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Abstract. We propose here a general framework to address the question of
trace operators on a dyadic tree. This work is motivated by the modeling of the
human bronchial tree which, thanks to its regularity, can be extrapolated in a
natural way to an infinite resistive tree. The space of pressure fields at bifurca-
tion nodes of this infinite tree can be endowed with a Sobolev space structure,
with a semi-norm which measures the instantaneous rate of dissipated energy.
We aim at describing the behaviour of finite energy pressure fields near the
end. The core of the present approach is an identification of the set of ends
with the ring Z2 of 2-adic integers. Sobolev spaces over Z2 can be defined in a
very natural way by means of Fourier transform, which allows us to establish
precised trace theorems which are formally quite similar to those in standard
Sobolev spaces, with a Sobolev regularity which depends on the growth rate of
resistances, i.e. on geometrical properties of the tree. Furthermore, we exhibit
an explicit expression of the “ventilation operator”, which maps pressure fields
at the end of the tree onto fluxes, in the form of a convolution by a Riesz kernel
based on the 2-adic distance.

1. Introduction, modelling aspects. The human bronchial tree can be seen as
a set of dyadically connected pipes, which sums up to 23 bifurcation levels from the
trachea to terminal branches, on which gas exchanges occur. Thanks to Poiseuille’s
law for a pipe, which states a proportionalty relation between air flow rate and
pressure jump, it behaves as a fluid conductor like a resistive network, where pres-
sure at bifurcating nodes plays the role of the electric potential, and air flow the
role of electric intensity. Schematically1, air is driven to the alveoli (zone of gas
exchange with the blood) by a negative pressure maintained on the outlets during
inspiration. In the situation where pressure is a constant P and the tree is regular
(i.e. resistances are the same for all pipes of a given generation), the overall process
follows a generalized Poiseuille law (fluid counterpart of Ohm’s law)

(atmospheric pressure)− P = R× (flux),

where R is the global resistance. Yet, as soon as pressures are not uniform, or if the
tree is no longer regular (which can happen for example during an asthma crisis),
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this scalar ohmic law has be to extended. For the idealized tree with 223 outlets, this
law takes the form of a linear (if atmospheric pressure is set at 0) relation between
a collection of 223 values for the pressure, and a vector of fluxes. The corresponding
matrix R can be written explicitly as a function of the resistances (see [5]).

In a recent paper [9], a model of the respiratory system as an infinite tree was
proposed. This extrapolation of the finite resistive tree to an infinite one is natural
because the actual bronchial tree exhibits some geometric regularity. Indeed, it is
shown in [11] that dimensions of the pipes (at least in the conducting, central part
of the tree, i.e. between generations 6 and 17) progress in a geometric way, with a
reduction factor λ close to 0.85. As the Poiseuille resistance of a pipe scales like ℓ/r4

(where ℓ is the length and r the radius), resistance at generation n scales like αn,
with α = 1/λ3 ≈ 1.63. For the extrapolated infinite tree, as generation n contains
2n resistances in parallel, one obtains a finite global resistance

R =
∑(α

2

)n

< +∞,

and this finiteness is stable under small perturbations of the geometry. Next step
consists in replacing the collection of discrete pressures at the end of the actual tree
by a “continuous” field (a function defined over the uncountable set of ends). A
first way to identify the corresponding trace space is immediate. Denoting by V the
set of vertices of tree T , p(x) the pressure at vertex x, writing x ∼ y for connected
vertices and r(x, y) the resistance of the corresponding edge, Sobolev space H1(T )
over T is defined as all those pressure fields such that

∑

x∼y

1

r(x, y)
|p(y)− p(x)|

2
<∞.

Note that the previous definition makes sense for any kind of network with bounded
connectivity : the quantity above simply represents the instantaneous rate of dissi-
pated energy by viscous effects. Denoting by H1

0 the closure of finitely supported
fields, a first expression of the trace space is the quotient H1/H1

0 . As detailed in [10]
(in a probabilistic framework), non triviality of this space, which is equivalent to
R < +∞, indicates that “something happens” at infinity, i.e. it does make sense to
prescribe certain pressure fields at infinity to drive some fluid through the tree.

In order to obtain a more explicit description of the space of trace functions
(pressure fields on the set of ends), an explicit construction of a Hilbert basis of
harmonic, finite energy functions is proposed in [9]. Such functions are in some
sense piecewise constant at infinity, so that their trace can be defined canonically.
General trace theorems then follow in a standard way by density.

Following a suggestion by P. Colmez, we propose here an alternative approach,
based on the identification of the boundary of the tree (set of ends) to the ring of
2-adic integers Z2, and a different strategy to define traces. To any pressure field
p defined over the tree, we shall consider its restriction pn to the n-th generation,
consider the corresponding function p̃n in the Schwartz space of Z2 (constant over
each bunch of leafs stemming from any of the n-th generation vertices), and show
that this sequence converges in L2(Z2), and possibly in a stronger way under some
condition on the resistance growth. Regularity of the corresponding trace func-
tion will be expressed in terms of behaviour near infinity of the Fourier transform
(Sobolev-like regularity).

1The reality is a bit more complex, as gas exchanges take place earlier in the tree, from the
16th generation to the last one.
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The approach presented here may seem excessively and artificially abstract con-
sidering the actual object it aims at reproducing in some way. Indeed, we are aware
that some parts of what we present can be (and actually have been in some cases)
presented in a different and less abstract setting, in particular

(i) Regularity of the trace functions;
(ii) Expression of the Neuman-Dirichlet operator, which maps flow fields onto

pressure fields.

