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Abstract. In this work a mathematical model is proposed for modeling of cou-
pled dissolution/precipitation and transport processes relevant for the study of
chalk weakening effects in carbonate reservoirs. The model is composed of a
number of convection-diffusion-reaction equations, representing various ions in
the water phase, coupled to some stiff ordinary differential equations (ODEs)
representing species in the solid phase. More precisely, the model includes the
three minerals CaCO3 (calcite), CaSO4 (anhydrite), and MgCO3 (magnesite)
in the solid phase (i.e., the rock) together with a number of ions contained
in the water phase and essential for describing the dissolution/precipitation
processes. Modeling of kinetics is included for the dissolution/precipitation
processes, whereas thermodynamical equilibrium is assumed for the aqueous
chemistry. A numerical discretization of the full model is presented. An opera-
tor splitting approach is employed where the transport effects (convection and
diffusion) and chemical reactions (dissolution/precipitation) are solved in sepa-
rate steps. This amounts to switching between solving a system of convection-
diffusion equations and a system of ODEs. Characteristic features of the model
is then explored. In particular, a first evaluation of the model is included where
comparison with experimental behavior is made. For that purpose we consider
a simplified system where a mixture of water and MgCl2 (magnesium chloride)
is injected with a constant rate in a core plug that initially is filled with pure
water at a temperature of T = 130◦ Celsius. The main characteristics of the
resulting process, as predicted by the model, is precipitation of MgCO3 and a
corresponding dissolution of CaCO3. The injection rate and the molecular dif-
fusion coefficients are chosen in good agreement with the experimental setup,
whereas the reaction rate constants are treated as parameters. In particular,
by a suitable choice of reaction rate constants, the model produces results that
agree well with experimental profiles for measured ion concentrations at the
outlet. Thus, the model seems to offer a sound basis for further systematic
investigations of more complicated precipitation/dissolution processes relevant
for increased insight into chalk weakening effects in carbonate reservoirs.
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1. Introduction.

1.1. Background information. Transport and chemical reactions have been ex-
tensively studied in the recent years. The flow of aqueous reacting solutes through
soil or porous rock involves a complex system of geochemical, hydrological, and
biochemical processes and is of fundamental importance in many different contexts.
The focus of this paper is on the study of transport and dissolution/precipitation
processes relevant for weakening of chalk reservoirs.

Compaction of chalk reservoirs is experienced at the Ekofisk field in the North
Sea, and is not only a result of an increase in effective stresses linked to pore
pressure depletion during oil recovery. There is, however, an additional impact of the
seawater injection when water replaces oil in chalks; it causes enhanced compaction
of the rock, which further has shown to induce additional seabed subsidence. This
phenomenon is often referred to as the water weakening effect on chalks.

The chemical effects of seawater like brines, Ekofisk formation water, and dis-
tilled water on the mechanical properties of high porosity outcrop chalks have been
extensively studied, see [21, 32, 29] and references therein. These rock mechanical
and pure core flooding studies at elevated temperatures, both on high and lower
porosity chalks, have shown that the chemical composition of the saturating and
flooding fluid has crucial influences on the mechanical strength of chalk. Appar-
ently, from the studies by Heggheim et al. [21] and Korsnes et al. [29], the presence
of sulphate ions SO2−

4 in seawater-like brines caused a significant weakening of the
chalk framework, especially as the testing temperature was increased. It was sug-
gested that chemical water weakening of chalk by seawater-like brines takes place
when Mg2+ ions in the solution substituted Ca2+ ions at the intergranular contacts
in the presence of SO2−

4 ions.

Thus, the experimental studies indicate that three ions are of particular impor-
tance, magnesium Mg2+, calcium Ca2+, and sulphate SO2−

4 , as chalk cores are
exposed to seawater-like brines at increased temperatures. The published research
so far, however, seems to point out that there is a rather complicated interplay
between chemical reactions and transport effects. As an attempt to clarify some
of these issues, recent experimental work has been carried out for some simplified
water-rock systems. The objective of the work [33] was to investigate the effect of
individual ions by simplifying the aqueous chemistry. In particular, some of the
previously studied rock mechanical tests were repeated by using distilled water and
solutions containing only MgCl2.

