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Abstract. We study an interacting particle system whose dynamics depends
on an interacting random environment. As the number of particles grows
large, the transition rate of the particles slows down (perhaps because they
share a common resource of fixed capacity). The transition rate of a particle
is determined by its state, by the empirical distribution of all the particles
and by a rapidly varying environment. The transitions of the environment
are determined by the empirical distribution of the particles. We prove the
propagation of chaos on the path space of the particles and establish that
the limiting trajectory of the empirical measure of the states of the particles
satisfies a deterministic differential equation. This deterministic differential
equation involves the time averages of the environment process.

We apply the results on particle systems to understand the behavior of
computer networks where users access a shared resource using a distributed
random Medium Access Control (MAC) algorithm. MAC algorithms are used
in all Local Area Network (LAN), and have been notoriously difficult to ana-
lyze. Our analysis allows us to provide simple and explicit expressions of the
network performance under such algorithms.

1. Introduction and motivation. The paper comprises two separate parts: a
first part is devoted to the analysis of the mean field limits of a general system of
interacting particles, also interacting with a random environment. In the second
part of the paper, we demonstrate how the results on particle systems derived in the
first part can be applied to understand the behavior of computer networks where
users access a shared resource using a distributed random Medium Access Control
(MAC) algorithm. MAC algorithms are implemented in the network access card
of all computers connected to a Local Area Network (LAN). LANs are networks
covering a small geographic area, like a home, an office, a building, and constitute
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a first and crucial component of the Internet. Analyzing random MAC algorithms
is notoriously difficult; most of the related issues have actually been open since the
introduction of the first of these algorithms in the early 70’s. In [7], the author
derived a heuristic approximation of their performance in specific networks. These
formulas are based on the assumption that the particles (or computers) evolve
independently. Our mean field analysis rigorously proves this propagation of chaos,
but also allows us to derive explicit analytical expressions of the performance of
these algorithms in general networks.

A particle system interacting with a random environment. In the first
part of the paper, we are interested in the mean field limit of a system of N in-
teracting particles whose dynamics also depends on an environment process. More
specifically, the evolution of each particle depends on the state of the particle, on the
empirical distribution of all the particles and also on environment variables. The
environment process is a finite state space Markov chain which interacts with the
particle system because its transition kernel depends on the empirical distribution
of the states of the particles. A key feature of the systems considered here is that
the environment is rapidly varying: it evolves at rate 1, whereas the particles evolve
at rate 1/N .

We prove a mean field limit for this particle system when N goes to infinity.
In order to capture the evolution of the particles we must speed up time by a
factor of N . In so doing the particles see a time average of the rapidly changing
environment. In the mean field limit, particles evolve independently, and see the
environment process in its steady state, which in turn evolves as the particles evolve.

Our results on a particle system evolving in a rapidly changing environment is
a generalization of results obtained by Kurtz in [23]. We extend these results in
a couple of ways: first, the particles may evolve according to their current states,
to the empirical distribution of the states of the particles, and to an environment
process; then we show the path-space convergence of the trajectory of the empirical
distribution of the states of the particles. To prove this convergence, we extend and
adapt the method developed by Sznitman and Graham in [27, 18].

The initial motivation for the use of mean field asymptotics was to analyze the
behavior of computer networks. Of course, mean field models have been used in
many contexts and the theory is well developed. For example, Dawson [12] studies
a model in statistical physics where N particles diffusing in a potential well have
the additional property that they are all attracted to the center of mass of all
the particles. The Fleming-Viot model [13] is an example from genetics where a
particle represents an individual and its state represents the genetic type and its
location. Our results (and those in [23]) on interacting particle systems with a
rapidly varying environment could find other applications. For instance, they could
be used to capture the dynamics of a population whose genetic makeup evolves
slowly in time in the presence of a rapidly varying environment whose evolution may
partly depend on the empirical distribution of the individuals. Another potential
field of application is microscopic models in economic theory and stochastic market
evolution, also known as “econophysics”, see for example the work by Karatzas [20]
or Cordier [11]. In a simple market economy or in a financial market, a particle is an
economic agent and its states represents its goods and its savings. The environment
is the prices of the various available goods. Agents may exchange, borrow or lend
money. Both prices and the purchase decisions of agents are interacting. In some



PARTICLE SYSTEM IN RAPIDLY VARYING ENVIRONMENT 33

markets, like financial markets, the prices are fluctuating roughly N times faster
than the decisions of each individual agent.

Analyzing Medium Access Control algorithms in computer networks.

Consider N users (or computers) communicating in a wired or wireless Local Area
Network (LAN). To transmit data packets, users have to share a single resource
(a cable in wired LANs or a radio channel in wireless LANs) using a Medium
Access Control (MAC) protocol. These protocols are distributed, meaning that each
user runs its protocol independently of the other users sharing the same resource.
This architecture has ensured the scalability of LANs (in the sense that new users
can join and leave the network without the need of explicitly advertising it to the
network). Distributed MACs have played a crucial role in LAN development and
hence contributed to the rapid growth of the Internet.

When two users cannot simultaneously successfully transmit data packets (be-
cause they share the same resource), we say that these users interfere. Two in-
terfering users who simultaneously transmit experience a collision, and the packets
have to be retransmitted. Most current MAC protocols limit collisions using the
following two main principles: first, before transmitting, users sense the resource
and should it be busy they abstain from transmitting. This technique is referred
to as CSMA (Carrier Sense Multiple Access) and ensures that packet transmissions
cannot be interrupted. Even if the sensing mechanism is perfect, a collision may
still occur if two interfering users start transmitting at the same time (or rather so
close together in time that CSMA can’t prevent the collision). The second main
principle, termed random back-off, aims at reducing the possibilities that several
users start transmitting simultaneously. To do so, a user only starts transmitting
with a certain probability less than one. This probability is adapted to the number
of successive collisions experienced by users, which allows users to infer the level of
congestion of the resource. Typically, in LANs today, users implement the exponen-
tial back-off algorithm (also referred to as the Decentralized Coordination Function
(DCF) in the standards, see [7] and references therein for a detailed description of
these standards): the transmission probability is divided by a factor two after each
collision, and it is reinitialized after the successful transmission of a packet.

The performance of MAC protocols is measured in terms of the throughput
realized by the various users, i.e., of the number of packets successfully transmitted
by users per second. The performance analysis requires that we can characterize
the joint evolution of the transmission probabilities of the N users (see Section 5
for the state of the art). These probabilities evolve according to a N -dimensional
Markov chain that is usually intractable because of the correlations introduced by
collisions. Mean field asymptotics are useful to approximate this evolution.

In this paper, we consider two relevant scenarios for interference. We consider
networks with full interference where all pairs of users interfere, and networks with
partial interference where users do not interfere with all other users. In the latter
scenario, users are classified according to the set of users they interfere with. Partial
interference typically arises in wireless networks as illustrated in Figure 1: all 6 users
are willing to transmit data packets to the access points 1 or 2; class-1 (resp. class-
3) users interfere with users of classes 1 and 2 (resp. 2 and 3), whereas class-2
users interfere with all users. Two users of class 1 and 3 respectively can not sense
each other and this can lead to fairness issues: users of class 2 find themselves in
a predicament like that of a polite nephew sitting on a sofa between two garrulous
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aunts who are hard of hearing and therefore hear the nephew but not each other.
Each aunt will launch into a new dialogue before the other aunt has finished. The
poor nephew will hardly ever get a word in!

class−1 users class−2 users class−3 users

AP2AP1

Figure 1. A network with partial interference - A dashed line
between two users means that they sense each other.

In Section 5, we apply the results derived for the particle systems to provide
accurate approximations of the performance of a general class of MAC protocols in
networks with full or partial interference. A user is modeled as a particle whose state
includes its transmission probability and its class in the case of partial interference.
The particles interact with each other because of collisions. If the access protocol is
fair each user will necessarily share around 1/N of the resource; i.e. the transmission
probability of users slows down as N increases. Our mean field limit will therefore
depend on rescaling and speeding up time by a factor of N . The environment
process captures the fact that for a given user, the resource is sensed busy or idle.
For example, the environment of the network in Figure 1 is represented by a vector
z = (z1, z2, z3) of zeros and ones. The environment (1, 0, 1) would represent ongoing
transmissions from a user in class 1 and a user in class 3. When a user transmits
the resource is blocked; i.e. the environment changes. These environmental changes
occur at rate determined by N users; i.e. at rate 1 (before rescaling in time).
Consequently the conditions for our theory are met.

Notation. Let E be a separable, complete metric space, P(E) denotes the space
of probability measures on Y. L(X) is the law of the E-valued random variable
X . D(R+, E) the space of right-continuous functions with left-handed limits, with
the Skorohod topology associated with its usual metric, see [15] p 117. With this
metric, D(R+, E) is complete and separable. We extend a discrete time trajectory
(X(k)), k ∈ N, in D(N, E) in a continuous time trajectory in D(R+, E) by setting
for t ∈ R

+, X(t) = X([t]), where [·] denotes the integer part. (Ft), t ∈ R
+ or N, will

denote the natural filtration with respect to the processes considered. ‖ · ‖ denotes
the norm in total variation of measures. Finally, for any measure Q ∈ P(E) and
any measurable function f on Y, 〈f, Q〉 = Q(f) =

∫

fdQ denotes the usual duality
brackets.

2. An interacting particle system in a varying environment. In this sec-
tion, we first provide a precise description of the interacting particle system under
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consideration. We then state the main results, giving the system behavior in the
mean field limit when the number of particles grows to infinity. The proofs of these
results are postponed to subsequent sections.

2.1. Model description. The particles. We consider N particles evolving in a
countable state space X at discrete time slots k ∈ N. For simplicity we assume the
particles are exchangeable. At time k, the state of the i-th particle is XN

i (k) ∈ X .
The state of the system at time k is described by the empirical measure νN (k) ∈
P(X ) while the entire history of the process is described by the empirical measure
νN on path space P(D(N,X )):

νN (k) =
1

N

N
∑

i=1

δXN
i

(k) and νN =
1

N

N
∑

i=1

δXN
i

.