Concerning (i), functions over the set of ends of the tree can be described in
terms of As regularity, as presented in [9], without any reference to 2-adic integers.
Yet, as we will see, the Z2 approach allows a very natural and concise way to define
Sobolev spaces in the Fourier setting, which enlights the deep similarities with
trace operators in the Partial Differential Equations context. As for the Neuman
Dirichlet operator, it can be represented by matrices for finite tree (see [8]), and by
kernel operators for infinite tree (see [5]). We will present here how the Z2 approach
makes it possible to express them as a convolution by a Riesz kernel with a exponent
directly related to the geometric growth of resistances.

This paper is structured as follows : in Section 2, we present the identification
between the set of ends of a dyadic tree and Z2, and we give a first trace theorem
based on this identification. In Section 3 we give some regularity properties of
trace functions (Sobolev regularity). Section 4 is dedicated to Dirichlet- Neuman
and Neuman-Dirichlet operators, and in Section 5 we investigate the possibility to
imbed the end of the infinite tree onto a domain of Rd (actual domain occupied by
a real lung). Finaly we gather in the appendices some facts on Fourier Analysis and
Sobolev spaces on Z2.

In what follows the ideal dyadic infinite geometric tree, with resistances following
a geometric growth in αn (with α close to 1.63 for a healthy lung, as stated before)
will play a central role. Yet, we shall present results with maximal generality,
allowing when it is possible non-regular trees (non-uniform resistances within a
generation).

2. Identification with Z2. We first gather some definitions and standard prop-
erties of 2-adic numbers (see e.g. [4]).

For any z ∈ Z, z = z′2α, with z′ odd, one defines valuation v2(z) as α. One
extends this definition to rational numbers by setting v2(q) = v2(a)− v2(b) for any
q = a/b ∈ Q, q 6= 0, and v2(0) = +∞. Now setting |q|2 = 2−v2(q), the 2-adic
distance over Q is defined as

(q, q′) ∈ Q×Q 7−→ |q′ − q|2.

This distance is ultrametric : it verifies a strong triangle inequality

|q′′ − q|2 ≤ max (|q′′ − q′|2, |q
′ − q|2) .

As a consequence, a ball is centered at any of its elements. The complete closure of
Q for this distance is called Q2. Any element of Q2 can be identified to a series

q =
+∞∑

n=k

an2n, (1)

where k ∈ Z, an ∈ {0, 1}, and therefore written (here in the case k < 0) as

q = . . . an . . . a1a0, a−1a−2 . . . ak.
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Figure 1. Dyadic tree

The ring Z2 of 2-adic integers is defined as the closed unit ball of Q2. In the above
representation, it corresponds to the case where an = 0 for all n < 0.

Let now explain how the set of ends ∂T of a dyadic tree T can be identified with
Z2. The set of vertices can be seen as the disjoint union of the Z/2nZ’s, for n = 0,
1, . . . , as illustrated by Fig. 2. We shall denote by xk

n the vertex k at generation n
(i.e. xk

n is k considered as an element of Z/2nZ). Now denoting by ϕm
n , with n < m,

the canonical surjection from Z/2mZ onto Z/2nZ, the set of edges of T , namely E,
consists of all those couples

(xk
n, xℓ

n+1) ∈ Z/2nZ× Z/2n+1Z

such that xk
n = ϕn+1

n (xℓ
n+1). The corresponding edge is denoted by eℓ

n+1.
The set ∂T of ends of T (infinite paths toward infinity) can be represented by

the projective limit of the system (Z/2nZ, ϕm
n ) :

∂T := lim
←−

(Z/2nZ, ϕm
n ) =

{
(zn)n∈N ∈ Π(Z/2nZ) , ϕn+1

n (zn+1) = zn ∀n ≥ 0
}

.

This set is naturally identified to Z2: any sequence (zn)n∈N ∈ ∂T is uniquely
associated to a sequence (an)n≥0 with an ∈ {0, 1} such that

zn =

n−1∑

m=0

am2m,

and therefore to q = . . . an . . . a1a0 ∈ Z2.
Note that, for two ends x and x′, the 2-adic distance measures their proximity

with regards to the tree, more precisely

n = − log2 |x
′ − x|2

is the index of the generation at which the corresponding paths splitted.
As V , the set of vertices of T , identifies with the disjoint union of the (Z/2nZ)’s,

any pressure field p ∈ RV can be seen as a sequence (pn)n∈N, with pn ∈ RZ/2nZ.
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We define a “piecewise constant” function p̃n over Z2 as

p̃n(x) = pn(a) ∀x ∈ a + 2nZ2 , a ∈ Z/2nZ. (2)

As an example, consider a field p which takes values −1 and 1 at x0
1 and x1

1, respec-
tively. Then p̃1 is −1 on 2Z2 and 1 on 1 + 2Z2. Note that p̃n lies in the Schwartz
space S (see Definition A.2 in the appendix). The trace of p on ∂T = Z2 will be
defined as the limit of p̃n as n go to infinity, whenever it exists in some sense.

Trace operator onto L2. We consider from now on a dyadic resistive tree Tr =
(V, E, r), where r is the collection of edge resistances (r(e))e∈E .

r =
(
r(ek

n) = rk
n , n ∈ N , 0 ≤ k ≤ 2n − 1

)
.

Let us denote by H1(Tr) the set of all those functions with finite Dirichlet energy

H1(Tr) =
{

p ∈ RV , |p|H1(Tr) < +∞
}

.

with the semi-norm

|p|
2
H1 :=

∑

(x,y)=e∈E

|p(y)− p(x)|
2

r(e)
=

∞∑

n=1

2n−1∑

k=0

∣∣p(xk
n)− p

(
ϕn

n−1(x
k
n)
)∣∣2

rk
n

.