An important part of the experimental activity is to measure ion concentrations
at the outlet of core plugs and compare with the original known ion concentrations
of the injected brines. Hence, a useful tool for evaluation of these experiments
would be to develop a mathematical model that incorporates the interaction be-
tween transport effects (convection and diffusion) and chemical reactions. The
chemical reactions we build into the model is water-rock interaction in terms of
dissolution/precipitation of minerals and aqueous chemistry under the assumption
of thermodynamical equilibrium. The model should be general enough to possibly
give insight into more complicated systems relevant for study of chalk weakening
effects.
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1.2. The model. Let Ω be the domain of calcite CaCO3 and define the molar
concentrations of the different species in the units of mol/liter:

ρc = [CaCO3] (solid) ρca = [Ca2+] (ions) ρh = [H+] (ions)

ρg = [CaSO4] (solid) ρmg = [Mg2+] (ions) ρoh = [OH−] (ions)
ρm = [MgCO3] (solid) ρso = [SO2−

4 ] (ions) ρhco = [HCO−
3 ] (ions)

ρl = [H2O] (water) ρna = [Na+] (ions) ρco = [CO2−
3 ] (ions)

ρcl = [Cl−] (ions)

The domain Ω itself may depend on time, due to the undergoing chemical reac-
tions which affect its surface. Currently, we neglect this dependence. Since we are
including the bulk volume (matrix volume + pore volume) in the definition of the
above densities, we will call them total concentrations. Later we shall define porous

concentrations when dealing with porosity.
The primary unknown concentrations are ρc, ρg, ρm, ρl, ρca, ρso, ρmg, ρna, ρcl,

ρh, ρoh, ρco, and ρhco. We shall assume that the Na+ and Cl− ions do not take
part in the chemical reactions, i.e., their concentrations ρna and ρcl are determined
by the transport mechanisms only (injection rate and molecular diffusion). We
include chemical kinetics associated with the concentrations ρc, ρg, ρm, ρca, ρso,
ρmg involved in the water-rock interactions (dissolution/precipitation), whereas the
concentrations ρh, ρoh, ρco, and ρhco involved in the aqueous chemistry, are obtained
by considering equilibrium state equations. In addition, a charge balance equation
is included for the ions in question.

Water-rock interaction (dissolution and precipitation). The aim is to de-
velop a single mathematical model that can take into account important aspects of
the full behavior as observed from various laboratory experiments and briefly de-
scribed in Section 1.1. The model represents a reactive transport system with three
mineral phases (CaCO3, CaSO4, MgCO3) and three aqueous species (Ca2+, SO2−

4 ,
Mg2+) which react according to basic kinetic laws. More precisely, the chemical
reactions we want to include are:

CaCO3(s) + H+
⇋ Ca2+ + HCO−

3 (dissolution/precipitation), (1)

CaSO4(s) ⇋ Ca2+ + SO2−
4 (dissolution/precipitation), (2)

MgCO3(s) + H+
⇋ Mg2+ + HCO−

3 (dissolution/precipitation). (3)

We shall include reaction kinetic relevant for these processes.

Aqueous chemistry (chemical reactions in the liquid phase). Chemical re-
actions in the liquid phase are assumed to be at equilibrium. More precisely, in
addition to (1)–(3), we will also make use of the following chemical reactions in or-
der to determine concentrations of HCO−

3 , H+, CO2−
3 and OH− (which are species

in the water phase):

CO2(g) + H2O ⇋ HCO−
3 + H+, (4)

HCO−
3 ⇋ CO2−

3 + H+, (5)

H2O ⇋ OH− + H+. (6)

We do not include reaction kinetic associated with these chemical reactions but
assume that they are at equilibrium. In other words, it is implicitly assumed that
they take place at a much faster time scale than the dissolution/precipitation pro-
cesses (1)–(3). As mentioned, we shall also include a charge balance equation. In
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particular, the concentration of Na+ and Cl−, if present, is included in this relation,
hence, indirectly will have an impact on the dissolution/precipitation processes.

