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Abstract. We study a system of conservation laws that describes multi-
species kinematic flows with an emphasis on models of multiclass traffic flow
and of the creaming of oil-in-water dispersions. The flux can have a spatial
discontinuity which models abrupt changes of road surface conditions or of the
cross-sectional area in a settling vessel. For this system, an entropy inequality
is proposed that singles out a relevant solution at the interface. It is shown
that “piecewise smooth” limit solutions generated by the semi-discrete version
of a numerical scheme the authors recently proposed [R. Bürger, A. Garćıa,

K.H. Karlsen and J.D. Towers, J. Engrg. Math. 60:387–425, 2008] satisfy this
entropy inequality. We present an improvement to this scheme by means of
a special interface flux that is activated only at a few grid points where the
discontinuity is located. While an entropy inequality is established for the
semi-discrete versions of the scheme only, numerical experiments support that
the fully discrete scheme are equally entropy-admissible.

1. Introduction.

1.1. Scope. This paper concerns the following system of conservation laws that
models the one-dimensional kinematic flow of a multi-species mixture:

∂tφi + ∂x

(

k(x)φivi(φ1 + · · · + φN )
)

= 0, i = 1, . . . , N. (1)

This system is to be solved in Π := {(x, t) |x ∈ R, t ≥ 0}, given the initial data

φi(x, 0) = pi(x), x ∈ R, i = 1, . . . , N. (2)
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The unknowns are the densities φi = φi(x, t) of species i, i = 1, . . . , N . The scalar
function k(x) is piecewise constant, and is allowed to have a jump at the origin:

k(x) = kL for x < 0, k(x) = kR for x > 0, kL, kR > 0. (3)

Our analysis applies to at least two real applications, namely a model of multi-
class traffic flow on a highway with possibly heterogeneous road surface conditions
(Model 1), and a model of the settling of an oil-in-water dispersion in a vessel with
discontinuously varying cross-sectional area (Model 2).

If there is no jump in k, then we refer to the constant-k version of (1). We
define Φ := (φ1, . . . , φN )T and the total density φ := φ1 + · · ·+φN . Without loss of
generality, we assume that the maximum possible total density is unity. We define
the flux vector f(Φ) = (φ1v1(φ), . . . , φNvN (φ))T, so that we can write the system
of conservation laws (1) in vector form:

Φt +
(

k(x)f(Φ)
)

x
= 0. (4)

Closely related to the system (1) is the scalar conservation law

ϕt +
(

k(x)f(ϕ)
)

x
= 0, f(ϕ) := ϕψ(ϕ). (5)

Scalar conservation laws with a discontinuous flux have been studied extensively (see
e.g. [1, 2, 3, 5, 6, 10, 11, 12, 13, 14, 16, 17, 20, 22, 23, 24, 25, 27, 29, 30, 31, 33, 36, 37];
this list is, however, far from being complete), and the particular equation (5) will
play a role in our study of the system (1).

We define the sets

Ω := {Φ |φi > 0, i = 1, . . . , N, φ < 1}, Ω̄ := {Φ |φi ≥ 0, i = 1, . . . , N, φ ≤ 1}.

The set Ω̄ is a natural invariant region for this problem. We assume that the initial
data p(x) = (p1(x), . . . , pN(x))T belong to Ω̄ for all x ∈ R, and that the velocity
functions vi are of the form

vi = vi(φ) = Viψ(φ), i = 1, . . . , N ; 0 < V1 < V2 < . . . < VN . (6)

Here φ 7→ ψ(φ) is a smooth function that satisfies

ψ(0) = 1, ψ(1) = 0, ψ(φ) ≥ 0 for φ ∈ [0, 1], ψ′(φ) < 0 for φ ∈ [0, 1). (7)

In [10], we proposed simple difference schemes for (1)–(3). In this paper we
analyze entropy conditions satisfied by limits of these schemes. We also present
an improvement to the scheme by a straightforward modification of the numerical
flux across the interface. We show that for discontinuities located away from the
interface, limit solutions satisfy a standard integral entropy inequality, that if the
system is genuinely nonlinear, any shocks are classical Lax shocks, and that limit
solutions Φ satisfy the following interface jump entropy inequality:

kR sgn(φ+ − φ∗)
(

f(φ+) − f(φ∗)
)

− kL sgn(φ− − φ∗)
(

f(φ−) − f(φ∗)
)

≤ f(φ∗)|kR − kL|.
(8)

Here, φ− = φ−(t) and φ+ = φ+(t) are the limit values of φ adjacent to x = 0, and
φ∗ is the maximum of f on (0, 1) (precise statements are made later).

We prove that for steady solutions, (8) can be obtained by simultaneously smooth-
ing k(x), adding a regularizing diffusion term, and then letting the joint smoothing
and regularization parameter tend to zero. In fact, we provide further support for
(8) by proving that piecewise smooth limit solutions generated by the semi-discrete
version of one of the schemes for (1) introduced in [10] converge to an entropy so-
lution that satisfies (8) (provided that they do converge), and present numerical
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evidence that the fully discrete scheme produces solutions that satisfy the entropy
jump condition to within an error that vanishes as the discretization parameters
tend to zero.

1.2. Traffic and dispersion models. We discuss two typical real-world kinematic
flow models that give rise to the Cauchy problem (1)–(3). Model 1 is based on the
extension of the well-known Lighthill-Whitham-Richards (LWR) kinematic model
to multiclass traffic. This extension, first proposed by Benzoni-Gavage and Colombo
[7] and Wong and Wong [38] (see also [10, 15, 18, 19, 39, 40, 41]), considers N dif-
ferent species of vehicles, each having its own preferential velocity Vi, i = 1, . . . , N ,
corresponding to a free highway. The function ψ = ψ(φ) describes how drivers
adjust their velocities to the global car density φ(x, t) seen at a point (x, t). These
assumptions lead to the velocity functions (6). The properties (7) reflect that on
a free highway, cars travel at maximum speed (ψ(0) = 1), that there is a gradual
increase of hindrance with increasing φ (ψ′(φ) < 0 on [0, 1)), and that there is no
movement in the “bumper-to-bumper” situation (ψ(1) = 0). For the traffic model,
the system (1) under the assumption (3) corresponds to a highway with a change of
the road surface conditions at x = 0, which causes an abrupt change of the effective
maximal velocity of species i to the left of x = 0, kLVi, to a different value kRVi

to the right. We assume the jump in velocities to be “collective” in the sense that
k(x) modulates all velocities V1, . . . , VN .

Model 2 describes the creaming of small oil droplets in an oil-in-water liquid-
liquid dispersion [32] with oil droplets of N different volumes (size classes) 0 <
V1 < V2 < · · · < VN , where z denotes height and φi = φi(z, t) is the local volume
fraction occupied by size class i. According to [32], the differential motion of the
droplets is driven by differences in viscosity. The basic nonlinearity is a viscosity
function µd = µd(Φ). If µf denotes the viscosity of pure water, then µd(Φ) is
assumed to satisfy µd(0, . . . , 0) = µf , µd ∈ C1(Ω̄), µd(Φ) > 0, and ∂µd/∂φi > 0 for
i = 1, . . . , N . The velocity functions v1(Φ), . . . , vN (Φ) are then given by

vi(Φ) = c
V

2/3
i

µd(Φ)
(1 − φ), i = 1, . . . , N, c :=

2g(̺f − ̺oil)

9(4π/3)2/3
, (9)

where g, ̺f and ̺oil denote the acceleration of gravity, the density of pure water
and density of pure oil, respectively. For µd(Φ) = µd(φ) = µf(1 − φ)−2 (see [10])
the creaming of the dispersion can be described by the system of conservation laws

∂tφi + ∂z

(

φivi(φ)
)

= 0, i = 1, . . . , N, (10)

where vi is given by (6) if we define Vi = cV
2/3
i for i = 1, . . . , N and ψ(φ) =

(1−φ)/µd(φ). This application gives rise to a system of the type (1) if we consider
a sufficiently large vertical vessel with the variable cross-sectional area S(z). The
continuity equations that replace (10) are then

S(z)∂tφi + ∂z

(

S(z)φivi(φ)
)

= 0, i = 1, . . . , N. (11)

Now, let us assume that there exists a constant S0 > 0 such that S(z) ≥ S0

throughout, and let us define the new spatial variable x = x(z) := (1/S0)
∫ z

0
S(ζ) dζ .

In terms of x and t, we may rewrite (11) as

∂tφi(x, t) + ∂x

([

S(z(x))/S0

]

φi(x, t)vi

(

φ(x, t)
))

= 0, i = 1, . . . , N. (12)

If S(z) is constant, but changes discontinuously at z = 0, i.e., S(z) = SL for z < 0
and S(z) = SR for z ≥ 0, then (12) turns into an equation of the type (1), (3) if
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we define kL := SL/S0 and kR := SR/S0. The role of k(x) as a cross-sectional area
produces here a natural “collective” modulation of all velocities.

1.3. Outline of the paper. The remainder of the paper is organized as follows.
In Section 2, we focus on the situation away from x = 0, where k is constant and
(1) is a classical hyperbolic system of conservation laws. In Sections 2.1 and 2.2,
we recall the definition of weak solutions to (1) and some known properties (see
e.g. [39]) of the eigenvalues and eigenvectors of the Jacobian Jf (Φ). In Section 2.3
we review the concept of entropy-admissible weak solutions to (1), which involves
a convex entropy function E(Φ) with a corresponding entropy flux F(Φ), and is
based on a vanishing viscosity approach. In Section 2.4, we review the Lax shock
condition for genuinely nonlinear systems of conservation laws, which include the
constant-k version of (1) for ψ(φ) = 1 − φ. In Section 2.5 we briefly comment on
the relevance of the entropy concepts for our applications.

