩR, the conservative father model CFM is:

∂W

∂t
+
∂(h(W ))

∂x
= 0, (3)

where W = (Z, ρ, ρu, ρv), and h(W ) = (0, ρu, ρu2 + P,Zρuv). The alternative non
conservative father model NCFM reads:

∂Z

∂t
= 0,

∂ρ

∂t
+
∂(ρu)

∂x
= 0,

∂(ρu)

∂t
+
∂(ρu2 + P )

∂x
= 0,

∂v

∂t
+ Zu

∂v

∂x
= 0.

(4)

Once the father model has been chosen among the two candidates (3), (4), left and
right coupling fluxes are fully determined by solving the one-dimensional Riemann
problem associated with (3), or (4) either. Left and right fluxes are of course equal
in the conservative case.

An extensive investigation of these two approaches has been achieved, and a
comparison with the results issuing from (2) on the whole computational domain
Ω = ΩL ∪ΩR, is available in [26] and associated references. Numerical experiments
have been achieved while connecting a one-dimensional pipe with a constant cross-
section to a two-dimensional tank across the interface x = 0. Rarefaction waves
and shocks were generated within each subdomain, and their propagation through
the coupling interface was observed and compared with a reference two-dimensional
simulation on the whole computational domain ΩL ∪ ΩR, while using a very fine
mesh. We can briefly summerize the main conclusions as follows:

• In some cases, the conservative father model may lead to a blow up of the
code, especially when trying to refine the mesh. This is actually an unexpected
-and unexplained- weakness of the conservative approach. Moreover, a better
agreement with the two-dimensional reference solution over the whole domain
has been noticed when using the non-conservative model (4).

• The position of the coupling interface plays a key role, as expected by engi-
neers. Obviously, the coupling interface should be put far enough inside the
left domain ΩL that supports the one-dimensional approach. Otherwise, re-
sults of the coupled computations may be quite different from those provided
by the pure 2D approach, which is indeed the reference solution.

• The quality of results hardly depends on the liquid or gas EOS, which could
not be guessed a priori.

• The approximate Riemann solver which is used in practice at the coupling
interface has little influence on the computational results.

2.2. Handling the transition between free and porous media. Many nuclear
codes and applications for the nuclear power reactors rely on the use of the so-called
porous approach (see [21]). This means for instance that all tubes in steam gen-
erators are not accounted for, since a control volume may contain many obstacles,
even in a refined mesh. The porosity ǫ(x, y, z) simply stands for the ratio occupied
by the fluid Vf over the total controle volume V . This is refered to as the porous
approach.
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One crucial problem then may be the following: what happens when the mean
incoming flow in a free region enters a porous region (where the porosity ǫ is usually
almost uniform, and at least may be assumed smooth enough) ? Actually, the latter
problem is rather tough, for at least two main reasons. At first, it is known from
long that sharp free/porous transitions may lead to oscillations which take their
roots in the formulation of schemes (see [29]). A second point is that the coupling
conditions around the coupling interface are not clearly written in the literature.
We only focus here on the first item, thus assuming that some suitable “coupling
interface” boundary conditions have been prescribed.

Up to now, two different approaches have been investigated. The first approach
relies on the two-phase homogeneous approach (see [23]). The second one, which
requires a specific formulation (see [24]), is based on the two-fluid formulation (see
[15]).