Model for transport of aqueous species coupled with precipitation and
dissolution of minerals. The core plug under consideration is initially filled with
formation water. At initial time the formation water is in equilibrium with the
minerals attached to the rock inside the core. Then a brine, which contains known
concentrations of various ions, is injected into the core. Hence, there will be a
transport of the different ions due to a combination of convective and diffusive
forces. This creates concentration fronts that move with a certain speed. At these
fronts, as well as behind them, chemical reactions will take place, both within the
aqueous phase as well as on the rock surface. Of particular interest for us is to
gain some insight into the relation between the concentrations of various ions in
water, respectively, at the outlet and at the inlet. For that purpose it is necessary
to study the interaction between transport, chemical reaction, and the properties
of the porous media (like porosity and permeability). We follow along the line of
previous studies, see for example [1, 2, 3], and formulate a one-dimensional model.
More precisely, we shall in this work deal with a model of the following form:

∂t(φCna) + ∂x(JCna) = ∂x(Dmφ∂xCna),

∂t(φCcl) + ∂x(JCcl) = ∂x(Dmφ∂xCcl),

∂t(φCca) + ∂x(JCca) = ∂x(Dmφ∂xCca) + τ(ṙc + ṙg),

∂t(φCso) + ∂x(JCso) = ∂x(Dmφ∂xCso) + τ ṙg ,

∂t(φCmg) + ∂x(JCmg) = ∂x(Dmφ∂xCmg) + τ ṙm,

∂tρc = −τ ṙc,

∂tρg = −τ ṙg ,

∂tρm = −τ ṙm,

∂xJ =
τ

C
(ṙc + 2ṙg + ṙm), J = −εκ∂xp, ε =

κp

νDm

.

(7)

All the details leading to this model are given in Section 2 and 3. Here we just
note that κ, p, and Dm, respectively, are characteristic permeability, pressure, and
molecular diffusion coefficient, whereas ν is the viscosity assumed to be constant.
κ, p, and Dm represent corresponding dimensionless quantities. In the model (7),

a characteristic time τ and length scale L =
√

Dmτ have also been introduced.
The unknown variables we solve for are Cna, Ccl, Cca, Cso, Cmg, ρc, ρg, ρm (in
terms of mole per liter), and pressure p. Moreover, we must specify rate equations
ṙk = ṙk(ρca, ρso, ρmg, ρna, ρcl) for k = c, g, m. More precisely, the reaction terms
take the form

ṙc = kc
1

[
sgn+(ρc)F

+
c (ρca, ρso, ρmg, ρna, ρcl) − F−

c (ρca, ρso, ρmg, ρna, ρcl)
]
,

ṙg = kg
1

[
sgn+(ρg)F

+
g (ρca, ρso, ρmg, ρna, ρcl) − F−

g (ρca, ρso, ρmg, ρna, ρcl)
]
,

ṙm = km
1

[
sgn+(ρm)F+

m(ρca, ρso, ρmg, ρna, ρcl) − F−
m(ρca, ρso, ρmg, ρna, ρcl)

]
,

(8)

where the functions Fc, Fg, and Fm represent the kinetics of the precipitation and
dissolution processes in question and kc

1, kg
1 , and km

1 are corresponding reaction
rate constants. Here FI = F+

I − F−
I , I = c, g, m, is a decomposition of F into

its positive and negative parts, whereas sgn(x)+ = 1 if x > 0, otherwise it is 0.
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FI < 0 represents precipitation, whereas FI > 0 represents dissolution. The above
formulation takes into account that a mineral can be dissolved only as long as it
exists, and is similar to what has been done in other works, see for example [8, 42]
and references therein.

Ck represents porous concentrations and are related to the total concentrations by
ρk = φCk, for k = ca, so, mg, na, cl. C represents the sum of the water concentration
and the total concentration of the various aqueous species, and it is assumed that
C is constant, i.e., incompressible fluid. We shall also, as a first step, assume that
J is constant. This is reasonable in view of the last equation (left) of (7) since,
typically, C ≫ τ(ṙc + 2ṙg + ṙm).