Section 3 deals with the interface entropy jump condition for (1), (3). The
basic calculus is presented in Section 3.1. The discussion is simplified under the
assumption that φ 7→ f(φ) is unimodal, i.e., has a single maximum. Motivated
by our analysis of Model 1 in the scalar case [11], we then propose an interface
entropy jump condition that is equivalent to stating that at least on one side of the
interface, characteristics impinging on the t-axis must be traceable backwards to
the x-axis. We argue that with the exception of one non-generic case, our condition
is consistent with that of Zhang et al. [39], which involves one-sided limits of the
smallest eigenvalue λ1 = λ1(Φ) of Jf (Φ). In Section 3.2 we apply a combined
technique of smoothing k(x) and adding viscosity to (1) (the “SVV method”) to
derive (8). For Model 1 we provide additional justification that is independent of the
notion of viscosity. To this end, we consider in Section 3.3 the case ψ(φ) = 1 − φ,
for which (1) is genuinely nonlinear. We prove that if (8) rules out a two-state
steady solution of (1)–(3) as inadmissible, then this solution is also ruled out by
the “speedup impulse” (the condition introduced in [11]).

In Section 4 we consider numerical schemes for (1)–(3). Our analysis is based on
a simple fully discrete finite difference scheme (called Scheme 1 herein) taken from
[10]. A slight modification of the numerical flux near the interface to avoid spurious
oscillations defines Scheme 2; the corresponding semi-discrete versions are termed
Schemes 3 and 4. We prove that all schemes preserve Ω̄ as an invariant region
under a CFL condition. In Section 5 we prove that if Schemes 3 and 4 converge to a
piecewise continuous weak solution Φ taking values in Ω̄, then Φ satisfies a standard
integral entropy inequality on either side of x = 0. Section 6 extends this result
to the complete computational domain Π. Precisely, it is shown that if Schemes 3
and 4 converge to a weak solution Φ, then Φ satisfies a standard integral entropy
inequality for test functions whose supports do not intersect the interface and the
entropy jump conditions described in Section 3.1.

In Section 7 we present numerical examples that illustrate the model, the conse-
quences of choosing either kL < kR or kL > kR in combination with ψ(φ) = 1 − φ
or ψ(φ) = (1−φ)2, and the approximate satisfaction of the entropy jump condition
by the fully discrete Scheme 2, where we recall that our analysis of Sections 5 and 6
is valid for the semi-discrete variants only (Schemes 3 and 4). Finally, in Section 8
we collect some conclusions of our analysis.
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2. Preliminary remarks on the constant-k system.

2.1. Weak solutions. For now, we focus on the behavior of solutions away from
the interface. Since k(x) is constant in the region of interest, we simply denote it
by the symbol k, and we will discuss the constant-k system

Φt +
(

kf(Φ)
)

x
= 0. (13)

This setup has been more extensively studied, and mostly fits within the framework
of classical (strictly) hyperbolic systems of conservation laws. Even if the initial data
are smooth, solutions of (1) develop discontinuities, and so we seek a weak solution,
which is a bounded measurable function Φ satisfying

∫

R+

∫

R

(

ηtΦ + ηxkf(Φ)
)

dx dt +

∫

R

η(x, 0)Φ(x, 0) dx = 0 (14)

for any smooth test function η(x, t) with compact support contained in Π.

2.2. Eigenvalues, eigenvectors, and hyperbolicity. For Φ ∈ Ω the Jacobian
kJf (Φ) has N real distinct eigenvalues λ1(Φ), . . . , λN (Φ) satisfying

λ1(Φ) < kV1ψ(φ) < λ2(Φ) < kV2ψ(φ) < . . . < λN (Φ) < kVNψ(φ), (15)

see [39]. (If Φ ∈ Ω̄, then (15) remains valid with the symbols “<” replaced by “≤”.)
Since ψ(φ) > 0 for Φ ∈ Ω, it is clear from (15) that λ2, . . . , λN > 0. Only λ1 can
take either sign. The sign of λ1(Φ) depends only on the total density φ [39]:

sgn
(

λ1(Φ)
)

= sgn
(

f ′(φ)
)

, (16)

where we recall that f(φ) = φψ(φ). From (15) we infer that (13) is strictly hyper-
bolic for Φ ∈ Ω. The N linearly independent right eigenvectors r1(Φ), . . . , rN (Φ)
are defined by kJf (Φ)ri(Φ) = λi(Φ)ri(Φ) for i = 1, . . . , N . In [41], it is shown that
if ψ(φ) = 1 − φ, then the system (13) is genuinely nonlinear for Φ ∈ Ω, meaning
that ∇λi(Φ) · ri(Φ) 6= 0 for Φ ∈ Ω. Here and in what follows, we use the notation
∇w(Φ) := (∂w/∂φ1, . . . , ∂w/∂φN ) for any scalar function w = w(Φ).

2.3. Entropy conditions. Consider a discontinuity along a smooth curve x = x(t)
that does not intersect x = 0. If the solution Φ is continuous on either side of the
curve, the weak formulation (14) implies the Rankine-Hugoniot (RH) condition

kf(Φ+) − kf(Φ−) = s (Φ+ − Φ−) . (17)

Here s = dx/dt is the speed of the discontinuity, the shock speed, and Φ+ and Φ−

are the limiting values of Φ on the right and left sides of the jump, respectively.
As is well known, weak solutions of systems of conservation laws are not unique.

The RH condition (17) is not sufficient by itself to completely specify a solution. A
number of admissibility criteria have been proposed, usually based on the physics
being modeled by the system of conservation laws. Suppose that the system (13)
admits a strictly convex entropy, meaning that there is a strictly convex function
E(Φ) and an entropy flux F(Φ) such that ∇F(Φ) = ∇E(Φ)Jf (Φ). We call a weak
solution Φ of the constant-k system (13) entropy-admissible [9] if

∫

R+

∫

R

(

ρtE(Φ) + ρxkF(Φ)
)

dx dt ≥ 0 (18)
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for every smooth nonnegative test function ρ with compact support contained in
{(x, t)|x ∈ R, t > 0}. The entropy inequality (18) is justified by considering smooth
solutions of the parabolic regularization

Φε
t +

(

kf(Φε)
)

x
= εΦε

xx, ε > 0. (19)

Multiplying (19) by ∇E yields the scalar equation

E(Φε)t +
(

kF(Φε)
)

x
= ε∇E(Φε)Φε

xx, ε > 0. (20)

Letting ε → 0, and assuming that Φε converges boundedly a.e. to a limit Φ, we
conclude (see e.g. [34]) that Φ satisfies (18) in the sense of distributions. In fact,
(18) implies that all discontinuities satisfy the following entropy jump condition:

kF(Φ+) − kF(Φ−) ≤ s
(

E(Φ+) − E(Φ−)
)

. (21)

A discontinuity satisfying (21) is called entropy-admissible.
Benzoni-Gavage and Colombo [7] showed that if φ1 > 0, . . . , φN > 0, then the

constant-k system (1) is symmetrizable, and admits the convex entropy function
E(Φ) and the associated entropy flux F(Φ) given by

E(Φ) =

N
∑

i=1

1

Vi
φi(log φi − 1), F(Φ) = ψ(φ)

N
∑

i=1

φi logφi − Ψ(φ),

where Ψ is any primitive of ψ: Ψ′(z) = ψ(z). In [7] it is also shown that for
ψ(z) = 1 − z, the entropy jump condition (21) is equivalent to the condition

φ− ≤ φ+. (22)

For both Models 1 and 2, (22) states that for an entropy-admissible shock, the
total density (of the traffic or of the oil in the dispersion) to the left (i.e., of the flow
approaching the shock) cannot exceed that to the right (i.e., behind the shock).

2.4. Lax shock condition. In many applications, discontinuities are required to
satisfy the Lax shock condition [26], which in addition to satisfaction of the RH
condition (17) requires that there should be an index m ∈ {1, . . . , N} for which

λm−1(Φ−) < s < λm(Φ−), λm(Φ+) < s < λm+1(Φ+). (23)

Such a discontinuity is Lax-admissible, and is called a Lax shock or an m-shock.
Condition (23) results from adding to (1) a regularizing dissipative mechanism.
The physically relevant solution is the one that results from this regularized system
in the limit as the dissipation vanishes. Condition (23) is generally applicable to
genuinely nonlinear fields. In the genuinely nonlinear setting, entropy admissibility
and Lax admissibility are equivalent for shocks where |Φ−−Φ+| is sufficiently small.

2.5. Entropy jump condition in applications. For a scalar equation (N = 1),
condition (22) seems to be generally accepted in the traffic modeling literature, and
is called the driver’s ride impulse [4]. It is not obvious whether (22) is still relevant
for N ≥ 2, but one might argue as follows. In the scalar case, (22) requires that cars
slow down as they pass through the shock (since ψ is a decreasing function of φ).
In the system case, it seems reasonable to require that all classes of vehicles slow
down as they pass through the shock. Note that in the system case, the velocities
are given by kViψ(φ), and so (22) is equivalent to this requirement.
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Figure 1. The fluxes for the associated scalar conservation law.

3. Interface entropy condition.

3.1. Interface entropy jump condition. Due to the jump in k at x = 0 (the
interface), there will generally be a stationary (s = 0) discontinuity located there.
By considering in (14) a test function η with support near the interface, one finds
that the RH condition at the interface is

kLViφi,−ψ(φ−) = kRViφi,+ψ(φ+), i = 1, . . . , N. (24)

If we cancel Vi from both sides of each equation, and then add the N equations, we
arrive at the following combined RH condition:

kLφ−ψ(φ−) = kRφ+ψ(φ+), i.e., kLf(φ−) = kRf(φ+). (25)

Thus, (25) is the same RH condition that occurs at the interface for the scalar
conservation law (5). In what follows, we assume that ψ(φ) is chosen such that the
flux f(φ) = φψ(φ) is unimodal, by which we understand that f satisfies f(φ) > 0
for φ ∈ (0, 1) and that φ 7→ f(φ) has a single maximum φ∗ ∈ (0, 1). It follows that
f is strictly increasing on (0, φ∗) and strictly decreasing on (φ∗, 1). The function f
is unimodal, for example, if ψ is of the form ψ(φ) = (1−φ)ν with ν ≥ 1. Note that
f is not required to be concave. However, in order for the system to be genuinely
nonlinear, we will generally have to assume that ψ(φ) = 1 − φ. When this genuine
nonlinearity assumption is in effect, we will state it explicitly.