2.2.1. The homogeneous approach. We restrict here to the one-dimensional and
isentropic case [23]. We define: WL = (1, ρ, ρu), fL(WL) = (0, ρu, ρu2 + P (ρ)),
gL(WL) = (0, 0, 0) and also WR = (ǫ, ǫρ, ǫρu), fR(WR) = (0, ǫρu, ǫρu2), gR(WR) =
(0, 0, 0) and hR(WR) = (0, 0, P (ρ)). We emphasize that the right model has no
longer a conservative form. Thus, the two models to be coupled are now:

∂WL

∂t
+
∂(fL(WL))

∂x
= 0, (5)

in ΩL, and:

∂WR

∂t
+
∂(fR(WR))

∂x
+ ǫ

∂(hR(WR))

∂x
= 0, (6)

in ΩR. Since the porosity does not vary with time, the hyperbolic system (6) admits
a standing wave (corresponding to the eigenvalue λ = 0), and we note Ik

0 (WR) the
associated Riemann invariants (for k = 1, 2). In order to perform the coupling
of (5) and (6), it has been assumed that the boundary conditions at the coupling
interface are directly deduced from the preservation of the Riemann invariants of
the standing wave associated with the father model corresponding to system (6),
that is:

Ik
0 (W−

L ) = Ik
0 (W+

R ).

We have noted here W−
L = WL(x/t = 0−), and W+

R = WR(x/t = 0+). When
focusing on the isentropic Euler equations, we get I1

0 (WR) = ρǫU and I2
0 (WR) =

U2/2 + ψ(ρ), while setting ρψ′(ρ) = c2(ρ). This actually corresponds to the basic
ideas of Greenberg and Leroux (see [20]). Given these boundary conditions, we may
now perform the numerical coupling of the two models. This may be achieved by
defining a Finite Volume scheme that gives approximate solutions of (6), and then
setting ǫ(x) = 1 for x in ΩL, and: ǫ(x) = ǫ0(x) < 1 for x in ΩR. Two schemes have
been defined and investigated in [23] and [22]. These two schemes aim at enforcing at
each interface the continuity of the above-mentionned Riemann invariants Ik

0 (WR).
In [23], we have used the approximate Godunov scheme VFRoe-ncv introduced in
[8], using the non-conservative variable Z = (I1

0 (WR), I2
0 (WR)). The same idea has

been used in [22] for the non-isentropic Euler equations in a porous medium. These
two schemes are well-balanced in the sense of [20], which means that they perfectly
maintain all steady states whatever the mesh size is. Actually, numerical results
that have been obtained in the isentropic and non-isentropic case are fair.
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2.2.2. The two-fluid approach. This problem is again motivated by the existing
codes Cathare and Neptune-CFD for instance (see [21]), and we refer to [15, 16]
for details. The equations solved in both codes use the two-fluid approach, and the
former one may account for porous regions.

The coupling of the two formulations has been investigated with a slightly dif-
ferent insight, assuming that the instantaneous pressure relaxation step implicitely
contained in these codes is skipped. Hence the unknown of the two-fluid model
involves two distinct pressure fields (one for each phase). Otherwise, initial-value
problems may become ill-posed, even for small relative velocities. The index k will
refer to the phase number, and the subscript i to the interface quantities. Hence,
the father model that has been examined is (see [24] that introduces the model and
its main properties):



















































∂ǫ

∂t
= 0,

∂αk

∂t
+ Vi

∂αk

∂x
= φk,

∂(ǫmk)

∂t
+
∂(ǫmkUk)

∂x
= 0,

∂(ǫmkUk)

∂t
+
∂(ǫmkU

2
k )

∂x
+ ǫαk

∂Pk

∂x
+ ǫ(Pk − Pi)

∂αk

∂x
= ǫDk,

∂(ǫαkEk)

∂t
+
∂(ǫαkUk(Ek + Pk))

∂x
+ ǫPi

∂αk

∂t
= 0,

(7)

where ρk, αk ∈ [0, 1], mk, Uk, Pk, ek(Pk, ρk) and Ek = ρkU
2
k/2 + ρkek(Pk, ρk)

respectively denote the density, the volume fraction, the mass fraction, the velocity,
the pressure, the internal energy and the total energy within phase k, assuming that
α1 + α2 = 1. The couple (Pi, Vi) has been set to (U2, P1), according to [7, 12, 14].
The closure laws for the source terms are the following:

{

Dk = m1m2Ku(U3−k − Uk)/(m1 +m2),
φk = α1α2KP (Pk − P3−k)/Π0,

(8)

for k = 1, 2, where Ku,KP are two positive functions depending on the “conser-
vative” variable W , and correspond to the inverse of time scales, while Π0 denotes
some reference value of the mean pressure.