The interacting environment. In the system considered, the evolution of
the particles depends not only on the state of the particle system but also on a
background Markovian process ZN = (ZN

1 , · · · , ZN
N ) ∈ D(N,ZN ), where Z is a

countable state space. Specifically, ZN is a Markov chain whose transition kernel
satisfies the following:

P(ZN
i (k + 1) = z|Fk) = KN

νN (k),XN
i

(k)(Z
N
i (k), z), (1)

where KN
µ,x is a transition kernel on Z depending on a probability measure µ on

P(X ) and on x ∈ X , and where Fk = σ
(

(νN (0), ZN (0)), · · · , (νN (k), ZN (k))
)

. The
latter filtration depends on N , but as pointed out above, without possible confusion,
Fk will always denote the underlying natural filtration of the processes. Note that
(1) does not completely defined the transition kernel of ZN , and actually the joint
evolution of the vector (ZN

1 (k), · · · , ZN
N (k)) is arbitrary.

Evolution of the particles. We represent the possible transitions for a particle
by a countable set S of mappings from X to X . A s-transition for a particle in state
x leads this particle to the state s(x). We assume that the conditional probability
given Fk that a s-transition occurs for the particle i between times k and k + 1 is
equal to

1

N
FN

s (XN
i (k), νN (k), ZN

i (k)). (2)

with
∑

s∈S FN
s (x, α, z) ≤ 1 for all (x, α, z) ∈ X × P(X ) ×Z (the assumption is for

simplicity, the content of the paper is unchanged if
∑

s∈S FN
s (x, α, z) ≤ C for some

constant C independent of (x, α, z)). At most one transition may occur and if no
transition occurs, the particle does not change its state. The term 1/N in (2) is
the scaling factor that guarantee that each particle evolves slowly compared to the
environment, other scaling factors going to 0 with N would also lead to the same
type of results.

We define the events

AN
i (k) = {a transition occurs for particle i between times k and k + 1}.

We assume that the joint distribution of the transitions is weakly correlated. More
precisely,

A0. There exists a positive sequence (ρN )N∈N such that limN ρN = 0 and

P(AN
1 (k)AN

2 (k)|Fk) ≤
ρN

N
. (3)
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Note that, due to (2), the process ZN evolves quickly while the empirical measure
νN (k) evolves slowly. Also note that the s-transitions of the various particles may
be correlated. The process ZN may depend on the transitions of the particles. The
particle system is thus in interaction with its environment. Note finally that if the
particle transitions are independent then (3) holds with ρN = 1/N .

We make the following additional assumptions on the system evolution.

Assumptions.

A1. Uniform convergence of FN
s to Fs:

limN→∞ sup(x,α,z)∈X×P(X )×Z

∑

s∈S |FN
s (x, α, z) − Fs(x, α, z)| = 0.

A2. The functions Fs is uniformly Lipschitz:
sup(x,z)∈X×Z

∑

s∈S |Fs(x, α, z) − Fs(x, β, z)| ≤ C‖α − β‖.

A3. Uniform convergence in total variation of KN
α to Kα:

limN→∞ sup(x,α,z)∈X×P(X )×Z ‖KN
α,x(z, ·) − Kα,x(z, ·)‖ = 0.

A4. The mapping α 7→ Kα is uniformly Lipschitz:
sup(x,z)∈X×Z ‖Kα,x(z, ·) − Kβ,x(z, ·)‖ ≤ C‖α − β‖.

A5. The Markov chains with kernels Kα,x have a unique stationary probability
measure πα,x.

A6. For all x in X , α, β in P(X ): ‖πα,x−πβ,x‖ ≤ C supz∈Z ‖Kα,x(z, ·)−Kβ,x(z, ·)‖.

We discuss in Section 4 how the above assumptions may be checked.

2.2. Main results. The main result of this paper is to provide a mean field analysis
of the system described above, i.e, to characterize the evolution of the system when
the number of particles grows. According to (2), as N → ∞, the chains XN

i (t) slow
down hence to derive a limiting behavior we define:

qN
i (t) = XN

i ([Nt]) and µN =
1

N

N
∑

i=1

δqN
i
∈ P(D(R+,X )).

The time t represents a “slow” time evolution. Despite the discrete time model
representation, the analysis will be carried out in continuous time. We wish to
apply the ideas in Theorem 2.1 in [23]. In that context we define the joint measure

ζN (k)(A × B) =
1

N

N
∑

i=1

χ{XN
i (k) ∈ A, ZN

i (k) ∈ B}

for A ⊆ X and B ⊆ Z. Clearly the evolution of νN is determined by ζN . Next we
rescale time and define Y N (t)(A × B) = ζN ([Nt]). In the context of [23] our νN is
Kurtz’s XN and our Y N is Kurtz’s YN . However we can’t quite apply the theorems
in [23] because the transition kernel of ZN

i depends on both νN and XN
i .

Following [23] we define ℓm(Z×X ) to be the space of measures on [0,∞)×Z×X
such that for γ ∈ ℓm(Z × X ), γ([0, t] ×Z × X ) = t. Define

ΓN ([0, t] × A × B) =

∫ t

0

Y N (s)(A × B)ds.

Note that ΓN ([0, T ], x,Z) =
∫ T

0 µN (s)(x)ds. Since Y N doesn’t slow down as N → ∞

like µN we can’t hope to prove the weak convergence of Y N but the occupation
measure ΓN does converge weakly by averaging. To obtain the relative compactness
of ΓN and µN we require the following assumptions.
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A7. For each ǫ > 0 and each t > 0 there exists a compact K ⊆ X × Z such that
lim infN E[ΓN ([0, t] ×K)] ≥ (1 − ǫ)t.

A8. L(qN
1 (·)) is tight in P(D(R+,X )).

In most applications, the tightness of L(qN
1 (·)) in P(D(R+,X )) is not a major

issue. Indeed, note that the inter-arrival times between two transitions of qN
1 (.)

are independent Binomial (N, 1/N) variables (which converges to exponential (1)
variables). Hence, if for example the state space X or the set of transitions S is
finite, we may apply the tightness criterion Theorem 7.2 in Ethier-Kurtz [15] p.128.

2.2.1. Transient regimes. If E is a metric space, a sequence of random variables
(Y N

i )i∈{1,...,N} ∈ EN is exchangeable if L((Y N
i )i∈{1,...,N}) = L((Y N

σ(i))i∈{1,...,N})

where σ is any permutation of {1, . . . , N}. Moreover the sequence is Q-chaotic if
for all subsets I ⊂ N of finite cardinal |I|,

lim
N→∞

L
(

(Y N
i )i∈I

)

= Q⊗|I| weakly in P(E|I|). (4)

The following theorem provides the limiting behavior of the system in transient
regimes.

Theorem 2.1. Assume that the Assumptions A0-A8 hold and that the initial values
qN
i (0), i = 1, . . . , N , are exchangeable and such that their empirical measure µN

0

converges in distribution to a deterministic limit Q0 ∈ P(X ) when N → ∞. There
exists a probability measure Q on D(R+,X ) such that the processes (qN

i (.), i ∈
{1, . . . , N}) are Q-chaotic.

In [27], Sznitman proved that if qN
i (0), i = 1, . . . , N , are exchangeable, their em-

pirical measure µN
0 converges in distribution to a deterministic limit Q0 ∈ P(X ) if

and only if qN
i (0), i = 1, . . . , N , are Q0-chaotic. Then, the above theorem states that

if the particles are initially asymptotically independent, then they remain asymp-
totically independent. This phenomenon is also known as the propagation of chaos.

The independence allows us to derive an explicit expression for the system state
evolution. As explained earlier, intuitively, when N is large, the evolution of the
background process is very fast compared to that of the particle system. The
particles then see a time average of the background process. The following theorem
formalizes this observation. For α ∈ P(X ) and x ∈ X , let πα,x denote the stationary
distribution of the Markov chain with transition kernel Kα,x. We define the average
transition rates for a particle in state x by

F s(x, α) =
∑

z∈Z

Fs(x, α, z)πα,x(z). (5)

Define Qx(t) = Q(t)({x}) where x ∈ X . Qx(t) is the limiting (when N → ∞)
proportion of particles in state x at time t.

Theorem 2.2. Under the assumptions of Theorem 2.1, the limiting proportions
Qx(t) of the particles in the various states satisfy: Qx(0) = Q0({x}) and for all
time t > 0, for all n ∈ N,

dQx

dt
=
∑

s∈S

∑

y:s(y)=x

Qy(t)F s(y, Q(t)) −
∑

s∈S

Qx(t)F s(x, Q(t)). (6)

The equations (6) have the following interpretation: Qy(t)F s(y, Q(t)) is a mean
flow of particles from state y to s(y). Hence,

∑

s∈S

∑

y:s(y)=x Qy(t)F s(y, Q(t)), is
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the total mean incoming flow of particle to x and
∑

s∈S Qx(t)F s(x, Q(t)) is the
mean outgoing flow from x.

2.3. Stationary regime. We now characterize the stationary behavior of the sys-
tem in the mean field limit. To do so, we make two additional assumptions:

A9. For all N , the Markov chain ((XN
i (k))1≤i≤N , ZN(k))k∈N is positive recurrent.

The set of stationary distributions Lst(X
N
1 ) is tight.

A10. The dynamical system (6) is globally stable: there exists a measure Qst =
(Qx

st) ∈ P(X ) satisfying for all n:
∑

s∈S

∑

y:s(y)=x

Qy
stF s(y, Qst) = Qx

st

∑

s∈S

F s(x, Qst), (7)

and such that for all Q ∈ P(D(R+,X )) satisfying (6), for all n, limt→+∞ Qx(t)
= Qx

st.

Assumption A10 is not easy to check on the original particle system, it is a global
property of the mean-field limit. It rules out all metastable behaviour. Then the
asymptotic independence of the particles also holds in the stationary regime:

Theorem 2.3. Under Assumptions A0-A10, for all subsets I ⊂ N of finite cardinal
|I|,

lim
N→∞

Lst

(

(qN
i (.))i∈I

)

= Q
⊗|I|
st weakly in P(D(R+,X )|I|).

3. Proof of Theorems 2.1, 2.2 and 2.3. We use the following notation exten-
sively:

AN,s
i (k) = {s-transition occurs for the particle i between k and k + 1}. (8)

By definition, we have:

P(AN,s
i (k)|Fk) =

1

N
FN

s

(

qN
i (

k

N
), µN (

k

N
), ZN

i (k)

)

.

We also recall the notation

AN
i (k) = {a transition occurs for particle i between times k and k + 1}. (9)

We have: AN
i (k) = ∪s∈SAN,s

i (k).

