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Abstract. In this paper we investigate an initial boundary value problem
(IBVP) for the Nishda’s model in 3-dimensional space with a forward moving
physical boundary. It is shown that the solution converges to zero with an
exponential rate by energy estimates.

1. Introduction. The 3-dimensional Nishida’s model
{

ρt + div(ρ~u) = 0,

(ρuj)t + div(ρ~uuj) + ργ
xj

= −κρuj, (x, t) ∈ R
3 × R

+, ~u = (u1, u2, u3) ∈ R
3,

is a hyperbolic model for a porous media equation

ρt =
1

κ
△ ργ . (1)

Here, κ > 0 is a constant to model the magnitude of the viscosity, and ργ , γ ≥ 1,
is the pressure for an isentropic gas flow with a given γ-law. This 3-dimensional
Nishida’s model in the Eulerian coordinate is a direct generalization from the one-
dimensional model in the Larangian coordinates, [13]:

{

vt − mx = 0,

mt + (v−γ)x = −m.

The time-asymptotic analysis on the Nishida’s model was first initiated by [4] in
the global normed space. There were many interesting mathematical works followed
in the global normed setting, due to the strong physical background and significant
mathematical challenge of the Nishida’s model. For the existence theory and large
time behavior of the solutions, one can refer to [1]-[4], [6]-[9], [11], [13]-[15], [19]-[26]
and the references there.

We have mentioned that such a system is the mathematical model for compress-
ible flow through a porous medium. Therefore Nishida’s model can be widely used
in the real world, such as oil exploration and so on. Since the physical boundary
always exists in real world and its presence also provides with much richer phenom-
ena, the initial boundary value problem interests us. However, there is not so much
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literature on the initial boundary value problem as that on Cauchy problem. The
reason is that many problems besides the interesting phenomena arise from the pres-
ence of the physical boundary. Most of the recent work are for 1-dimensional space,
[5, 12, 16, 17, 18]. In [10], the half space problem for 2-dimensional Nishida’s model
is considered and the existence theory is obtained there by the energy method.

In this paper, we consider the pointwise structure of an initial-boundary value
problem for the 3-dimensional Nishida’s model with the presence of a physical
boundary at x = bt:



















ρt + div(ρ~u) = 0, x1 > bt, t > 0,

(ρuj)t + div(ρ~uuj) + ργ
xj

= −κρuj,

(ρ,~u)(x, 0) = (ρ0,~u0)(x),

u1(bt, x2, x3, t) = 0,

(2)

in particular (ρ,~u)|t=0 is sufficiently close to (ρ,~u) = (1,~0) and

b > 0.

The sign of the parameter b plays an important role in determining the structure
of the solution of (2) with a given boundary condition ρ = 0 at x1 = bt. When
b > 0, the solution of (2) will decay exponentially fast. Thus, one just needs to show
that the solution of the Nishida model decays to zero exponentially fast in order to
justify the relevance between the Nishida model and the porous media equation (1)
for b > 0.

For convenience of analysis, one considers the following change of variables






























σ = ρ − 1,

τ = t,

η1 = x1 − bt,

η2 = x2,

η3 = x3.

Then, (2) becomes










στ − bση1
+
∑3

j=1 uj
ηj

= −div(σ~u), η1 > 0, τ > 0,

uj
τ − buj

η1
+ γσηj

+ κuj = Qj(σ,~u),

u1(0, η2, η3, τ) = 0,

(3)

where

Qj(σ,~u) = γ
(

1 − (1 + σ)γ−2
)

σηj
− ~u · ▽uj.

