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ABSTRACT. We introduce nonoverlapping domain decomposition algorithms of
Schwarz waveform relaxation type for the semilinear reaction-diffusion equa-
tion. We define linear Robin and second order (or Ventcell) transmission con-
ditions between the subdomains, which we prove to lead to a well defined
and converging algorithm. We also propose nonlinear transmission conditions.
Both types are based on best approximation problems for the linear equation
and provide efficient algorithms, as the numerical results that we present here
show.

1. Introduction. For reactive transport modeling in a COy geological storage
modeling context, one is especially interested in the long-term behavior of the in-
jected chemical substances with regard to large spatial dimensions. Our angle of
vision is several hundreds, even thousands of years in time and several hundreds,
even thousands of meters in space. Simulating geological storage processes is sub-
ject to the following challenges: for performance reasons, general calculations have
to be done with large temporal and spatial dimensions because the chemical system
is expected to become quickly equalized on account of slow flow rate in comparison
to fast reaction rates. However, in front areas, where concentration gradients are
significantly elevated, the chemical system is highly unequalized and has then to be
solved with high accuracy in time and space. Therefore, the approach is a coarse
time mesh integration scheme with refined areas in time and space around the re-
action fronts. For late r works, one challenge is to detect and track those reaction
areas as well as the local time-step and grid size adaptation coupled with a domain
decomposition method in order to solve the problem with higher performance by
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avoiding bad convergence of the linear solvers and small time steps for non-reactive
areas. Those works are in the general claim for parallelism, in order to be able
to treat numerically realistic cases with more than 100.000 cells in reasonable time
(less than one day)[9].

The SHPCO; project (High Performance Simulation of COy Geological Storage
[12]) considers as a main tool for space-time refinement the Schwarz waveform re-
laxation algorithms. These algorithms were proposed in a linear setting in [2], [4],
[6], [11]. They solve space-time problems alternatively in the subdomains. The ex-
change of information between the subdomains is done by transmission operators,
like Robin operators or Ventcell operators. Therefore they are very-well suited for
different space and time discretizations in the subdomains [10]. The transmission
conditions are optimized through certain coefficients, which in certain cases can be
obtained in asymptotic closed form ([2], [6]).

However, in the project the equations are nonlinear, and new algorithms must
be designed in this context. Overlapping Schwarz waveform relaxation algorithms,
exchanging information through Dirichlet data, were proposed in [8] for the Burgers
equation. The purpose of the present paper is to set a theory for more efficient
algorithms for the semilinear heat equation, using the above described transmission
conditions.

The paper is structured as follows: we first present the problem and the nonover-
lapping Schwarz waveform relaxation algorithm in Section 2. We also state the the-
oretical results: definition of the algorithm, existence of a common existence time
for the nonlinear problems, convergence of the algorithm.

Section 3 is devoted to the proof of these results.

Section 4 presents the numerical treatment of the subdomain problems, and of
the algorithm.

Finally Section 5 quantifies the theoretical convergence result.

2. Problem description. We consider a semilinear reaction diffusion equation in
two dimensions,

ug — vAu + f(u) =0, in R? x (0,7), (1)
with initial condition
u(:,0) = uo, (2)

where T' > 0 and the diffusion coefficient v is a strictly positive constant. The
function f defining the nonlinearity is in C?(R), and satisfies f(0) = 0. The initial
data ug is supposed to be defined in H?(R?).

A weak solution of problem (1)-(2) is defined to be a function v € L?(0, T; H*(R?))
NC([0,T); L*(R?)), such that f(u) € L*(0,T; L*(R?)), satisfying for all v € H*(R?)

d
E(u, v) + v(Vu, Vo) + (f(u),v) =0, in D'(0,7T),
and u(-,0) = up, where (-,-) denotes the inner product in L?(R?).
Let us recall the following result concerning the well-posedness of the Cauchy
problem (1)-(2) (for a proof, see for instance [3]):

Theorem 2.1. If ug € H*(R?), then there exists T > 0 such that problem (1)-(2)
possesses a unique weak solution u € L*(0,T; H'(R?))N C([0,T]; L*(R?)). We have
in addition that uw € L>(0,T; H*(R?)).
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We introduce a nonoverlapping Schwarz waveform relaxation algorithm to ap-
proximate the solution u of problem (1)-(2). We decompose the domain R? into two
subdomains ; = (—00,0) X R and Q3 = (0,400) x R. We denote by T' := {0} x R
the common boundary of € and Q9 and by ny = (1,0) and ny = (—1,0) respec-
tively the unit outward normal vectors to 2; and 5 at I'. The nonoverlapping
Schwarz waveform relaxation algorithm is given by:

Ol —vAuk + f(uf) =0, in Q% (0,7),

ulf(a 0) = UO\QN in Ql7 (3)
By (u¥) = By (uf™1), over I' x (0,T),

and
Opul — vAuE + f(ub) =0, in Qy x (0,7),
ub (-t =0) = ug|q,, in Oy, (4)
Bo(uk) = By(uf™1), over T' x (0,7),

where By and Bs are differential operators to be defined.