In [11] we argued that in the scalar case, a generalization of the condition (22)
that is meaningful for traffic modeling at the interface is

min
{

0, f ′(φ−)
}

· max
{

0, f ′(φ+)
}

= 0, (26)

which says that on at least one side of the interface, the characteristics impinging
on the t-axis must be traceable backwards in time to the x-axis. If f is unimodal,
then the interface condition (26) is equivalent to the condition

min{0, φ∗ − φ−} · max{0, φ∗ − φ+} = 0. (27)

In the context of the traffic model (Model 1), we referred to our rationale as
the speedup impulse [11], which simply states that all cars will increase their speed
whenever possible. It seems reasonable to assume that the speedup impulse re-
mains valid in the system setting, and so we take (27) as the analog of (22) that
should hold at the interface. For a unimodal flux f , Zhang et al. [39] showed that
sgn(φ∗ − φ) = sgn(λ1(Φ)). Thus, our entropy jump condition (27) is equivalent to

min
{

0, λ1(Φ−)
}

· max
{

0, λ1(Φ+)
}

= 0. (28)

Note that Zhang et al. [39] use the slightly more restrictive interface condition

λ1(Φ−) · λ1(Φ+) ≥ 0. (29)
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The one situation that is allowed by our entropy condition that is not allowed by
(29) is the one where λ1(Φ−) > 0, λ1(Φ+) < 0. At least in the scalar case (N = 1),
this type of solution is in some sense nongeneric, meaning that it would be unlikely
to be observed in an actual traffic flow (see Remark 7 of [11]). For this reason we
view our results as consistent with those of [39].

For purposes of analysis, we will use the following entropy inequality

kR sgn(φ+ − φ∗)
(

f(φ+) − f(φ∗)
)

− kL sgn(φ− − φ∗)
(

f(φ−) − f(φ∗)
)

≤ f(φ∗)|kR − kL|.
(30)

Lemma 3.1. Assume that f is unimodal. For a pair of states Φ−,Φ+ ∈ Ω that
satisfy (24) the entropy jump conditions (26), (27), (28) and (30) are equivalent.

Proof. The equivalence of conditions (26), (27) and (28) follows from the discussion
preceding the lemma. It suffices to show that (30) is equivalent to (27). Take the
case where kR > kL; the other case is similar, and we omit it. To show that (30)
implies (27), it suffices to show that if (30) is satisfied, we cannot have

φ− > φ∗, φ+ < φ∗. (31)

If (31) holds, then for the left-hand side of (30) we have

kRf(φ∗) + kLf(φ∗) − kRf(φ+) − kLf(φ−)

= kRf(φ∗) + kLf(φ∗) − 2kLf(φ−) = kRf(φ∗) − kLf(φ∗) + 2kL

(

f(φ∗) − f(φ−)
)

= |kR − kL|f(φ∗) + 2kL

(

f(φ∗) − f(φ−)
)

> |kR − kL|f(φ∗)

(where the first equality follows from (25)), which is a contradiction.
To show that (27) implies (30), note that if (27) holds, then at least one of

the inequalities φ− ≤ φ∗ and φ+ ≥ φ∗ is satisfied. Take the case where both are
satisfied. Then, since f(φ±) ≤ f(φ∗),

kR sgn(φ+ − φ∗)
(

f(φ+) − f(φ∗)
)

− kL sgn(φ− − φ∗)
(

f(φ−) − f(φ∗)
)

≤ 0,

and (30) holds. Now take the case where φ− = φ∗, φ+ < φ∗. Then

kR sgn(φ+ − φ∗)
(

f(φ+) − f(φ∗)
)

− kL sgn(φ− − φ∗)
(

f(φ−) − f(φ∗)
)

= kR (f(φ∗) − f(φ+)) = kRf(φ∗) − kLf(φ−) = kRf(φ∗) − kLf(φ∗)

(where the second equality follows from (25)), and thus clearly (30) holds again. If
φ− < φ∗ and φ+ < φ∗, then

kR sgn(φ+ − φ∗)
(

f(φ+) − f(φ∗)
)

− kL sgn(φ− − φ∗)
(

f(φ−) − f(φ∗)
)

= kR

(

f(φ∗) − f(φ+)
)

+ kL

(

f(φ−) − f(φ∗)
)

= (kR − kL)f(φ∗),

where the last equality follows from (25)), and (30) is satisfied. There are two
subcases that remain to be checked: φ+ = φ∗, φ− > φ∗, and φ+ > φ∗, φ− > φ∗.
The required calculations are similar to those above, and we omit them.

3.2. Justification of the entropy inequality (30) by smoothing k(x) and
vanishing viscosity. In this section, we consider a regularized version of the sys-
tem (4). Specifically, we add a small viscous term, and simultaneously smooth the
discontinuous coefficient k(x). We show that steady state solutions of the system
(4) that are obtained as the limit of steady state solutions of the regularized system
satisfy the interface entropy condition (30).

To this end, let kδ(x) := (1 −Hδ(x))kL +Hδ(x)kR denote a regularized approx-
imation to k(x) for δ > 0, where Hδ(x) is a C1 regularization of the Heaviside
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function H(x) such that dHδ(x)/dx ≥ 0 and Hδ → H boundedly a.e.. We then
regularize the system (1) by substituting this smoothed version of k(x), and simul-
taneously including a small artificial viscosity term:

Φδ
t +

(

kδf(Φδ)
)

x
= δ diag(V1, . . . , VN )Φδ

xx, δ > 0. (32)

In what follows we will employ the following Kružkov entropy/entropy flux pair:
V(φ) = |φ− φ∗|, G(φ) = sgn(φ− φ∗)(f(φ) − f(φ∗)).

Lemma 3.2. Assume that f is unimodal, and that Φ is a steady (Φt = 0) weak so-
lution of the system (1) which is the limit, boundedly a.e., of steady smooth solutions
Φδ of the regularized system (32). Finally, assume that

δV ′(φδ)φδ
x → 0 as δ → 0, in the sense of distributions. (33)

Then Φ satisfies the interface entropy inequality (30).

Proof. Dividing the ith equation of (32) by Vi, then adding all equations, and
keeping in mind that Φt = 0, gives

(

kδf(φδ)
)

x
= δφδ

xx. (34)

For ε > 0, let Vε(φ) =
√

(φ− φ∗)2 + ε and Gε(φ) =
∫ φ

V ′
ε(z)f

′(z) dz. Note that Vε

is a convex C1 regularization of V , and that Vε(φ) → V(φ), Gε(φ) → G(φ) as ε→ 0.
Multiplying the right-hand side of (34) by V ′

ε(φ
δ) gives

kδV ′
ε(φ

δ)f ′(φδ)φδ
x + kxV

′
ε(φ

δ)f(φδ) = δV ′
ε(φ

δ)φδ
xx

= δ
(

V ′
ε(φ

δ)φδ
x

)

x
− δV ′′

ε (φδ)
(

φδ
x

)2
≤ δ

(

V ′
ε(φ

δ)φδ
x

)

x
.

(35)

Moreover, for the left-hand side of this inequality, we compute

kδV ′
ε(φ

δ)f ′(φδ)φδ
x + kxV

′
ε(φ

δ)f(φδ)

= kδ(Gε)x + kxV
′
ε(φ

δ)f(φδ) =
(

kδG′
ε

)

x
− kδ

x

(

Gε(φ
δ) − V ′

ε(φ
δ)f(φδ)

)

.
(36)

Combining (35) and (36) yields
(

kδG′
ε

)

x
≤ δ

(

V ′
ε(φ

δ)φδ
x

)

x
+ kδ

x

(

Gε(φ
δ) − V ′

ε(φ
δ)f(φδ)

)

. (37)

Now let η : R 7→ R be a smooth nonnegative test function with compact support.
Multiplying both sides of (37) by η and integrating by parts gives

−

∫

R

ηxk
δGε(φ

δ) dx ≤ −δ

∫

R

ηxV
′
ε(φ

δ)φδ
x dx+

∫

R

ψkδ
x

(

Gε(φ) − V ′
ε(φ

δ)f(φδ)
)

dx.

Letting ε→ 0, we obtain by the dominated convergence theorem

−

∫

R

ηxk
δG(φδ) dx ≤ −δ

∫

R

ηxV
′(φδ)φδ

x dx+

∫

R

ψkδ
x

(

G(φ) − V ′(φδ)f(φδ)
)

dx.

Next, we apply the identity G(φδ)−V ′(φδ)f(φδ) = sgn
(

φδ − φ∗
)

f(φ∗), which yields

−

∫

R

ηxk
δG(φδ) dx ≤ −δ

∫

R

ηxV
′(φδ)φδ

x dx+

∫

R

ηkδ
x sgn

(

φδ − φ∗
)

f(φ∗) dx

≤ −δ

∫

R

ηxV
′(φδ)φδ

x dx+ f(φ∗)

∫

R

η
∣

∣kδ
x

∣

∣ dx.

Another application of the dominated convergence theorem as δ → 0 results in

−

∫

R

ηxkG(φ) dx ≤ f(φ∗)|kR − kL|η(0).