Note that in the case r(e) is constant in each generation (rn at generation n), the
H1 semi-norm reads

|p|
2
H1 =

∑

n≥1

2n

rn
‖p̃n − p̃n−1‖

2
L2(Z2)

,

where p̃n is defined by (2) and where L2(Z2) is defined with respect the Haar
measure µ , see Definition A.1 in the appendix. It is a direct consequence of the
fact that µ (2nZ2) = 2−n.

The following proposition allows to define a trace of H1 functions over T as soon
as some condition on the resistances is met :

Proposition 1. Let Tr be a resistive dyadic tree, with r = (rk
n). Assume

∑

n≥0

1

2n
max

k
rk
n < +∞. (3)

Then (p̃n) (defined by (2)) converges strongly to some p̃ ∈ L2(Z2). The linear
operator γ0 : p 7−→ p̃ is in L

(
H1(Tr), L

2(Z2)
)
.

Proof. It suffices us to show that

∞∑

n=1

‖p̃n − p̃n−1‖L2(Z2)
. ‖p‖H1(Tr). (4)

Using Cauchy-Schwarz inequality with coefficients βn (to be chosen later), we have :

∞∑

n=1

‖p̃n − p̃n−1‖L2(Z2)
≤

(∑

n

βn ‖p̃n − p̃n−1‖
2
L2(Z2)

)1/2(∑

n

β−1
n

)1/2

≤

(∑

n

βn ‖p̃n − p̃n−1‖
2
L2(Z2)

)1/2(∑

n

β−1
n

)1/2

. (5)
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For the first term, it comes from the definition

‖p̃n − p̃n−1‖
2
L2(Z2)

=

2n−1∑

i=0

∣∣p(xi
n)− p

(
ϕn

n−1(x
i
n)
)∣∣2 2−n.

Hence,

(∑

n

βn ‖p̃n − p̃n−1‖
2
L2(Z2)

)1/2

≤

(∑

n

βn2−n
2n−1∑

i=0

∣∣p(xi
n)− p

(
ϕn

n−1(x
i
n)
)∣∣2
)1/2

.

We choose the coefficients βn such that this last quantity is bounded by ‖p‖H1(Tr),
i.e. such that

βn2−n = inf
0≤i≤2n−1

1

ri
n

=
1

maxi ri
n

.

With this particular choice, the first term in (5) is bounded by ‖p‖H1(Tr). Moreover
the second term in (5) is finite thanks to (3) and

βn =
2n

maxi ri
n

,

from which we deduce Inequality (4) and the proposition.

Remark 1. We have a similar result for the Lp(Z2) space instead of L2(Z2). For
p ≥ 2, if

∑

n≥0

1

2n

[
max

k
rk
n

]p/2

< +∞ (6)

then (p̃n)n converges strongly in Lp(Z2). Operator γ0 belongs to L
(
H1(Tr), L

p(Z2)
)
.

Remark 2. Condition (6) is met as soon as maxk rk
n ≤ αn with α < 41/p. As for

the infinite version of the actual human lungs, resistances vary like αn with α ≈ 1.6,
so that such a trace operator can be defined properly in Lp(Z2) for p ≤ 2.9.

3. Sobolev spaces in Z2 and precised trace theorems. As in the case of
Sobolev spaces over domains in Rd, it is natural to expect some regularity of func-
tions in γ0(H

1(Tr)). It will be expressed in terms of Hs regularity. As the functions
we consider here are restricted to Z2, standard Fourier transform

f̂(ξ) =

∫

Q2

e−2iπxξf(x) dµ.

does not depend on the integer part of ξ (i.e. f̂(ξ) = f̂(ξ′) as soon as ξ′ − ξ ∈ Z2).
As a consequence, the appropriate notion is a reduced Fourier transform (in the
same way Fourier transform is replaced by Fourier series for periodic functions over
R). This reduced Fourier transform, or Fourier series, is defined as

F(f)(λ) =

∫

Z2

e−2iπλxf(x)dµ(x),
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where λ runs over Λ = Q2/Z2 which identifies to Z[1/2]. Sobolev space of index s
is then defined as the set of all those functions such that

‖f‖Hs(Z2) :=

(∑

λ∈Λ

(1 + |λ|2)
2s
∣∣∣F(f)(λ)2

∣∣∣
)1/2

is finite. Note that both notions are consistent : given f ∈ L2(Z2), if we define f̂
as the standard Fourier transform of the extension of f by 0 on Q2 \ Z2, we have

f̂(ξ) = F(f)(λ)

as soon as ξ − λ ∈ Z2. We refer the reader to Appendix A for more details on the
underlying framework.

Proposition 2. Let Tr be a resistive dyadic tree, with r = (rk
n). Assume

∑

n≥0

maxk rk
n

2n(1−2s)
< +∞, (7)

for some s > 0. Then γ0 (defined by Prop. 1) maps continuously H1(Tr) onto
Hs(Z2).

Proof. We follow the same ideas as for Proposition 1, proving

∞∑

n=1

‖p̃n − p̃n−1‖Hs(Z2)
. ‖p‖H1(Tr). (8)

In order to check this claim, we have to estimate the Sobolev norm of

p̃n − p̃n−1 =
∑

j∈Z2/2nZ2

[
p(xj

n)− p
(
ϕn

n−1(x
j
n)
)]

1j+2nZ2 .

