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Abstract. We introduce nonoverlapping domain decomposition algorithms of
Schwarz waveform relaxation type for the semilinear reaction-diffusion equa-
tion. We define linear Robin and second order (or Ventcell) transmission con-
ditions between the subdomains, which we prove to lead to a well defined
and converging algorithm. We also propose nonlinear transmission conditions.
Both types are based on best approximation problems for the linear equation
and provide efficient algorithms, as the numerical results that we present here
show.

1. Introduction. For reactive transport modeling in a CO2 geological storage
modeling context, one is especially interested in the long-term behavior of the in-
jected chemical substances with regard to large spatial dimensions. Our angle of
vision is several hundreds, even thousands of years in time and several hundreds,
even thousands of meters in space. Simulating geological storage processes is sub-
ject to the following challenges: for performance reasons, general calculations have
to be done with large temporal and spatial dimensions because the chemical system
is expected to become quickly equalized on account of slow flow rate in comparison
to fast reaction rates. However, in front areas, where concentration gradients are
significantly elevated, the chemical system is highly unequalized and has then to be
solved with high accuracy in time and space. Therefore, the approach is a coarse
time mesh integration scheme with refined areas in time and space around the re-
action fronts. For late r works, one challenge is to detect and track those reaction
areas as well as the local time-step and grid size adaptation coupled with a domain
decomposition method in order to solve the problem with higher performance by
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avoiding bad convergence of the linear solvers and small time steps for non-reactive
areas. Those works are in the general claim for parallelism, in order to be able
to treat numerically realistic cases with more than 100.000 cells in reasonable time
(less than one day)[9].

The SHPCO2 project (High Performance Simulation of CO2 Geological Storage
[12]) considers as a main tool for space-time refinement the Schwarz waveform re-
laxation algorithms. These algorithms were proposed in a linear setting in [2], [4],
[6], [11]. They solve space-time problems alternatively in the subdomains. The ex-
change of information between the subdomains is done by transmission operators,
like Robin operators or Ventcell operators. Therefore they are very-well suited for
different space and time discretizations in the subdomains [10]. The transmission
conditions are optimized through certain coefficients, which in certain cases can be
obtained in asymptotic closed form ([2], [6]).

However, in the project the equations are nonlinear, and new algorithms must
be designed in this context. Overlapping Schwarz waveform relaxation algorithms,
exchanging information through Dirichlet data, were proposed in [8] for the Burgers
equation. The purpose of the present paper is to set a theory for more efficient
algorithms for the semilinear heat equation, using the above described transmission
conditions.

The paper is structured as follows: we first present the problem and the nonover-
lapping Schwarz waveform relaxation algorithm in Section 2. We also state the the-
oretical results: definition of the algorithm, existence of a common existence time
for the nonlinear problems, convergence of the algorithm.

Section 3 is devoted to the proof of these results.
Section 4 presents the numerical treatment of the subdomain problems, and of

the algorithm.
Finally Section 5 quantifies the theoretical convergence result.

2. Problem description. We consider a semilinear reaction diffusion equation in
two dimensions,

ut − ν∆u + f(u) = 0, in R
2 × (0, T ), (1)

with initial condition

u(·, 0) = u0, (2)

where T > 0 and the diffusion coefficient ν is a strictly positive constant. The
function f defining the nonlinearity is in C2(R), and satisfies f(0) = 0. The initial
data u0 is supposed to be defined in H2(R2).

A weak solution of problem (1)-(2) is defined to be a function u ∈ L2(0, T ; H1(R2))
∩C([0, T ]; L2(R2)), such that f(u) ∈ L2(0, T ; L2(R2)), satisfying for all v ∈ H1(R2)

d

dt
(u, v) + ν(∇u,∇v) + (f(u), v) = 0, in D′(0, T ),

and u(·, 0) = u0, where (·, ·) denotes the inner product in L2(R2).
Let us recall the following result concerning the well-posedness of the Cauchy

problem (1)-(2) (for a proof, see for instance [3]):

Theorem 2.1. If u0 ∈ H2(R2), then there exists T > 0 such that problem (1)-(2)
possesses a unique weak solution u ∈ L2(0, T ; H1(R2))∩ C([0, T ]; L2(R2)). We have
in addition that u ∈ L∞(0, T ; H2(R2)).



SWR FOR SEMILINEAR REACTION-DIFFUSION EQUATION 489

We introduce a nonoverlapping Schwarz waveform relaxation algorithm to ap-
proximate the solution u of problem (1)-(2). We decompose the domain R

2 into two
subdomains Ω1 = (−∞, 0)× R and Ω2 = (0, +∞)× R. We denote by Γ := {0} × R

the common boundary of Ω1 and Ω2 and by n1 = (1, 0) and n2 = (−1, 0) respec-
tively the unit outward normal vectors to Ω1 and Ω2 at Γ. The nonoverlapping
Schwarz waveform relaxation algorithm is given by:











∂tu
k
1 − ν∆uk

1 + f(uk
1) = 0, in Ω1 × (0, T ),

uk
1(·, 0) = u0|Ω1

, in Ω1,

B1(u
k
1) = B1(u

k−1
2 ), over Γ × (0, T ),

(3)

and










∂tu
k
2 − ν∆uk

2 + f(uk
2) = 0, in Ω2 × (0, T ),

uk
2(·, t = 0) = u0|Ω2

, in Ω2,

B2(u
k
2) = B2(u

k−1
1 ), over Γ × (0, T ),

(4)

where B1 and B2 are differential operators to be defined.
An initial guess (g0

1 , g
0
2) is given. At step 0 of the algorithm we solve both

problems (3) and (4) with transmission conditions replaced respectively by the
conditions

B1(u
0
1) = g0

1 and B2(u
0
2) = g0

2 . (5)

The transmission operators are either

Bi(u) = ν
∂u

∂ni
+ pu (6)

for positive p, or

Bi(u) = ν
∂u

∂ni
+ pu + q

(∂u

∂t
− ν

∂2u

∂y2

)

(7)

for positive p and q. We refer to operators (6) as Robin operators, and operators (7)
as Ventcell operators. They have been designed and studied in a linear setting in
[2], [6], as approximations of the Dirichlet-Neumann operators, thus leading to op-
timized convergence of the algorithm for cleverly chosen coefficients p and q. They
were obtained by a Fourier transform in time and in the direction y of the interface.