An initial guess (g9, 99) is given. At step 0 of the algorithm we solve both
problems (3) and (4) with transmission conditions replaced respectively by the
conditions

Bi(u}) =g¢{ and Ba(up) = g5. ()

The transmission operators are either

Bi(u) = + pu (6)

ou ou 0%u .
on, (8t 8—y2) (™)
for positive p and q. We refer to operators (6) as Robin operators, and operators (7)
as Ventcell operators. They have been designed and studied in a linear setting in
[2], [6], as approximations of the Dirichlet-Neumann operators, thus leading to op-

timized convergence of the algorithm for cleverly chosen coefficients p and ¢q. They
were obtained by a Fourier transform in time and in the direction y of the interface.

8nz
for positive p, or

We define the algorithm in the frame of Sobolev spaces. We denote by (-,-) the
inner product in L?(€2;) and by (-,-)r the inner product in L?(T"). For s > 1, we
introduce the function spaces

H(Qi) = {u e H*(), wr € H*(I')},
V = HYQ,),if g=0, and V = HL (), if ¢ > 0. If g € L2(0,T; Hz(I')) is given, a
weak solution of the boundary value problem
wy — vAw + f(w) =0, in ©; x (0,7),
w(-,O) = Ug|q,; in £, 8)

o2
8 (— 5 ua—;g) =g, overI'x (0,T),
is a function w € LQ(O, T;V) such that for all v € V,

ow Ov

jt(w v) +v(Vw, Vo) + p(w, v)r—l—qjt(w v)r—i—uq(a "By —)r+ (f(w),v) = (g,v)r,
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in D'(0,T), and such that wy—g = uo|q, -
The first result is a local well-posedness result for the algorithm:
Theorem 2.2. Let ¢0 and g9 in H*(0,T; L3(I')) N L>(0,T; H2(T)), up € H2(R?),
p >0 and g > 0 be given. Suppose that (VOy,,up + puo)|r = ¢9(0,-), if ¢ = 0. Then,
algorithm (3)-(4) with the transmission operators defined by (7) (or by (6) if ¢ =0),
initialized with (5), defines a unique sequence of iterates (u¥,uk) such that
ul € WHo(0, Ty; La(Q4)) N L0, Ty; H3 () N HY (0, Ty; HY(Q)),
if ¢ > 0, or such that
uf € W0, Tr; La(2)) N L®(0, T H* (%)) N H' (0, Ti; H' (),
if g =0, for some Ty, 0 < Ty, <T.

The second result shows that the iterates have indeed an existence time indepen-
dent of k.

Theorem 2.3. Under the conditions of Theorem 2.2, there exists M and T such
that, if
2 02 <72
HUJOHH2(Qi) + Hgi ||Hl(O)T;LQ(l"))ﬂLoo(O7T;H%(l")) <M~ (10)
(uf,uk) is defined in the interval [0,T] for all positive k.

The third result shows the convergence of the algorithm.

Theorem 2.4. With the notations of Theorem 2.3, the sequence (u¥,u%) converges,
as k — 00, to (ujq,,uq,), N L>(0,T; H(S%)).

3. Proofs of the theorems. All proofs are given in the case ¢ = 0. The proofs
in the Ventcell case are much more technical, but follow the same path.

3.1. Proof of theorem 2.2. In a first step we prove existence and uniqueness of
the solution for the non-homogeneous linear problem associated with (8) in some
regular space in which f(w) is well-defined. This proof is inspired by [13], where
absorbing boundary conditions are considered, i.e. with g = 0.
We then define the solution of the nonlinear problem by using the Picard fixed
point theorem in some suitable metric space.
We introduce the linear problem
wy —vAw=f, inQ; x (0,7,
'(U(',',O) = U0|Q;> in Q’ia (11)
I/g—:i +pw=g, overI x(0,7).
Lemma 3.1. Let ug in H*(S), f € HY(0,T;L*(Q)) and g € H'(0,T; L*(T)) N

L>(0,T; Hz2(T)) such that Vg_rul?() + puo(-) = ¢g(0,-) over T'. Then problem (11)
has a unique solution in

H(T) := WH>(0,T; L*(Q;)) N L0, T; H2(Q)) N HY(0,T; H () (12)
and the following estimate holds
||w|\31(:r) < Ce” (luollFz (o, + Hf”?P(O,T;L?(Qi))

ol ”
(0,T5L2(I'))NL> (0,75 H 2 (T))

(13)

):

where C' > 0 is a constant depending only on p and v.
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Proof. 1. First a priori estimate: for w in L>(0,T; L*(Q)) N L2(0,T; H'(£)).

We take the L? inner product of equation w; — Aw = f with w, integrate by parts
in ©;, apply the Cauchy-Schwarz inequality and the inequality ab < “5—2 + eb?, for
a,b € R and € > 0, on the right-hand side of the resulting equation, and integrate
over [0,¢], for t < T, to get

()] + 20 / IVe(s)|?ds + p / J(s)||2ds
t 1 t
< Juoll® + / (IFI? + Sl ) ds + / (s |2ds.