We fix n and write φj
n := 1j+2nZ2 . Using 1̂Z2 = 1Z2 (see Prop. 6 in Appendix)

and a change of variable, we get

φ̂j
n(ξ) = 2−ne−2iπjξ1Z2(2

nξ).

Hence for j 6= j′, we obtain

(φj
n, φj′

n )Hs = 4−n

∫

Q2

(
1 + |ξ|22

)s
e−2iπ(j−j′)ξ1Z2(2

nξ)dµ(ξ)

= 4−n

∫

|ξ|2≤2n

(
1 + |ξ|22

)s
e−2iπ(j−j′)ξdµ(ξ)

= 4−n
n∑

k=−∞

(
1 + 22k

)s ∫

|ξ|2=2k

e−2iπ(j−j′)ξdµ(ξ)

= 4−n
n∑

k=−∞

(
1 + 22k

)s ∫

|η|2=2k|j−j′|2

e−2iπη dµ(η)

|j − j′|2

. 4−n
∑

2k|j−j′|2≤1

(
1 + 22k

)s
2k

.
4−n

|j − j′|1+2s
2

.
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Moreover for j = j′, we directly have

(φj
n, φj′

n )Hs = 4−n

∫

|ξ|2≤2n

(
1 + |ξ|22

)s
dµ(ξ)

= 4−n
n∑

k=−∞

(
1 + 22k

)s
2k

. 4−n
(
1 + 22n

)s
2n

. 2n(−1+2s).

Finally, it comes

‖p̃n − p̃n−1‖
2
Hs(Z2)

≤
∑

j 6=j′

[
p(xj

n)− p
(
ϕn

n−1(x
j
n)
)] [

p(xj′

n )− p
(
ϕn

n−1(x
j′

n )
)] 4−n

|j − j′|1+2s
2

+
∑

j

[
p(xj

n)− p
(
ϕn

n−1(x
j
n)
)]2

2n(−1+2s).

Splitting the first sum with xy ≤ x2 + y2, it comes two symmetrical sums. Then
using

2n−1∑

k=1

4−n

|k|1+2s
2

= 4−n
(
2n−1 + 2n−1+2s + · · ·+ 2n−1+2sn

)
≃ 2n(−1+2s)

we prove that

‖p̃n − p̃n−1‖
2
Hs(Z2)

≤
∑

j

[
p(xj

n)− p
(
ϕn

n−1(x
j
n)
)]2

2n(−1+2s).

Then we conclude the proof by the same way as for Proposition 1 .

Let us treat the particular case of a finite resistance sub-geometrical tree: the
resistances satisfy ri

n ≤ αn for some parameter α ∈ (1, 2). Assumption (7) is
satisfied if and only if we are in the sub-critical case:

s < sα := (1 − log2(α))/2. (9)

For s ∈ [0, sα), we can obtain a bound for the convergence velocity of p̃n to γ0(p).
More precisely,

‖p̃n − γ0(p)‖Hs(Z2) .
( α

21−2s

)n

‖f‖H1(Tr) = 4n(s−sα)‖f‖H1(Tr).

The following Theorem gives a positive result in the critical case s = sα for the
sub-geometrical trees (we have a positive result of convergence without a precise
estimate of the convergence velocity)

Theorem 3.1. Let us consider a sub-geometrical tree ri
n ≤ αn with α ∈ (1, 2).

Then γ0 (defined by Prop. 1) maps continuously H1(Tr) onto Hsα(Z2), with sα =
(1− log2 α)/2.

Proof. We claim first that for every function p ∈ H1(Tr), the trace γ0(p) belongs
to the limit space Hsα(Z2) and let us first conclude. From that, the linear operator
γ0 is acting from H1(Tr) to Hsα(Z2). Since the previous continuity from H1(Tr)
in L2(Z2), it is easy to check that the graph of γ0 is closed in H1(Tr) ×Hsα(Z2).
Then Banach’s Theorem of closed graph implies the desired continuity of γ0.
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j ≡ i [2n] j′ ≡ i′ [2n]

Figure 2. Notations

It remains to prove that γ0 maps H1 onto Hsα(Z2). Let us fix a function p ∈ H1(Tr).
We are going to show that the sequence (p̃n)n is Cauchy in Hsα(Z2). Let n < m
be two integers and write

p̃n(x) :=

2n−1∑

i=0

p(xi
n)1i+2nZ2(x) =

2n−1∑

i=0

p(xi
n)

∑

0≤j<2m

j≡i [2n]

1j+2mZ2(x).

Hence

p̃n(x)− p̃m(x) =
2n−1∑

i=0

∑

0≤j<2m

j≡i [2n]

[
p(xi

n)− p(xj
m)
]
1j+2mZ2(x).

As previously (see Fig. 3 for the meaning of notations), we get

‖p̃n − p̃m‖
2
Hsα (Z2)

=
2n−1∑

i=0

∑

0≤j<2m

j≡i [2n]

2n−1∑

i′=0

∑

0≤j′<2m

j′≡i′ [2n]

[
p(xi

n)− p(xj
m)
]2 4−m

|j − j′|1+2sα

2

.

2n−1∑

i=0

∑

0≤j<2m

j≡i [2n]

[
p(xi

n)− p(xj
m)
]2

2m(−1+2sα).

To control p(xi
n) − p(xj

m) = p(ϕm
n (xj

m)) − p(xj
m), we use triangle inequality on the

telescopic series along the path between xi
n and xj

m, as follows

[
p(xi

n)− p(xj
m)
]2

=

[
m−1∑

k=n

p(ϕm
k (xj

m))− p(ϕm
k+1(x

j
m))

]2

.