We define the algorithm in the frame of Sobolev spaces. We denote by (·, ·) the
inner product in L2(Ωi) and by (·, ·)Γ the inner product in L2(Γ). For s ≥ 1, we
introduce the function spaces

Hs
s (Ωi) = {u ∈ Hs(Ωi), u|Γ ∈ Hs(Γ)},

V = H1(Ωi), if q = 0, and V = H1
1 (Ωi), if q > 0. If g ∈ L2(0, T ; H

1

2 (Γ)) is given, a
weak solution of the boundary value problem















wt − ν∆w + f(w) = 0, in Ωi × (0, T ),

w(·, 0) = u0|Ωi
, in Ωi,

ν
∂w

∂ni
+ pw + q(

∂w

∂t
− ν

∂2w

∂y2
) = g, over Γ × (0, T ),

(8)

is a function w ∈ L2(0, T ; V ) such that for all v ∈ V ,

d

dt
(w, v) + ν(∇w,∇v) + p(w, v)Γ + q

d

dt
(w, v)Γ + νq(

∂w

∂y
,
∂v

∂y
)Γ + (f(w), v) = (g, v)Γ,

(9)
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in D′(0, T ), and such that w|t=0 = u0|Ωi
.

The first result is a local well-posedness result for the algorithm:

Theorem 2.2. Let g0
1 and g0

2 in H1(0, T ; L2(Γ)) ∩ L∞(0, T ; H
1

2 (Γ)), u0 ∈ H2(R2),
p > 0 and q ≥ 0 be given. Suppose that (ν∂niu0 + pu0)|Γ = g0

i (0, ·), if q = 0. Then,
algorithm (3)-(4) with the transmission operators defined by (7) (or by (6) if q = 0),
initialized with (5), defines a unique sequence of iterates (uk

1 , uk
2) such that

uk
i ∈ W 1,∞(0, Tk; L2(Ωi)) ∩ L∞(0, Tk; H2

2 (Ωi)) ∩ H1(0, Tk; H1(Ωi)),

if q > 0, or such that

uk
i ∈ W 1,∞(0, Tk; L2(Ωi)) ∩ L∞(0, Tk; H2(Ωi)) ∩ H1(0, Tk; H1(Ωi)),

if q = 0, for some Tk, 0 < Tk ≤ T.

The second result shows that the iterates have indeed an existence time indepen-
dent of k.

Theorem 2.3. Under the conditions of Theorem 2.2, there exists M and T such
that, if

‖u0‖2
H2(Ωi)

+ ‖g0
i ‖

2

H1(0,T ;L2(Γ))∩L∞(0,T ;H
1

2 (Γ))
≤ M 2, (10)

(uk
1 , u

k
2) is defined in the interval [0, T ] for all positive k.

The third result shows the convergence of the algorithm.

Theorem 2.4. With the notations of Theorem 2.3, the sequence (uk
1 , uk

2) converges,
as k → ∞, to (u|Ω1

, u|Ω2
), in L∞(0, T ; H1(Ωi)).

3. Proofs of the theorems. All proofs are given in the case q = 0. The proofs
in the Ventcell case are much more technical, but follow the same path.

3.1. Proof of theorem 2.2. In a first step we prove existence and uniqueness of
the solution for the non-homogeneous linear problem associated with (8) in some
regular space in which f(w) is well-defined. This proof is inspired by [13], where
absorbing boundary conditions are considered, i.e. with g = 0.

We then define the solution of the nonlinear problem by using the Picard fixed
point theorem in some suitable metric space.

We introduce the linear problem










wt − ν∆w = f̃ , in Ωi × (0, T ),

w(·, ·, 0) = u0|Ωi
, in Ωi,

ν ∂w
∂ni

+ pw = g, over Γ × (0, T ).

(11)

Lemma 3.1. Let u0 in H2(Ωi), f̃ ∈ H1(0, T ; L2(Ω)) and g ∈ H1(0, T ; L2(Γ)) ∩
L∞(0, T ; H

1

2 (Γ)) such that ν ∂u0

∂ni
(·) + pu0(·) = g(0, ·) over Γ. Then problem (11)

has a unique solution in

H(T ) := W 1,∞(0, T ; L2(Ωi)) ∩ L∞(0, T ; H2(Ωi)) ∩ H1(0, T ; H1(Ωi)) (12)

and the following estimate holds

‖w‖2
H(T ) ≤ CeT

(

‖u0‖2
H2(Ωi)

+ ‖f̃‖2
H1(0,T ;L2(Ωi))

+‖g‖2

H1(0,T ;L2(Γ))∩L∞(0,T ;H
1

2 (Γ))

)

,
(13)

where C > 0 is a constant depending only on p and ν.
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Proof. 1. First a priori estimate: for w in L∞(0, T ; L2(Ωi)) ∩ L2(0, T ; H1(Ωi)).

We take the L2 inner product of equation wt−∆w = f̃ with w, integrate by parts

in Ωi, apply the Cauchy-Schwarz inequality and the inequality ab ≤ a2

ε + εb2, for
a, b ∈ R and ε ≥ 0, on the right-hand side of the resulting equation, and integrate
over [0, t], for t ≤ T, to get

‖w(t)‖2 + 2ν

∫ t

0

‖∇w(s)‖2ds + p

∫ t

0

‖w(s)‖2
Γds

≤ ‖u0‖2 +

∫ t

0

(

‖f̃(s)‖2 +
1

p
‖g(s)‖2

Γ

)

ds +

∫ t

0

‖w(s)‖2ds.

Applying the Gronwall lemma yields

‖w‖2
L∞(0,T ;L2(Ωi))

+ 2ν‖∇w‖2
L2(0,T ;L2(Ωi))

+ p‖w‖2
L2(0,T ;L2(Γ))

≤ eT
(

‖u0‖2 + ‖f̃‖2
L2(0,T ;L2(Ωi))

+
1

p
‖g‖2

L2(0,T ;L2(Γ))

)

. (14)

2. Second a priori estimate: for wt in L∞(0, T ; L2(Ωi)) ∩ L2(0, T ; H1(Ωi)).
We apply (14) to wt, and we obtain

‖wt‖2
L∞(0,T ;L2(Ωi))

+ 2ν‖∇wt‖2
L2(0,T ;L2(Ωi))

+ p‖wt‖2
L2(0,T ;L2(Γ))

≤ eT
(

‖wt0‖2 + ‖f̃‖2
H1(0,T ;L2(Ωi))

+
1

p
‖g‖2

H1(0,T ;L2(Γ))

)

. (15)

In order to estimate ‖wt0‖, we take the inner product of equation wt − ∆w = f̃

with wt, integrate by parts in Ωi and evaluate the resulting equation at time t = 0.