Applying the Gronwall lemma yields

”wH%“’(O,T;L?(Qi)) + 2VHVwH%2(O,T;L2(Qi)) +p||w”%2(0,T;L2(F))
~ 1
< e" (luoll® + 1 £ 220, 12(0)) + ];H9||%2(0,T;L2(r)))- (14)

2. Second a priori estimate: for w; in L>(0,T; L3(€)) N L2(0,T; HY(€)).
We apply (14) to w;, and we obtain

wellZoe 0.7:22(00)) + 20V Wel| T2 0,220y + Pllwell 220 7:22(0)
~ 1
< e (llweol® + 117 0.7:22(620y) + EHQH%P(O,T;L?(F)))' (15)

In order to estimate ||wy||, we take the inner product of equation w, — Aw = f
with wy, integrate by parts in §2; and evaluate the resulting equation at time ¢ = 0.
We obtain

||wt0||2 + V(VUO, thO) —i—p(UQ, wtO)F = (f(v 0)7 wtO) + (Q(', 0)7 wtO)F'
Integrating by parts the second term on the left-hand side gives
”wtOH2 = V(Au‘)v wtO)_(Vamu(Jv wtO)F_p(u(Jv wtO)F+(f('7 0)7 wt0)+(g('7 0)7 wtO)F'

Since the term —v0,,up —pug+¢g(-, 0) vanishes, we obtain, by applying the Cauchy-
Schwarz inequality,

[[weoll < vl|Augll + £ (-, 0)]-
We insert the above inequality in (15), which gives the estimate
[wellT oo 0,75 22(00)) + 201V Wil F2 0,7 12000y + PllwellT 20,752
. 1
< e (20%(|luol| 32y + 31 0.7 L2000y + 1—9H9||§11(0,T;L2(r)))- (16)

3. Third a priori estimate: for Vw in L°°(0, T; L*(€2;)).
We multiply the equation by wy, use Cauchy-Schwarz lemma, to obtain

”wt”%Z(O,T;LQ(Qi)) + V||Vw||%oo(o,T;L2(szi)) + pr”%m(O,T;L?(F))

~ 1
< || Vuol* + plluo|If + Hf”%?(O,T;L?(Qi)) + » HQH%Q(O,T;L?(F)) +prt”%2(0,T;L2(F))'
(17)
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By putting together (14), (16) and (17), we obtain by a Galerkin method a
unique solution w of (11) such that w € L*(0,T; H*(Q;)) N H(0,T; L*(;)) N
W1o0(0,T; L?(€;)). Tt remains to get an upper bound in L°°(0,T; H*(;)). Since

1 -
A= (w ~ f) € L0, T 1()),
ow 1
=—(g- L0, T HY*(T
on, — 9~ pw) € LT, T HIHT)),

classical regularity results prove that w € L°(0,T; H*(Q;)) with

ow
[wllzeeo,7sm2(00)) < CrlllAwllLee 0,722 (20)) + 1 5~ L 1:m172(0))

< Co([lwe |l os 0,75 2(02:)) + Hf”LOO(O,T;L?(Qi))

190 o g oy + 1001207 (18)

We deduce then that problem (11) has a unique solution w in H(7T'), which satisfies

(13). O
In order to estimate the nonlinear terms, we will use use the regularity of f.

Lemma 3.2. Let O be a regular domain in R, F a C' real function. There exists
a continuous positive increasing function ¢ such that, for any v and w in H*(O),

1F(w) = F(v)|l2(0) < p(maz(||w]loc, [[v]oo))llw = vl L2(0)- (19)
The function ¢ is given by

pla) = sup [F'(€)].
l€|€(0,a)

Proof. Note first that H?(O) is a subset of L>°(O) with continuous injection, which
gives a meaning to (19). We use now the Mean Value Theorem. For any a,b in R,

/ ' (e)de

We apply the above inequality to the functions w and v,

[F(w(z)) = F(v(z))] < Jw(z) - v(z)] sup [F'(©)]
€l €(0maz(|[v]| o, w]loc))

[F(a) = F(b)| = <la—b] sup [F'(5)].

§€(a,b)

The function

p:ra— sup [F'(§)]
[€1€(0,a)

is an increasing function over R, which finishes the proof of the lemma. O

We now define the map which will be used for the definition of the nonlinear
problem.