3.1. Proof of Theorems 2.1 and 2.2. By Proposition 2.2. in Sznitman [27],
Theorem 2.1 is equivalent to

lim
N→∞

L(µN ) = δQ weakly in P(P(D(R+,X ))). (10)

To establish (10), we first prove the tightness of the sequence L(µN , ΓN). We then
show that any accumulation point of L(µN ) is the solution of a martingale problem.
This requires idea from Theorem 2.1 and Example 2.3 in [23]. We will then prove
that the martingale problem as a unique solution, say Q, and we shall obtain (10).
Theorem 2.2 will then also follow easily by taking expectation in the non-linear
Kolmogorov equation associated to the martingale problem.

3.1.1. Step 1 : Relative Compactness. First we check that the sequence L(µN ) is
tight in P(P(D(R+,X ))). Thanks again to Sznitman [27] Proposition 2.2, this
a consequence of the tightness of L(qN

1 (.)) in P(D(R+,X )); i.e. of A8. By Pro-
horov’s theorem L(µN ) is relatively compact. By Lemma 1.3 in [23], ΓN is relatively
compact because of the compact containment hypothesis A7. It follows that the
sequence L(µN , ΓN )) is relatively compact.
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3.1.2. Step 2 : Convergence to the solution of a martingale problem. We will follow
the Step 2 in Graham [18]. We show that any accumulation point of L(µN , ΓN)
satisfies a certain martingale problem. For f ∈ L∞(X ), the bounded and forcibly
measurable functions of X → R. For each s ∈ S, we define

fs(x) = f(s(x)) − f(x).

Now, for f ∈ L∞(X ), T ≥ 0, and t ≤ T ,

f(qN
i (T )) − f(qN

i (t)) =

[NT ]−1
∑

k=[Nt]

(

f(qN
i (

(k + 1)

N
− f(qN

i (
k

N
))

)

=
∑

s∈S

[NT ]−1
∑

k=[Nt]

fs(qN
i (

k

N
))
(

χ{AN,s
i (k)} − P(AN,s

i (k)|Fk)
)

+
∑

s∈S

[NT ]−1
∑

k=[Nt]

fs(qN
i (

k

N
))P(AN,s

i (k)|Fk). (11)

Then we define Mf,N
i (t) =

∑

s∈S Mf,N,s
i (t) with

Mf,N,s
i (t) =

[Nt]−1
∑

k=0

fs(qN
i (

k

N
))
(

χ{AN,s
i (k)} − P(AN,s

i (k)|Fk)
)

(12)

and

GN,s
i f(k) = fs(qN

i (
k

N
))FN

s

(

qN
i (

k

N
), µN (

k

N
), ZN

i (k)

)

.

So that, we may rewrite Equation (11) as

f(qN
i (T )) − f(qN

i (t)) = Mf,N
i (T ) − Mf,N

i (t) +
1

N

[NT ]−1
∑

k=[Nt]

∑

s∈S

GN,s
i f(k)

= Mf,N
i (T ) − Mf,N

i (t)

+

∫ T

t

∑

s∈S

fs(qN
i (u))FN

s (qN
i (u), µN (u), ZN

i (u))du. (13)

The proof of the following lemma is given at the end of this section.

Lemma 3.1. Mf,N
i (t) defined at (12) is a square-integrable martingale. There

exists C > 0 such that the Doob-Meyer brackets 〈Mf,N
i , Mf,N

i 〉t ≤ Ct‖f‖2
∞ and for

i 6= j, |〈Mf,N
i , Mf,N

j 〉t| ≤ Ct‖f‖2
∞ max(ρN , 1/N).

Now assume that Lemma 3.1 holds, and let Π∞ be an accumulation point of
L(µN , ΓN ). Let (µ, Γ) be a random variable taking values in P(D(R+,X ))×ℓm(Z×
X ) having distribution Π∞ which is adapted to a complete filtration Ft in the
sense that for each t, Γ([0, t], x, z) is Ft-measurable. By continuity Γ([0, t], x,Z) =
∫ t

0
µx(s)ds, where µx(s) = µ(s)({x}). By Lemma 1.4 in [23] there exists an Ft-

predictable P(X ,Z) valued process γ such that Π∞-almost surely,

Γ([0, t], x, z) =

∫ t

0

γu(x, z)du.
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Define the Radon-Nikodym derivative:

γ(t,x,Γ)(z) =
Γ(dt, x, z)

Γ(dt, x,Z)
=

Γ(dt, x, z)

µx(t)dt
.

Clearly γ(t,x,Γ)(z) = γt(x, z)/γt(x,Z) Π∞-almost surely. The Radon-Nikodym de-
rivative γ(t,x,Γ)(z) is the instantaneous proportion of time that the environment of
a particle in state x at time t is z. The motivation for its introduction lies in the
next lemma.

Lemma 3.2. We have:

γ(t,x,Γ) = πµ(t),x.

Proof. Define ΓN
k (x, z) = 1

N

∑N
i=1 χ{XN

i (k) = x, ZN
i (k) = z}, we have

ΓN ([0, t], x, z) =
1

N

[Nt]
∑

k=0

ΓN
k (x, z)

=
ΓN

0 (x, z)

N
+

1

N

[Nt]−1
∑

k=0

E(ΓN
k+1(x, z)|Fk)

+
1

N

[Nt]−1
∑

k=0

(

ΓN
k+1(x, z) − E(ΓN

k+1(x, z)|Fk)
)

. (14)

The first term in the above expression goes to 0 as N goes to infinity. The third
term is a mean zero martingale. From Dynkin’s formula, we have

E





1

N

[Nt]−1
∑

k=0

(

ΓN
k+1(x, z) − E(ΓN

k+1(x, z)|Fk)
)





2

=
1

N2

[Nt]−1
∑

k=0

E
(

ΓN
k+1(x, z) − E(ΓN

k+1(x, z)|Fk)
)2

≤
t

N
.

The second term in (14) is equal to

1

N

[Nt]−1
∑

k=0

E(ΓN
k+1(x, z)|Fk)

=
1

N

N
∑

i=1

1

N

[Nt]−1
∑

k=0

E
(

χ{XN
i (k + 1) = x, ZN

i (k + 1) = z}|Fk

)

=
1

N

N
∑

i=1

1

N

[Nt]−1
∑

k=0

∑

y

χ{XN
i (k) = x, ZN

i (k) = y}KN
νN(k),x(y, z) · (1 −

1

N
)

+
1

N

N
∑

i=1

1

N

[Nt]−1
∑

k=0

∑

w:s(w)=x

χ{XN
i (k) = w}P (AN,s

i (k), ZN
i (k + 1) = z|Fk). (15)

Note that from (2)

∑

w:s(w)=x

χ{XN
i (k) = w}P (AN,s

i (k), ZN
i (k + 1) = z|Fk) ≤ P

(

AN
i (k)|Fk

)

≤
1

N
.
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Thus, as N → ∞ the only important term in (15) is the first sum and it is equivalent
to:

1

N

N
∑

i=1

1

N

[Nt]−1
∑

k=0

∑

y

χ{XN
i (k) = x, ZN

i (k) = y}KN
νN (k),x(y, z)

=
1

N

N
∑

i=1

1

N

[Nt]−1
∑

k=0

∑

y

χ{qN
i (

k

N
) = x, ZN

i (k) = y}KN
µN ( k

N
),x

(y, z)

=

∫ [Nt]/N

0

∑

y∈Z

ΓN (du, x, y)KN
µN (u),x(y, z)du

→

∫ t

0

∑

y∈Z

Γ(du, x, y)Kµ(u),x(y, z)du

as N → ∞ (by Assumptions A3-A4). Therefore, our calculation gives,

E



Γ([0, t], x, z) −

∫ t

0

∑

y∈Z

Γ(du, x, y)Kµ(u),x(y, z)du





2

= 0.

It follows that Γ([0, t], x, z) =
∫ t

0

∑

y∈Z Γ(du, x, y)Kµ(u),x(y, z)du almost surely and

hence that γt(x, z) =
∑

y∈Z γt(x, y)Kµ(t),x(y, z) almost everywhere in t Π∞-almost

surely. However for a given µ(t) and x, by Assumption A5 there is a unique so-
lution to the above which is a probability; i.e. for all z ∈ Z, γt(x, z)/γt(x,Z) =
πµ(t),x(z).

Lemma 3.3. µ satisfies a non-linear martingale problem starting at Q0. Specifi-
cally, for all f ∈ L∞(X ),

Mf (T ) = f(X(T ))− f(X(0)) −

∫ T

0

Gf(X(u), µ(u))du (16)

is a µ-martingale, where X = (X(t))t≥0 denotes a canonical trajectory in D(R+,X ),
µ(0) = Q0, Π∞-a.s. and

Gf(x, µ(t)) =
∑

s

fs(x)F s(x, µ(t)).

Proof. The proof is similar to Step 2 of Theorem 3.4 of Graham [18] or of Theorem
4.5 of Graham and Méléard [17]. However, here our assumptions are weaker so we
detail the proof.

From Lemma 7.1 in Ethier and Kurtz [15], the projection map X 7→ X(t) is
µ-a.s. continuous for all t except perhaps in at most a countable subset Dµ of R+.
Further it is shown easily that D = {t ∈ R+ : Π∞({µ : t ∈ Dµ}) > 0} is at most
countable (see the argument in the proof of Theorem 4.5 of Graham and Méléard
[17]).

Take 0 ≤ t1 < t2 < · · · tk ≤ t < T outside D and g ∈ L∞(X k). Take f ∈ L∞(X ).
The map G : P(D(R+,X )) → R defined by

R 7→ 〈

(

f(X(T ))− f(X(t)) −

∫ T

t

Gf(X(u), µ(t))du

)

g(X(t1), . . . , X(tk)), R〉
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is Π∞-a.s. continuous. We will prove that

Π∞-a.s, G(µ) = 0. (17)

Now assume (17) holds for arbitrary 0 ≤ t1 < t2 < · · · tk ≤ t < T outside a
countable set D and g ∈ Cb(X

k). It implies that for all A ⊂ Ft, 〈M
f (T )1A, µ〉 =

〈Mf (t)1A, µ〉. Therefore, by definition, Mf (t) is a µ-martingale and µ satisfies the
non-linear martingale problem (16).