A standard test function argument, which we omit, now completes the proof.
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3.3. Interface entropy condition for the traffic model (Model 1) justified
via speedup impulse. Lemma 3.2 partially justifies the entropy inequality (8).
For the traffic model, however, we also would like to have a justification that does not
rely on artificial viscosity, but is rather related to driver/vehicle behavior. In [11],
we proposed a criterion, the speedup impulse, to justify our entropy jump conditions
for the scalar version (5) of (1). The speedup impulse says that, if possible, the
solution will evolve to one with a higher velocity on the left side of the interface.
This is explained by the desire of individual drivers to increase their speeds, or
equivalently to reach their destinations as quickly as possible. If (1) is genuinely
nonlinear, (i.e., we use ψ(φ) = 1 − φ), then the speedup impulse can also be used
in the present context. We concentrate on the admissibility for two-state solutions
of the form

Φ0(x) =

{

Φ0
− for x < 0,

Φ0
+ for x > 0.

, kLf(Φ
0
−) = kRf(Φ0

+). (38)

Lemma 3.3. Assume that ψ(φ) = 1− φ, so that (1) is genuinely nonlinear. If the
solution (38) is inadmissible under any of the equivalent entropy conditions (26),
(27), (28), (30), and Φ0

−,Φ
0
+ ∈ Ω, then there is a similarity solution Φ1(x, t) of (4)

such that Φ1(x, 0) = Φ0(x) and for t > 0, φ1(0−, t) < φ0
−. Moreover, any jumps in

Φ1(x, t) away from the interface are classical Lax shocks of the form (23).

Remark 1. In [11] we originally formulated the “speedup impulse” as follows: A
two-state solution like (38) has “speedup potential” if when this two-state solution
is used as initial data, it can evolve (under the conservation law) to a new solution
where away from the interface all discontinuities satisfy the usual entropy condition,
while at the left of the interface the velocity (density) is larger (smaller) than in
the initial data. The principle of “speedup impulse” says that no two-state solution
should have “speedup potential”. In the scalar case (with concave flux) we showed
that our entropy principle is the same as the “speedup impulse”. More specifically,
a two-state solution satisfies our entropy condition if and only if it has no “speedup
potential”. In the present paper, we show it in one direction. Namely, that all
two-state solutions ruled out by our entropy principle have “speedup potential”.
In other words, such solutions are ruled out by the “speedup impulse” principle.
More precisely, Lemma 3.3 says that if the solution (38) is inadmissible under our
entropy condition, then it is also ruled out by the speedup impulse. Specifically,
the speedup impulse will cause (38) to evolve into a solution with higher velocity
for cars entering the interface. Here we are using that the speed of the ith class
entering the interface is kLViψ(φ−), and ψ is strictly decreasing, so a decrease in φ
is equivalent to an increase in speed for every class. We state our speedup criterion
in terms of speed rather than φ because relative speed is more readily observable
by a driver than density.

Proof of Lemma 3.3. The assumption that (38) violates one of the equivalent en-
tropy conditions implies that λ1(Φ

0
−) < 0 < λ1(Φ

0
+) (we single out (28)). We first

construct a left-facing rarefaction wave connecting Φ0
− to a state Φ1(0−, t) := Φ1

−.
Let ri denote the right eigenvector of kLJf (Φ) belonging to the eigenvalue λi for
i = 1, . . . , N . We construct this rarefaction wave so that Φ0

− and Φ1
− both lie on the

rarefaction curve defined by Φ′(ξ) = r1(Φ(ξ)) for ξ > 0 and Φ(ξ = 0) = Φ0
−, with

Φ1
− close enough to Φ0

− that λ1(Φ(ξ)) < 0 along the segment of the curve joining
the two points. This defines our similarity solution Φ1(x, t) for x < 0, t > 0.
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To define Φ1(x, t) for x > 0 and t > 0 we need one or more right-facing
waves that connect Φ0

+ to Φ1(0+, t) := Φ1
+. Here Φ1

+ is a solution of the equa-
tions kRf(Φ1

+) = kLf(Φ
1
−). Since this system has a solution when Φ1

− is replaced
by Φ0

−, we are guaranteed (by the implicit function theorem) a unique solution Φ1
+

for Φ1
− sufficiently close to Φ0

−. Moreover, we can control |Φ1
+ − Φ0

+| by controlling
|Φ1

− − Φ0
−|, again as a result of the implicit function theorem. Employing our as-

sumption of genuine nonlinearity, we are guaranteed that for |Φ1
+ − Φ0

+| sufficiently
small, the Riemann problem for the conservation law Φt + (kRf(Φ))x = 0 with ini-
tial data Φ(x, 0) = Φ1

+ for x < 0 and Φ(x, 0) = Φ0
+ for x > 0 has a unique solution

(denoted ρ), and that all discontinuities are Lax shocks (see, e.g., [34]). Recall that
λ1(φ

0
+) > 0, and thus also λi(φ

0
+) > 0 for i = 2, . . . , N . Thus for |Φ1

+ − Φ0
+| suffi-

ciently small, all waves of the solution of this Riemann problem will be right-facing,
implying that ρ(0+, t) = Φ1

+ for t > 0. By defining Φ1(x, t) = ρ(x, t) for x > 0 and
t > 0, we have completed the construction of Φ1. It only remains to verify that for
t > 0, φ1(0−, t) < φ0

−. From [39, 41] we know that φ decreases from left to right
along a rarefaction for this system, and thus φ1(0−, t) < φ0

−.

4. The difference schemes. Let ∆x > 0 denote the spatial discretization param-
eter. The spatial domain R is divided into cells Ij := [xj − ∆x/2, xj + ∆x/2) with
centers at the points xj = j∆x for j ∈ Z. Let χj(x) be the characteristic function
for the interval Ij . We use the symbols Φj(t) and φi,j(t) to denote the approximate
solution at xj :

Φj(t) ≈ Φ(xj , t), φi,j(t) ≈ φi(xj , t), φj =

N
∑

i=1

φi,j . (39)

We will often suppress the dependence on t. We discretize (2) according to

Φ0
j = Φj(0) = p(x−j ), j ∈ Z. (40)

If p(x) = (p1(x), . . . , pN (x))T ∈ Ω̄ for all x ∈ R, then Φ0
j ∈ Ω̄ for all j ∈ Z. We

discretize k(x) by kj = k(x−j ), so that kj = kL for j ≤ 0 and kj = kR for j ≥ 1.
There are two versions of the scheme for variable k, denoted Scheme 1 and

Scheme 2. Scheme 1 has no special processing for the interface (this is the original
scheme appearing in [10]). Scheme 2 has a special interface flux, which mostly
gets rid of spurious bumps that appear for certain initial data. We refer to the
semi-discrete version of Scheme 1 as Scheme 3, i.e.,

φ̇i,j = −(1/∆x)∆x
−hi,j+1/2, i = 1, . . . , N. (41)

We are using the dot to denote d/dt. The flux in (41) is defined by

hi,j+1/2 = Viφi,jkj+1ψ(φj+1). (42)

Like the Lax-Friedrichs scheme, our algorithms do not require knowledge of the
eigenvectors and eigenvalues of the system. This is of particular interest for the
system (1) because computing the eigenvectors and eigenvalues is not straightfor-
ward (but see [18]). Our numerical experiments in [10] indicate that Scheme 1 is
robust, and is easily extended to a formally second order version via a standard
MUSCL/Runge-Kutta extension (which we, however, do not pursue herein).

In certain situations, Scheme 3 (defined by (41)) causes a spurious overshoot at
the interface. We dealt with this in [11] for the scalar version of the problem by
limiting the magnitude of the flux at the interface. Our modified flux for (1) is a
generalization of that idea. Let fmax = maxw∈[0,1] f(w). Due to our discretization



472 RAIMUND BÜRGER, KENNETH H. KARLSEN AND JOHN D. TOWERS

of k(x), the interface is located between the grid points x0 and x1. If we are at the
interface, the components of the unmodified numerical flux are

hi,1/2 = φi,0kRViψ(φ1), for i = 1, . . . , N .

Define

α1/2 := min(kL, kR)f(φ∗)/
N

∑

i=1

φi,0kRψ(φ1).

The modified interface flux is defined by

hint
i,1/2 = hi,1/2, if α1/2 ≥ 1, i = 1, . . . , N,

hint
i,1/2 = α1/2hi,1/2, if α1/2 < 1, i = 1, . . . , N.

(43)

Schemes 2 and 4 are the versions of the discrete Scheme 1 and the semi-discrete
Scheme 3, respectively, defined by using (43) instead of (42) for j = 0. With the
definition (43), it is easy to check that

N
∑

i=1

V −1
i hint

i,1/2 ≤ min{kL, kR}f(φ∗). (44)

To motivate this condition, we note that the combined RH condition (25) requires a
similar inequality for piecewise continuous solutions of (1). Indeed, the quantity on
the left side of (44) should approximate kLf(φ−) and kRf(φ+), and these quantities
satisfy kLf(φ−) = kRf(φ+) ≤ min{kL, kR}f(φ∗).

Our entropy results for the two variants of the difference scheme are valid for
the semi-discrete setup above (Schemes 3 and 4), but we will also consider the fully
discrete versions (Schemes 1 and 2). To this end, time is discretized via tn = n∆t
for n ∈ Z

0
+ := {0, 1, . . .} (Z+ := {1, 2, . . .}), resulting in time strips [tn, tn+1). We

use the notation Φn
j and φn

i,j to denote the fully discrete approximations:

Φn
j ≈ Φ(xj , t

n), φn
i,j ≈ φi(xj , t

n), φn
j = φn

1,j + · · · + φn
N,j . (45)

With λ = ∆t/∆x, the fully discrete versions, Schemes 1 and 2, take the form

φn+1
i,j = φn

i,j − λ∆x
−h

n
i,j+1/2, i = 1, . . . , N. (46)

We always assume that the CFL condition

λmax{kL, kR}VN max
φ∈[0,1]

ψ(φ) ≤ 1, λmax{kL, kR}VN max
φ∈[0,1]

∣

∣ψ′(φ)
∣

∣ ≤ 1 (47)

is in effect for the fully discrete Schemes 1 and 2. Note that the CFL condition does
not require explicit knowledge of the eigenvalues of the Jacobian.