[
m−1∑

k=n

∣∣p(ϕm
k (xj

m))− p(ϕm
k+1(x

j
m))
∣∣2

rj
k+1

]
αm.
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We have used Cauchy-Schwarz inequality at the last step, the assumption of sub-
geometric increasing of the resistances, the fact that α > 1. Note that rj

k+1, which

is a priori not defined as j might be larger than 2k+1, represents obviously rℓ
k+1,

where 0 ≤ ℓ < 2k+1, with ℓ ≡ j [2k+1]. By definition of sα, we deduce

‖p̃n − p̃m‖
2
Hsα (Z2)

.

2n−1∑

i=0

∑

0≤j<2m

j≡i [2n]

[
m−1∑

k=n

∣∣p(ϕm
k (xj

m))− p(ϕm
k+1(x

j
m))
∣∣2

rj
k+1

]
αm2m(−1+2sα)

.

2n−1∑

i=0

∑

0≤j<2m

j≡i [2n]

∣∣p(ϕm
k (xj

m))− p(ϕm
k+1(x

j
m))
∣∣2

rj
k+1

. ‖p‖2H1(Tn),

where Tn is the subnetwork corresponding to the the set of generations k with k ≥ n.
As ‖p‖H1(Tn) goes to 0, we have also proved that (p̃n)n is a Cauchy sequence in
Hsα(Z2) so that γ0(p) belongs to this space.

4. DN and ND operators. Given a pressure field on Z2 (seen as the set of ends
of the tree Tr), we are interested in the fluxes which it drives through Tr (Dirichlet
problem), and in particular in the quantity of air which exits the tree through its
boundary, which amounts to solve the Dirichlet to Neuman (DN) problem associated
with the tree. The reciprocal (ND) mapping is straightforward to obtain, as detailed
in [5]. Indeed as soon as the global flux is known, it identifies with the flux through
the first edge, which gives the pressure at generation 0 (pressure at the root is
0). All pressures can be computed recursively in a similar manner, for the flux
through any subtree is known. Following this procedure in the case of a regular tree
(resistance rn at generation n), given a flux field u ∈ RZ2 (the regularity of which
will be addressed later), pressure at end a ∈ Z2 writes formally

p(a) =
+∞∑

n=0

Rn

∫

|x−a|2=1/2n

u(x) dµ(x),

where Rn = r0 + r1 + · · ·+ rn is the cumulated resistance. If one assumes geometric
growth of the resistances according to some α ∈ (1, 2), more precisely

r0 = 1 , rn = αn−1(α − 1),

one obtains Rn = αn, and consequently

p(a) =

∫

Z2

u(x)

|x− a|
log2 α
2

dµ(x) = ζ(β) k̃β ⋆ u(a),

where k̃β is the Riesz kernel on Z2 (see Section C for a brief presentation of these
multipliers)

k̃β(x) :=
2

ζ(β)
|x|

β−1
2 , with β := 1− log2 α > 0,

and ζ(β) = (1− 2−β)−1 is the local zeta function.

Proposition 3. (Neuman-Dirichlet operator)

The Riesz operator R̃β (corresponding to the convolution by k̃β on Z2) maps con-
tinuously H−s(Z2) onto Hs(Z2), with s = β/2.
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From a functional point of view, we detail in Section C that the Riesz operators

R̃β corresponds to some power of a Laplacian operator R̃β = ∆−β/2. So it is natural
to expect that it maps continuously H−s(Z2) onto H−s+β(Z2) for all exponent s > 0
(the desired result is a particular case of this property). Let us give a more detailed
proof.

Proof. We refer the reader to Section B for a presentation of Sobolev spaces on Z2.
Thanks to (11) we have

‖R̃β(f)‖Hs(Z2) ≃

(∑

λ∈Λ

(1 + |λ|2)
2s |F(k̃β)(λ)F(f)(λ)|2

)1/2

,

with by convention |λ|2 = 1 for λ = 0 ∈ Λ. Moreover, (15) gives

F(k̃β)(λ) = |λ|−β
2 .

So it comes

‖R̃β(f)‖Hs(Z2) ≃

(∑

λ∈Λ

(1 + |λ|2)
2s
|λ|−2β

2 |F(f)(λ)|2

)1/2

.

For λ = 0, by convention |λ|2 = 1 so

(1 + |λ|2)
2s
|λ|−2β

2 ≃ (1 + |λ|2)
2(s−β)

.

For λ 6= 0 then |λ|2 > 1 so

(1 + |λ|2)
2s
|λ|−2β

2 ≃ (1 + |λ|2)
2(s−β)

.

We also conclude that as expected

‖R̃β(f)‖Hs(Z2) ≃ ‖f‖Hs−β(Z2),

which for s = β/2 gives us the desired estimate.

According to Corollary 2, we know that the Riesz multiplier R̃β is invertible in

distributional sense or in L2 sense and (R̃β)−1 = R̃−β . It gives an explicit expression
of the Dirichlet-Neuman operator for the regular tree, i.e. the mapping

Pressure field 7−→ Fluxes,

which is the core of the ventilation process.