We obtain

‖wt0‖2 + ν(∇u0,∇wt0) + p(u0, wt0)Γ = (f̃(·, 0), wt0) + (g(·, 0), wt0)Γ.

Integrating by parts the second term on the left-hand side gives

‖wt0‖2 = ν(∆u0, wt0)−(ν∂niu0, wt0)Γ−p(u0, wt0)Γ+(f̃(·, 0), wt0)+(g(·, 0), wt0)Γ.

Since the term −ν∂niu0−pu0+g(·, 0) vanishes, we obtain, by applying the Cauchy-
Schwarz inequality,

‖wt0‖ ≤ ν‖∆u0‖ + ‖f̃(·, 0)‖.
We insert the above inequality in (15), which gives the estimate

‖wt‖2
L∞(0,T ;L2(Ωi))

+ 2ν‖∇wt‖2
L2(0,T ;L2(Ωi))

+ p‖wt‖2
L2(0,T ;L2(Γ))

≤ eT
(

2ν2‖u0‖2
H2(Ωi)

+ 3‖f̃‖2
H1(0,T ;L2(Ωi))

+
1

p
‖g‖2

H1(0,T ;L2(Γ))

)

. (16)

3. Third a priori estimate: for ∇w in L∞(0, T ; L2(Ωi)).
We multiply the equation by wt, use Cauchy-Schwarz lemma, to obtain

‖wt‖2
L2(0,T ;L2(Ωi))

+ ν‖∇w‖2
L∞(0,T ;L2(Ωi))

+ p‖w‖2
L∞(0,T ;L2(Γ))

≤ ν‖∇u0‖2 + p‖u0‖2
Γ + ‖f̃‖2

L2(0,T ;L2(Ωi))
+

1

p
‖g‖2

L2(0,T ;L2(Γ)) + p‖wt‖2
L2(0,T ;L2(Γ)).

(17)
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By putting together (14), (16) and (17), we obtain by a Galerkin method a
unique solution w of (11) such that w ∈ L∞(0, T ; H1(Ωi)) ∩ H1(0, T ; L2(Ωi)) ∩
W 1,∞(0, T ; L2(Ωi)). It remains to get an upper bound in L∞(0, T ; H2(Ωi)). Since











∆w =
1

ν
(wt − f̃) ∈ L∞(0, T ; L2(Ωi)),

∂w

∂ni
=

1

ν
(g − pw) ∈ L∞(0, T ; H1/2(Γ)),

classical regularity results prove that w ∈ L∞(0, T ; H2(Ωi)) with

‖w‖L∞(0,T ;H2(Ωi)) ≤ C1(‖∆w‖L∞(0,T ;L2(Ωi)) + ‖ ∂w

∂ni
‖L∞(0,T ;H1/2(Γ)))

≤ C2(‖wt‖L∞(0,T ;L2(Ωi)) + ‖f̃‖L∞(0,T ;L2(Ωi))

+ ‖g‖
L∞(0,T ;H

1

2 (Γ))
+ ‖w‖L∞(0,T ;H1(Ωi))). (18)

We deduce then that problem (11) has a unique solution w in H(T ), which satisfies
(13).

In order to estimate the nonlinear terms, we will use use the regularity of f .

Lemma 3.2. Let O be a regular domain in R
2, F a C1 real function. There exists

a continuous positive increasing function ϕ such that, for any v and w in H2(O),

‖F (w) − F (v)‖L2(O) ≤ ϕ(max(‖w‖∞, ‖v‖∞))‖w − v‖L2(O). (19)

The function ϕ is given by

ϕ(a) = sup
|ξ|∈(0,a)

|F ′(ξ)|.

Proof. Note first that H2(O) is a subset of L∞(O) with continuous injection, which
gives a meaning to (19). We use now the Mean Value Theorem. For any a, b in R,

|F (a) − F (b)| =

∣

∣

∣

∣

∣

∫ b

a

F ′(ξ)dξ

∣

∣

∣

∣

∣

≤ |a − b| sup
ξ∈(a,b)

|F ′(ξ)| .

We apply the above inequality to the functions w and v,

|F (w(x)) − F (v(x))| ≤ |w(x) − v(x)| sup
|ξ|∈(0,max(‖v‖∞,‖w‖∞))

|F ′(ξ)|.

The function

ϕ : a → sup
|ξ|∈(0,a)

|F ′(ξ)|

is an increasing function over R
+, which finishes the proof of the lemma.

We now define the map which will be used for the definition of the nonlinear
problem.

Lemma and definition 3.3. Let T > 0. Let u0 ∈ H2(Ωi), g ∈ H1(0, T ; L2(Γ)) ∩
L∞(0, T ; H

1

2 (Γ)). For any v ∈ H(T ), the linear problem










wt − ν∆w = −f(v), in Ωi × (0, T ),

w(·, ·, 0) = u0|Ωi
, in Ωi,

ν ∂w
∂ni

+ pw = g, over Γ × (0, T ).

(20)
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has a unique solution in H(T ), hence defining an application w = T (v) in H(T ),
with

‖T (v)‖2
H(T ) ≤ CeT

(

‖u0‖2
H2(Ωi)

+ ‖g‖2

H1(0,T ;L2(Γ))∩L∞(0,T ;H
1

2 (Γ))

+T (ϕ(‖v‖L∞((0,T )×Ωi)))
2‖v‖2

W 1,∞(0,T ;L2(Ωi))

)

.
(21)

Proof. Since f(0) = 0, we have by Lemma 3.2,

‖f(v)‖L2(0,T ;L2(Ωi)) ≤
√

Tϕ(‖v‖L∞((0,T )×Ωi))‖v‖L∞(0,T ;L2(Ωi)).