The problem now is similar to the one discussed in the previous section 2.2.1.
We need to couple the flow in a free medium (corresponding to ǫ(x) = 1 in ΩL),
and the flow in a porous medium (corresponding to a given distribution ǫ(x) < 1
in ΩR). As in the previous case, the boundary conditions at the coupling interface
correspond to the preservation of 0−Riemann invariants. We emphasize that exact
solutions of the one-dimensional Riemann problem associated with system (7) may
be exhibited, that allow a straightforward measure of the convergence rate.

The main conclusions that arise from the preliminary work [23, 15, 16, 22] are
the following:

• Simple and expected suitable schemes, which are not well-balanced, may con-
verge towards a wrong solution, when a flow encounters a sudden porosity
transition. In figure 1, we show the L1 norm of the error when using Rusanov
scheme and computing such a Riemann problem with discontinuous poros-
ity; in that case the coarser mesh and the finer mesh contain 100 and 400000
regular cells respectively, and the CFL number has been set to 1/2; initial con-
ditions and exact values of intermediate states can be found in [15]. Actually,
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as underlined in [15], the well-balanced criterium seems to be mandatory, in
order to obtain a correct convergence. A specific formulation that is inspired
by the well-balanced Rusanov scheme introduced in [29] provides a good can-
didate, though of course the h1/2 rate of convergence remains rather weak for
practical applications. Evenmore, the approach suggested in [22], that is also
grounded on the well-balanced techniques, but which relies on an approximate
Godunov flux rather than a Rusanov flux, constitutes a fair improvement of
the latter well-balanced Rusanov scheme, in terms of accuracy.

• Mathematical coupling boundary conditions associated with the basic ap-
proach of the father model (7), as implicitely suggested by [20], may certainly
be improved in the 2D or 3D framework (see [16]). More precisely, the enforce-
ment of two particular 0−Riemann invariants (namely s1, s2 where sk denotes
the specific entropy within phase k) of the standing wave in the well-balanced
formulation might certainly be replaced by two more relevant physical condi-
tions. This obviously urges some deeper investigation, and some basic ideas
are now examined.

• Beyond this point, and though it seems to be rather crude, the so-called porous
approach may be useful for industrial purposes. Actually, a rather interesting
point is that it may converge much faster than the free approach -in terms of
mesh refinement-, at least in some configurations (see [16]).
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Figure 1. L1 norm of the error when computing a one-
dimensional Riemann problem with a discontinuous profile of the
porosity ǫ, while using a standard scheme (Rusanov scheme).

2.3. The numerical coupling of HEM and HRM models. This subsection
summarizes part of the work detailed in [5] (see [2] also where the drift velocity is
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taken into account). HEM (Homogeneous equilibrium model) and HRM (Homoge-
neous relaxation model) are two widespread models that are used by the nuclear
community. Both models assume some local closure for the relative velocity be-
tween phases U2−U1, but also on the pressure and temperature differences between
phases. The HRM model does not assume a Gibbs potential equilibrium between
both phases, and a straightforward consequence is that a mass transfer term Γ is
present in the governing equations of the mass balance of both phases (see (9)).
The state variable of the HRM model is:

Zhrm = (X, ρm, Um, Pm),

where: ρm = α1ρ1 + α2ρ2 , X = α2ρ2/ρm, Um = (α1ρ1U1 + α2ρ2U2)/ρm, Pm =
α1P1 + α2P2, and Em = α1E1 + α2E2. Assuming in addition that a velocity-
temperature-pressure equilibrium holds everywhere in ΩR, eg: U1 − U2 = 0, T1 −