Lemma and definition 3.3. Let T > 0. Let ugp € H?(;), g € H*(0,T; L*(T")) N
L>°(0,T; Hz(I)). For any v € H(T), the linear problem
wy —vAw = —f(v), inQ; x (0,7T),
w(-,+,0) = ugq,, in €2, (20)
ug—i +pw=yg, over I' x (0,7).
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has a unique solution in H(T'), hence defining an application w = 7 (v) in H(T),
with

2 T 2 2
<
17 (U)HH(T) <Ce (HuO||H2(Q ||9HH1(0 T:L2(T))NLo (0.TsH (I)) (21)

+T(SO(HU||L°°((O,T)XQi))) HU”WL“’(O,T;LQ((L)))'
Proof. Since f(0) = 0, we have by Lemma 3.2,

£ )lz20,m22(020)) < VT@(lvll oo 0,7y x|Vl 2w 0,522 (2:)) -
On another hand, we have by the definition of ¢:
I (0)vell p20.rsp200)) < VTR0l L2 0,7y x00) )1Vl L= 0,7522(60:)) -
These inequalities finally give that f(v) is in H(0,T; L?(€;)), and

1 @)z 0.7:2(0200) < VTRVl oo 0.y x0) lollwros 0.2y (22)
By Lemma 3.1, we conclude that the linear problem (20) has a unique solution w
in H(T), and the estimate comes directly from (13).
O
Let M be such that

M? > 4C(|fuo 2 g,y + ll9ll} (23)

H(0,T5L2())NL> (0,T5H 3 (F)))
where C' is the universal constant of estimate (21), and define the time
o1’ /
To(M) = sup{T’ < T, max (= 5 20eT (p(M))*T", 20T VT'p(M)) < 1}. (24)
Lemma 3.4. Define
B = {w € H(To) : [[wllyg,) < M}

Proof. If v € Bar , ||[v]|w1i.(0,1)x0,) < M, and since ¢ is increasing, we deduce
from (21) that

2
17 )z < O™ (lullira oy + ToMD)* + 19I5 1 rooyszoeo st )

1
< M?%(=

< M27 by definition of Tj.

e + CToe™ (p(M))?),

O

Lemma 3.5. By is a closed metric subspace of L°°(0,Ty; L?(S%)), and T is a
contraction in By .

Proof. We first prove that By is closed in L (0, Tp; L?(£2;)). Indeed let (wy)nen
be a sequence in Bjs converging to w in L% (0,Tp; L2(€;)). Since By is weakly
compact in H(Tp), there exists a subsequence w,,s converging weakly to @ € By in
H(Tp). By the uniqueness of the weak limit, w = w and thus w € Byy.

Let v and v € By and put w = 7 (v), w = T (v). We have that w — w satisfies

( 7) - VA(U} w) (f(v) - f("j))v in 2 x (07 TO)?
(w—w)(-,0) =0, in Q;, (25)
uai(w w) + p(w —w) =0, over I' x (0, Tp).
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By taking the inner product of the first equation in the system above with w — w,
integrating by parts and applying the Cauchy-Schwarz inequality and inequality
ab < %2 + %, a,b € R, on the right-hand side, we obtain

1d

1
sgllv = @|* + vV (w = @)|* + plw — | < 5@ = FOI + [[w —@]).

We integrate the above inequality over [0, ], for ¢t < Ty, and we apply the Gronwall
lemma to obtain

t
l(w — @) ()] < ¢ / 17 (u(s)) — f(a(s))|Pds.
Again by Lemma 3.2, we have

1w = @) 0,10522(52)) < € To(p(M))? 0 = 0ll70 (0,7522(02)

and by the definition of Ty, we conclude that

_ 1 _
[[(w — w)HLOO(O,TO;L%Qi)) < 3 (v = U)HLOO(O)TU;LQ(Qi))v (26)
which proves the result. |

By the Picard theorem, the map 7 has a unique fixed point in B, which proves
the existence and uniqueness of a solution w € Bj; to the nonlinear problem. Fur-
thermore, we have for ¢ € {1,2} and j =3 — i,
ow
8711'

We are now able to give a precise meaning to the algorithm. To simplify the nota-
tions, we set Vi (T') = H'(0,T; L2(T')) N L>°(0, T; Hz (T)). Let (¢, ¢9) in (V& (T))2,
and

Bj(w) = —v—— + pw = —g + 2pw € H'(0, Ty: L*(T")) N L>(0, Ty; H> (). (27)

2 2
M§ > 4C(luollzr2 (0, + 199 vk c))-

By Lemma 3.5, we can define (u?,u3) in (H(Tp))? and, by (27), (91,93) =
B9, Bou?) € (Vr(Tp))?. We thus build a sequence of numbers M, such that
2 1

M > A0(luo|F2 + 1B ™) Fr (),

and a decreasing sequence of times Ty = T(Mj) such that (uf,u}) is defined in
H(Tk).
3.2. Proof of theorem 2.3. For each k > 0, we define the errors ef = u¥ — U, s

which satisfy the equations

Oref —vAek = —f(uF) + f(u), in Q; x[0,Tk),

ek(-,-,0) =0, in €,
Oek ekt
V(?:i +pef=v 3]7% —|—pe;€_1, over I x [0, T%),

where i € {1,2} and j =3 —i.
By taking the inner product of equation def — vAel = —f(uF) + f(u) with eF,
by integrating by parts in €2;, we obtain

1d dek
Sl + v Vel —v(GE k) = (F(u) = flub), eb).
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By using Cauchy-Schwarz inequality and Lemma 3.2, we obtain
1d el
Sl vIVeb I = (G et) <l O et

Note that we have omitted the dependence of ¢ with respect to u. We now replace
the boundary term (an argument discovered by Després in [1]) using the identity

86? & & ? 86 & ?
V(ani7ei>r 4p{H 8”1 pe T H 8_77/1 b F}'
Hence,
k2 2y
e +v Ve ‘ <
3 ek + vk P+ o i
Pl + 1 [ 5 +m (28)

We add now (28) for i = 1,2 and use the transmission condition on the rlght—hand
side of the resulting equation. Defining

Bu)(®) = 5w +v [ |Vu()ds

and the boundary errors

we obtain

%w@mw+mﬁw»+fwﬁ%+mﬂ%s

uw~k L2 4 |1gE=t2) (30)

+¢(|\U’f(t)|\oo)lle’f|\2 +o(llus ()lso)lle5 2.