On another hand, we have by the definition of ϕ:

‖f ′(v)vt‖L2(0,T ;L2(Ωi)) ≤
√

Tϕ(‖v‖L∞((0,T )×Ωi))‖v‖L∞(0,T ;L2(Ωi)).

These inequalities finally give that f(v) is in H1(0, T ; L2(Ωi)), and

‖f(v)‖H1(0,T ;L2(Ωi)) ≤
√

Tϕ(‖v‖L∞((0,T )×Ωi))‖v‖W 1,∞(0,T ;L2(Ωi)). (22)

By Lemma 3.1, we conclude that the linear problem (20) has a unique solution w

in H(T ), and the estimate comes directly from (13).

Let M be such that

M2 ≥ 4C(‖u0‖2
H2(Ωi)

+ ‖g‖2

H1(0,T ;L2(Γ))∩L∞(0,T ;H
1

2 (Γ))
), (23)

where C is the universal constant of estimate (21), and define the time

T0(M) = sup{T ′ ≤ T, max
(eT ′

2
, 2CeT ′

(ϕ(M))2T ′, 2e
T ′

2

√
T ′ϕ(M)

)

≤ 1}. (24)

Lemma 3.4. Define

BM := {w ∈ H(T0) : ‖w‖H(T0)
≤ M}.

Then T (BM ) ⊆ BM .

Proof. If v ∈ BM , ‖v‖W 1,∞((0,T )×Ωi) ≤ M , and since ϕ is increasing, we deduce
from (21) that

‖T (v)‖2
H(T0)

≤ CeT0(‖u0‖2
H2(Ωi)

+ T0(Mϕ(M))2 + ‖g‖2

H1(0,T0;L2(Γ))∩L∞(0,T0;H
1

2 (Γ))
)

≤ M2(
1

4
eT0 + CT0e

T0(ϕ(M))2),

≤ M2, by definition of T0.

Lemma 3.5. BM is a closed metric subspace of L∞(0, T0; L
2(Ωi)), and T is a

contraction in BM .

Proof. We first prove that BM is closed in L∞(0, T0; L
2(Ωi)). Indeed let (wn)n∈N

be a sequence in BM converging to w in L∞(0, T0; L
2(Ωi)). Since BM is weakly

compact in H(T0), there exists a subsequence wn′ converging weakly to w̃ ∈ BM in
H(T0). By the uniqueness of the weak limit, w = w̃ and thus w ∈ BM .

Let v and v̄ ∈ BM and put w = T (v), w̄ = T (v̄). We have that w − w̄ satisfies










(w − w̄)t − ν∆(w − w̄) = −(f(v) − f(v̄)), in Ωi × (0, T0),

(w − w̄)(·, 0) = 0, in Ωi,

ν ∂
∂n (w − w̄) + p(w − w̄) = 0, over Γ × (0, T0).

(25)
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By taking the inner product of the first equation in the system above with w − w̄,
integrating by parts and applying the Cauchy-Schwarz inequality and inequality

ab ≤ a2

2 + b2

2 , a, b ∈ R, on the right-hand side, we obtain

1

2

d

dt
‖w − w̄‖2

+ ν‖∇(w − w̄)‖2 + p‖w − w̄‖2
Γ ≤ 1

2
(‖f(v) − f(v̄)‖2 + ‖w − w̄‖2).

We integrate the above inequality over [0, t], for t ≤ T0, and we apply the Gronwall
lemma to obtain

‖(w − w̄)(t)‖2 ≤ et

∫ t

0

‖f(v(s)) − f(v̄(s))‖2ds.

Again by Lemma 3.2, we have

‖(w − w̄)‖2
L∞(0,T0;L2(Ωi))

≤ eT0T0(ϕ(M))2‖v − v̄‖2
L∞(0,T0;L2(Ωi))

,

and by the definition of T0, we conclude that

‖(w − w̄)‖L∞(0,T0;L2(Ωi))
≤ 1

2
‖(v − v̄)‖L∞(0,T0;L2(Ωi))

, (26)

which proves the result.

By the Picard theorem, the map T has a unique fixed point in BM , which proves
the existence and uniqueness of a solution w ∈ BM to the nonlinear problem. Fur-
thermore, we have for i ∈ {1, 2} and j = 3 − i,

Bj(w) := −ν
∂w

∂ni
+ pw = −g + 2pw ∈ H1(0, T0; L

2(Γ)) ∩ L∞(0, T0; H
1

2 (Γ)). (27)

We are now able to give a precise meaning to the algorithm. To simplify the nota-

tions, we set VΓ(T ) = H1(0, T ; L2(Γ)) ∩L∞(0, T ; H
1

2 (Γ)). Let (g0
1 , g

0
2) in (VΓ(T ))2,

and

M2
0 ≥ 4C(‖u0‖2

H2(Ωi)
+ ‖g0

i ‖
2

VΓ(T0)
).

By Lemma 3.5, we can define (u0
1, u

0
2) in (H(T0))

2 and, by (27), (g1
1 , g

1
2) =

(B1u
0
2, B2u

0
1) ∈ (VΓ(T0))

2. We thus build a sequence of numbers Mk such that

M2
k ≥ 4C(‖u0‖2

H2 + ‖Bi(u
k−1
j )‖2

VΓ(Tk−1)),

and a decreasing sequence of times Tk = T (Mk) such that (uk
1 , uk

2) is defined in
H(Tk).

3.2. Proof of theorem 2.3. For each k > 0, we define the errors ek
i = uk

i − u|Ωi
,

which satisfy the equations


















∂te
k
i − ν∆ek

i = −f(uk
i ) + f(u), in Ωi × [0, Tk),

ek
i (·, ·, 0) = 0, in Ωi,

ν
∂ek

i

∂ni
+ pek

i = ν
∂ek−1

j

∂ni
+ pek−1

j , over Γ × [0, Tk),

where i ∈ {1, 2} and j = 3 − i.
By taking the inner product of equation ∂te

k
i − ν∆ek

i = −f(uk
i ) + f(u) with ek

i ,

by integrating by parts in Ωi, we obtain

1

2

d

dt
‖ek

i ‖2 + ν‖∇ek
i ‖2 − ν

(∂ek
i

∂ni
, ek

i

)

Γ
= (f(u) − f(uk

i ), ek
i ).
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By using Cauchy-Schwarz inequality and Lemma 3.2, we obtain

1

2

d

dt
‖ek

i ‖2 + ν‖∇ek
i ‖2 − ν

(∂ek
i

∂ni
, ek

i

)

Γ
≤ ϕ(‖uk

i (t)‖∞)‖ek
i ‖2.