It remains to prove (17). Let ΠN be the law of (µN , ΓN ), we write :

〈G, ΠN 〉 = G(
1

N

N
∑

i=1

δqN
i

)

=
1

N

N
∑

i=1

(

f(qN
i (T )) − f(qN

i (t))
)

gN
i −

1

N

N
∑

i=1

(

∫ T

t

Gf(qN
i (u), µ(u))du

)

gN
i ,

where gN
i = g(qN

i (t1), . . . , q
N
i (tk)). From (13),

〈G, ΠN 〉 =
1

N

N
∑

i=1

(

Mf,N
i (T ) − Mf,N

i (t)
)

gN
i

+
1

N

N
∑

i=1

(

∫ T

t

∑

s∈S

fs(qN
i (u))FN

s (qN
i (u), µN (u), ZN

i (u))du

−

∫ T

t

Gf(qN
i (u), µ(u))du

)

gN
i .

Hence,

E|〈G, ΠN 〉| ≤ E

∣

∣

∣

∣

∣

1

N

N
∑

i=1

(Mf,N
i (T ) − Mf,N

i (t))gN
i

∣

∣

∣

∣

∣

+E

∣

∣

∣

∣

∣

1

N

N
∑

i=1

(

∫ T

t

∑

s∈S

fs(qN
i (u))FN

s (qN
i (u), µN (u), ZN

i (u))du

−

∫ T

t

Gf(qN
i (u), µ(u))du

)

gN
i

∣

∣

∣

∣

∣

≤ I + II,

Using exchangeability and the Cauchy-Schwartz inequality, we obtain:

I2 ≤
‖g‖2

∞

N
E
(

Mf,N
1 (T ) − Mf,N

1 (t)
)2

+
N − 1

N
E
(

(Mf,N
1 (T ) − Mf,N

1 (t))gN
1 (Mf,N

2 (T ) − Mf,N
2 (t))gN

2

)

.

Lemma 3.1 implies that I tends to 0.
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Next, II2 is less than or equal to

‖g‖2
∞E

(

1

N

N
∑

i=1

(∫ T

t

∑

s∈S

fs(qN
i (u))FN

s (qN
i (u), µN (u), ZN

i (u))du

−

∫ T

t

Gf(qN
i (u), µN (u))du

)

)2

≤ ‖g‖2
∞E

(

∫ T

t

∑

s∈S

∑

x,z

fs(x)FN
s (x, µN (u), z)ΓN(du, x, z)

−

∫ T

t

∑

x

Gf(x, µN (u))ΓN (du, x,Z)

)2

.

However, as N → ∞,

∫ T

t

∑

s∈S

∑

x,z

fs(x)FN
s (x, µN (u), z)ΓN(du, x, z)

→

∫ T

t

∑

s∈S

∑

x,z

fs(x)Fs(x, µ(u), z)Γ(du, x, z),

and using Lemma 3.2

∫ T

t

∑

x

Gf(x, µN (u))ΓN (du, x,Z)

=

∫ T

t

∑

s

∑

x

fs(x)Fs(x, µN (u), z)γ(t,x,Γ)(z)ΓN(du, x,Z)

→

∫ T

t

∑

s

∑

x,z

fs(x)Fs(x, µ(u), z)γ(t,x,Γ)(z)Γ(du, x,Z)

=

∫ T

t

∑

s∈S

∑

x,z

fs(x)Fs(x, µ(u), z)Γ(du, x, z).

Consequently II2 → 0 as N → ∞.
Hence, from (18) and Fatou’s Lemma, 〈|G|, Π∞〉 ≤ limN 〈|G|, ΠN 〉 = 0 and thus

Π∞-a.s, G(µ) = 0, (17) is proved.
To conclude the proof of Lemma 3.3, note that the continuity of X → X(0)

implies µ(0) = Q0, Π∞-a.s..

3.1.3. Step 3 : Uniqueness of the solution of martingale problem. We now show the
solution to (16) is unique. It will conclude the proofs of (10) and Theorem 2.1.
Here, we will use Proposition 2.3 in Graham [18] (which is an extension of Lemma
2.3 in Shiga and Tanaka [26]) to show uniqueness. We remark that Gf(x, α) =
∫

X (f(y) − f(x))Jx,α(dy) where

Jx,α =
∑

s∈S

F s(x, α)δs(x).
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Next, ‖Jx,α‖ =
∑

s∈S F s(x, α) ≤ 1 and ‖Jx,α − Jx,β‖ = sup |
∫

X ϕ(y)Jx,α(dy) −
∫

X ϕ(y)Jx,β(dy)| where the supremum is over functions ϕ ∈ L∞(X ) with ‖ϕ‖∞ ≤ 1.

|Jx,α(ϕ) − Jx,β(ϕ)| =
∣

∣

∣

∑

s∈S

ϕ(s(x))
(

F s(x, α) − F s(x, β)
)∣

∣

∣

=
∣

∣

∣

∑

s∈S

ϕ(s(x))
(

∫

Z

Fs(x, α, z)πα,x(dz) −

∫

Z

Fs(x, β, z)πβ,x(dz)
)∣

∣

∣

≤
∣

∣

∣

∑

s∈S

ϕ(s(x))
(

∫

Z

Fs(x, α, z)πα,x(dz) −

∫

Z

Fs(x, α, z)πβ,x(dz)
)∣

∣

∣

+
∣

∣

∣

∑

s∈S

ϕ(s(x))
(

∫

Z

Fs(x, α, z)πβ,x(dz) −

∫

Z

Fs(x, β, z)πβ,x(dz)
)∣

∣

∣

≤ I + II.

By Fubini’s Theorem,

I =
∣

∣

∣

∫

Z

∑

s∈S

ϕ(s(x))Fs(x, α, z)πα,x(dz) −

∫

Z

∑

s∈S

ϕ(s(x))Fs(x, α, z)πβ,x(dz)
∣

∣

∣

≤ ‖
∑

s∈S

ϕ(s(x))Fs(x, α, ·)‖∞‖πα,x − πβ,x‖.

Since |ϕ(s(x))| ≤ 1, Fs(x, α, z) ≥ 0 and
∑

s∈S Fs(x, α, z) ≤ 1,

‖
∑

s∈S

ϕ(s(x))Fs(x, α, ·)‖∞ ≤ 1.

Thus applying Assumptions A4-A6, we deduce:

I ≤ ‖πα,x − πβ,x‖ ≤ C‖α − β‖.

Using Assumption A2,

II ≤

∫

Z

∑

s∈S

|Fs(x, α, z) − Fs(x, β, z)|πβ,x(dz)

≤ C‖α − β‖.

So finally, we have checked that:

‖Jx,α − Jx,β‖ ≤ C‖α − β‖.

We then use Proposition 2.3 in Graham [18] to establish the solution to the mar-
tingale problem (16) is unique.

3.1.4. Step 4 : Weak convergence and Evolution equation. In the three first steps
we have proved that L(µN ) converges weakly to µ = δQ, where Q is the unique
solution of the martingale problem (16) starting at Q0.

We can now identify the evolution equation satisfied by Q and prove Theorem
2.2. Since Q satisfies the martingale problem then (Q(t))t≥0 solves the non-linear
Kolmogorov equation derived by taking the expectation in (16):

〈f, Q(T )〉 − 〈f, Q(0)〉 =

∫ T

0

〈Gf(·, Q(t)), Q(t)〉dt. (18)

Applying (18) to f = 1x for every x ∈ X , we get the set of differential equations
(6). It immediately follows that Γ is also deterministic and Γ(dt, x, z) = dt ·Qx(t) ·
πQ(t),x(z) almost surely.
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3.1.5. Proof of Lemma 3.1. First, Mf,N
i (t) is a square-integrable martingale by

the Dynkin’s formula. Recall that AN,s
i (k) is defined in Equation (8) and that

AN
i (k) = ∪s∈SAN,s

i (k). In the sequel, EFk
[.] will denote E[.|Fk]. With this notation,

EFk
[1AN

i
(k)] ≤ 1/N , and we can rewrite Equation (12) as:

Mf,N
i (t) =

[Nt]−1
∑

k=0

∑

s∈S

fs(qN
i (

k

N
))
(

χ{AN,s
i (k)} − EFk

χ{AN,s
i (k)}

)

.

To prove Lemma 3.1, we first need to compute E[Mf,N
1 (t)Mf,N

2 (t)]. Since

(Mf,N
i (t))t∈R+ is a martingale this product is equal to:

E[Mf,N
1 (t)Mf,N

2 (t)]

=

[Nt]−1
∑

k=0

∑

s,s′∈S

Efs(qN
1 (

k

N
))
(

χ{AN,s
1 (k)} − EFk

χ{AN,s
1 (k)}

)

×fs′

(qN
2 (

k

N
))
(

χ{AN,s′

2 (k)} − EFk
χ{AN,s′

2 (k)}
)

.

Now, let

IN
k =

∑

s,s′∈S

E

[

fs(qN
1 (

k

N
))(χ{AN,s

1 (k)} − EFk
χ{AN,s

1 (k)})

× fs′

(qN
2 (

k

N
))(χ{AN,s′

2 (k)} − EFk
χ{AN,s′

2 (k)})

]

=
∑

s,s′∈S

E

[

fs(qN
1 (

k

N
))fs′

(qN
2 (

k

N
))

×
(

EFk
[χ{AN,s

1 (k)}χ{AN,s′

2 (k)}] − EFk
[χ{AN,s

1 (k)}]EFk
[χ{AN,s′

2 (k)}]
)]

.

Notice that

∣

∣

∣

∑

s,s′∈S

fs(qN
1 (

k

N
))fs′

(qN
2 (

k

N
))EFk

[χ{AN,s
1 (k)}χ{AN,s′

2 (k)}]
∣

∣

∣

≤ 4‖f‖2
∞EFk

[
∑

s,s′

χ{AN,s
1 (k)}χ{AN,s′

2 (k)}]

≤ 4‖f‖2
∞P(AN

1 (k)AN
2 (k)|Fk).

Analogously, we also have:

∣

∣

∣

∑

s,s′∈S

fs(qN
1 (

k

N
))fs′

(qN
2 (

k

N
))EFk

[χ{AN,s
1 (k)}]EFk

[χ{AN,s′

2 (k)}]
∣

∣

∣

≤ 4‖f‖2
∞P(AN

1 (k)|Fk)P(AN
2 (k)|Fk).