Notation. For any given m ∈ N and any function f in R
+ ×R

2, the norms ‖f‖m

and |||f |||m are


































|||f |||m =





∑

0≤|α|+|β|≤m

∫ ∞

0

∫

R2

|∂α
η1

∂
β
η′f(η1, η

′)|2dη′dη1





1

2

,

‖f‖m =





∑

0≤|β|≤m

∫

R2

|∂β
η′f(0, η′)|2dη′





1

2

.
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The initial data (ρ(η, 0),~u(η, 0)) is assumed to satisfy

|||eβ(η1+|η2|+|η3|)(σ(η, 0),~u(η, 0))|||4 ≤ ǫ for some ǫ, β > 0. (4)

This paper is devoted to the pointwise structure of the solution and its exponen-
tial rate of convergence with the presence of a physical boundary condition and the
main result is:

Theorem 1.1. For a given b > 0 there exist β ≪ b and ǫ0 > 0 such that for any

ǫ ∈ (0, ǫ0) the solution of (3) with the initial condition (4) satisfies

|(σ,~u)(η, τ))| ≤ Ce−β(τ+|η|)/C|||eβ|η|/2(σ,~u)(·, 0)|||24 for some C > 0.

Remark 1. Since b > 0, there is a spectral gap property of the linearized equation
around a constant with the homogenous boundary condition posed here. Thus, we
are able to get the exponential decaying rate of the solution by weighted energy
estimates.

However, when b < 0, the solution will decay algebraically only and we suppose
that the Green’s function method and weighted energy estimates should combined
together to yield the pointwise estimates for the solution. Thus, such a case will
be much more complicated. We have to construct the Green’s function while we
also need a priori decaying estimates for derivatives since the nonlinear system is a
quasi-linear one. We will generalize b > 0 to |b| 6= 0 in the near future.

2. Energy estimates. With a standard local existence theory for (σ, ~u), one can

assert the smallness property, |‖eβ|η|σ(·, τ)‖|4 + |‖eβ|η|~u(·, τ)‖|4 + ‖eβ|η′|σ(·, τ)‖4 +

‖eβ|η′|~u(·, τ)‖4 ≪ 1, of the solution for τ in a small time interval, [0, τ0]. Thus, one
can make a priori assumption on the solution (σ,~u):

sup
0<τ

(

|||eβ|η|σ(·, τ)|||4 + ‖|eβ|η|~u(·, τ)|||4
)

≤ δ ≪ 1, (5)

where 0 < ǫ ≪ δ ≪ b.

2.1. Lower Order Estimates. By multiplying the equations in (3) with

eβη1σ and eβη1 uj

γ respectively, one integrates the equations over R
+ × R

2 to yield

that

0 =

∫ ∞

0

∫

R2



eβη1σ · (στ − bση1
+

3
∑

j=1

uj
ηj

+ div(σ~u))

+

3
∑

j=1

eβη1
uj

γ
· (uj

τ − buj
η1

+ γσηj
+ κuj − Qj(σ,~u))



 dη′dη1

=
1

2

d

dτ

∫ ∞

0

∫

R2

eβη1



σ2 +

3
∑

j=1

1

γ
(uj)2



 dη′dη1

+
b

2

∫

R2



σ2 +

3
∑

j=1

1

γ
(uj)2



 dη′

∣

∣

∣

∣

∣

∣

η1=0

−
∫

R2

σu1dη′

∣

∣

∣

∣

η1=0

(6)
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+

∫ ∞

0

∫

R2

eβη1





βb

2
σ2 − βσu1 +

3
∑

j=1

(

βb

2γ
+ κ

)

(uj)2

+σdiv(σ~u) +

3
∑

j=1

uj

γ
Qj(σ,~u)



 dη′dη1.

By the property that 0 < β ≪ b, one has

βb

2
σ2 − βσu1 +

3
∑

j=1

(

βb

2γ
+ κ

)

(uj)2 ≥ βb

4
σ2 +

3
∑

j=1

κ

2
(uj)2. (7)

From (6), (7), and the boundary condition u1(0, τ) = 0, one has

d

dτ

∫ ∞

0

∫

R2

eβη1



σ2 +

3
∑

j=1

1

γ
(uj)2



 dη′dη1

+

∫ ∞

0

∫

R2

eβη1





βb

2
σ2 +

3
∑

j=1

(

βb

2γ
+ κ

)

(uj)2



 dη′dη1

+b

∫

R2



σ2 +

3
∑

j=1

1

γ
(uj)2



 dη′

∣

∣

∣

∣

∣

∣

η1=0

≤− 2

∫ ∞

0

∫

R2

eβη1



σdiv(σ~u) +

3
∑

j=1

uj

γ
Qj(σ,~u)



 dη′dη1.