We differentiate now equation d;e¥ — vAek = —f(uF) + f(u) with respect to t,
take the inner product of the resulting equation with 8tel , and integrate by parts
in 2. We can write the right-hand side of the resulting equation as

(Ou(f(u) = f(uf)), Oef) = (f (W)Ou — f'(ul)Opu+ f'(uf)Opu — f'(uf)Oyul, Oel)
= ((f'(u) = f'(u))Opu, Orey) — (f'(uf)Opel, ref).  (31)

We again use Lemma 3.2 for f’ with a new functlon p1. If we apply now the
Cauchy-Schwarz inequality and inequality ab < % —|— 7, we get

(:(f (uf) = f(u), Deef)
1
< ol Olloo)10eei I + 51l )| oo) 10rull o 0.r:2) (192 | + e 11%).

We introduce py = ¢ + %Hatu||Loo(O)T;L2)(P1 which is also continuous positive in-
creasing, and end up with

Slorek |2 + vovel|? - (v £). < el loc)(100ek

+[efll®)- (32)

2dt on;
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We now add equations (32) for i = 1, 2, use the derivative in time of the transmission
condition, and proceed as before. We obtain

§t< <3t61><t>+E<8te’5><t>) <Hat FIZ + 1035 12) <
(Hafk 1||F+Hat~k Y1) (33)

+<ﬂ2(IIU’f(t)||oo)H3t6’fH2 +@2([[us (t)lloo )| Ore5 1.
We finally perform the same calculation on the derivatives in the y direction.

jt( 9y 61)(t)+E(<9ye’5)(t)) (”au FIIE + 110,85 117) <

(Ilaufik 1Hr+|\5y9k HIE)

+903(Hu1 ()l 10y €X[I* + @3([uf (t)[loo ) [10yeb 2.

We now define the total energy in the domains at step k as a function of time ¢
to be

(34)

€% = Y (E(eF) + B(0rel) + E(0,eb)),

1

and the total boundary error at step k as a function of time ¢ to be
1, - -
= Zp(llgfll% + 110 1IF + 119,31 17),
Gk =gt +3d5k.

If we add (30) to (33) and (34), we obtain

d _

7 (E7®) +G°®) < (palllutlloc) + pallluzll0)) E° () + G*(1). (35)
Let

&§ —ZE'“ US(t) = sup [[uf(t)]oo + sup [ub()]|so-
0<k<K 0<k<K

We sum both sides of (35) over kK = 0,---, K, and integrate on (0,7). Since
EK(0) = 0, we obtain for a new function ¢s:

+/0 GX(s)ds < 2/0 305(L{K(s))5§<(s)ds+/o G(s)ds

og}%XK/O G*(s)ds < 2/0 905(L{K(s))8§((s)ds+/0 G%(s)ds

We now estimate U%. We have for i = 1,2and 0 <k < K:
g ()l < NJu()]loo + Nl ()l

The norm of ¥ () in L>(2;) is bounded by Cs||e¥ ()| (0, which can be estimated
as in (18), and gives

g (D)oo < Ca(1+ 10z (0] + 1 (g (1)) = F Q)]+ 135 O 113 -
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We now estimate Hg||Loo(01t;H%(F)):

||9Him onEdr) = 2\|gll 20,6 @) 1969l 20,62 ()

A

> Hg”%ﬂ((o,t)xl“)'

We can rewrite

luf (oo < Ca(l+ 0eef (O + [1F (wF () = f @] + 13 |11 (0,.0)%1))
< Ca(4+288(1) + (o(lluf (t)ll0))E" (2) +/0 G*(s) ds),

where ||ul| Lo ((0,7)x0) has been included in the constant Cy. This yields for UK the
estimate:

UB(t) <4C,(1+ EE (1) + (oUR ()2EE ) + Og}%(/ G"(s) ds). (37)

The functions t — EX(t) and t — U*(t) are continuous. We fix M such that

1
M= T Gea)®

and define
T — inf{T" < To(M), 2T"5(5C0)M + / Q%(s)ds > M},
0

T=sup{T’, EX <M and U"¥ <5C, on (0,7")}.
By continuity, we have either X (1) = M or UX(I) = 5C4. In the first case we
have by (36),

T
M = EE(T) < 2MTp5(5Cy) +/ G(s)ds
0
which implies that 77> T. In the second case we have by (36) and (37),
T
51 =UK (L) £4CA(1+ [(p(6Cn)? + AEMTps(5C0) + [ G°(s)ds)).
0

This can be rewritten as
1
>
4(2 + (¢(5C4))?)