T2 = 0, P1 − P2 = 0, the governing set of equations of the HRM model reads:







































∂(ρmX)

∂t
+
∂(ρmXUm)

∂x
= Γ,

∂ρm

∂t
+
∂(ρmUm)

∂x
= 0,

∂(ρmUm)

∂t
+
∂(ρmU

2
m)

∂x
+

∂Pm

∂x
= 0,

∂Em

∂t
+
∂(Um(Em + Pm))

∂x
= 0,

(9)

where Em = ρm(em(Pm, ρm, X) + U2
m/2). The state variable in the HEM model is

noted Zhem = (ρ, U, P ), and Zhem complies with:























∂ρ

∂t
+
∂(ρU)

∂x
= 0,

∂(ρU)

∂t
+
∂(ρU2)

∂x
+

∂P

∂x
= 0,

∂E

∂t
+
∂(U(E + P ))

∂x
= 0,

(10)

where E = ρ(e(P, ρ) + U2/2) ; ρm, Pm, Um (respectively ρ, P, U) denote the mean
density, the mean pressure and the mean velocity of the mixture.

The problem of the numerical coupling of HEM and HRM models in ΩL and ΩR

respectively has been investigated in the pioneering work [2] and [5]. The previous
references provide two slightly different insights on this coupling problem. The
concept of a father model has once again been retained in the work [5]. Some
conclusions may be drawn as follows.

• As pointed out in [2, 5], a first crucial point is that the two models should
contain some inner coherence. More precisely, the consistency of the EOS of
the HEM with the mass exchange term Γ in the HRM plays a key role in the
behaviour of coupled simulations.

• Another probably more obvious remark pertains to the amplitude of the re-
laxation time involved in this source term Γ. When the latter is sufficiently
small, the numerical coupling experiments exhibit little pollution around the
steady coupling interface between the two codes.

• Eventually, it seems worth noting that the particular schemes that are involved
at the coupling interface seem to have little influence on the quality of results.
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3. The numerical coupling of a two-fluid model with HRM in a free

medium. This section is devoted to some recent numerical attempts (see [25, 27])
to couple two different two-phase flow codes relying on the two-fluid approach (in
ΩL) and the homogeneous approach (in ΩR) respectively. We provide here a brief
description of the overall problem and techniques. The left code is assumed to
provide approximations of the state variable:

Ztfm = (α2, ρ1, ρ2, U1, U2, P1, P2),

using some given numerical method, such as the one described in [14]. The continu-
ous model is exactly given by (7), setting ǫ(x) = 1 everywhere in the computational
domain, that is:







































∂αk

∂t
+ Vi

∂αk

∂x
= φk,

∂mk

∂t
+
∂(mkUk)

∂x
= 0,

∂(mkUk)

∂t
+
∂(mkU

2
k )

∂x
+ αk

∂Pk

∂x
+ (Pk − Pi)

∂αk

∂x
= Dk,

∂(αkEk)

∂t
+
∂(αkUk(Ek + Pk))

∂x
+ Pi

∂αk

∂t
= 0.

(11)

Meanwhile, the right code generates approximations of

Zhrm = (X, ρm, Um, Pm),

in ΩR, using notations introduced in the preceeding section 2.3, and where Zhrm is
a solution of the HRM model (9).

We point out that we have once more used the non-conservative father model
(11) in order to perform the numerical coupling of the two models. This means
that we solve the Riemann problem associated with the father model (11) together
with the initial conditions provided by the left state (Ztfm)L and the right state
E((Zhrm)R). The latter state (Ztfm)R = E((Zhrm)R) in R7 is obtained by pre-
scribing the local equilibria (U1)R = (U2)R = (Um)R, ((P1)R = (P2)R = (Pm)R,
(T1)R = (T2)R = (Tm)R in the fictitious state (Ztfm)R. Thus we set: E((Zhrm)R) =
α2, ρ1(Pm, Tm), ρ2(Pm, Tm), Um, Um, Pm, Pm) where α2 complies with:

α2ρ2(Pm, Tm) = ρmX.