(8)

By a priori assumption (5) and Sobolev’s inequality, there is C > 0 such that
∣

∣

∣

∣

∣

∣

σdiv(σ~u) +
3
∑

j=1

uj

γ
Qj(σ,~u)

∣

∣

∣

∣

∣

∣

≤ Cδ



σ2 +
3
∑

j=1

(uj)2



 .

By the property δ ≪ β ≪ b, one has

d

dτ
|||eβη1/2(σ,

1√
γ
~u)|||20+‖(σ,

1√
γ
~u)‖2

0+
βb

4
|||eβη1/2σ|||20+(

βb

4γ
+2κ)|||eβη1/2~u|||20 ≤ 0.

Thus for τ > 0,

|||eβη1/2(σ,~u)(·, τ)|||20 +
βb

8

∫ τ

0

e−βb(τ−s)/8|||eβη1/2(σ,~u)(·, s)|||20ds

≤γe−βbτ/8|||eβη1/2(σ,~u)(·, 0)|||20.
(9)

2.2. High Order Energy Estimates.

For the purpose to prove a priori assumption (5), we need to rewrite (3) in the
following symmetric form in order to close the nonlinearity by energy estimates:

A0(U)∂τU +

3
∑

i=1

Ai(U)∂ηi
U + B(U)U = 0, (10)
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where

A0(U) =











1
1+σ 0 0 0

0 1
γ(1+σ)γ−2 0 0

0 0 1
γ(1+σ)γ−2 0

0 0 0 1
γ(1+σ)γ−2











,

A1(U) =













−b+u1

1+σ 1 0 0

1 −b+u1

γ(1+σ)γ−2 0 0

0 0 −b+u1

γ(1+σ)γ−2 0

0 0 0 −b+u1

γ(1+σ)γ−2













,

A2(U) =













u2

1+σ 0 1 0

0 u2

γ(1+σ)γ−2 0 0

1 0 u2

γ(1+σ)γ−2 0

0 0 0 u2

γ(1+σ)γ−2













,

A3(U) =













u3

1+σ 0 0 1

0 u3

γ(1+σ)γ−2 0 0

0 0 u3

γ(1+σ)γ−2 0

1 0 0 u3

γ(1+σ)γ−2













,

B(U) =









0 0 0 0
0 κ

γ(1+σ)γ−2 0 0

0 0 κ
γ(1+σ)γ−2 0

0 0 0 κ
γ(1+σ)γ−2









, U =









σ

u1

u2

u3









.

One needs to consider the high order derivatives ∂4−k
τ ∂s2

η2
∂s3

η3
∂s1

η1
with s1 + s2 + s3 =

k, 0 ≤ k ≤ 4. Since the procedure for the low order energy estimates is not valid for
the variables ∂i1

η1
(σ,~u), one can use the estimate on ∂i2

η2
(σ,~u), ∂i3

η3
(σ,~u), and ∂i

τ (σ,~u)

together to yield the estimate for ∂i1
η1

(σ,~u). This is due to the hyperbolicity of the
system (10) and 0 < δ ≪ b. Then,

∂η1
U = −(A1(U))−1

(

A0(U)∂τU +

3
∑

i=2

Ai(U)∂ηi
U + B(U)U

)

.