2T o5 (5Cy) M + /I G%(s)ds
By the assumption on M, this imoplies that
2T 5 (5C4) M + /OT G%(s)ds > M,
and therefore T>T. We thus have
vt € (0,T),E5(t) < M, /Ot GR(s)ds < M, UF(t) <5Cy. (38)

Suppose now the initial data to be such that
2
2 02 M
HUOHH?(Qi) + ||91 HHl(oj;p(p))mLm(oj;H%(r)) < @
The local existence of the u¥ is ensured by Theorem 2.2, and by the previous
analysis, a classical compactness argument proves that they all have a time of
existence at least equal to T'.
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3.3. Proof of theorem 2.4. We deduce from (38) that the infinite series with
general term £F converges in L°°(0,T). Therefore the general term tends to zero
and u¥ converges to uq, in L>(0,T; H'(Q;)).

4. The numerical treatment of the algorithm. We describe in this section the
numerical discretization of the initial and boundary value subdomain problems and
the numerical implementation of the iterative SWR algorithm. We discretize the
subdomain problems by finite elements in space and a finite difference discretization
in time, implicit for the linear part and explicit for the nonlinear term.

4.1. The best choice for the transmission conditions. The efficiency of the
linear Robin and second order transmission conditions defined by the operators (6)
and (7) is attained by a careful choice of the constants p and ¢. In [2] and in [6],
asymptotic formulas (in At) for the values of p and ¢, that optimize the convergence
factor of the algorithm, were written. These results are based on Fourier transforms
in time and in the transverse direction y of the error equations. For the linear
reaction-diffusion equation

Oyu — vAu + bu = 0,

where b is a positive constant, explicit formulas for the optimal parameters are
given. In the case of Robin transmission conditions, we obtain

1

VT (2 (40b 4 402k, )2 + 1602w, + b+ 402k, %)
Atz

where k,, = 7 and wy,, = 5, L being the domain decomposition interface length

and T the time interval length (see [5] and [6]) ; in the case of order 2 transmission
conditions, we obtain more complicated formulas

(p(‘);tu Q(‘)/;)t)(Atv b7 V)a (40)

which are detailed in [2] (cf. p. 212).

Such an analysis is essentially linear. However, the equation satisfied by the

errors ef = uf —w is

Pl (At b,v) = ;o (39)

duef —vVei + f(uf) = f(u) =0,
and a linearization around u! gives
Oel — Vel + f'(uF)ek ~ 0.

Therefore the best parameters can be used in two ways.

(i) By using linear transmission operators with values corresponding to expected
values of f/(u),

(#1) by introducing nonlinear transmission conditions, where b is chosen to be
f'(uF) in the formulas (39) for Robin, and (40) for second order transmission con-
ditions.

No well-posedness analysis is available for the algorithm with nonlinear transmis-
sion conditions. We present however, in section 5, numerical results which illustrate

the convergence of the numerical approximation of this nonlinear algorithm.
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4.2. Discretization scheme. We consider here a bounded domain € in R?, ho-
mogeneous Dirichlet boundary data are imposed on the boundary 92 of Q. It is
divided into two nonoverlapping subdomains €2;, and the common boundary I' is
supposed to meet 02 orthogonally, see Figure 1. This assumption is essential only
for the second order transmission condition, and permits to extend the analysis in
Section 2.

)

FIGURE 1. Decomposition in subdomains Q = Q; U Q,

Let us first describe the numerical method in the case of linear Robin or second
order boundary operators. The first task is the discretization of the boundary value
problem (8),in Vo ={v eV, v=0ondQ2Na}.

We consider V},, a finite dimensional subspace of V' of piecewise Py functions,
and a basis ¢1,...,@r of V3, S1,..., S being the vertices of the triangulation. We
search an approximate solution

up(t) = ur(t)pr + - +ur(t)er,
which satisfies

(uhs i) + +v(Vun, Vi) +plun, 9i)r + q(uh, 9i)r
Uq(%u aa_i;)l—‘ + (f(uh)agol) = (97 907;)1—‘7 1= 17 ) aI'

Denote by t" = nAt the time grid points for 0 < n < N, and let v = ufy; +

---+upr be the approximate solution at time t". We use a linearly implicit Euler

scheme: if the approximate numerical solution U™ = (uf,--- ,u}) at time t" is

given, the solution Ut at time t"*! is computed by solving the algebraic system

1
(E(M + gMr) + vK + pMr + Vqu)U"+1 =
1

At
where the mass and stiffness matrices are defined by M; ; = (p;,¢;) and K; ; =
(Ve;, Vi), and on the boundary Mr; ; = (¢;,¢i)r and Kr; ; = (Oy¢;,0y¢;). We
set F(U") = (f(u?)7 RS f(u?)) and Gn+1 - (g(Slvtn+1)7 e ag(Slvtn+l)).