Note that we have omitted the dependence of ϕ with respect to u. We now replace
the boundary term (an argument discovered by Després in [1]) using the identity

ν
(∂ek

i

∂ni
, ek

i

)

Γ

=
1

4p

{∥

∥

∥
ν

∂ek
i

∂ni
+ pek

i

∥

∥

∥

2

Γ

−
∥

∥

∥
ν

∂ek
i

∂ni
− pek

i

∥

∥

∥

2

Γ

}

.

Hence,

1

2

d

dt
‖ek

i ‖2 + ν‖∇ek
i ‖2 +

1

4p

∥

∥

∥
ν

∂ek
i

∂ni
− pek

i

∥

∥

∥

2

Γ

≤

ϕ(‖uk
i (t)‖∞)‖ek

i ‖2 +
1

4p

∥

∥

∥
ν

∂ek
i

∂ni
+ pek

i

∥

∥

∥

2

Γ

. (28)

We add now (28) for i = 1, 2 and use the transmission condition on the right-hand
side of the resulting equation. Defining

E(w)(t) =
1

2
‖w(t)‖2 + ν

∫ t

0

‖∇w(s)‖2ds,

and the boundary errors

g̃k
i = ν

∂ek
i

∂ni
− pek

i , (29)

we obtain

d

dt

(

E(ek
1)(t) + E(ek

2)(t)
)

+
1

4p
(‖g̃k

1‖2
Γ + ‖g̃k

2‖2
Γ) ≤

1

4p
(‖g̃k−1

1 ‖2
Γ + ‖g̃k−1

2 ‖2
Γ)

+ϕ(‖uk
1(t)‖∞)‖ek

1‖2 + ϕ(‖uk
2(t)‖∞)‖ek

2‖2.

(30)

We differentiate now equation ∂te
k
i − ν∆ek

i = −f(uk
i ) + f(u) with respect to t,

take the inner product of the resulting equation with ∂te
k
i , and integrate by parts

in Ω. We can write the right-hand side of the resulting equation as

(∂t(f(u) − f(uk
i )), ∂te

k
i ) = (f ′(u)∂tu − f ′(uk

i )∂tu + f ′(uk
i )∂tu − f ′(uk

i )∂tu
k
i , ∂te

k
i )

= ((f ′(u) − f ′(uk
i ))∂tu, ∂te

k
i ) − (f ′(uk

i )∂te
k
i , ∂te

k
i ). (31)

We again use Lemma 3.2 for f ′ with a new function ϕ1. If we apply now the

Cauchy-Schwarz inequality and inequality ab ≤ a2

2 + b2

2 , we get

(∂t(f(uk
i ) − f(u)), ∂te

k
i )

≤ ϕ(‖uk
i (t)‖∞)‖∂te

k
i ‖2 +

1

2
ϕ1(‖uk

i (t)‖∞)‖∂tu‖L∞(0,T ;L2)(‖∂te
k
i ‖2 + ‖ek

i ‖2).

We introduce ϕ2 = ϕ + 1
2‖∂tu‖L∞(0,T ;L2)ϕ1 which is also continuous positive in-

creasing, and end up with

1

2

d

dt
‖∂te

k
i ‖2 + ν‖∂t∇ek

i ‖2 −
(

ν
∂

∂ni
∂te

k
i , ∂te

k
i

)

Γ

≤ ϕ2(‖uk
i ‖∞)(‖∂te

k
i ‖2

+ ‖ek
i ‖2). (32)
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We now add equations (32) for i = 1, 2, use the derivative in time of the transmission
condition, and proceed as before. We obtain

d

dt

(

E(∂te
k
1)(t) + E(∂te

k
2)(t)

)

+
1

4p
(‖∂tg̃

k
1‖2

Γ + ‖∂tg̃
k
2‖2

Γ) ≤
1

4p
(‖∂tg̃

k−1
1 ‖2

Γ + ‖∂tg̃
k−1
2 ‖2

Γ)

+ϕ2(‖uk
1(t)‖∞)‖∂te

k
1‖2 + ϕ2(‖uk

2(t)‖∞)‖∂te
k
2‖2.

(33)

We finally perform the same calculation on the derivatives in the y direction.

d

dt

(

E(∂yek
1)(t) + E(∂yek

2)(t)
)

+
1

4p
(‖∂yg̃

k
1‖2

Γ + ‖∂yg̃
k
2‖2

Γ) ≤
1

4p
(‖∂y g̃k−1

1 ‖2
Γ + ‖∂yg̃

k−1
2 ‖2

Γ)

+ϕ3(‖uk
1(t)‖∞)‖∂yek

1‖2 + ϕ3(‖uk
2(t)‖∞)‖∂ye

k
2‖2.

(34)

We now define the total energy in the domains at step k as a function of time t

to be

Ek :=
2

∑

1

(E(ek
i ) + E(∂te

k
i ) + E(∂yek

i )),

and the total boundary error at step k as a function of time t to be

Gk
i :=

1

4p

(

‖g̃k
i ‖2

Γ + ‖∂tg̃
k
i ‖2

Γ + ‖∂y g̃k
1‖2

Γ

)

,

Gk = Gk
1 + Gk

2 .

If we add (30) to (33) and (34), we obtain

d

dt

(

Ek(t)
)

+ Gk(t) ≤
(

ϕ4(‖uk
1‖∞) + ϕ4(‖uk

2‖∞)
)

Ek(t) + Gk−1(t). (35)

Let

EK
S =

K
∑

k=0

Ek, UK(t) = sup
0≤k≤K

‖uk
1(t)‖∞ + sup

0≤k≤K
‖uk

2(t)‖∞.

We sum both sides of (35) over k = 0, · · · , K, and integrate on (0, T ). Since
EK

S (0) = 0, we obtain for a new function ϕ5:















EK
S (t) +

∫ t

0

GK(s)ds ≤ 2

∫ t

0

ϕ5

(

UK(s)
)

EK
S (s)ds +

∫ t

0

G0(s)ds,

max
0≤k≤K

∫ t

0

Gk(s)ds ≤ 2

∫ t

0

ϕ5

(

UK(s)
)

EK
S (s)ds +

∫ t

0

G0(s)ds.