This enables us to define boundary conditions for both codes, as explained with
more details in [27]. These boundary conditions guarantee the strict conservation
of the total mass, the total momentum and total energy of both phases in the
coupled simulation.

In order to illustrate this kind of coupling, we show in figures 2 and 3 the be-
haviour of all variables at time t = 0.000877. The initial conditions in the two-fluid
domain have been chosen in such a way that: T1 = T2, P1 = P2 and U1 = U2. A
perfect gas EOS holds within both liquid and vapour phases: Pk = (γk − 1)ρkek,
with: γ1 = 1.1, γ2 = 1.4. Initial conditions on each side of xr are: P1(x <
xr, t = 0) = 155 × 105, U1(x < xr, t = 0) = 0, ρ1(x < xr, t = 0) = 800,
α1(x < xr, t = 0) = 0.995 for x < xr, and: P1(x > xr, t = 0) = 150 × 105,
U1(x > xr, t = 0) = 0, ρ1(x > xr, t = 0) = 700, α1(x > xr, t = 0) = 0.005. The
right-going shock wave that has been generated at x = xr = −0.25 at the beginning
of the computation propagates and hits the coupling interface x = 0, thus inducing
reflected and transmitted waves.
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We observe that the numerical pollution generated by the right-going waves
coming from ΩL and hitting the coupling interface tends to diminish when the
mesh is refined. Unfortunately, we have no exact solutions here to assess the current
methodology, unlike in previous sections 2.1 and 2.2. This renders the validation
task more difficult, since we can only compare the coupled solution to the two
solutions obtained when using either (11) or (9) over the whole domain Ω.
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Figure 2. Interaction of a right-going shock wave, coming from
the two-fluid region (x < 0), with the steady coupling interface at
x = 0, the homogeneous region being on the right side (x > 0). The
initial discontinuity of the Riemann problem was set at xr = −0.25.
The mesh contains 100 regular cells, and the CFL number is 1/2.
Liquid phase: plain line / vapour phase: dashed line. A dotted line
with circles has been used for mixture variables ρm, Um.

A somewhat different technique has been proposed recently in [1], in order to
achieve the same kind of interfacial coupling, though no longer assuming a zero
relative velocity in the HRM. Since the model investigated in [1] does not take
energy equations into account (each phase is assumed to comply with an isentropic
equation of state), and also due to the fact that left and right models in [1] are
tightly connected in the long-time limit, even when gravity terms are accounted for,
no straightforward comparison of results can be made between the present approach
and the one introduced in [1]. However, owing to the well-balancing of source terms
in the numerical algorithm of [1], one may presume that the latter approach is
more accurate than the one introduced herein. Further analysis is still necessary to
confirm this. Eventually, we would like to mention that both techniques may also be
used in order to couple a standard two-fluid model, that assumes an instantaneous
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Figure 3. Same test case as in the previous figure, but the mesh
now contains 2000 regular cells.

pressure equilibrium between both phases, with the homogeneous relaxation model
HRM, as pointed out in [25].

4. Comments and perspectives. We have discussed in this paper a few coupling
experiences involving distinct fluid models in unsteady situations. Obviously, and

mainly due to the number of studies, this paper only provides an overview of the

methods that have been introduced, and the coupling methods have been described in a

rather sketchy way. Thus we encourage readers that are interested in details to refer

to appropriate references. The main purpose in each case was to provide suitable
boundary conditions through a fixed coupling interface. All models examined here
issue from the two-phase flow literature, and involve highly non-linear and unsteady
features. The basic methodology that has been applied in this work was to provide
a father model, which implicitely enforces the definition of boundary conditions
through the coupling interface. In each case, at least two fundamental questions
arise:

• (i) Given a set of prescribed boundary conditions through the coupling in-
terface, can we handle the numerical coupling of both models, and provide
efficient numerical tools and practical recommendations for engineers?