Therefore from (3), |IN
k | ≤ 8‖f‖2

∞ max(ρN/N, 1/N2) and

|E[Mf,N
1 (t)Mf,N

2 (t)]| ≤ 8‖f‖2
∞t max(ρN , 1/N).
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Similarly, we obtain

E
(

Mf,N
1 (t)

)2

=

[Nt]−1
∑

k=0

E

(

∑

s∈S

fs(qN
1 (

k

N
))
(

χ{AN,s
1 (k)} − EFk

χ{AN,s
1 (k)}

)

)2

≤

[Nt]−1
∑

k=0

8‖f‖2
∞P(AN

1 (k))

≤ 8‖f‖2
∞t,

and the lemma follows.

3.2. Proof of Theorem 2.3. Assume that ((qN
i (0))i, Z

N) represents the system
of N particles in stationary regime. Then by symmetry, (qN

i (0))i is exchangeable.
Define ΠN = L(µN , ΓN). We cannot directly apply Theorem 2.1 since we do not
know whether a converging subsequence of µN (0) converges weakly toward a deter-
ministic limit.

We now circumvent this difficulty. By Assumption A9, as in Step 1 in the proof
of Theorem 2.1, we deduce from Sznitman [27] Proposition 2.2, that µN is tight in
P(D(R+,X )) and ΠN is tight in P(D(R+,X ))×ℓm(Z×X ). Let Q in P(D(R+,X ))
be in the support of Π∞ = (µ∞, Γ∞), an accumulation point of ΠN . We can prove
similarly that Lemma 3.3 still holds for Q.

By Step 3 of Theorem 2.1, the solution of the martingale problem is unique and Q
solves it with initial condition Q(0). The stationarity implies that µN (t) and µN (0)
are equal. Note also that outside a countable set D, the mapping X 7→ X(t) is
continuous. So if t /∈ D, Q(t) = µ∞(t) = µ∞(0) = Q(0). However, by Assumption
A9, limt→+∞ Q(t) = Qst. Therefore µ∞(0) = δQst

and Q(0) = Qst.
Theorem 2.3 is then a consequence of Theorem 2.1.

4. A uniform domination criterion. In this section we discuss the Assumptions
A0-A9 made on the particle system. Assumptions A0-A6 are natural and can
be checked directly. The additional assumptions A9 and A10 needed to derive
the mean field limit in the stationary regime may be difficult to check: A9 is a
tightness assumption on the stationary measures and A10 is the global stability of
a differential equation.

In this section we present a new set of assumptions, based on uniform domination
of the transition kernel of the background process, that is provably sufficient to
ensure that Assumptions A7. The new assumptions are defined as follows:

A11 There exists a transition kernel K on Z which dominates the kernels KN
α,x.

Specifically, let � be a partial order on Z such that Kz = {w ∈ Z : w � z} is
finite for all z ∈ Z. There exists K such that for all N , z, x, α,

KN
α,x(z, ·) �st K(z, ·),

where �st is the stochastic order relation: P �st P ′ if for all z1 ∈ Z:
∑

z�z1
P (z) ≤

∑

z�z1
P ′(z).

A12 The Markov chain Z(t) with transition kernel K is positive recurrent.

Lemma 4.1. Under Assumptions A8 and A11-A12, A7 holds.

Proof. Because the chain Z is positive recurrent, the long run proportion of time
the chain Z spends outside a compact set Kz is of probability at most ǫ/2 for some
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z ∈ Z, so

1

t
EΓN([0, t] ×X ×Kz) =

1

Nt

[Nt]
∑

k=0

(
1

N

N
∑

i=1

Eχ{ZN
i (k) ∈ Kz})

≥
1

Nt

[Nt]
∑

k=0

P(Z(k) ∈ Kz)

→ (1 − ǫ/2)

as N → ∞ Hence lim infN EΓN([0, t] ×X ×Kz) ≥ (1 − ǫ/2)t.
By A8 we know µN is relatively compact and hence tight. By (2.5) in [27] the

tightness of µN is equivalent to the tightness of their intensity measures I(µN ) in
P(D(R+,X )) defined by I(µN )(F ) = EµN (F ) for F ∈ B((D(R+,X )), the Borel
σ-algebra associated to the Skorohod topology. Hence for every ǫ > 0 there exists
a compact set Kǫ in D(R+,X ) such that infN EµN (Kǫ) ≥ 1 − ǫ/2. However by
Remark 6.4 on page 124 in [15], for each T > 0 there exists a compact set Kx ⊆ X
such that for all t ∈ [0, T ], {x(t) : x(·) ∈ Kǫ} ⊆ Kx. Hence, µN (t)(Kx) ≥ µN (Kǫ)
for all t ∈ [0, T ] and for all N . Consequently infN EµN (t)(Kx) ≥ 1 − ǫ/2 for all
t ∈ [0, T ]. However, for each t,

1

t
EΓN([0, t],Kx,Z) =

1

t

∫ t

0

EµN(u)(Kx)du ≥ 1 − ǫ/2.

by the above. We conclude A7 holds with K = Kx ×Kz .

5. Application to random multi-access protocols. We now apply the previ-
ous analytical results to study the performance of communication networks where
N users share a common resource in a distributed manner. We consider for exam-
ple Local Area Networks (LANs) which are computer networks with relatively small
geographic coverage (an office, a house, a part of a campus), and which constitutes
the first crucial component of the Internet. Transmissions in LANs are handled ei-
ther on a cable (wired LANs) or on a radio channel (wireless LANs, also commonly
called WiFi). Here we will focus on wireless LANs (our analysis can be carried out
similarly in the case of wired LANs). In wireless LANs, users that are close to each
other or that wish to transmit to the same receivers interfere in the sense that they
cannot simultaneously transmit packets successfully. Two interfering users trans-
mitting simultaneously are said to experience a collision. A collision is detected by
a user at the end of the packet transmission when the corresponding receiver does
not acknowledge a successful reception. One of the most challenging problems in
computer networking has been to design mechanisms so that interfering users could
efficiently and fairly share the resource in a distributed manner. Currently, users
willing to transmit packets through a wireless LAN, implement two standardized
mechanisms, Carrier Sense Multiple Access (CSMA) and a random back-off algo-
rithm referred to as the Decentralized Coordination Function (DCF), see [2]. In this
section we aim at analyzing the performance of a general class of mechanisms, in-
cluding the current CSMA - DCF couple, and at understanding whether the current
mechanisms perform well or if they still require extensive improvements.

In the next subsection, we provide a short description of CSMA and of a class
of random back-off algorithms, but also introduce a simple model for interference,
and explain why performance in wireless LANs is difficult to study. In the sub-
sequent subsections, we explain how the results derived earlier in the paper for
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particle systems allow us to circumvent this difficulty and explicitly characterize
the performance in these networks.

5.1. Distributed mechanisms and performance in wireless LANs.

5.1.1. Carrier Sensing mechanisms. A first mechanism to separate transmissions of
interfering users in time is CSMA. Before transmission, each user senses the chan-
nel, and should it be busy, it abstains from transmitting. This sensing mechanism
may be too simple to capture the actual interference structure of the network (since
for example, the sensing is made at the transmitters, whereas interference is experi-
enced at the receivers). Collisions may occur due to hidden terminals, and a loss of
efficiency can be due to exposed terminals, see e.g. [19]. Hidden terminals refer to
users who are not able to detect (sense) each other but whose transmissions interfere
at the receiver. On the contrary, exposed terminals are users who cannot simulta-
neously transmit because they sense each other’s transmissions. In this paper, for
simplicity, we restrict our attention to a perfect carrier sensing mechanism, where
users sensing each other actually interfere at the receiver (we believe the analysis
could be extended with hidden and exposed terminals).

5.1.2. Random back-off algorithms. Even under a perfect carrier sensing mecha-
nism, collisions cannot be completely avoided if two users start transmitting si-
multaneously. To further reduce collisions, each user runs (independently of other
users) a random back-off algorithm. After each successful transmission or each col-
lision, the user randomly picks a value for its back-off counter according to some
distribution on N. This value represents the number of slots the channel has to
be observed idle before that the user may start transmitting (basically the user
decrements its counter by one after sensing the channel idle during one slot). Note
that slots have a fixed duration that does not depend on the user (between 9 and
20 microseconds in IEEE802.11 standards [2]). The details of how this mechanism
works is exemplified in Figure 2.

L

2 1 0

DIFS

t=0 ACK

DIFS

time1112

SIFS

TRANSMISSION

Figure 2. User behavior - the case of a successful transmission.
Before t = 0, the channel is sensed busy. After time DIFS, (DCF In-
ter Frame Space), the user starts decrementing its back-off counter
by one per slot, and transmits when the latter reaches 0. After
transmission, the receiver waits for a duration of length SIFS (Short
Inter Frame Space) and then sends the packet acknowledgment.
After receiving this acknowledgment, the user picks a new back-off
counter (12 in this case) and waits DIFS before starting to decre-
ment it. Note that the inter-frame spaces are introduced to handle
the acknowledgment procedure, and that DIFS > SIFS.

A random back-off algorithm specifies how the distribution (or just its mean) of
the back-off counter is modified after either a successful transmission or a collision.
Currently the DCF is a version of the classical binary exponential back-off algorithm:
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after each successful transmission, a user picks a back-off counter uniformly in
{0, . . . , CWmin}, and after m successive collisions uniformly in {0, . . . , 2mCWmin}

1.
In the following, we assume that the back-off distribution is always geometric

(so as to keep a simple Markovian setting), although we could easily generalize the
analysis to uniform distributions. With this assumption, each user transmits with
a given probability p at the beginning of each idle slot. We consider the following
generic way of adapting this probability: first the probability belongs to a countable
set B, after a successful transmission p is updated to S(p), and after a collision p is
updated to C(p), where S(·) (resp. C(·)) is a decreasing (resp. increasing) mapping
from B → B. We denote by p0 = max{p ∈ B}. Finally, we denote by L (in slots) the
average duration of a successful packet transmission (including its acknowledgment,
see Figure 2, and assume that collisions have average durations equal to Lc that
might be different than L (indeed there are some mechanisms to precociously detect
a collision). Again to keep the formalism simple, we assume that the durations of
successful transmissions and collisions are geometrically distributed (a multiple of
slots), which again does not constitute a crucial assumption.

5.1.3. Interference model and user class. We consider a simple model for interfer-
ence as follows. First, the N users are classified according to their interference
properties, i.e., two users belong to the same class if they interfere with (resp. are
interfered with and by) the same set of users. In practice, two users are of the
same class if the corresponding links are located in the same geographic region (see
for example the network of Figure 1). Denote by C the set of user classes, and
by µc the proportion of users of class c. i ∈ c denotes the fact that user i is of
class c. Then interference between users of different classes is characterized by the
incidence matrix A such that Acd = 1 if class-c users interfere class-d users, and
Acd = 0 otherwise. Note that A is not necessarily symmetric (in the network of
Figure 1, it is symmetric). We denote by Vc = {d ∈ C : Acd = 1} the set of classes
of links interfering with class-c links.