The following theorem establishes that our difference schemes preserve the in-
variant region Ω̄. For the original scheme (without the interface flux), this result
basically follows from Theorem 3.1 of [10]. The novelty is that this invariance also
holds for the version that incorporates the interface fix.

Theorem 4.1. The fully discrete scheme (46), with or without the interface fix
(Schemes 1 and 2, respectively), preserves the invariant region Ω̄. Similarly, the
semi-discrete scheme (41), with or without the interface fix (Schemes 3 and 4,
respectively), preserves the invariant region Ω̄. In other words, if the initial data
lies in the invariant region, Φ0(x) ∈ Ω̄ all x ∈ R, then for Schemes 1 and 2, at each
time level n ≥ 0 we will have Φn

j ∈ Ω̄ for all j ∈ Z. For Schemes 3 and 4, for each

t ≥ 0, we will have Φj(t) ∈ Ω̄ for all j ∈ Z.
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Proof. For our specific numerical fluxes, we may rewrite Schemes 1 and 2 as

φn+1
i,j = φn

i,j − λθn
i,j+1/2kj+1Viφ

n
i,jψ

(

φn
j+1

)

+ λθn
i,j−1/2kjViφ

n
i,j−1ψ

(

φn
j

)

, i = 1, . . . , N.
(48)

Here θn
i,j+1/2 ∈ [0, 1] is a parameter that accounts for whether or not the interface

fix is in effect. Suppose that Φn
j ∈ Ω̄ for all j. Then (48) implies that

φn+1
i,j ≥ φn

i,j − λθn
i,j+1/2kj+1Viφ

n
i,jψ

(

φn
j+1

)

= φn
i,j

(

1 − λθn
i,j+1/2kj+1Viψ

(

φn
j+1

))

.

In view of (47), we obtain from the last inequality that φn+1
i,j ≥ 0.

To show that φn+1
j ≤ 1, note that from (48) we have

φn+1
i,j ≤ φn

i,j + λθn
i,j−1/2kjViφ

n
i,j−1ψ

(

φn
j

)

≤ φn
i,j + λmax{kL, kR}VNφ

n
i,j−1ψ

(

φn
j

)

.

Summing this over i and using the assumption that φn
j−1 ≤ 1, we obtain

φn+1
j ≤ φn

j + λmax{kL, kR}VNφ
n
j−1ψ

(

φn
j

)

≤ φn
j + λmax{kL, kR}VNψ

(

φn
j

)

.

Let G(φn
j ) := φn

j + λmax{kL, kR}VNψ(φn
j ). Since ψ(1) = 0, we have that G(1) = 1,

and that G′(φn
j ) = 1 + λmax{kL, kR}VNψ

′(φn
j ). Thanks to the CFL condition (47),

G′(φn
j ) ≥ 0 for φn

j ∈ [0, 1]. Combining this with G(1) = 1, we have G(φn
j ) ≤ 1, and

thus φn+1
j = G(φn

j ) ≤ 1. We have proven that both variants of the fully discrete
scheme preserve the invariant region.

For the semi-discrete variants, Schemes 3 and 4, we keep ∆x fixed, and let ∆t ↓ 0
in the fully discrete variants (Schemes 1 and 2). The approximations converge to
the solutions of the system of differential equations (41) defining the semi-discrete
approximations. This follows from a standard fact concerning the convergence of
Euler’s method when approximating systems of ordinary differential equations [21].
This result is applicable here since the numerical flux (both with and without the
interface fix) is Lipschitz continuous in all arguments. The limit solutions (the
semi-discrete approximations) then also remain in Ω̄.

5. Discrete entropy inequality away from the interface. In this section we
show that for grid points away from the interface, the semi-discrete difference scheme
satisfies a discrete entropy inequality, which along with the conservation form of the
scheme guarantees that if the scheme converges to a piecewise continuous solution,
any discontinuities that do not intersect the interface are entropy-admissible. This
means that in the genuinely nonlinear case, i.e., ψ(φ) = 1 − φ, all discontinuities
with |Φ− − Φ+| sufficiently small are Lax shocks.

We concentrate on the scheme (41), (42) with j 6= 0, 1 (i.e., away from the
interface). Thus, the original scheme coincides with the one with the interface flux,
(43). Also note that kj = kj+1 since we are away from the interface.

Let D+ denote the divided spatial difference operator, i.e., D+zj = (zj+1 −
zj)/∆x. Employing an identity by Osher [28], one can readily show that for
Φj ,Φj+1 ∈ Ω, our semi-discrete scheme satisfies

∆x
(

Ė(Φj) +D+F̃j−1/2

)

=

∫

Γj+1/2

dΦ · ∇2E(Φ) ·
(

hj+1/2 − kjf(Φ)
)

. (49)

Here Γj+1/2 is any piecewise smooth curve in Ω connecting Φj to Φj+1, and F̃j−1/2

is the numerical entropy flux

F̃j−1/2 := ∇E(Φj) · (hj−1/2 − kjf(Φj)) + kjF(Φj).
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Following [28], it is straightforward to prove for any vectors Φj ,Φj+1 ∈ Ω that the
right-hand side of (49) is non-positive, and thereby to prove that the semi-discrete
scheme satisfies the discrete entropy inequality

Ė(Φj) +D+F̃j−1/2 ≤ 0. (50)

The proof of [28] involves the evaluation of ∇E(Φ) and ∇2E(Φ), which are not
defined for vectors with zero components. However, below we prove by an approx-
imation argument that (50) remains valid for vectors Φj ,Φj+1 ∈ Ω̄.

Lemma 5.1. Assume j 6= 0, 1 (we are not at the interface), and Φj ,Φj+1 ∈ Ω̄.
Then the semi-discrete scheme satisfies the discrete entropy inequality (50).

Proof. We choose a parameter µ > 0 and define the approximate entropy func-
tion Eµ(Φ) and the corresponding approximate entropy flux function Fµ(Φ) by

Eµ(Φ) :=

N
∑

i=1

φi + µ

Vi

(

log(φi + µ) − 1
)

, (51)

Fµ(Φ) := ψ(φ)

N
∑

i=1

(φi + µ) log(φi + µ) − Ψ(φ). (52)

Away from the interface, only one of the two values of k(x) is involved, so to
simplify matters we denote kj and kj+1 by the single symbol k. Note that since

∂Eµ(Φ)

∂φj
=

log(φj + µ)

Vj
,

∂2Eµ(Φ)

∂φi∂φj
=

δij
Vj(φj + µ)

, (53)

both ∇Eµ(Φ) and ∇2Eµ(Φ) are now well defined for all Φ ∈ Ω̄. Furthermore,

∂Fµ(Φ)

∂φj
= ψ′(φ)

N
∑

i=1

(φi + µ) log(φi + µ) + ψ(φ) log(φj + µ) (54)

and therefore, defining e := (1, . . . , 1)T, we obtain

∇Fµ(Φ) −∇Eµ(Φ)Jf (Φ) = µψ′(φ)

N
∑

i=1

log(φi + µ)eT = O(µ logµ) as µ ↓ 0.

Now, multiplying the semi-discrete formula (41), i.e., Φ̇j = −(1/∆x)∆x
−hj+1/2 with

hj+1/2 = (h1,j+1/2, . . . , hN,j+1/2)
T, by ∆x∇Eµ(Φ), yields

∆xĖµ(Φj) = −∇Eµ(Φj)∆
x
−hj+1/2. (55)

We now define F̃µ
j−1/2 := ∇Eµ(Φj)

(

hj−1/2 − kf(Φj)
)

+ kFµ(Φj). Adding the term
∆+F̃

µ
j−1/2 to both sides of (55) gives

∆x
(

Ėµ(Φj) +D+F̃
µ
j−1/2

)

=
(

∆+∇Eµ(Φj)
)

hj+1/2

− ∆+

(

k∇Eµ(Φj)f(Φj) −Fµ(Φj)
)

.
(56)

Now, as in [28], let Γj+1/2 ⊂ Ω̄ be a continuous, piecewise differentiable curve
connecting Φj with Φj+1 in phase space. Then

∆+F
µ(Φj) =

∫

Γj+1/2

∇Fµ(Φ) · dΦ =

∫

Γj+1/2

k∇Eµ(Φ)Jf (Φ) · dΦ + O(µ logµ)

= ∆+

(

∇Eµ(Φj)kf(Φj)
)

− k

∫

Γj+1/2

dΦ · ∇2Eµ(Φ)f(Φ) + O(µ log µ).
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On the other hand, since (∆+∇Eµ(Φj))hj+1/2 =
∫

Γj+1/2
dΦ · ∇2Eµ(Φ)hj+1/2, we

can write the right-hand side of (56) as Iµ + O(µ log µ), where we define

Iµ :=

∫

Γj+1/2

dΦ · ∇2Eµ(Φ)
(

hj+1/2 − kf(Φ)
)

. (57)

Utilizing that ∇2Eµ(Φ) = diag1≤i≤N ((Vi(φi + µ))−1), we get

Iµ = k

∫

Γj+1/2

N
∑

i=1

φijψ(φi,j+1) − φiψ(φ)

φi + µ
dφi. (58)

Since

φijψ(φj+1) − φiψ(φ) = φijψ(φj+1) − φiψ(φj+1) + φiψ(φj+1) − φiψ(φ),

we can replace (58) by Iµ = k(Iµ
1 + Iµ

2 ), where we define

Iµ
1 := ψ(φj+1)

∫

Γj+1/2

N
∑

i=1

φi,j − φi

φi + µ
dφi, Iµ

2 :=

∫

Γj+1/2

N
∑

i=1

φi(ψ(φj+1) − ψ(φ))

φi + µ
dφi.