• (ii) Is the set of boundary conditions meaningful from a physical/mathematical
point of view?

Obviously, we have essentially focussed up to now on the first point, which of
course is easier to examine than the second one. This has been briefly presented
in the present paper, but thorough details are available in associated references.
Nonetheless, we also tried to examine the second point in a few configurations,
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among which we would like to quote the case of the coupling of models in free and
porous media (see section 2.2). This one suggests that nice mathematical tools,
which lead to reasonable numerical tools, might be improved in such a way that a
better agreement with the physics are attained. We would also like to emphasize
that one great difficulty dwells in the validation of numerical coupling techniques,
due to the lack of analytical or reference solutions in many coupled situations.

Hence, the present work represents a humble contribution to the domain, and it
essentially aims at providing numerical tools for engineers, rather than investigating
the topic theoretically. Moreover, problems arising when including source terms
S(W ) but also possible -even small- viscous contributions in left and right models
have been disregarded. This represents another challenge for further applications
and theoretical investigations. Part of our present work also consists in integrating
tools in existing codes, which is no that obvious, mainly due to the fact that these
existing codes have not been built with the perspective of subsequent coupling.
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and Thierry Gallouët (Université Aix-Marseille I). Eventually, we would like to ac-
knowledge project leaders Frédéric Archambeau, Antoine Guelfi and also Olivier
Marchand (EDF) for their kind support and encouragements. All computational
facilities were provided by EDF.

REFERENCES

[1] A. Ambroso, C. Chalons, F. Coquel and T. Galié, Relaxation and numerical approximation
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[14] T. Gallouët, J. M. Hérard and N. Seguin, Numerical modelling of two-phase flows using the
two-fluid two-pressure approach, Mathematical Models and Methods in Applied Sciences, 14
(2004), 663–700.

[15] L. Girault and J. M. Hérard, A two-fluid hyperbolic model in a porous medium, Mathematical
Modelling and Numerical Analysis, in press (2010).

[16] L. Girault and J. M. Hérard, Multidimensional computations of a two-fluid hyperbolic model
in a porous medium, AIAA paper 2009-3888, http://www.aiaa.org/ (2009).

[17] E. Godlewski, Coupling fluid models. Exploring some features of interfacial coupling, in “Fi-
nite Volumes for Complex Applications V” (eds. R. Eymard and J.M. Hérard), ISTE-Wiley,
(2008), 87–102.

[18] E. Godlewski and P. A. Raviart, The numerical interface coupling of non-linear hyperbolic
systems of conservation laws. I The scalar case, Numer. Math., 97 (2004), 81–130.

[19] E. Godlewski, K. C. Le Thanh and P. A. Raviart, The numerical interface coupling of non-
linear hyperbolic systems of conservation laws. II the case of systems, Mathematical Modelling
and Numerical Analysis, 39 (2005), 649–692.

[20] J. M. Greenberg and A. Y. Leroux, A well-balanced scheme for the numerical processing of
source terms in hyperbolic equations, SIAM Journal of Numerical Analysis, 33 (1996), 1–16.

[21] A. Guelfi, D. Bestion, M. Boucker, P. Boudier, P. Fillion, M. Grandotto, J. M. Hérard,
E. Hervieu and P. Péturaud, NEPTUNE: A new softaware platform for advanced nuclear
thermal hydraulics, Nuclear Science and Engineering, 156 (2007), 281–324.

[22] P. Helluy, J. M. Hérard and H. Mathis, A well-balanced approximate Riemann solver for vari-
able cross-section compressible flows, AIAA paper 2009-3540, http://www.aiaa.org/ (2009).

[23] J. M. Hérard, A rough scheme to couple free and porous media, International Journal of Finite
Volumes, (electronic: http://www.latp.univ-mrs.fr/IJFV/), 3(2) (2006), 1–28.
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