(36)

We now estimate UK . We have for i = 1, 2 and 0 ≤ k ≤ K:

‖uk
i (t)‖∞ ≤ ‖u(t)‖∞ + ‖ek

i (t)‖∞.

The norm of ek
i (t) in L∞(Ωi) is bounded by C2‖ek

i (t)‖H2(Ωi), which can be estimated
as in (18), and gives

‖uk
i (t)‖∞ ≤ C3(1 + ‖∂te

k
i (t)‖ + ‖f(uk

i (t)) − f(u(t))‖ + ‖g̃k
i (t)‖

H
1

2 (Γ)
).
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We now estimate ‖g‖
L∞(0,t;H

1

2 (Γ))
:

‖g‖2

L∞(0,t;H
1

2 (Γ))
≤ 2‖g‖L2(0,t;H1(Γ))‖∂tg‖L2(0,t;L2(Γ))

≤ ‖g‖2
H1((0,t)×Γ).

We can rewrite

‖uk
i (t)‖∞ ≤ C4(1 + ‖∂te

k
i (t)‖ + ‖f(uk

i (t)) − f(u(t))‖ + ‖g̃k
i ‖H1((0,t)×Γ))

≤ C4(4 + 2Ek(t) + (ϕ(‖uk
i (t)‖∞))2Ek(t) +

∫ t

0

Gk(s) ds),

where ‖u‖L∞((0,T )×Ω) has been included in the constant C4. This yields for UK the
estimate:

UK(t) ≤ 4C4(1 + EK
S (t) + (ϕ(UK(t)))2EK

S (t) + max
0≤k≤K

∫ t

0

Gk(s) ds). (37)

The functions t → Ek
S(t) and t → Uk(t) are continuous. We fix M such that

M ≤ 1

4(2 + (ϕ(5C4))2)
,

and define

T = inf{T ′ ≤ T0(M), 2T ′ϕ5(5C4)M +

∫ T ′

0

G0(s)ds ≥ M},

T = sup{T ′, EK
S ≤ M and UK ≤ 5C4 on (0, T ′)}.

By continuity, we have either EK
S (T) = M or UK(T) = 5C4. In the first case we

have by (36),

M = EK
S (T ) ≤ 2MTϕ5(5C4) +

∫ T

0

G0(s)ds,

which implies that T ≥ T . In the second case we have by (36) and (37),

5C4 = UK(T ) ≤ 4C4(1 + [(ϕ(5C4))
2 + 2](2MTϕ5(5C4) +

∫ T

0

G0(s)ds)).

This can be rewritten as

2Tϕ5(5C4)M +

∫ T

0

G0(s)ds ≥ 1

4(2 + (ϕ(5C4))2)
.

By the assumption on M , this implies that

2Tϕ5(5C4)M +

∫ T

0

G0(s)ds ≥ M,

and therefore T ≥ T . We thus have

∀t ∈ (0, T ), EK
S (t) ≤ M,

∫ t

0

GK
M (s)ds ≤ M, UK(t) ≤ 5C4. (38)

Suppose now the initial data to be such that

‖u0‖2
H2(Ωi)

+ ‖g0
i ‖

2

H1(0,T ;L2(Γ))∩L∞(0,T ;H
1

2 (Γ))
≤ M2

4C
.

The local existence of the uk
i is ensured by Theorem 2.2, and by the previous

analysis, a classical compactness argument proves that they all have a time of
existence at least equal to T .
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3.3. Proof of theorem 2.4. We deduce from (38) that the infinite series with
general term Ek converges in L∞(0, T ). Therefore the general term tends to zero
and uk

i converges to u|Ωi
in L∞(0, T ; H1(Ωi)).

4. The numerical treatment of the algorithm. We describe in this section the
numerical discretization of the initial and boundary value subdomain problems and
the numerical implementation of the iterative SWR algorithm. We discretize the
subdomain problems by finite elements in space and a finite difference discretization
in time, implicit for the linear part and explicit for the nonlinear term.

4.1. The best choice for the transmission conditions. The efficiency of the
linear Robin and second order transmission conditions defined by the operators (6)
and (7) is attained by a careful choice of the constants p and q. In [2] and in [6],
asymptotic formulas (in ∆t) for the values of p and q, that optimize the convergence
factor of the algorithm, were written. These results are based on Fourier transforms
in time and in the transverse direction y of the error equations. For the linear
reaction-diffusion equation

∂tu − ν∆u + bu = 0,

where b is a positive constant, explicit formulas for the optimal parameters are
given. In the case of Robin transmission conditions, we obtain

pR
opt(∆t, b, ν) =

√
πν

(

2
√

(4νb + 4ν2km
2)2 + 16ν2wm + 4νb + 4ν2km

2
)

1

4

∆t
1

2

, (39)

where km = π
L and wm = π

2T , L being the domain decomposition interface length
and T the time interval length (see [5] and [6]) ; in the case of order 2 transmission
conditions, we obtain more complicated formulas

(pV
opt, q

V
opt)(∆t, b, ν), (40)

which are detailed in [2] (cf. p. 212).
Such an analysis is essentially linear. However, the equation satisfied by the

errors ek
i = uk

i − u is

∂te
k
i − ν∇ek

i + f(uk
i ) − f(u) = 0,

and a linearization around uk
i gives

∂te
k
i − ν∇ek

i + f ′(uk
i )ek

i ≃ 0.

Therefore the best parameters can be used in two ways.
(i) By using linear transmission operators with values corresponding to expected

values of f ′(u),
(ii) by introducing nonlinear transmission conditions, where b is chosen to be

f ′(uk
i ) in the formulas (39) for Robin, and (40) for second order transmission con-

ditions.
No well-posedness analysis is available for the algorithm with nonlinear transmis-

sion conditions. We present however, in section 5, numerical results which illustrate
the convergence of the numerical approximation of this nonlinear algorithm.
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4.2. Discretization scheme. We consider here a bounded domain Ω in R
2, ho-

mogeneous Dirichlet boundary data are imposed on the boundary ∂Ω of Ω. It is
divided into two nonoverlapping subdomains Ωj , and the common boundary Γ is
supposed to meet ∂Ω orthogonally, see Figure 1. This assumption is essential only
for the second order transmission condition, and permits to extend the analysis in
Section 2.