Introducing the parametrization Φ(θ) = Φj + θ(Φj+1 − Φj), θ ∈ [0, 1] and defining

Jµ
i,j+1/2 :=

∫ 1

0

θ

φi(θ) + µ
dθ ≥ 0, (59)

we obtain by a straightforward calculation

Iµ
1 = −ψ(φj+1)

N
∑

i=1

(φi,j+1 − φi,j)
2Jµ

i,j+1/2 ≤ 0, (60)

and, defining φ(θ) := φ1j(θ) + · · · + φNj(θ) = φj + θ(φj+1 − φj),

Iµ
2 =

∫ 1

0

(

ψ(φj+1) − ψ(φ(θ))
)

N
∑

i=1

φij + θ(φi,j+1 − φij)

φij + θ(φi,j+1 − φij) + µ
(φi,j+1 − φij)dθ,

which we rewrite as Iµ
2 = I2,1 + Iµ

2,2, where

I2,1 :=

∫ 1

0

(

ψ(φj+1) − ψ(φ(θ))
)

N
∑

i=1

(φi,j+1 − φij)dθ

=

∫ φj+1

φj

(

ψ(φj+1) − ψ(φ)
)

dφ.

(61)

Since ψ is monotonically decreasing, we always have I2,1 ≤ 0. On the other hand,

Iµ
2,2 = µ

∫ 1

0

(

ψ(φj+1) − ψ(φ(θ))
)

N
∑

i=1

φi,j+1 − φij

φij + θ(φi,j+1 − φij) + µ
dθ.

An integration by parts yields

Iµ
2,2 = µ

N
∑

i=1

{

−
(

ψ(φj+1) − ψ(φj)
)

log(µ+ φij)

+

∫ 1

0

ψ′
(

φ(θ)
)

log
(

φij + µ+ θ(φi,j+1 − φij)
)

dθ

}

.

Though Iµ
2,2 does not have a definite sign, we see that Iµ

2,2 = O(µ log µ) as µ ↓ 0.
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Summarizing, we have shown that the semi-discrete scheme satisfies the approx-
imate discrete entropy inequality

∆x
(

Ėµ(Φj) +D+F̃
µ
j−1/2

)

≤ O(µ log µ). (62)

Taking the limit µ ↓ 0 proves the result.

Theorem 5.2. Assume that f is unimodal, and that the approximate solutions gen-
erated by the semi-discrete scheme (Schemes 3 and 4) converge boundedly a.e. to a
piecewise continuous weak solution Φ ∈ Ω̄. If the limit solution Φ has a discontinu-
ity described by a smooth curve x = x(t) that does not intersect the interface x = 0,
then that discontinuity is entropy-admissible, i.e., the entropy jump condition (21)
is satisfied. If in addition, we choose ψ(φ) = 1 − φ, so that the system is genuinely
nonlinear, then the discontinuity is a Lax shock, i.e., the Lax condition (23) for
shocks is satisfied, as well as the condition (22) that the density increases across the
shock.

Proof. Recall that the approximate (and thus limit) solutions remain in Ω̄, consult
Theorem 4.1. Let ρ ≥ 0 be a smooth test function with compact support in R×R+.
Assume that the support of ρ does not intersect the interface x = 0. We multiply the
discrete entropy inequality (5.1) by ρ(xj , t), sum over j and integrate over t > 0,
and then proceed as in the proof of the Lax-Wendroff theorem to conclude that
the limit solution satisfies the entropy inequality (18). A standard test function
argument then yields the jump condition (21). The remaining assertions of the
proof follow from the discussion in Section 2.4.

6. Discrete entropy inequality at the interface.

Theorem 6.1. Assume that f is unimodal, and that the approximate solutions
generated by the semi-discrete schemes (Schemes 3 and 4) converge boundedly a.e. to
a piecewise continuous weak solution Φ. Fix a time t0 > 0, and assume that in a
neighborhood Nα := (−α, α) × (t0 − α, t0 + α) of the point (0, t0), the solution is
piecewise continuous, with the only discontinuity in Nα being a single jump along
the line x = 0. Let φ̇∆

i :=
∑

j∈Z
χj(x)φ̇i,j(t), where χj is the characteristic function

for Ij , and assume that

φ̇∆
i → ∂tφi in L1(Nα), i = 1, . . . , N. (63)

Then at t0 the limit solution Φ satisfies the equivalent entropy jump conditions (26),
(27), (28), and (30). In particular, this result applies when Φ is a steady (Φt = 0)
weak solution of the system.

Proof. Recall that the approximate (and thus limit) solutions remain in Ω̄, consult
Theorem 4.1. For now, assume that we are dealing with Scheme 3 (the semi-
discrete scheme without the special interface flux). As in the proof of Lemma 5.1,
we adapt the semi-discrete entropy inequality of Osher [28]. Let V(φ) = |φ − φ∗|,
and G(φ) = sgn(φ − φ∗)(f(φ) − f(φ∗)). Starting from

Φ̇j = −(1/∆x)∆x
−hj+1/2, hj+1/2 = (h1,j+1/2, . . . , hN,j+1/2)

T, (64)

we divide each equation by Vi, and then add all equations, which yields

żj = −(1/∆x)∆x
− (kj+1φjψ(φj+1)) = −(1/∆x)∆x

−hj+1/2,
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where zj(t) :=
∑N

i=1 φi,j/Vi and hj+1/2 := kj+1φjψ(φj+1). We then multiply both
sides by ∆xV ′(φj) to obtain ∆xV ′(φj)żj = −V ′(φj)∆

x
−hj+1/2. Next, we add

∆−

(

kj+1G̃j

)

:= ∆−

{

V ′
(

φj+1)(hj+1/2 − kj+1f(φj+1)
)}

+ ∆− (kj+1G(φj+1))

to both sides. The result is

∆x
[

V ′(φj)żj +Dx
+

(

kj G̃(φj)
)]

= hj+1/2∆
x
+V

′(φj) − ∆x
+ (V ′(φj)kjf(φj) − kjG(φj))

= hj+1/2∆
x
+V

′(φj) − kj+1∆
x
+ (V ′(φj)f(φj) − G(φj))

− (kj+1 − kj) (V ′(φj)f(φj) − G(φj))

=
(

hj+1/2 − kj+1f(φ∗)
)

∆x
+ sgn(φj − φ∗) − (kj+1 − kj)f(φ∗) sgn(φj − φ∗)

≤
(

hj+1/2 − kj+1f(φ∗)
)

∆x
+ sgn(φj − φ∗) + |kj+1 − kj |f(φ∗)

≤ |kj+1 − kj |f(φ∗).

(65)

Here we have used the identity V ′(φj)f(φj) − G(φj) = sgn(φj − φ∗)f(φ∗) and that
(

hj+1/2 − kj+1f(φ∗)
)

∆x
+ sgn(φj − φ∗) ≤ 0. (66)

To verify this last inequality, first note that if φ∗ < min(φ0, φ1), or φ∗ > max(φ0, φ1),
then ∆x

+ sgn(φj − φ∗) = 0, and (66) holds trivially. Otherwise,
(

hj+1/2 − kj+1f(φ∗)
)

∆x
+ sgn(φj − φ∗) =

(

hj+1/2 − kj+1f(φ∗)
)

sgn(φj+1 − φj)

= (φjψ(φj+1) − φ∗ψ(φj+1)) sgn(φj+1 − φj)

+ (φ∗ψ(φj+1) − φ∗ψ(φ∗)) sgn(φj+1 − φj)

= (φjψ(φj+1) − φ∗ψ(φj+1)) sgn(φ∗ − φj)

+ (φ∗ψ(φj+1) − φ∗ψ(φ∗)) sgn(φj+1 − φ∗) ≤ 0.

Here we have used that ψ is decreasing. To deal with Scheme 4, we start from

∆x
[

V ′(φj)żj +Dx
+

(

kj G̃(φj)
)]

=
(

hint
j+1/2 − kj+1f(φ∗)

)

∆x
+ sgn(φj − φ∗) − (kj+1 − kj)f(φ∗) sgn(φj − φ∗),

which we derived above in (65). Since Scheme 4 differs from Scheme 3 only for
j = 0, it suffices to show that

A :=
(

hint
1/2 − kRf(φ∗)

)

∆x
+ sgn(φ0 − φ∗) − (kR − kL)f(φ∗) sgn(φ0 − φ∗)

≤ |kR − kL|f(φ∗).
(67)

If φ∗ < min{φ0, φ1} or φ∗ > max{φ0, φ1}, then ∆x
+ sgn(φ0 − φ∗) = 0 and (67) holds,

so assume that φ∗ lies between φ0 and φ1. In the three alternative cases φ0 < φ∗ <
φ1, φ0 = φ∗ < φ1, and φ0 < φ∗ = φ1, we obtain the respective equations

A =
(

hint
1/2 − kLf(φ∗)

)

+
(

hint
1/2 − kRf(φ∗)

)

≤ 0, (68)

A = hint
1/2 − kRf(φ∗) ≤ kLf(φ∗) − kRf(φ∗) = (kL − kR)f(φ∗), (69)

A =
(

hint
1/2 − kRf(φ∗)

)

+ (kR − kL)f(φ∗) = hint
1/2 − kLf(φ∗). (70)

It follows from (68), (69), (70), and (44) that (67) holds for the case of φ0 ≤ φ∗ ≤ φ1.
If φ0 > φ∗ > φ1, then

A = kRf(φ∗) + kLf(φ∗) − 2hint
1/2. (71)

In view of (43), there are two cases for hint
1/2. If hint

1/2 = h1/2, then the proof is the
same as for the non-interface flux. Otherwise, hint