5. Embedding onto a domain of Rd. One expected outcome of this approach
is to provide a sound functional framework for the coupling of a resistive tree with
an elastic medium onto which it is embedded (see [5] for a first coupled model in
one-dimension, and [2] for an homogenized description of a foamy like medium) .
We must say that the 2-adic viewpoint does not allow to improve significantly the
results which are presented in [9] on this matter. Considering a mapping from Z2

onto a domain in Rd (which models the way our infinite tree is imbedded on the
physical space, i.e. the actual lung), we simply give here a property which allows
to describe how Sobolev regularity of a function on the domain can be transported
back to its Z2 counterpart, as soon as some Hölder regularity of the mapping is
verified.
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Let Ω be an open set of Rd (equipped with its Euclidean structure and Lebesgue
measure) with |Ω| = 1, and φ a measure-preserving mapping from Z2 onto Ω : for
every measurable set A ⊂ Ω

|µ(φ−1(A))| = |A|.

We then define the following operator :

Tφ(f) := f ◦ φ.

Proposition 4. For all exponent p ∈ [1,∞], Tφ continuously acts from Lp(Ω) to
Lp(Z2). More precisely Tφ is an isometry :

‖Tφ(f)‖Lp(Z2) = ‖f‖Lp(Ω).

Proof. Assume first that p < ∞. Using µ ({x, |f ◦ φ(x)| > t}) = |{y, |f(y)| > t}|,
we obtain immediately

‖Tφ(f)‖pLp(Z2)
= ‖f‖pLp(Ω).

The p =∞ case follows by having p go to infinity.

We are now looking for condition on φ such that Tφ keeps some regularity.

Proposition 5. If φ : Z2 → Ω is 1/d-Hölderian, then Tφ is continuous from Hds(Ω)
to Hs(Z2) for all s ≥ 0.

Proof. We use the characterization of Sobolev spaces, given by Proposition 10

‖Tφ(f)‖Hs(Z2) . ‖Tφ(f)‖L2(Z2) +

(∫

Z2

∫

Z2

|f ◦ φ(x) − f ◦ φ(y)|2

|x− y|1+2s
2

dµ(x)dµ(y)

)1/2

.

The previous proposition yields

‖Tφ(f)‖L2(Z2) = ‖f‖L2(Ω).

The 1/d-Hölderian regularity of φ gives

|φ(x) − φ(y)| . |x− y|
1/d
2 ,

which implies

(∫

Z2

∫

Z2

|f ◦ φ(x) − f ◦ φ(y)|2

|x− y|1+2s
2

dµ(x)dµ(y)

)1/2

.

(∫

Z2

∫

Z2

|f ◦ φ(x) − f ◦ φ(y)|2

|φ(x) − φ(y)|d+2ds
dµ(x)dµ(y)

)1/2

.

Then, we use again the previous proposition, to deduce

(∫

Z2

∫

Z2

|f ◦ φ(x) − f ◦ φ(y)|2

|x− y|1+2s
2

dµ(x)dµ(y)

)1/2

.

(∫

Ω

∫

Ω

|f(x)− f(y)|2

|x− y|d+2ds
dxdy

)1/2

.

Using the well-known characterization of local Sobolev spaces, we get the desired
estimate

‖Tφ(f)‖Hs(Z2) . ‖f‖L2(Ω) +

(∫

Ω

∫

Ω

|f(x)− f(y)|2

|x− y|d+2ds
dxdy

)1/2

. ‖f‖Hds(Ω).
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Appendix A. Fourier transform on Q2 and Fourier series on Z2.

Definition A.1. The set Q2 endowed with its 2-adic distance d(x, y) = |x− y|2 is
a locally compact group. It owns a Haar measure µ which satisfies for every x ∈ Q2

and k ∈ Z
µ
(
x + 2kZ2

)
= 2−kµ (Z2) = 2−k.

This measure defines a probability measure on Z2.

Definition A.2 (Schwartz space). The Schwartz space S(Q2) is defined as the
space of all those functions which are compactly supported and locally constant. It
is spanned by characteristics functions of balls I1a+2mZ2 , a ∈ Q2, m ∈ Z.

Definition A.3. For any f ∈ S(Q2), its Fourier transform is defined by

ξ 7−→ f̂(ξ) :=

∫

Q2

e−2iπxξf(x) dµ(x).

Characteristic functions of closed balls containing (i.e. centered at) 0 play the
role of central Gaussian distributions in Rd :

Proposition 6. We have

1̂2kZ2
= 2−k12−kZ2

.

In particular 1̂Z2 = 1Z2 .

Proposition 7. We have ∫

|x|≤2k

e2iπxdµ(x) = 2k1k≤0

and ∫

|x|=2k

e2iπxdµ(x) = 2k−11k≤0 + (−1)1k=1. (10)

The Fourier transform on Q2 satisfies to the same properties than the ones on Rd :

Theorem A.4. The Fourier transform is an isometry on L2(Q2) : for all f ∈ S(Q2)

‖f̂‖L2(Q2) = ‖f‖L2(Q2).

Consequently, Fourier transform can be extended by density to a continuous operator
over L2(Q2).

Theorem A.5. The Fourier transform is invertible on L2(Q2) and, for any func-
tion f ∈ L2(Q2),

ˆ̂
f(x) = f(−x).

We would like to finish this section by describing the theory of Fourier series. On
the Euclidean space R, it is more convenient to use Fourier series for functions
supported on [0, 1], similarly we can define Fourier series for functions supported
on Z2. This new operation is denoted by F, we follow the same scheme as in the
Euclidean framework with identifying R to Q2 and [0, 1] to Z2. We shall denote the
countable set Q2/Z2 by Λ.

Definition A.6. Let λ ∈ Λ and f ∈ S(Z2) a function supported on Z2. We define

F(f)(λ) :=

∫

Z2

f(x)e−2iπxλdµ(x).