We say that the network has full interference if Acd = 1 for all c, d and has partial
interference otherwise.

5.1.4. Performance metrics. The performance metric we aim at analyzing is the
long-term throughput (the number of packets successfully transmitted per time
unit) achieved by the users of various classes. We denote by γc the throughput of
class-c users.

Deriving expressions for this performance metric is notoriously difficult. This
is due to the inherent interactions between users through interference. A popular
approach to circumvent this difficulty consists in decoupling the users, i.e., assuming
that the (re)-transmission processes of the various users are mutually independent.
This heuristic has been used by Bianchi [7] to capture the performance of wireless
LANs with full interference. In this work, we formally justify this approach, and
extend it to networks with partial interference. To do so, we apply the mean field
analysis derived in the first part of the paper. In case of full interference, the
network can be modeled as a simple system of particles with no randomly varying
environment (as already noticed in a preliminary work [9]). However, to analyze
a network with partial interference, the introduction of this varying environment
is necessary. As it turns out, the spatial heterogeneity in networks with partial

1Note that in the DCF, m is upper bounded by 7.
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interference may lead to important fairness issues, as mentioned in introduction,
and our analysis explicitly quantifies these issues.

5.2. Model analysis. We consider a network of N users as described in the pre-
vious subsection. We analyze the system at the beginning of each slot. Denote by
pN

i (k)/N the probability user i becomes active at the end of the k-th slot, if idle
(the factor 1/N will enable us to conduct the asymptotic analysis when N grows
large). For all i, k, N , pN

i (k) ∈ B.
To capture the network dynamics, we define a process ZN = {ZN(k), k ≥ 0}

representing the state of classes during slot k. ZN
c (k) ∈ {0, 1, 2}, where Zc(k) = 0

if and only if there is no transmitting user of class c, ZN
c (k) = 1 if and only if

there is one successfully transmitting user of class c, and ZN
c (k) = 2 if and only if

there is at least one user of class c currently in collision with another user in Vc.
Let Z = {0, 1, 2}|C| denote the state space of Z. We introduce the clear-to-send
functions Cc as follows. If ZN (k) = z, a class-c link is clear to send at the end of
slot k and Cc(z) = 1 if zd = 0 for d ∈ Vc, otherwise Cc(z) = 0. In other words,

Cc(z) =
∏

d∈Vc

χ{zd = 0}.

We show how to model the network as a set of interacting particles as described
in Section 2.

• The particles: the i-th user corresponds to the i-th particle with state describ-
ing the class of the user and the transmission probability at the end of the
next idle slot XN

i (k) = (ci, p
N
i (k)) ∈ X = C × B.

• The environment process: the process ZN introduced above is a simplified
version of an environment process as described in Section 2. The evolution of
the environment is determined by the states of all the particles through νN .
The evolution of the i-th particle depends on whether or not the corresponding
user senses the channel idle or not, i.e. ZN

i (k) = ZN
c (k) for all i ∈ c (with a

slight abuse of notation).

Particle transitions. We first compute the transition probabilities for the
various particles. The set S of possible transitions is composed by two functions,
the first one representing a successful transmission p 7→ S(p) and the other one
collisions p 7→ C(p). Note that the class of a particle / user does not change. Let

νN
c (k) = 1

N

∑N
i=1 δpN

i
(k)1c(i)=c and νN (k) = (νN

c (k))c∈C .

Assume that at some slot k, the system is in state

((cN
i (k), pN

i (k))i=1,...N , νN (k), ZN (k))) = ((ci, pi)i=1,...,N , α, z).

A class-c user i may have a transition at the end of slot k only if Cc(z) = 1. In
this case it can either initiate a successful transmission or experience a collision. If
Cc(z) = 1, the event that none of the users in c transmits at the end of slot k is
given by DN

c =
∏

i∈c 1(NUi>pi), where the Ui’s are i.i.d. r.v. uniformly distributed
on [0, 1]. The event that user i ∈ c accesses the channel with success at the end of
slot k is given by the indicator:

χ{NUi ≤ pi}Cc(z)
∏

j∈c,j 6=i

χ{NUj > pj}
∏

d∈Vc,d 6=c

(

Cd(z)DN
d + (1 − Cd(z))

)

.

Averaging the above quantity gives the transition probability FN
S ((c, pi), α, z)/N

corresponding to a successful transmission. If this transition occurs, user i starts
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emitting successfully and its transmission probability is updated to S(pi). For all
α ∈ P(B) and all f B-valued functions, define 〈f, α〉 =

∑

p f(p)α(p). Moreover let
αc denote the restriction of α to users of class c. Let I denote the identity function.
One can readily see that we have:

FN
S ((c, p), α, z) =

p

1 − p/N
Cc(z)

∏

d∈Vc

(

Cd(z)(e〈N log(1− I
N

),αd〉 − 1) + 1
)

. (19)

Similarly, the event that user i ∈ c experiences a collision at the end of slot k is
given by the indicator:

χ{NUi ≤ pi}Cc(z)



1 −
∏

j∈c,j 6=i

χ{NUj > pj}
∏

d∈Vc,d 6=c

(

Cd(z)DN
d + (1 − Cd(z))

)





and the transition probability FN
C ((c, pi), α, z)/N corresponding to a collision reads:

FN
C ((c, p), α, z) = piCc(z)

(

1 −
1

1 − p/N

∏

d∈Vc

(

Cd(z)(e〈N log(1− I
N

),αd〉 − 1) + 1
)

)

.

(20)
If this transition occurs, user i starts emitting with collision and its transmission
probability is updated to C(pi).

The model fits into the scheme to the particle system of Section 2: the sum of the
transition rates is bounded by 1, i.e. FN

S ((c, p), α, z) + FN
C ((c, p), α, z) ≤ 1. Note

that Assumption 0 is satisfied. Since N log(1 − x/N) converges to −x, we obtain
the following expressions for the asymptotic transition rates,

FS((c, pi), α, z) = piCc(z)
∏

d∈Vc

(

Cd(z)(e−〈I,αd〉 − 1) + 1
)

, (21)

FC((c, pi), α, z) = piCc(z)

(

1 −
∏

d∈Vc

(

Cd(z)(e−〈I,αd〉 − 1) + 1
)

)

. (22)

The convergence of FN
S (resp. FN

C ) to FS (resp. FC) is uniform in α and z, so that
Assumption A1 is satisfied. It is also easy to check that the functions FS and FC

are uniformly Lipschitz, which ensures Assumption A2.

Transitions of the background process ZN . Assume that the system is in
state ((ci, pi)i=1,...N , α, z). The transition kernel KN

α for ZN is given by: for all
z, z′ ∈ Z,

KN
α (z, z′) = KN

α,A1
(z, z′)KN

α,A2
(z, z′)KN

α,D1
(z, z′)KN

α,D2
(z, z′)KN

α,0(z, z′). (23)

This product of five terms will correspond to five classes of events: 1- particles start-
ing new transmissions without collision (KN

α,A1
); 2- particles starting new trans-

missions with collision (KN
α,A2

); 3- particles that were emitting with success and

finishing their emissions (KN
α,D1

); 4- particles that were emitting with collision and

finishing their emissions (KN
α,D2

); 5- particles that do not change state (KN
α,0).

We now write down these kernels explicitly. For 1-, we define A1(z, z′) as the set
of classes for which there is a station successfully transmitting in state z′, but not
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in z, i.e., c ∈ A1(z, z′) if and only if zc = 0 and z′c = 1. We have

KN
α,A1

(z, z′) =
∏

{c}∈A1(z,z′)

Cc(z)
∑

i∈c

pi

N

∏

j 6=i,j∈c

(1 −
pj

N
),

=
∏

{c}∈A1(z,z′)

Cc(z)
∑

i∈c

pi/N

1 − pi/N
e〈N log(1− I

N
),αc〉

=
∏

{c}∈A1(z,z′)

Cc(z)〈
I

1 − I/N
, αc〉e

〈N log(1− I
N

),αc〉,

For 2-, let A2(z, z′) be the set of connected subsets of classes representing a collision
in state z′ that was not observed in state z. Assume E ∈ A2(z, z′), |E| = 1 means
that the collision is due to stations of the same class, otherwise the collision involves
stations from different but contiguous classes. Then,

KN
α,A2

(z, z′) =
∏

E∈A2(z,z′)

kα(E),

where, if E = {c},

kα(E) = Cc(z)



1 −
∏

i∈c

(1 −
pi

N
) −

∑

i∈c

pi

N

∏

j 6=i,j∈c

(1 −
pj

N
))





= Cc(z)

(

1 − (1 + 〈
I

1 − I/N
, αc〉)e

〈N log(1− I
N

),αc〉

)

,

and if |E| ≥ 2,

kα(E) =
∏

c∈E

Cc(z)

(

1 −
∏

i∈c

(1 −
pi

N
)

)

=
∏

c∈E

Cc(z)
(

1 − e〈N log(1− I
N

),αc〉
)

.

For 3- and 4-, let N1(z) = {c : zc = 1}, D1(z, z′) = {c : zc = 1, z′c = 0}, N2(z)
be the set of subsets of classes representing a collision, and D2(z, z′) be the set of
subsets of classes representing collisions ending in state z′ (this model assumes that
users involved in a collision start and end transmitting simultaneously). We get

KN
α,D1

(z, z′) = 1D1(z,z′)⊂N1(z)

(

1

L

)|D1(z,z′)|

,

KN
α,D2

(z, z′) = 1D2(z,z′)⊂N2(z)

(

1

Lc

)|D2(z,z′)|

.
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Finally for 5-, Kα,0 corresponds to classes that are not changing their state between
z and z′:

KN
α,0(z, z′) =

(

1 −
1

L

)|N1(z)\D1(z,z′)|(

1 −
1

Lc

)|N2(z)\D2(z,z′)|

×
∏

c:zc=0=z′

c

(

Cc(z)
∏

i∈c

(1 −
pi

N
) + 1 − Cc(z)

)

=

(

1 −
1

L

)|N1(z)\D1(z,z′)|(

1 −
1

Lc

)|N2(z)\D2(z,z′)|

×
∏

c:zc=0=z′

c

(Cc(z)e〈N log(1− I
N

),αc〉 + 1 − Cc(z)).