1/2 = min{kL, kR}f(φ∗), and (67)
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follows from (71). If φ0 = φ∗ > φ1, then A = kRf(φ∗) − hint
1/2, and if φ0 > φ∗ = φ1,

then A = kLf(φ∗) − hint
1/2. In either of these last two cases, (67) follows immediately

from either of the two possibilities that hint
1/2 = h1/2 or hint

1/2 = min{kL, kR}f(φ∗).
We now have (for both Scheme 3 and Scheme 4)

∆x
[

V ′(φj)żj +Dx
+

(

kj G̃(φj)
)]

≤ |kj+1 − kj |f(φ∗). (72)

Let ρ ≥ 0 be a test function with supp(ρ) ⊆ Nα. Multiplying both sides of (72) by
ρ(xj , t), and then rearranging, we get

∆xρ(xj , t)D
x
+

(

kj G̃(φj)
)

≤ |kj+1 − kj |f(φ∗)ρ(xj , t) − ∆xV ′(φj)żjρ(xj , t)

≤ |kj+1 − kj |f(φ∗)ρ(xj , t) + ρ(xj , t)|żj |∆x.
(73)

Let ρ∆(x, t) =
∑

j∈Z
χj(x)ρ(xj , t). We sum (73) over j, integrate over t > 0, and

use that kj+1 = kj for j 6= 0 to get

∆x
∑

j∈Z

∫

R+

ρ(xj , t)D
x
+

(

kj G̃(φj)
)

dt ≤ |kR − kL|f(φ∗)

∫

R+

ρ(x0, t) dt

+

∫∫

Nα

ρ∆(x, t)
∣

∣ż∆(x, t)
∣

∣ dx dt.

(74)

On the left-hand side, we sum by parts, which yields

−∆x
∑

j∈Z

∫

R+

kj G̃(φj)D
x
+ρ(xj , t) dt ≤ |kR − kL|f(φ∗)

∫

R+

ρ(x0, t) dt

+

∫∫

Nα

ρ∆(x, t)
∣

∣ż∆(x, t)
∣

∣ dx dt.

By applying the dominated convergence theorem, along with the assumption (63),
we obtain

−

∫∫

Π

k(x)G(φ)ρx(x, t) dx dt ≤ |kR − kL|f(φ∗)

∫

R+

ρ(0, t) dt

+

∫∫

Nα

ρ(x, t)
∣

∣∂tz(x, t)
∣

∣ dx dt.

(75)

If we now substitute into (75) test functions of the form ρε(x, t) = η(t)σε(x) sat-
isfying η(t) ≥ 0, σε(x) ≥ 0, σε(x) = 0 for |x| > ε, σε(0) = 1 and η(t) = 0 for
|t− t0| > α and then take the limit as ε ↓ 0, the second integral on the right side of
(75) vanishes since ∂tz ∈ L1(Nα), and we obtain

[

kRG
(

φ(0+, t)
)

− kLG
(

φ(x−, t)
)]

η(t) ≤ |kR − kL|f(φ∗)η(t). (76)

Fixing t = t0, and dividing both sides by η(t0), we have the entropy inequality (30),
and thus also (26), (27) and (28).

7. Numerical examples. In all numerical examples, we consider N = 5, the
velocities Vi = i/5 for i = 1, . . . , 5, and the initial datum Φ(x, 0) = (φ10, . . . , φ50)

T =
(0.2, . . . , 0.2)T for x ∈ [−1, 0] and Φ(x, 0) = 0 otherwise. Each of the following
Examples 1 to 5 considers a different combination of values of kL and kR and the
hindered settling factor ψ(φ).

To put the effect of a discontinuous coefficient k(x) (shown in Examples 2 to 5)
into the proper context, we first present an example for the constant-k case, i.e.,
k ≡ 1, and ψ(φ) = 1− φ. Figure 2 shows the numerical solution. The discontinuity
initially located at x = −1 evolves into a series of kinematic shocks. The t = 8
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Figure 2. Example 1: numerical solution at four different times.
Here and in Figures 3 and 5, the parameters are ∆x = 1/2000
and λ = 0.96, and the t = 4 plots also display the initial condition.
Profiles of φ1, . . . , φ5 and φ are marked by the corresponding index i
and “φ”, respectively. Arrows mark increasing values of i.

J = 100 J = 200 J = 400 J = 800 J = 1200 J = 1600 J = 2000

Ex. 2 0.029177 0.021252 0.014014 0.008728 0.006505 0.005250 0.004433

Ex. 3 0.011758 0.007114 0.004215 0.002448 0.001766 0.001396 0.001162

Ex. 4 0.022908 0.016576 0.011003 0.006915 0.005183 0.004200 0.003558

Ex. 5 0.017640 0.010156 0.005742 0.003208 0.002270 0.001773 0.001462

Table 1. Indicator d(∆t) of approximate satisfaction of the inter-
face entropy jump condition. The final time is T = 40.

plot of Figure 2 shows that from the left to the right, a zone forms in which only
the slowest species 1 is present, followed by a zone containing only species 1 and 2,
and so on. The remaining plots show that species 1 is eventually left behind. Of
course, the other species will equally segregate as a consequence of the ordering
V1 < V2 < · · · < VN . Note that all discontinuities produced by the numerical
solution, appearing here as vertical segments of profiles, are associated with a sudden
increase of φ, in agreement with the entropy jump condition (22).

In Examples 2 and 3 we choose ψ(φ) = 1 − φ. In Example 2 we set kL = 1 and
kR = 0.5, and in Example 3, kL = 0.5 and kR = 1. Figure 3 shows the corresponding
numerical solutions obtained by Scheme 2. Note that there is a decreasing stationary
jump at x = 0. For Examples 2 and 3 we illustrate in Figure 4 the convergence
properties of the scheme. Figure 4 shows portions of the total density φ of the
numerical solution with ∆x = 1/2000 for Examples 2 and 3, along with numerical
values for ∆x = 1/J with J = 100, J = 200 and J = 400. We observe that



480 RAIMUND BÜRGER, KENNETH H. KARLSEN AND JOHN D. TOWERS

−1 0 1 2 x

0

0.2

0.4

0.6

0.8

1
φ0

φ

φi0

CC

i
XXz

i-

φ

t = 4

−1 0 1 2 x

0

0.2

0.4

0.6

0.8

1

i-

φ

t = 8

��
1

��
2

�
�

3

−1 0 1 2 x

0

0.2

0.4

0.6

0.8

1

φ

t = 12

��
1

��
5

��
2

2

3
4

1 2 3 4

−1 0 1 2 x

0

0.2

0.4

0.6

0.8

1

φ

t = 16

�
��
1�

�
21

3

1 2 3 4

4
A
A
A

5

−1 0 1 2 x

0

0.2

0.4

0.6

0.8

1
φ0

φ

φi0

CC

i

�
�	

1 2 �
�
3

φ

t = 4

−1 0 1 2 x

0

0.2

0.4

0.6

0.8

1

i-
�

��

φ

t = 8

��1

−1 0 1 2 x

0

0.2

0.4

0.6

0.8

1

φ

t = 12

�
��

1

�
�
�
4

1 2 3
5PP

−1 0 1 2 x

0

0.2

0.4

0.6

0.8

1

φ

t = 16

1 �
�
�
2

�
�
�
3

Figure 3. Examples 2 (top) and 3 (bottom).

standard traveling discontinuities are approximated in “smeared” fashion, while
the stationary discontinuity located at x = 0 is sharply resolved.

In Examples 4 and 5, we choose kL and kR as in Examples 2 and 3, respectively,
but now utilize ψ(φ) = (1−φ)2. Figure 5 shows the numerical solutions. While the
overall behaviour is similar to that of Examples 2 and 3, we observe some features
that are not possible with ψ(φ) = 1−φ; for example, the first two plots of Figure 5
indicate a kinematic shock to the left of x = 0 that is moving to the left.

Furthermore, for Examples 2 to 5 we also test the approximate satisfaction of
the interface jump entropy condition (8). To this end, we fix λ and determine the
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Figure 4. Examples 2 (a–c) and 3 (d): snapshots of the numer-
ical solution at different times. The thin solid line represents the
cumulated density φ of the reference solution (∆x = 1/2000).

following quantity for t = tn = n∆t, n = 0, . . . ,N := ⌊T/∆t⌋:

d(tn; ∆t) := kR sgn(φn
+ − φ∗)

(

f(φn
+) − f(φ∗)

)

− kL sgn(φn
− − φ∗)

(

f(φn
−) − f(φ∗)

)

− f(φ∗)|kR − kL|,
(77)

where we use φn
+ := φn

1,1 + · · · + φn
N,1 and φn

− := φn
1,0 + · · · + φn

N,0 as approximate
traces of φ and determine d(∆t) := ∆t(max{0, d(t1; ∆t)}+ · · ·+max{0, d(tN ; ∆t)}).
Of course, we expect that d → 0 as ∆t → 0. Table 1 illustrates that this indeed
occurs for all examples, and Figure 6 displays plots of d(tn; ∆t) for J = 100, 200,
400 and 2000. Clearly, once all species have completely passed through x = 0, the
limits adjacent to x = 0 become zero, and d(tn; ∆t) becomes constant.

We observe that for Examples 2 and 4, a slight undershoot occurs between t = 18
and t = 20 (for Ex. 2) and t = 28 and t = 33 (for Ex. 4). At that time, (the slowest)
species 1 is completely passing to x > 0, so that for all subsequent times, the
state adjacent to x = 0 is the “vacuum”. All plots of Figure 6 indicate that the
fully discrete Scheme 2 does not satisfy a discrete entropy inequality since d(·,∆t)
assumes positive values over t-intervals of non-vanishing length, but that d(∆t)
vanishes in all cases suggests that the limit solution for ∆t→ 0 does. Thus, although
our entropy satisfaction results of Sections 5 and 6 only apply to the semi-discrete
versions of the scheme, our numerical results indicate that these results remain valid
for the limits of approximations generated by the fully discrete versions.
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Figure 5. Examples 4 (top) and 5 (bottom).