We note that x belonging to Z2, the previous quantity is well-defined for λ ∈ Λ :=
Q2/Z2.
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Then we have the following properties (coming from those of the whole Fourier
transform) :

Proposition 8. For f ∈ S(Z2), we have

f(x) =
∑

λ∈Λ

F(f)(λ)e2iπxλ

and
‖f‖L2(Z2) =

∑

λ∈Λ

|F(f)(λ)|2.

Appendix B. Sobolev spaces and As spaces over Z2. Similarly to what is
done on the Euclidean space, we define Sobolev spaces on Z2 and the equivalent of
the As approximate spaces used in article [9] (see [3] for the definition and main
properties of the As spaces in the euclidean case).

Definition B.1 (Sobolev spaces). For any s ∈ R, we define for a Schwartz function
f ∈ S(Z2)

‖f‖Hs(Z2) :=

(∫

Q2

(1 + |ξ|2)
2s
|f̂(ξ)|2 dµ(ξ)

)1/2

.

Then ‖·‖Hs(Z2) is a norm and we define the Sobolev space Hs(Z2) as the completion

of S(Z2) for this norm. Then for s ≥ 0, H−s(Z2) can be identified to the dual space
Hs(Z2)

′. The Sobolev spaces are Hilbert spaces.

In the previous section, we have seen that for functions defined on Z2, we can use

Fourier series instead of Fourier transform. For such functions, if ξ ∈ Z2 then f̂(ξ) =∫
fdµ = F(f)(0) else the quantity f̂(ξ) depends only on the class of ξ 6= 0 ∈ Λ and

∫

Z2

(1 + |ξ + ω|2)
2s dµ(ω) = (1 + |ξ|2)

2s .

Consequently, we have the following representation of the Sobolev norms, using
Fourier series. For a function f supported on Z2

‖f‖Hs(Z2) ≃

(∑

λ∈Λ

(1 + |λ|2)
2s
|F(f)(λ)|2

)1/2

, (11)

with by convention |λ|2 = 1 for λ = 0 ∈ Λ.
Regularity estimates in [9] rely on As norms (see [3] for a full description of this

general setting). Although it does not play a central role in the present approach,
we present here an equivalent definition of Sobolev spaces based on this definition
of regularity.

Definition B.2 (As spaces). Let n ∈ N, Vn := span(1Z2 ,1k+2jZ2
)j≤n and let

Pn : L2(Z2) → Vn be the projector onto Vn for the scalar product of L2(Z2). Let
s > 0. We define the As(Z2) space by

As(Z2) := {f ∈ L2(Z2) such that

+∞∑

n=0

‖f − Pnf‖2L2(Z2)
22ns < +∞.}

The norm associated to this space is given by

‖f‖As := ‖P0f‖L2(Z2) +
( +∞∑

n=0

‖f − Pnf‖2L2(Z2)
22ns

) 1
2

.
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The following proposition establishes the link between As regularity and Sobolev
regularity (Fourier setting).

Proposition 9. Let s > 0. Then the following identification holds

Hs(Z2) = As(Z2).

Proof. Let s > 0. Using the Plancherel’s formula (see Theorem A.4), we obtain
that for all n ∈ N

‖Pnu− u‖L2(Z2) = ‖F(u− Pnu)‖L2(Q2).

But, if u ∈ L2(Z2), then for all n ≥ 0

supp F(Pnu) ⊂ B2(0, 2n) and supp F(Id− Pnu) ⊂ cB2(0, 2n). (12)

Indeed, the first part of property (12) is a direct consequence of the explicit formula

of φ̂j (see the proof of Proposition 2). Let n ∈ N and 0 ≤ k ≤ 2n−1}. To obtain the
second part of property (12), it is enough to prove that for all functions u ∈ L2(Z2)
such that supp u ⊂ k + 2nZ2 with

∫

k+2nZ2

u(x) dµ = 0,

we have

supp F(u) ⊂ cB2(0, 2n).

Let ξ ∈ B2(0, 2n). Then for all x ∈ k + 2nZ2

e2iπxξ = e2iπkξ

and so

û(ξ) =

∫

k+2nZ2

e2iπxξu(x) dµ = e2iπkξ

∫

k+2nZ2

u(x) dµ = 0

which ends the proof of (12). Applying (12), we obtain

‖F(u− Pnu)‖L2(Q2) = ‖û‖L2(cB2(0,2n)).

We deduce that

‖Pnu− u‖2L2(Z2)
= ‖û‖2L2(cB2(0,2n)) ≃

+∞∑

k=n+1

2−2sk

∫

|ξ|2=2k

(1 + |ξ|)2s|û|2(ξ)dξ.

and so
+∞∑

n=0

22ns‖Pnu− u‖2L2(Z2)
≃

+∞∑

n=0

+∞∑

k=1

an−kbk

where

aj = Ij≤−12
2js, bj = Ij≥1

∫

|ξ|2=2j

(1 + |ξ|)2s|û|2(ξ)dξ.

Making the change of variables ℓ = n− k, we obtain

+∞∑

n=0

22ns‖Pnu− u‖2L2(Z2)
≃

+∞∑

k=1

+∞∑

l=−∞

albk

which ends the proof of Proposition 9.

Without requiring Fourier transform or frequential decomposition, we have a more
geometrical characterization of Sobolev spaces (with positive index) :
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Proposition 10. For all s > 0 and f ∈ S(Z2),

‖f‖Hs(Z2) ≃ ‖f‖L2(Z2) +

(∫

Z2

∫

Z2

|f(x)− f(y)|2

|x− y|1+2s
2

dµ(x)dµ(y)

)1/2

.