∂Ω

Ω1 Ω2Γ

Figure 1. Decomposition in subdomains Ω = Ω1 ∪ Ω2

Let us first describe the numerical method in the case of linear Robin or second
order boundary operators. The first task is the discretization of the boundary value
problem (8), in V0 = {v ∈ V, v = 0 on ∂Ω ∩ ∂Ωi}.

We consider Vh, a finite dimensional subspace of V of piecewise P1 functions,
and a basis ϕ1, . . . , ϕI of Vh, S1, . . . , SI being the vertices of the triangulation. We
search an approximate solution

uh(t) = u1(t)ϕ1 + · · · + uI(t)ϕI ,

which satisfies

(u′
h, ϕi) + +ν(∇uh,∇ϕi) + p(uh, ϕi)Γ + q(u′

h, ϕi)Γ

+ νq(
∂uh

∂y
,
∂ϕi

∂y
)Γ + (f(uh), ϕi) = (g, ϕi)Γ, i = 1, . . . , I.

Denote by tn = n∆t the time grid points for 0 ≤ n ≤ N , and let un = un
1ϕ1 +

· · ·+ un
I ϕI be the approximate solution at time tn. We use a linearly implicit Euler

scheme: if the approximate numerical solution Un = (un
1 , · · · , un

I ) at time tn is
given, the solution Un+1 at time tn+1 is computed by solving the algebraic system

( 1

∆t
(M + qMΓ) + νK + pMΓ + νqKΓ

)

Un+1 =

1

∆t
(M + qMΓ)Un − MF (Un) + MΓGn+1, (41)

where the mass and stiffness matrices are defined by Mi,j = (ϕj , ϕi) and Ki,j =
(∇ϕj ,∇ϕi), and on the boundary MΓi,j = (ϕj , ϕi)Γ and KΓi,j = (∂yϕj , ∂yϕi). We

set F (Un) = (f(un
1 ), . . . , f(un

I )) and Gn+1 =
(

g(S1, t
n+1), · · · , g(SI , t

n+1)
)

.

Considering nonlinear transmission conditions leads to the discretization of the
boundary value problem (8), where in the linear operators (6) and (7), the cons-
tants p and (p, q) are replaced by nonlinear functions p(u) = pR

opt(∆t, f ′(u), ν) and
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(p, q)(u) = (pV
opt, q

V
opt)(∆t, f ′(u), ν), in such a way that the third equation of (8) is

replaced by

ν
∂u

∂ni
+ p(u)u + q(u)(

∂u

∂t
− ν

∂2u

∂y2
) = g.

In this case the coefficients p and q are replaced by the time-dependent matrices

Diagn
p = diag(p(un

1 ), . . . , p(un
I )), Diagn

q = diag(q(un
1 ), . . . , q(un

I )).

The linear system (41) is solved with the LU procedure.

4.3. Implementation of the iterative algorithm. A step of the iterative
Schwarz waveform relaxation algorithm consists in solving the initial and boundary
value problems in each subdomain and in defining the new boundary conditions for
the next step. We therefore have to discretize the operator

(uk
1 , uk

2) −→ (B1(u
k
2), B2(u

k
1)).

To do so, we remark that, if at step k of the algorithm, the transmission conditions
are defined by

ν
∂uk

i

∂ni
+ p(uk

i )uk
i + q(uk

i )(
∂uk

i

∂t
− ν

∂2uk
i

∂y2
) = gk

i , (42)

i = 1, 2, (with the possibility to take into account constant functions p(u) and q(u)
or q(u) = 0), at step k + 1, the transmission conditions are defined by (42), with

gk+1
i =ν

∂uk
j

∂ni
+ p(uk

j )uk
j + q(uk

j )(
∂uk

j

∂t
− ν

∂2uk
j

∂y2
)

= −
(

ν
∂uk

j

∂nj
+ p(uk

j )uk
j + q(uk

j )(
∂uk

j

∂t
− ν

∂2uk
j

∂y2
)
)

+ 2p(uk
j )uk

j + 2q(uk
j )(

∂uk
j

∂t
− ν

∂2uk
j

∂y2
)

= − gk
j + 2p(uk

j )uk
j + 2q(uk

j )(
∂uk

j

∂t
− ν

∂2uk
j

∂y2
),

with i = 1, j = 2 or i = 2, j = 1. Rewriting the transmission condition in this way
has the advantage that no normal derivative has to be computed (cf. [7] for further
details on this kind of technique). We discretize then the boundary condition gk

i by
considering the discretizations of the corresponding terms defined in the previous
paragraphs.

5. Numerical results. In this section, the spatial domain is the square Ω =
(−1, 1) × (0, 2), decomposed into two subdomains Ω1 = (−1, 0) × (0, 2) and Ω2 =
(0, 1) × (0, 2). The diffusion coefficient ν is equal to 1. We test here the nonlinear
functions f(u) = u3 and f(u) = 10(eu − 1) on the time interval (0, 1). We compare
in the next figures the results obtained with the linear and nonlinear Robin and
second order transmission conditions described in the previous sections. The figu-
res represent the error between the domain decomposition solution obtained after
a fixed number of iterations, and the so-called mono-domain solution, which corre-
sponds to the numerical solution computed in the global domain Ω, by using the
same discretization. The boundary conditions at the boundary ∂Ω are of Dirichlet
type. We considered constant initial data and three spatial meshes, corresponding
to the values of h = 0.125, h = 0.0625 and h = 0.03125 The time step ∆t is such
that ∆t = h.
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Figure 2 illustrates the case where f(u) = u3. We draw the convergence history
for the algorithm with linear transmission, with the optimal parameters computed
for the heat equation. On the same figure we draw the convergence history for
the nonlinear transmission. These figures show first that both strategy are relevant
and give linear convergence as in the linear case, although no analysis exists at
the moment for the nonlinear equation. Second that the Ventcell transmission
conditions perform remarkably well, and are quite insensitive to mesh refinement.
The comparison also shows that the behaviors are very similar: in fact for this test
case, f ′(u) remains small, therefore the use of the linear parameter seems to be
relevant.
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Figure 2. For f(u) = u3, error history in L∞(0, T ; L2(Ω)). On
the left, h = 0.0625, an on the right h = 0.03125.