Considering nonlinear transmission conditions leads to the discretization of the

boundary value problem (8), where in the linear operators (6) and (7), the cons-
tants p and (p, ¢) are replaced by nonlinear functions p(u) = plt,(At, f'(u),v) and

(M 4 qMp)U™ — ME(U™) + MpG™*, (41)
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(0. @) (1) = (Popi> o) (AL, (1), v), in such a way that the third equation of (8) is
replaced by
ou ou 0%u
Ve -+ plu)u+ a(w) (G~ V) =0
In this case the coefficients p and ¢ are replaced by the time-dependent matrices
Diag, = diag(p(uf),...,p(u})), Diagy = diag(q(uy),...,q(uy)).

The linear system (41) is solved with the LU procedure.

4.3. Implementation of the iterative algorithm. A step of the iterative
Schwarz waveform relaxation algorithm consists in solving the initial and boundary
value problems in each subdomain and in defining the new boundary conditions for
the next step. We therefore have to discretize the operator

(u’f,ug) (Bl(%) B2(“1))
To do so, we remark that, if at step k of the algorithm, the transmission conditions
are defined by
8 K ou¥ 0?uk
gt + Pt + g (G - v = ot (42)

= 1,2, (with the possibility to take into account constant functions p(u) and ¢(u)
or g(u) = 0), at step k + 1, the transmission conditions are defined by (42), with

8 k ouk o2k
k+1 _ ouj k J J
9; Yo, -+ p(uf)uf + q(u )(—815 oy )

- (Zji (s + auy 2L -, 2

+ 2p(u)uf +20() (5 —v )

oul d?uls
= — g5 + 2p(uf)uf + 2q(u )(W - I/a—yg)u
withi =1, j =2or¢=2, j =1. Rewriting the transmission condition in this way
has the advantage that no normal derivative has to be computed (cf. [7] for further
details on this kind of technique). We discretize then the boundary condition gf by
considering the discretizations of the corresponding terms defined in the previous
paragraphs.

5. Numerical results. In this section, the spatial domain is the square Q =
(—1,1) x (0,2), decomposed into two subdomains 7 = (—1,0) x (0,2) and Qs =
(0,1) x (0,2). The diffusion coefficient v is equal to 1. We test here the nonlinear
functions f(u) = u® and f(u) = 10(e* — 1) on the time interval (0,1). We compare
in the next figures the results obtained with the linear and nonlinear Robin and
second order transmission conditions described in the previous sections. The figu-
res represent the error between the domain decomposition solution obtained after
a fixed number of iterations, and the so-called mono-domain solution, which corre-
sponds to the numerical solution computed in the global domain €2, by using the
same discretization. The boundary conditions at the boundary 0f2 are of Dirichlet
type. We considered constant initial data and three spatial meshes, corresponding
to the values of h = 0.125, h = 0.0625 and h = 0.03125 The time step At is such
that At =h
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Figure 2 illustrates the case where f(u) = u®. We draw the convergence history
for the algorithm with linear transmission, with the optimal parameters computed
for the heat equation. On the same figure we draw the convergence history for
the nonlinear transmission. These figures show first that both strategy are relevant
and give linear convergence as in the linear case, although no analysis exists at
the moment for the nonlinear equation. Second that the Ventcell transmission
conditions perform remarkably well, and are quite insensitive to mesh refinement.
The comparison also shows that the behaviors are very similar: in fact for this test
case, f'(u) remains small, therefore the use of the linear parameter seems to be
relevant.

—o&— Nonlinear 02
—#— Nonlinear Robin
—+— 02 heat
Robin heat

—&— Nonlinear 02
—+— Nonlinear Robin|

—+— 02 heat
Robin heat

Error
Error

Number of iterations Number of iterations

FIGURE 2. For f(u) = u?, error history in L*°(0,T;L*(Q2)). On
the left, h = 0.0625, an on the right h = 0.03125.

In Figures 3 and 4 we turn to f(u) = 10(e* — 1). We first perform in Figure
3 the same computations as before, with the coefficients inherited from the heat
equation, and with the nonlinear coefficients. We see the same properties, but one
more information: the linear conditions perform poorly when the behavior of f/(u)
cannot be anticipated.

—&— Nonlinear 02 —&— Nonlinear 02

—+— Nonlinear Robin| —#— Nonlinear Robin
—+— 02 p heat 1
Robin p heat

—+— 02 p heat
Robin p heat

Error
Error

Number of iterations Number of iterations

FIGURE 3. For f(u) = 10(e*—1), error history in L*>(0,T; L*(Q2)).
On the left, h = 0.0625, an on the right h = 0.03125.
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If we know that u is quite small on the interface, thus that f’(u) is close to 10,
we can use the parameters p and (p, ¢) obtained by taking b = 10 in formulas (39)
and (40). The situation returns now to the previous case: the linear and nonlinear
strategy produce similar convergence curves, as demonstrated in Figure 4.