Proof. Considering the double integral and properties of the Haar measure µ, a
change of variables yields
∫

Z2

∫

Z2

|f(x)− f(y)|2

|x− y|1+2s
2

dµ(x)dµ(y) =

∫

Z2

1

|h|1+2s
2

∫

Z2

|f(x + h)− f(x)|
2
dµ(x)dµ(h).

Then according to Plancherel’s inequality (Theorem A.4), we get
∫

Z2

|f(x + h)− f(x)|2 dµ(x) =

∫

Q2

|f̂(ξ)|2|1− e2iπhξ|2dµ(ξ).

Consequently
∫

Z2

∫

Z2

|f(x)− f(y)|2

|x− y|1+2s
2

dµ(x)dµ(y) =

∫

Q2

θ(ξ)|f̂(ξ)|2dµ(ξ)

with

θ(ξ) :=

∫

Z2

|1− e2iπhξ|2

|h|1+2s
2

dµ(h).

It also suffices to prove
(1 + |ξ|22)

s ≃ 1 + θ(ξ). (13)

First if ξ ∈ Z2, then θ(ξ) = 0 (as hξ would be an integer in the integral) ; (13) holds
since |ξ|2 ≤ 1.
Else for ξ /∈ Z2, we denote by p the negative integer satisfying |ξ|2 = 2−p, which is
equivalent to ξ ∈ 2p(1 + 2Z2). For all h ∈ Z2 with |h|2 ≤ 2p, h ∈ 2−p(1 + 2Z2) and
so hξ ∈ Z2. Hence

θ(ξ) =

∫

|h|2≥2p+1

|1− e2iπhξ|2

|h|1+2s
2

dµ(h) ≃

0∑

k=p+1

2−2ks ≃ 2−2ps ≃ |ξ|2s
2 ,

where we used that for a non positive integer l∫

|x|2=2l

e2iπxdµ(x) = 2l−1,

due to Props. 6 and 7. That concludes the proof of (13).

Appendix C. Riesz kernels and associated multipliers. We recall here some
well-known properties concerning particular multipliers, namely Riesz kernels (see
[1, 6, 7] for more details).

Definition C.1. For β > 0, we consider the following function defined on Q2

kβ(ξ) :=
ζ(1 − β)

ζ(β)
|x|β−1

2

and, for β < 0,

kβ(x) := p.v.
ζ(1 + β)

ζ(−β)
|x|β−1

2 ,

where p.v. stands for the principal value based on the following representation for-
mula: ∫

kβφdµ =

∫
kβ(x) [φ(x) − φ(0)] dµ(x),
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and ζ is the local zeta function :

ζ(β) := ζ(1)

∫

Z∗
2

|x|β2
dµ(x)

|x|2
=

1

1− 2−β
.

We denote by R
β the multiplier defined as the convolution operator by kβ.

We have a precise description in the frequency space of the symbols associated to
these multipliers:

Theorem C.2. In the distributional sense, we have

k̂β(ξ) = |ξ|−β
2 . (14)

We refer the reader to Section 3 of [7] for detailed proofs of such results. It rests
on two ideas : in the one hand holomorphic properties of the map β → kβ and in
the other hand the direct calculus for ℜ(β) > 0
∫

Q2

e2iπxξ dµ(x)

|x|−β+1
2

= |ξ|−β
2

∫

Q2

e2iπy dµ(y)

|y|−β+1
2

= |ξ|−β
2

+∞∑

k=−∞

2k(β−1)

∫

|y|2=2k

e2iπydµ(y)

= |ξ|−β
2


∑

k≤0

2k−12k(β−1) − 2β−1


 (thanks to (10))

= |ξ|−β
2

[
1

2(1− 2−β)
−

2β

2

]
= |ξ|−β

2

1− 2β−1

1− 2−β
= |ξ|−β

2

ζ(β)

ζ(1 − β)
.

Remark 3. By analogy with the Euclidean case, we can define a positive Laplacian
operator ∆ on Q2 via the frequency space, as follows:

∆̂f(ξ) := |ξ|22f̂(ξ).

Then, we emphasize that the Riesz operators can be also considered as a power of
the Laplacian: Rβ = ∆−β/2. We refer the reader to [1] for more details about p-adic
pseudo-differential theory.

We deduce also the following properties (which can be obtained by a direct approach,
see [6]):

Corollary 1. The Riesz operators satisfy to the semigroup property (also known as
“Riesz reproduction formula”) : for exponents β, β′ such that ℜ(β + β′) < 1 2

R
β
R

β′

= R
β+β′

and in particular (Rβ)−1 = Rβ.

Using the notion of Fourier series (developed in Section A), we can define multipliers
on Z2 as follows:

Definition C.3. For β > 0, we define on Z2

k̃β(x) :=
2

ζ(β)
|x|β−1

2

2In [1], this assumption is not required and the author get the same properties in a distributional
sense for every complex numbers β, β′
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and for β < 0

k̃β(x) := p.v.
2

ζ(−β)
|x|β−1

2 .

We write R̃β the multiplier operator on Z2 defined as the convolution (on Z2)

operator by k̃β.

Proposition 11. We have the following Fourier representation: for all λ ∈ Λ

F(k̃β)(λ) = |λ|−β
2 . (15)

Proof. By definition, we have

F[k̃β ](λ) = k̂β1Z2(λ).

Then (15) follows from the proof of (14).

Corollary 2. We deduce also that for exponents β, β′ with ℜ(β + β′) < 1 :

R̃
β
R̃

β′

= R̃
β+β′

,

in particular (R̃β)−1 = R̃β , where all these operators are defined on Z2.
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