In Figures 3 and 4 we turn to f(u) = 10(eu − 1). We first perform in Figure
3 the same computations as before, with the coefficients inherited from the heat
equation, and with the nonlinear coefficients. We see the same properties, but one
more information: the linear conditions perform poorly when the behavior of f ′(u)
cannot be anticipated.
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Figure 3. For f(u) = 10(eu−1), error history in L∞(0, T ; L2(Ω)).
On the left, h = 0.0625, an on the right h = 0.03125.
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If we know that u is quite small on the interface, thus that f ′(u) is close to 10,
we can use the parameters p and (p, q) obtained by taking b = 10 in formulas (39)
and (40). The situation returns now to the previous case: the linear and nonlinear
strategy produce similar convergence curves, as demonstrated in Figure 4.
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Figure 4. For f(u) = 10(eu−1), error history in L∞(0, T ; L2(Ω)),
for h = 0.0625 and h = 0.03125. Comparison with the optimal
parameters for b = 10.

5.1. A simple model in geological CO2 storage modeling. We present here
a very simple model of a reactive system which can appear in the framework of
geological CO2 storage modeling. We consider a reactive chemical system with two
types of materials, evolving according to the equation

ut − ν∆u + f(x, y, u) = 0.

The nonlinear function f depends on the spatial variables, describing a hetero-
geneous distribution of the materials in the spatial domain. Both materials are
evolving through equilibrium values u

eq
1 and u

eq
2 . The reaction is described here by

the function

f(x, y, u) = k1S1(x, y)(u − u
eq
1 )3 + k2S2(x, y)(u − u

eq
2 )3.

The positive constants k1 and k2 represent the reaction speeds of material 1 and
2, and the surface functions Si describe the spatial distribution of the material
i, i = 1, 2. The convergence and well-posedness results of the previous sections can
be easily extended to the case of a function f also depending on (x, y).

In the test that we illustrate in Figure 5 below, we considered k1 = 5, u
eq
1 =

1, k2 = 3, u
eq
2 = 0, S1(x, y) = sin(3π

2 x + π
2 ) sin(3π

2 y + π
2 )χW , where W is a

zone corresponding to a part of a circle in the spatial domain, and S2(x, y) =
max

(

sin(5π
2 x+ π

3 ) sin(5π
2 y+ π

3 ), 0
)

. The initial and Dirichlet data are both equal to
0.5. We used here nonlinear transmission conditions, obtained by replacing b with
∂uf in formulas (39) and (40).

In Figure 6 we compare the results obtained with the nonlinear conditions and
with the coefficients of the heat equation for different values of the mesh-spacing h.

As a final test, we illustrate the case where different time scales are considered
in the subdomains. We consider uniform time grids in each subdomain with ∆t1 =
∆t2
2 , ∆ti, i = 1, 2, being the constant time steps in each domain. The time grid for



SWR FOR SEMILINEAR REACTION-DIFFUSION EQUATION 503

−1 −0.5 0 0.5 1

0
1

2
0.48

0.49

0.5

0.51

0.52

0.53

0.54

 
DD solution

 

0.485

0.49

0.495

0.5

0.505

0.51

0.515

0.52

−1 −0.5 0 0.5 1
0

1
2

0.48

0.49

0.5

0.51

0.52

0.53

0.54
 

Monodomain solution

 

0.485

0.49

0.495

0.5

0.505

0.51

0.515

0.52

−1 −0.5 0 0.5 1
0

0.5

1

1.5

2  
Error at time t=0.5

 0

0.5

1

1.5

2

2.5

3

x 10
−5

−1
−0.5

0
0.5

1

0

1

2
0

1

2

3

4

x 10
−5  

Error at time t=0.5

 0

0.5

1

1.5

2

2.5

3

x 10
−5

Figure 5. Mono-domain solution, domain decomposition solution
and error after 10 iterations of the algorithm at time t = 0.5
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Figure 6. Error for h = 0.125 and h = 0.0625.

the problem in Ω1 is thus the fine grid and the one for the problem in Ω2 the coarse
grid. At a step k of the iterative domain decomposition algorithm, after solving the
initial and boundary value problems in each domain, new boundary values have to be
constructed and transmitted to the other domain, for step k +1 (cf. [10] for further
details). To do so, we perform a first order polynomial interpolation to project the
boundary condition vectors between the different time grids. Figure 7 illustrates the
behavior of the L2 error in space between the domain decomposition solution and
the mono-domain solution, at final time t = 1, as a function of t he time steps ∆ti,

which are successively divided by a factor of 2. Here h is kept constant and small
when compared with the smallest time step. The error is computed as follows : we
construct two mono-domain solutions, corresponding to the solutions in the different
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time grids, and we compute the L2 error between the domain decomposition solution
obtained in each domain Ωi and the restriction to Ωi of the mono-domain solution
corresponding to the time grid for the problem in Ωi, i = 1, 2. As we can observe
in Figure 7, the error decreases linearly with the time step, which was expected
since the discretization scheme that we considered in each subdomain is of order
1 in time. Linear Robin transmission conditions were used here and we did 10
iterations of the domain decomposition algorithm. We point out that the optimized
transmission conditions that we used previously were obtained by considering the
same time and space steps in the whole domain. For the moment, as far as we
know, no optimization theory has been developed when different discretizations are
used in the different sub-domains.
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Figure 7. L2 error between mono-domain and domain decompo-
sition solution, at time t = 1, as a function of the time step, taken
in logarithmic scale, in subdomain Ω1 (on the left) and Ω2 (on the
right). In x-coordinate log10(∆t) and in y-coordinate log10 of the
error.

6. Conclusion. We have introduced new nonoverlapping domain decomposition
algorithms for the semilinear heat equation. They extend the Schwarz waveform
relaxation algorithm to nonlinear problems, using Robin or Ventcell transmission
conditions. Original proofs of well-posedness and convergence have been given for
linear transmission. We also proposed nonlinear transmission, which prove numer-
ically to be very efficient. Extensions to reactive transport and Burgers equation
are in progress.
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