Here, the matrix A1(U) is invertible due to 0 < δ ≪ b and (5). Thus,

∂m
η1

U = −
m
∑

j=0

Cm

(

∂j
η1

(

(A1(U))−1A0(U)
)

∂τ∂m−j
η1

U

+
3
∑

i=2

∂j
η1

(

(A1(U))−1Ai(U)
)

∂ηi
∂m−j

η1
U + ∂j

η1

(

(A1(U))−1B(U)
)

∂m−j
η1

U

)

.

(11)

This yields
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|||eβη1/2∂m
η1

U |||0

≤C





m
∑

k=0

∑

|α|=k

|||eβη1/2∂m−k
τ ∂α

η′U |||0 + δ

m−1
∑

j=0

|||eβη1/2∂j
τU |||m−1−j



 . (12)

From (12), we can find that we only need to study the estimates for ∂4−k
τ ∂α′

η′ U(|α′|
= k, 0 ≤ k ≤ 4). Then we can get estimate for ∂4−k

τ ∂α
η U (|α| = k, 0 ≤ k ≤ 4).

One applies ∂4−k
τ ∂α′

η′ to (10)with |α′| = k to yield that

A0(U)∂τ (∂4−k
τ ∂α′

η′ U)+
3
∑

i=1

Ai(U)∂ηi
(∂4−k

τ ∂α′

η′ U)+B(U)(∂4−k
τ ∂α′

η′ U)+Lα′ = 0, (13)

where Lα′ is the nonlinear term and it contains only the derivatives with order
no greater than 3. By a priori assumption (5) and the Sobolev’s inequality for
dimension 3, it follows

|||eβη1Lα′ |||0 ≤ Cδ

4
∑

k=0

|||eβη1∂k
τ U |||4−k for |α′| ≤ 4.

Similar to (12), the derivative on time variable τ can be transferred to that on
spatial variables η. Thus, one has

|||eβη1Lα′ |||0 ≤ O(1)
∑

|α|≤4

δ|||eβη1∂α
η U |||0 for |α′| ≤ 4. (14)

By multiplying (13) by eβη1∂4−k
τ ∂α′

η′ U with |α′| = k and integrating the product

in the domain [0,∞) × R
2, one has

0 =

∫ ∞

0

∫

R2

eβη1(∂4−k
τ ∂α′

η′ U) ·
(

A0(U)∂τ (∂4−k
τ ∂α′

η′ U)

+

3
∑

i=1

Ai(U)∂ηi
(∂4−k

τ ∂α′

η′ U) + B(U)(∂4−k
τ ∂α′

η′ U) + Lα′

)

dη′dη1

=
1

2

d

dτ

∫ ∞

0

∫

R2

eβη1(∂4−k
τ ∂α′

η′ U) · A0(U)(∂4−k
τ ∂α′

η′ U)dη′dη1

− 1

2

∫ ∞

0

∫

R2

eβη1(∂4−k
τ ∂α′

η′ U) · (A0(U))τ (∂4−k
τ ∂α′

η′ U)dη′dη1

− 1

2

∫

R2

(∂4−k
τ ∂α′

η′ U)A1(U) · (∂4−k
τ ∂α′

η′ U)dη′
∣

∣

∣

η1=0

− β

2

∫ ∞

0

∫

R2

1

2
eβη1(∂4−k

τ ∂α′

η′ U) · A1(U)(∂4−k
τ ∂α′

η′ U)dη′dη1

+

∫ ∞

0

∫

R2

eβη1(∂4−k
τ ∂α′

η′ U) · B(U)(∂4−k
τ ∂α′

η′ U)dη′dη1

− 1

2

3
∑

i=1

∫ ∞

0

∫

R2

eβη1(∂4−k
τ ∂α′

η′ U) · (Ai(U))ηi
(∂4−k

τ ∂α′

η′ U)dη′dη1

+

∫ ∞

0

∫

R2

eβη1(∂4−k
τ ∂α′

η′ U) · Lα′dη′dη1.