The limit kernel of ZN is obtained replacing 〈N log(1 − I
N ), αc〉 by −〈I, αc〉 in

the above expressions. The Assumptions A3-A6 can then be easily verified.

Mean field asymptotics. We now verify that Assumptions A11-A12 are satis-
fied, implying that Assumption A7 also holds. Let us build a transition kernel K,
corresponding to a process Z with values in Z = {0, 1, 2}|C|. When equal to 0, a
component of Z almost surely becomes 1 at the next slot, and whatever the state of
the system is. The kernel K then corresponds to a system where there are always
users of each class attempting to use the channel at each slot. One can easily verify
that Assumption A11-A12 are satisfied for this kernel K, for the partial order �
on Z defined by z � z′ if and only if there is no class c such that zc = 1 or 2 and
z′c = 0.

We rescale time and define qN
i (t) = pN

i ([Nt]). Since the set of transitions is finite,
the tightness of L(qN

1 (·)) follows easily from Theorem 7.2 in Ethier-Kurtz [15] p 128.
(see the comment after A8). It follows that Theorem 2.1 applies. Assume that the
class of the particle i is a r.v. fixed at the time 0 such that the vector (c1, · · · , cN)
is an exchangeable random vector (for example the ci’s may be i.i.d. and equal
to c with probability µc). Theorem 2.1 asserts that as N → ∞, the qN

i ’s become
independent and evolve according to a measure Q = (Q(t))t∈R+ .

5.3. Stationary throughputs. Assume that Assumptions A9-A10 hold, so that
Theorem 2.3 applies. These assumptions will be partly justified below for the case
of the binary exponential back-off algorithm. We are interested in deriving the
stationary throughput achieved by users of various classes. To do so, we derive the
stationary distribution Qst and πQst of the particles and the background process.
To simplify the notation we write Qst = Q and πQ = π. Also denote Qp

c = Q({c, p})
the stationary proportion of users of class c transmitting with probability p.

Consider the point process of returns to the set A = {z : Cc(z) = 1}. Let T1

denote the first return time after time zero. By the cycle formula (see (1.3.2) in [5])
we may express the steady state probability of a user in c successfully transmitting
a packet by the mean time spent in the transmission state per cycle divided by the
mean cycle length. The expectation is calculated with respect to the Palm measure
of the point process of returns to A but in this Markovian case this just means
starting on A with probability πA which is π renormalized to be a probability on
A.

A user in c can only go into a successful transmission state once per cycle; i.e. no
other user in c transmits and other users in Vc are either blocked or remain silent.
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Hence the mean time per cycle spent in a transmission state is
∑

z∈A πA(z)Lg(z)
where

g(z) = ρc

∏

d∈Vc,d 6=c

(Cd(z)(e−ρd − 1) + 1).

Moreover,
∑

z∈A πA(z)Ez [T1] = 1
π(A) ; i.e. the intensity of the point process of visits

to A. Finally the total throughput of the users of class c is

γc =
∑

z:Cc(z)=1

π(z)Lρc

∏

d∈Vc

(

Cd(z)(e−ρd − 1) + 1
)

, (24)

where

ρc =
∑

p∈B

pQp
c , (25)

which can be interpreted as the probability that a user of class c attempts to use
the channel at the end of an empty slot. We now evaluate Q and π. Note that π
depends on Q through the ρc’s only (see (23) and its limiting expression). Then we
can write:

π(z) = Φ(z, ρc, c ∈ C); i.e. π is a function of ρc, c ∈ C, (26)

Now define Gc, Hc and Ic as follows:

Gc =
∑

z

π(z)Cc(z)
∏

d∈Vc

(

Cd(z)(e−ρd − 1) + 1
)

, (27)

Hc =
∑

z

π(z)Cc(z)

(

1 −
∏

d∈Vc

(

Cd(z)(e−ρd − 1) + 1
)

)

, (28)

Ic = Gc + Hc =
∑

z

π(z)Cc(z). (29)

Gc, Hc, Ic depend on Q through the ρc’s only. We have for all c, p: pGc =
FS((c, p), Q), pHc = FC((p, c), Q). The marginals Qp

c satisfy the balance equa-
tions (7), i.e., for all c, p,

Gc





∑

p′∈B:S(p′)=p

p′Qp′

c − pQp
c



+ Hc





∑

p′∈B:C(p′)=p

p′Qp′

c − pQp
c



 = 0. (30)

They also satisfy:

∀c ∈ C,
∑

p∈B

Qp
c = µc. (31)

Summarizing the above analysis, we have:

Theorem 5.1. The stationary distribution Q is characterized by the set of equations
(25), (26), (27), (28), (30), (31).

5.4. The binary exponential back-off algorithm. We now examine the specific
case of the binary exponential back-off algorithm. We first justify Assumption A9.

5.4.1. Tightness of stationary distributions.

Lemma 5.2. In case of the exponential back-off algorithm, there exists a p∗ > 0,
such that for any 0 < p0 < p∗, the Markov process (XN

i (k), ZN (k))k∈N is positive
recurrent for all N and the family of stationary distributions Lst(X

N
1 (0)) is tight.
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Deriving a tight bound for p∗ would involve technical details which are beyond
the scope of this paper.We will only sketch the main idea and prove p∗ > 0. Also to
clarify the presentation, we assume here that L = Lc. Along the proof of Lemma
5.2, we may check that the statement of Lemma 5.2 holds for p∗ = ln 2

Lµ , where

µ = maxc∈C µc and µc =
∑

d∈Vc
µd is the mean proportion of particles which are in

interaction with particles of class c.

Proof. To prove the recurrence we introduce a fictive system which stochastically
bounds pN

1 (k).
In the fictive system, the states of the particles i ≥ 2 are independent, a particle

i ≥ 2 has two states: active or inactive. If the particle i ≥ 2, is active, it remains
active for the next slot with probability 1 − 1/L, if it is inactive, it becomes active
with probability p0/N . The stationary probability that the particle i is active is
L/(L + N/p0) and the stationary probability that at least one is active is aN =
1 − (1 − L/(L + N/p0))

N−1 which converges to a = 1 − e−Lp0 .
The particle 1 tries to become active at slot k with probability pN

1 (k)/N . If
it remains inactive, pN

1 (k) = pN
1 (k + 1). If it is active and if another particle is

also active, then the particle 1 encounters a collision and pN
1 (k + 1) = pN

1 (k)/2.
Otherwise pN

1 (k + 1) = p0.
Clearly, this virtual system is stochastically less than or equal to pN

1 (k) in the
exponential back-off case.

Let bN (k) = p0/pN
1 (k), bN (k) ∈ {2n}n∈N, the lemma will follow if we prove that

for p0 small enough,

sup
N,k

E[bN(k) | bN (0) = 1] < ∞. (32)

In the remaining part of the proof, using elements of queueing theory, we justify
(32).

We first analyze the sequence of slots such that none of the particles i ≥ 2 is
active. If the particle i ≥ 2 is active at time k, let li(k) be the number of slots the
particle remains active. li(k) is a geometric distribution with parameter 1/L. Now,
let

WN (k) = max
2≤i≤N

χ{i active}li(k).

If WN (k) = 0 none of the particles i ≥ 2 is active at time k. WN satisfies the
recursion:

WN (k+1) = max
(

WN (k)−1, max
2≤i≤N

χ{i active at k + 1, inactive at k}li(k+1)
)

.

WN is thus the workload in a G/G/∞ queue with inter-arrival time 1 and service
time requirement σN (k + 1) = maxi≥2 χ{i active at k + 1, inactive at k}li(k + 1).
Independently of the past, σN (k + 1) is easily bounded stochastically; indeed, let
0 < s < lnL,

EesσN (k+1) ≤ 1 +
N
∑

i=2

Eχ{i active at k + 1, inactive at k}esli(k+1)

≤ 1 + (N − 1)
p0

N
Eesli(k+1)

≤ 1 + p0
es/L

1 − (1/L)es
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Note that this last bound is uniform in N and k. Let θ0 = 0, θn+1 = inf{k > θn :
WN (k) = 0}, and ΘN = {θn}n∈N. Classically, there exists C > 0 such that for all
N :

E[eC(θn+1−θn) |WN (0) = 0] < ∞,

see for example Appendix A.4 in [4]. By the renewal theorem, we deduce, uniformly
in N , limk→∞ P(k ∈ ΘN) = 1

Eθ1
= 1 − aN . Moreover, the monotonicity of WN (k)

with respect to the initial condition implies easily that P(k ∈ ΘN |WN (0) = 0) ≥
limk→∞ P(k ∈ ΘN ) = 1 − aN . Since 1 − aN converges to e−Lp0 , it follows that

lim
p0→0

inf
k,N

P(k ∈ ΘN |WN (0) = 0) = 1. (33)

We now turn back to the process bN and prove (32). Let U(k) be a sequence of
independent and uniformly distributed variables on [0, 1]. We may write

bN (k + 1) = bN(k)χ{U(k+1)>
p0

bN (k)N
} + 2bN(k)χ{U(k+1)≤

p0
bN (k)N

}χ{k/∈ΘN}

+χ{U(k+1)≤
p0

bN (k)N
}χ{k∈ΘN}.

In particular

bN (k + 1)χ{bN (k)≥2}

≤bN (k)χ{U(k+1)>
p0

bN (k)N
} + 2bN(k)χ{U(k+1)≤

p0
bN (k)N

}χ{k/∈ΘN}

+ χ{U(k+1)≤
p0
2N

}χ{k∈ΘN}

Taking expectation, we obtain

EbN(k + 1)χ{bN (k)≥2} ≤ EbN(k) −
p0

N
+ 2

p0

N
P(k /∈ ΘN ) +

p0

2N
P(k ∈ ΘN)

≤ EbN(k) −
p0

N

(

3

2
P(k ∈ ΘN ) − 1

)

.

Similarly, since bN (k + 1)χ{bN (k)=1} ≤ 2, we have:

EbN(k + 1) ≤ max

(

2, EbN(k) −
p0

N

(

3

2
P(k ∈ ΘN ) − 1

))

.

From (33), for p0 small enough, for all N and k ≥ 0, P(k ∈ ΘN ) > 2/3. We deduce
by recursion that E[bN(k)|bN (0) = 1] ≤ 2 and (32) holds.