8. Conclusions. The present analysis is based on a system of conservation laws
with discontinuous flux in the very particular form (1), (3), which is, however,
relevant to several real-world applications. In particular, these applications give rise
to systems with arbitrarily large numbers of species N . The structural properties
of the flux vector and the fact that the nonlinearity is defined by the single scalar
function ψ = ψ(φ) admit an entropy criterion (30) that only appeals to limits of φ,
but not to the composition Φ. This property is well established for standard shocks
(those that occur in the constant-k case).

Inequality (8) is essentially consistent with the jump condition by Zhang et al.
[39]. In that paper it is mentioned that it is usually assumed that f(ϕ) is concave
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Figure 6. Examples 2 (a), 3 (b), 4 (c) and 5 (d): the quantity
d(tn; ∆t) for ∆x = 1/J , J = 100, J = 200, J = 400 and J = 2000.

(f ′′(ϕ) < 0 for 0 ≤ ϕ ≤ 1), but the properties that are indeed required for the
analysis are satisfied by functions f that are just unimodal. Since we focus on the
properties of difference schemes, our analysis complements the results of [39, 40],
which are based on the discussion of eigenvalues, characteristics and waves.

Concerning the convergence analysis, condition (63) may seem rather restrictive.
However, from the point of view of computations, it is not unusual to observe
approximations that are consistent with this condition.

For Model 1 we do not consider individual jumps in the maximum velocity of
each species, but this should provide an interesting extension of the present analysis.
Likewise, we have started to analyze systems of conservation laws modelling the
sedimentation of polydisperse suspensions (see e.g. [8, 10, 15]), which are similar
to (1) with the same motivation of a multiplicative flux discontinuity as that given
in Section 1.2 for Model 2, but where vi depends on Φ in a more involved way that
has so far precluded the determination of an entropy-entropy flux pair.
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[11] R. Bürger, A. Garćıa, K. H. Karlsen and J. D. Towers, Difference schemes, entropy solutions,

and speedup impulse for an inhomogeneous kinematic traffic flow model, Netw. Heterog.
Media, 3 (2008), 1–41.

[12] R. Bürger and K. H. Karlsen, On a diffusively corrected kinematic-wave traffic flow model

with changing road surface conditions, Math. Models Meth. Appl. Sci., 13 (2003), 1767–1799.
[13] R. Bürger, K. H. Karlsen, N. H. Risebro and J. D. Towers, Well-posedness in BVt and

convergence of a difference scheme for continuous sedimentation in ideal clarifier-thickener

units, Numer. Math., 97 (2004), 25–65.
[14] R. Bürger, K. H. Karlsen and J. D. Towers, An Engquist-Osher-type scheme for conservation

laws with discontinuous flux adapted to flux connections, SIAM J. Numer. Anal., 47 (2009),
1684–1712.

[15] R. Bürger and A. Kozakevicius, Adaptive multiresolution WENO schemes for multi-species

kinematic flow models, J. Comput. Phys., 224 (2007), 1190–1222.
[16] S. Diehl, On scalar conservation laws with point source and discontinuous flux function,

SIAM J. Math. Anal., 26 (1995), 1425–1451.
[17] S. Diehl, Scalar conservation laws with discontinuous flux function. I. The viscous profile

condition, Comm. Math. Phys., 176 (1996), 23–44.
[18] R. Donat and P. Mulet, A secular equation for the Jacobian matrix of certain multispecies

kinematic flow models, Numer. Methods Partial Differential Equations, 26 (2010), 159–175.
[19] R. Donat and P. Mulet, Characteristic-based schemes for multi-class Lighthill-Whitham-

Richards traffic models, J. Sci. Comput., 37 (2008), 233–250.
[20] M. Garavello, R. Natalini, B. Piccoli and A. Terracina, Conservation laws with discontinuous

flux, Netw. Heterog. Media, 2 (2007), 159–179.
[21] C. W. Gear, “Numerical Initial Value Problems in Ordinary Differential Equations,” Prentice-

Hall, Inc., Englewood Cliffs, New Jersey, 1971.
[22] K. H. Karlsen, M. Rascle and E. Tadmor, On the existence and compactness of a two-

dimensional resonant system of conservation laws, Commun. Math. Sci., 5 (2007), 253–265.
[23] K. H. Karlsen, N. H. Risebro and J. D. Towers, On an upwind difference scheme for degener-

ate parabolic convection-diffusion equations with a discontinuous coefficient, IMA J. Numer.
Anal., 22 (2002), 623–644.

http://www.ams.org/mathscinet-getitem?mr=MR2051062&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2195983&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2291815&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1050756&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2132749&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2209759&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2020123&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2029124&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2396491&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2379885&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2032211&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MRMR2045458&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2505870&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2330311&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1356452&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1372816&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2588913&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2453208&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2291816&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR0315898&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2334842&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1937244&return=pdf


SCHEMES FOR MULTI-SPECIES DISCONTINUOUS FLUX 485

[24] K. H. Karlsen and J. D. Towers, Convergence of the Lax-Friedrichs scheme and stability for

conservation laws with a discontinuous space-time dependent flux, Chin. Ann. Math. B, 25

(2004), 287–318.
[25] K. H. Karlsen, N. H. Risebro and J. D. Towers, L

1 stability for entropy solutions of nonlinear

degenerate parabolic convection-diffusion equations with discontinuous coefficients, Skr. K.
Nor. Vid. Selsk., (2003), 1–49.

[26] P. D. Lax, Shock waves and entropy, in “Contributions to Nonlinear Functional Analysis”
(ed. E.H. Zarantonello), Academic Press, (1971), 603–634.

[27] S. Mochon, An analysis of the traffic on highways with changing surface conditions, Math.
Modelling, 9 (1987), 1–11.

[28] S. Osher, Riemann solvers, the entropy condition, and difference approximations, SIAM J.
Numer. Anal., 21 (1984), 217–235.

[29] E. Y. Panov, Existence of strong traces for generalized solutions of multidimensional scalar

conservation laws, J. Hyperbolic Differ. Equ., 2 (2005), 885–908.
[30] E. Y. Panov, Existence of strong traces for quasi-solutions of multidimensional scalar con-

servation laws, J. Hyperbolic Differ. Equ., 4 (2007), 729–770.
[31] E. Y. Panov, Existence and strong pre-compactness properties for entropy solutions of

a first-order quasilinear equation with discontinuous flux. Preprint (2007), available at
http://www.math.ntnu.no/conservation/ .

[32] F. Rosso and G. Sona, Gravity-driven separation of oil-water dispersions, Adv. Math. Sci.
Appl., 11 (2001), 127–151.

[33] N. Seguin and J. Vovelle, Analysis and approximation of a scalar conservation law with a

flux function with discontinuous coefficients, Math. Models Methods Appl. Sci., 13 (2003),
221–257.

[34] J. Smoller, “Shock Waves and Reaction-Diffusion Equations,” Springer-Verlag, New York,
1983.

[35] E. Tadmor, Numerical viscosity and the entropy condition for conservative difference

schemes, Math. Comp., 43 (1984), 369–381.
[36] J. D. Towers, Convergence of a difference scheme for conservation laws with a discontinuous

flux, SIAM J. Numer. Anal., 38 (2000), 681–698.
[37] J. D. Towers, A difference scheme for conservation laws with a discontinuous flux: The

nonconvex case, SIAM J. Numer. Anal., 39 (2001), 1197–1218.
[38] G. C. K. Wong and S. C. K. Wong, A multi-class traffic flow model—an extension of LWR

model with heterogeneous drivers, Transp. Res. A, 36 (2002), 827–841.
[39] P. Zhang, S. C. Wong and C.-W. Shu, A weighted essentially non-oscillatory numerical

scheme for a multi-class traffic flow model on an inhomogeneous highway, J. Comput. Phys.,
212 (2006), 739–756.

[40] P. Zhang, S. C. Wong and Z. Xu, A hybrid scheme for solving a multi-class traffic flow model

with complex wave breaking, Comput. Meth. Appl. Mech. Engrg., 197 (2008), 3816–3827.
[41] P. Zhang, R. X. Liu, S. C. Wong and S. Q. Dai, Hyperbolicity and kinematic waves of a class

of multi-population partial differential equations, Eur. J. Appl. Math., 17 (2006), 171–200.

Received January 2010; revised April 2010.

E-mail address: rburger@ing-mat.udec.cl

E-mail address: kennethk@math.uio.no

E-mail address: john.towers@cox.net

http://www.ams.org/mathscinet-getitem?mr=MR2086124&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2024741&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR0393870&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR0898784&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR0736327&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2195985&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2374223&return=pdf
http://www.math.ntnu.no/conservation/
http://www.ams.org/mathscinet-getitem?mr=MR1841564&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1961002&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR0688146&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR0758189&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1770068&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1870839&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2187910&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2458116&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2266482&return=pdf

	1. Introduction
	1.1. Scope
	1.2. Traffic and dispersion models
	1.3. Outline of the paper

	2. Preliminary remarks on the constant-k system
	2.1. Weak solutions
	2.2. Eigenvalues, eigenvectors, and hyperbolicity
	2.3. Entropy conditions
	2.4. Lax shock condition
	2.5. Entropy jump condition in applications

	3. Interface entropy condition
	3.1. Interface entropy jump condition
	3.2. Justification of the entropy inequality (30) by smoothing k(x) and vanishing viscosity
	3.3. Interface entropy condition for the traffic model (Model 1) justified via speedup impulse

	4. The difference schemes
	5. Discrete entropy inequality away from the interface
	6. Discrete entropy inequality at the interface
	7. Numerical examples
	8. Conclusions
	Acknowledgments
	REFERENCES