(15)
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From (10), one has that

|||eβη1/2∂4−k
τ ∂α′

η′ U(·, 0)|||0 ≤ C|||eβη1/2U(·, 0)|||4 for some C > 0. (16)

The the boundary condition ∂4−k
τ ∂α′

η′ u1(0, η′, τ) = 0 and the structure of A1(U)

combined with a priori estimate (5) result in that

− 1

2

∫

R2

(∂4−k
τ ∂α′

η′ U)A1(U) · (∂4−k
τ ∂α′

η′ U)dη′
∣

∣

∣

η1=0
> 0. (17)

Under a priori assumption (5), the matrix A1(U) and B(U) satisfy for β ≪ 1

~v · (−β

2
A1(U) + B(U))~v ≥ βb

4
~v · ~v for any ~v ∈ R

4. (18)

By a priori assumption (5),

sup
τ,η1>0
η′∈R

2

|∂α
η Aj(U)(η, τ)| ≤ O(1)δ for |α| ≤ 2. (19)

The above estimates, ((16), (17), (18), (19)), yield

d

dτ

∫ ∞

0

∫ ∞

0

∫

R2

eβη1(∂4−k
τ ∂α′

η′ U) · A0(U)(∂4−k
τ ∂α′

η′ U)dη′dη1

+

(

βb

2
− Cδ

)

|||eβη1/2∂4−k
τ ∂α′

η′ U |||20 ≤ 2

∣

∣

∣

∣

∫ ∞

0

∫

R2

eβη1(∂4−k
τ ∂α′

η′ U) · Lα′dη′dη1

∣

∣

∣

∣

.

(20)

It remains to estimate the RHS of (20). From (14), for 0 ≤ k ≤ 4, |α′| ≤ k,
∣

∣

∣

∣

∫ ∞

0

∫

R2

eβη1(∂4−k
τ ∂α′

η′ U) · Lα′dη′dη1

∣

∣

∣

∣

≤ Cδ|||eβη1/2∂4−k
τ ∂α′

η′ U |||20+Cδ|||eβη1/2U |||23.
(21)

From the property of A0(U), (21), and (20) one has for |α′| ≤ k

d

dτ
|||eβη1/2∂4−k

τ ∂α′

η′ U |||20 +
βb

4
|||eβη1/2∂4−k

τ ∂α′

η′ U |||20

≤Cδ
(

|||eβη1/2∂4−k
τ ∂α′

η′ U |||20 + |||eβη1/2U |||23
)

.

(22)

This yields that

∑

0≤k≤4
|α′|≤k

(

d

dτ
|||eβη1/2∂4−k

τ ∂α′

η′ U |||20 +
βb

4
|||eβη1/2∂4−k

τ ∂α′

η′ U |||20
)

≤Cδ









∑

0≤k≤4
|α′|≤k

|||eβη1/2eβη1/2∂4−k
τ ∂α′

η′ U |||20 + |||eβη1/2U |||23









.

(23)

This, (12), and 0 < ǫ ≪ δ ≪ b yield that

d

dτ
|||eβη1/2U |||24 +

βb

8
|||eβη1/2U |||24 ≤ 0.

This inequality results in

|||eβη1/2U(·, τ)|||24 ≤ e−
βbτ
8 |||eβη1/2U(·, 0)|||24 ≤ O(1)ǫe−

βbτ
8 .
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2.3. Decaying rates on η′ variables. To obtain the exponential decaying rate
on η′ variables, we choose another weight function eβ(η1±η2±η3) to apply the same
energy estimate.