Porosity φ and permeability κ are taken to be constant in the numerical calcu-
lations in Section 5. More generally, it would be reasonable to let, for example,
porosity depend on the mineral composition determined by ρc, ρg, ρm, similar to
what has been done in [1, 2, 3] for a simpler system relevant for the study of chem-
ical aggression to calcium carbonate stones. See also [11], and references therein,
for a model where porosity and permeability are non-constant.

1.3. Main objectives of the paper. The aim of this paper is as follows:

• Develop a model that is general enough to describe water-rock interactions
relevant for chalk weakening effects associated with carbonate reservoirs.

• Provide a first evaluation of the model by comparing calculated ion concen-
trations with corresponding concentration profiles measured experimentally
at the outlet of core samples for a simplified brine composed of water and
MgCl2.

• Gain some basic insight into characteristic features of the model. The main
tool in this paper for that purpose is the use of an appropriate discrete version
of the model. We base the model on known parameters and use it to infer
insight into quantitative behavior that is not easy to measure, like in situ
concentrations. In particular, we focus on issues like

– the balance between dissolution/precipitation and transport effects;
– how to transfer insight from experimental studies on core plugs to a larger

scale relevant for reservoir flow (upscaling).

The structure of this paper is as follows: In Section 2 we describe the equations
relevant for the aqueous equilibrium chemistry represented by (4)–(6), as well as
non-equilibrium chemistry (dissolution/precipitation) represented by (1)–(3). In
Section 3 we extend the model by incorporating convective and diffusive effects.
Then, in Section 4 we briefly describe a numerical method for solving the resulting
model (7) and (8) based on operator splitting. Finally, in Section 5 we provide a
first evaluation of the model by computing solutions for a case where experimental
data have recently been obtained. Further numerical experiments are included to
shed light on characteristic behavior of the model.

1.4. A review of some relevant studies. It is instructive to try to put the
model (7) and (8) into perspective by briefly reviewing previous works on similar
type of models. In [9] a simplified diffusion-reaction model relevant for precipita-
tion/dissolution processes is studied in N-dimensions. The form of the model in 1D
is

ut − uxx = −λG(u, v), wt = λG(u, v), (9)
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where u is the concentration of an aqueous species and moves due to molecular
diffusion, and w stands for the concentration of a mineral phase. G(u, v) repre-
sents the reaction rate and models either precipitation or dissolution, and λ is a
constant rate. Such models for water-rock interactions are relevant for the study
of radioactive waste storage, oil industry problems like chalk weakening, and CO2

storage.
In [9] main focus is on the existence of weak solutions of (9) and the limiting

behavior of the solution (in a precise mathematical sense) as the kinetic rate λ
tends to infinity. In other words, one tries to obtain a model that represents this
thermodynamical equilibrium solution. In [8] a slightly more complicated system
composed of two aqueous species and one mineral phase is considered. A numerical
discretization is discussed and employed to show existence of weak solutions. A
special characteristic and challenge of these models is the discontinuous reaction
term of unknown sign (depending on either precipitation or dissolution). See also
[42] for similar results for a 1D model of the form (9) and [22] for the same kind
of model, however, whose reaction term does not change sign. A nonlinear version
of this model is studied in [23] whereas a reaction-diffusion system with two mobile
reactants are studied in [7].

Effective discretization algorithms for solving complex diffusion-dissolution and
precipitation chemical system of equations constituted of partial differential equa-
tions (PDE) and ordinary differential equations (ODE) with nonlinear discontinuous
right hand side, is investigated in [20]. The approach is based on an operator split-
ting method alternating between solving a system of pure diffusion equations and a
system of stiff ODEs. Special attention is paid to the ODEs with possible jumping
nonlinearities. Operator splitting methods are known to provide cheap and high
order approximations to reaction-diffusion equations [15, 16, 45, 31, 27]. In [38, 13]
a class of semi-implicit schemes is explored, which treats the linear diffusions ex-
actly and explicitly, and the nonlinear reactions implicitly. A distinctive feature of
the scheme is the decoupling between the exact evolution of the diffusion terms and
implicit treatment of the nonlinear reaction terms.