T T T T
—o&— Nonlinear 02 —o&— Nonlinear 02

—— Nonlinear Robin| —+— Nonlinear Robin|
—+—02b 10
Robin b 10

—+—02b 10
Robin b 10

Error
Error

FIGURE 4. For f(u) = 10(e*—1), error history in L°(0,T'; L?(2)),
for h = 0.0625 and h = 0.03125. Comparison with the optimal
parameters for b = 10.

5.1. A simple model in geological CO; storage modeling. We present here
a very simple model of a reactive system which can appear in the framework of
geological C'O4 storage modeling. We consider a reactive chemical system with two
types of materials, evolving according to the equation

up — vAu~+ f(x,y,u) = 0.

The nonlinear function f depends on the spatial variables, describing a hetero-
geneous distribution of the materials in the spatial domain. Both materials are
evolving through equilibrium values uj? and u5?. The reaction is described here by
the function

flzoy,u) = kS (2, y) (uw — ui?)® + ko Sa (2, y) (u — us?)®.

The positive constants k1 and ko represent the reaction speeds of material 1 and
2, and the surface functions S; describe the spatial distribution of the material
i, 1 = 1,2. The convergence and well-posedness results of the previous sections can
be easily extended to the case of a function f also depending on (x,y).

In the test that we illustrate in Figure 5 below, we considered ky = 5, uj? =
1, ke = 3, u? = 0, Si(z,y) = sin(Zx + Z)sin(Zy + Z)xw, where W is a
zone corresponding to a part of a circle in the spatial domain, and Sy(z,y) =
max (sin(%ﬂx—i— z) sin(%”y—i— ) O). The initial and Dirichlet data are both equal to
0.5. We used here nonlinear transmission conditions, obtained by replacing b with
Oy f in formulas (39) and (40).

In Figure 6 we compare the results obtained with the nonlinear conditions and
with the coefficients of the heat equation for different values of the mesh-spacing h.

As a final test, we illustrate the case where different time scales are considered
in the subdomains. We consider uniform time grids in each subdomain with At; =

%, At;, i = 1,2, being the constant time steps in each domain. The time grid for
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DD solution Monodomain solution
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FIGURE 5. Mono-domain solution, domain decomposition solution
and error after 10 iterations of the algorithm at time ¢ = 0.5

L"(L?) error for h=0.125 L™(L?) error for h=0.0625

—&— Nonlinear 02 ~ —&— Nonlinear 02

\ —+— Nonlinear Robin| N —#— Nonlinear Robin
oL —+— 02 p heat I \ —+—02p heat
Robinp heat H

Robin p heat 107 \ \

Error
Error
5

07

Number of iterations Number of iterations

FIGURE 6. Error for A = 0.125 and h = 0.0625.

the problem in €2 is thus the fine grid and the one for the problem in €25 the coarse
grid. At a step k of the iterative domain decomposition algorithm, after solving the
initial and boundary value problems in each domain, new boundary values have to be
constructed and transmitted to the other domain, for step k+1 (cf. [10] for further
details). To do so, we perform a first order polynomial interpolation to project the
boundary condition vectors between the different time grids. Figure 7 illustrates the
behavior of the L? error in space between the domain decomposition solution and
the mono-domain solution, at final time ¢ = 1, as a function of t he time steps At;,
which are successively divided by a factor of 2. Here h is kept constant and small
when compared with the smallest time step. The error is computed as follows : we
construct two mono-domain solutions, corresponding to the solutions in the different
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time grids, and we compute the L? error between the domain decomposition solution
obtained in each domain €2; and the restriction to €2; of the mono-domain solution
corresponding to the time grid for the problem in €;, ¢ = 1,2. As we can observe
in Figure 7, the error decreases linearly with the time step, which was expected
since the discretization scheme that we considered in each subdomain is of order
1 in time. Linear Robin transmission conditions were used here and we did 10
iterations of the domain decomposition algorithm. We point out that the optimized
transmission conditions that we used previously were obtained by considering the
same time and space steps in the whole domain. For the moment, as far as we
know, no optimization theory has been developed when different discretizations are
used in the different sub-domains.

—+— L%(Q) error at t=T —+— L%(Q) error at t=T
—6— slope 1 —6— slope 1

log(error)
log(error)

-19  -18  -1L7  -16  -15 22 21 -2 -19 -1 -16  -15 -14  -13  -12

* Iog_(éAll) 8 me‘K(l)
FIGURE 7. L? error between mono-domain and domain decompo-
sition solution, at time ¢t = 1, as a function of the time step, taken
in logarithmic scale, in subdomain ; (on the left) and Qs (on the
right). In x-coordinate log;,(At) and in y-coordinate log;, of the
erTor.

6. Conclusion. We have introduced new nonoverlapping domain decomposition
algorithms for the semilinear heat equation. They extend the Schwarz waveform
relaxation algorithm to nonlinear problems, using Robin or Ventcell transmission
conditions. Original proofs of well-posedness and convergence have been given for
linear transmission. We also proposed nonlinear transmission, which prove numer-
ically to be very efficient. Extensions to reactive transport and Burgers equation
are in progress.
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