By multiplying the equations in (3) with eβη1+β|η2|+β|η3|σ and eβη1+β|η2|+β|η3| uj

γ

respectively, one integrates the equations over R
+ × R

2 to yield that

0 =

∫ ∞

0

∫

R2



eβη1+β|η2|+β|η3|σ · (στ − bση1
+

3
∑

j=1

uj
ηj

+ div(σ~u))

+

3
∑

j=1

eβη1+β|η2|+β|η3|
uj

γ
· (uj

τ − buj
η1

+ γσηj
+ κuj − Qj(σ,~u))



 dη′dη1

=
1

2

d

dτ

∫ ∞

0

∫

R2

eβη1+β|η2|+β|η3|



σ2 +

3
∑

j=1

1

γ
(uj)2



 dη′dη1

+
b

2

∫

R2

eβ|η2|+β|η3|



σ2 +

3
∑

j=1

1

γ
(uj)2



 dη′

∣

∣

∣

∣

∣

∣

η1=0

−
∫

R2

eβ|η2|+β|η3|σu1dη′

∣

∣

∣

∣

η1=0

+

∫ ∞

0

∫

R2

eβη1+β|η2|+β|η3|





βb

2
σ2 − βσu1 − β

3
∑

j=2

sgn(ηj)σuj

+

3
∑

j=1

(

βb

2γ
+ κ

)

(uj)2 + σdiv(σ~u) +

3
∑

j=1

uj

γ
Qj(σ,~u)



 dη′dη1.

(24)

Here,

sgn(x) =

{

x, x ≥ 0,

−x, x < 0.

By the property that 0 < β ≪ b, one has

βb

2
σ2 −βσu1 −β

3
∑

j=2

sgn(ηj)σuj +
3
∑

j=1

(

βb

2γ
+ κ

)

(uj)2 ≥ βb

4
σ2 +

3
∑

j=1

κ

2
(uj)2. (25)

From (24), (25), and the boundary condition u1(0, τ) = 0, one has

d

dτ

∫ ∞

0

∫

R2

eβη1+β|η2|+β|η3|



σ2 +

3
∑

j=1

1

γ
(uj)2



 dη′dη1

+

∫ ∞

0

∫

R2

eβη1+β|η2|+β|η3|





βb

2
σ2 +

3
∑

j=1

(

βb

2γ
+ κ

)

(uj)2



 dη′dη1

+b

∫

R2

eβ|η2|+β|η3|



σ2 +

3
∑

j=1

1

γ
(uj)2



 dη′

∣

∣

∣

∣

∣

∣

η1=0

≤− 2

∫ ∞

0

∫

R2

eβη1+β|η2|+β|η3|



σdiv(σ~u) +
3
∑

j=1

uj

γ
Qj(σ,~u)



 dη′dη1.

(26)
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From the following fact
∣

∣

∣

∣

∣

∣

σdiv(σ~u) +
3
∑

j=1

uj

γ
Qj(σ,~u)

∣

∣

∣

∣

∣

∣

≤ Cδ



σ2 +
3
∑

j=1

(uj)2



 ,

and the property δ ≪ β ≪ b, one has

d

dτ
|||e(βη1+β|η2|+β|η3|)/2(σ,

1√
γ
~u)|||20 + ‖e(β|η2|+β|η3|)/2(σ,

1√
γ
~u)‖2

0

+
βb

4
|||e(βη1+β|η2|+β|η3|)/2σ|||20 + (

βb

4γ
+ 2κ)|||e(βη1+β|η2|+β|η3|)/2~u|||20 ≤ 0.

(27)

Thus for τ > 0,

|||e(βη1+β|η2|+β|η3|)/2(σ,~u)(·, τ)|||20

+
βb

8

∫ τ

0

e−βb(τ−s)/8|||e(βη1+β|η2|+β|η3|)/2(σ,~u)(·, s)|||20ds

≤γe−βbτ/8|||e(βη1+β|η2|+β|η3|)/2(σ,~u)(·, 0)|||20.

(28)

Based on this low order estimates, the high order estimates can be obtained
similarly. Thus it will yield

|||eβ(η1±η2±η3)/2U(·, τ)|||24 ≤ e−
βbτ
8 |||eβ(η1±η2±η3)/2U(·, 0)|||24 ≤ O(1)ǫe−

βbτ
8 .

This concludes a priori assumption (5). The weighted function eβ(η1±η2±η3)/2 and
Sobolev’s inequality conclude Theorem 1.1.
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