5.4.2. Stationary distribution. Now Lemma 5.2 implies that Assumption A9 holds.
It remains to check Assumption A10. In the next paragraph, we state that Assump-
tion A10 holds if there is a unique class of users, i.e., in the case of full interference.
For the general case of partial interference, we can only provide a characterization
of the equilibrium point of the dynamical system (6). We leave the study of its
global stability for future work.

So let us assume that an equilibrium point exists, and denote by Q this point.
Further define Qn

c = Q({c, p02
−n}) for all n ∈ N. Then we have:

Qn−1
c FC((p02

−n+1, c), Q) = Qn
c (FS((p02

−n, c), Q) + FC((p02
−n, c), Q)),

or equivalently
2Qn−1

c Hc = Qn
c Ic, (34)

and
∑

n≥0

Qn
c FS((p02

−n, c), Q) = Q0
cFC((p0, c), Q)),
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or equivalently

ρcGc = Q0
cHc. (35)

Solving (34) and (35) leads to a solution of the form Qn
c = βc(2Hc/Ic)

n. Since
∑

n Qn
c = µc, we have βc = Q0

c = µc(1 − 2Hc/Ic)µc(Gc − Hc)/Ic. We require that
Hc < Gc or equivalently, Gc/Ic > 1/2. Gc/Ic may be interpreted as the probability
in steady state that no user of class in Vc tries to access the channel given that no
user of class in Vc are currently sending. Next, ρc =

∑

n≥0 p02
−nQn

c , which implies
that:

ρc = p0µc
Gc − Hc

Gc
. (36)

Now the following corollary summarizes the above analysis and then it characterizes
the system behavior in steady state and in case of exponential back-off algorithms.

Corollary 1. The stationary distribution Q is given by: for all c ∈ C,

Qn
c = µc

Gc − Hc

Gc + Hc

(

2Hc

Gc + Hc

)n

,

where the G′
cs, Hs’s, and ρc’s are the unique solutions of the system of equations

(26), (27), (28), (36).

5.4.3. Global stability in the mean field regime for networks with full interference.
In this paragraph, we consider the exponential backoff algorithm and we assume
moreover that there is a unique class of users. In that case, the analysis in greatly
simplified: the environment variable ZN and the clear-to-send function C are then
identical for all users. The backoffs of the users evolves only if ZN = 0. Thus, up to
sampling by the times such that ZN (t) = 0, in order to analyze the backoff process,
we may assume without loss of generality that L = Lc = 1.

Let Qn(t) be the mean field limit of the proportion of users with backoff p0/2n.
From Theorem 2.1, given an initial distribution {Qn(0); n = 0, 1, . . .}, the limit
evolves as, for all n ≥ 1,

dQn

dt
(t) = 21−np0Q

n−1(t)
(

1 − exp(−
∞
∑

i=0

2−ip0Q
i(t))

)

− 2−np0Q
n(t), (37)

dQ0

dt
(t) =

∞
∑

n=0

2−np0Q
n(t) exp(−

∞
∑

i=0

2−ip0Q
i(t)) − p0Q

0(t). (38)

Following §5.3 and Corollary 1, the dynamic system described by differential
equations (37)-(38) admits a unique equilibrium point Qst = {Qn

st; n = 0, 1, . . .}
defined by:

∀n ≥ 0, Qn
st = (2(1 − e−ρst))nQ0

st, Q0
st = ρste

−ρst/p0

where ρst solves p0e
ρ + ρ − 2p0 = 0 or p0 = ρ/(2 − eρ). Note that ρst < ln(2) so

necessarily 2(1−e−ρst) < 1, and the stationary distribution always exists. Moreover
ρst =

∑∞
i=0 2−ip0Q

i
st.

Now let ρ(t) =
∑∞

i=0 2−ip0Q
i(t) so (37)-(38) can be written as

dQn(t)

dt
= 21−np0Q

n−1(t)
(

1 − e−ρ(t)
)

− 2−np0Q
n(t), for all n ≥ 1, (39)

dQ0(t)

dt
= ρ(t) exp(−ρ(t)) − p0Q

0(t). (40)

In complete interaction, Assumption A9 holds. Indeed, we have the following:
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Theorem 5.3. If p0 < ln(2), for any initial condition Q(0), Q(t) converges (weakly)
to the measure Qst.

Lemma 5.4. If p0 < ln(2), the sequence of measures Q(t) = {Qn(t); n = 0, 1, . . .}
is tight.

Proof of Lemma 5.4. We define the linear system,

dBn

dt
(t) = 21−np0B

n−1(t)
(

1 − exp(−p0)
)

− 2−np0B
n(t), for all n ≥ 1, (41)

dB0

dt
(t) =

∞
∑

n=0

2−np0B
n(t) exp(−p0) − p0B

0(t) (42)

with initial condition Bn(0) = Qn(0) for all n. First note that the time derivative
of
∑

n Bn(t) is zero, hence
∑∞

n=0 Bn(t) = 1 for all t ≥ 0. Note also that ρ(t) ≤ p0.
Bn(t) corresponds to mean field limit of the proportion of users with backoff p02

−n

when each user is in interaction with N other users with backoff p0. We may
then check that the probability measure B(t) = {Bn(t); n ≥ 0} is stochastically
larger than Q(t): for all m ≥ 1,

∑

n≥m Bn(t) ≥
∑

n≥m Qn(t). However B(t)
converges to the unique invariant probability measure of the linear system: Bn

st =
(2(1 − exp(−p0))

nB0
st (recall that p0 < ln(2)). Since B(t) converges, it is therefore

tight. It follows that Q(t) is tight.

Proof of Theorem 5.3. Let lim inf t→∞ ρ(t) = ρb. Pick a subsequence tk such that
limtk→∞ ρ(tk) = ρb and such that the limit limtk→∞ Qn(tk) = Qn(∞) exists for all
n. By Lemma 5.4, Q(∞) = {Qn(∞); n = 0, 1, . . .} is a probability measure and
∑∞

i=0 2−ip0Q
i(∞)) = ρb.

Let fb(t) = infu≥t ρ(u). Note that fb(t) increases to ρb and fb(t) ≤ ρ(t) for all
t ≥ 0. Now consider the system

dQ̃n(t)

dt
= 21−np0Q̃

n−1(t)
(

1 − e−fb(t)
)

− 2−np0Q̃
n(t), for all n ≥ 1,

dQ̃0(t)

dt
= fb(t) exp(−fb(t)) − p0Q̃

0(t)

with initial condition Q̃n(0) = Qn(0) for all n ∈ N. Now notice that the function
ρ exp(−ρ) is strictly increasing for 0 ≤ ρ ≤ 1. Hence, for t ≥ 0,

Q̃0(t) = e−p0tQ̃0(0) + e−p0t

∫ t

0

ep0sfb(s) exp(−fb(s))ds (43)

≤ e−p0tQ0(0) + e−p0t

∫ t

0

ep0sρ(s) exp(−ρ(s))ds

= Q0(t).

Therefore for all t ≥ 0,

0 < Q̃0(t) ≤ Q0(t).

We then prove by recursion on n that

∀n ∈ N, ∀t ≥ 0, 0 < Q̃n(t) ≤ Qn−1(t). (44)
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Let n ≥ 1, and assume that for all t ≥ 0, Q̃n−1(t) ≤ Qn(t). We have:

Q̃n(t) = e−p02
−ntQ̃n(0) + e−p02

−nt

∫ t

0

ep02
−nsp02

1−nQ̃n−1(s)(1 − e−fb(s))ds

≤ e−p02
−ntQn(0) + e−p02

−nt

∫ t

0

ep02
−nsp02

1−nQn−1(s)(1 − e−ρ(s))ds

= Qn(t).

From (45) we also conclude that Q̃n(t) ≤ Qn(t) for all t so (44) follows. Next, using
L’Hôpital’s rule in (43) we get

Q̃0(∞) := lim
t→∞

Q̃0(t)

= lim
t→∞

ep0tfb(t) exp(−fb(t))

p0ep0t
=

ρbe
−ρb

p0
.

Moreover, by iteration

Q̃n(∞) := lim
t→∞

Q̃n(t)

= lim
t→∞

ep02
−ntp02

1−nQ̃n−1(t)(1 − e−fb(t))

p02−nep02−nt

= 2(1 − e−ρb) lim
t→∞

Q̃n−1(t) = (2(1 − e−ρb))n ρbe
−ρb

p0
.

This expression of Q̃(∞) implies
∞
∑

n=0

p02
−nQ̃n(∞) = ρb =

∞
∑

n=0

p02
−nQn(∞).

However, (44) implies that for all n ∈ N, Q̃n(∞) ≤ Qn(∞), it follows that Q̃n(∞) =
Qn(∞), and therefore,

∞
∑

n=0

Q̃n(∞) = 1.

But from the above expression for Q̃n(∞), we have:
∞
∑

n=0

Q̃n(∞) =
ρbe

−ρb

p0

1

1 − 2(1 − e−ρb)

=
ρb

p0(2 − eρb)
.

We conclude ρb solves p0 = ρ/(2 − eρ). Hence ρb = ρst and this means

Qn(∞) = Q̃n(∞) = Qn
st for all n.

Hence any subsequence of Qn(t) converges to Qn
st and this gives our result.

5.5. A numerical example. We now illustrate our analytical results on the sim-
ple network of Figure 1. Each link runs an exponential back-off algorithm with
p0 = 1/16 as specified in the 802.11 standard [2]. In Figure 3, the throughput of
the various user classes in the mean field regime are presented assuming that the
proportions of users of class 1 and 3 are identical, µ1 = µ3. We assume here that
Lc = L. The throughputs are obtained using (24) and Corollary 1. We give the
throughput as a function a the proportion of users of class 2. Here the packet du-
ration is fixed and equal to L = 100 slots. The total network throughput decreases
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when the proportion of class-2 users increases, which illustrates the loss of efficiency
due to the network spatial heterogeneity. In Figure 4, we assume a uniform user
distribution among the 3 classes, µ1 = µ2 = µ3, and we give the throughput as
a function of the packet duration L. First note that whatever the value of L, the
network is highly unfair: for example when L = 100 slots, the throughput of a user
of class 1 is almost 5 times greater than that of a user of class 2. This unfairness
increases with L and ultimately when L is very large, users of class 2 never ac-
cess the channel successfully. We have verified through simulation that mean field
asymptotics led to quite accurate performance approximations, even in the case
of systems with a small number of users. This has been also observed in [7] for
networks with full interference.
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