We have already mentioned the works [1, 2, 3] which deal with systems relevant
for the study of chemical aggression to calcium carbonate stones. Reliable numerical
schemes are derived and explored as well as asymptotic behavior of the model in
question as time goes to infinity or reaction rate goes to infinity. The evolution
of damage in a specimen of homogeneous material under the effect of mechanical
stress and chemical aggressions is studied in [37, 40]. The model that is formulated
allows for studying the damage evolution as a blow-up problem. See also [5, 6] for
similar type of studies where focus is on fluid flow and damage accumulation.

There is a very active research field within theoretical biology where systems
of convection-diffusion-reaction equations are derived. Numerical and analytical
solutions are often studied in simplified 1D geometries and comparisons with exper-
imental data are made. As an example of this type of work we refer the readers to
[14] dealing with cell dynamics. Analytical traveling wave solutions are obtained and
used for predicting how the speed of the cell depends on various central parameters.
Another model, similar to (9), is studied in [24, 25]. Wellposedness properties of the
model, relevant for invasion of bacteria in wounds, is studied in the first work, as
well as convergence to a Stefan-like boundary problem as the “reaction” rate tends
to infinity. Traveling wave analysis is carried out in the second work demonstrating
existence of such solutions subject to appropriate conditions. Further inspiration
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can be found in the works [34, 35] which explore traveling wave solutions for a
model of malignant invasion in the study of cell dynamics. The model is a 1D
three-equation model, composed of one diffusion-reaction type of equation and two
ODEs. These equations are coupled through reaction terms as well as nonlinear
coefficients. See also [46] for a an interesting work for a similar type of model and
[44] for a nice overview of mathematical models describing the growth of avascular
tumors.

Finally, we would like to mention some interesting works by van Duijn and
coworkers [28, 19] where a model of the form

(u + v)t + qux − Duxx = 0, vt = k(g(u; c) − wK),

is studied. Here u represents aqueous species, v mineral phase, and w is a third
unknown which is used to take into account the nature of the dissolution reaction.
Moreover, q and D are constant pore velocity and molecular diffusion coefficient, re-
spectively. The dissolution/precipitation is described by g(u; c), K is the saturation
constant, and k the rate of the chemical reaction. c represents the excess charge dis-
tribution and may be set to be constant or to satisfy a convection-diffusion equation.
In [28] traveling wave solutions are constructed under the assumption that c is con-
stant for the following different cases: (i) non-equilibrium reactions (k < ∞) with
diffusion; (ii) equilibrium reactions (k = ∞) with diffusion; (iii) non-equilibrium re-
actions where diffusion is neglected. In [19] explicit solutions of Riemann problems
are constructed for the case where diffusion D is zero and (i) infinitely fast kinetic
is assumed (k = ∞) so that g(u; c) = wK; (ii) finitely rate constant k is used such
that the solutes are not in equilibrium but is kinetically controlled. The construc-
tion of analytical (semi-analytical) solutions as discussed in these works probably is
relevant for the study of the model (7) and (8) as such techniques can enhance the
understanding of the interplay convection-diffusion-chemical reactions. Hopefully
such techniques also can be employed to provide solutions for validating numerical
solutions of appropriate simplified versions of the model (7) and (8).

2. Derivation of the model without transport effects.

2.1. Dissolution/precipitation. For equilibrium processes of the general form

A + B ⇋ X + Y, (10)

we have that the reaction rate ṙ (assuming they each are elementary) can be ex-
pressed as:

ṙ = k1[A][B] − k−1[X ][Y ], (11)

where k1 is the rate coefficient for the reaction which consumes A and B whereas
k−1 is the rate coefficient for the backward reaction which consumes X and Y and
produces A and B. In the following, the concentration [I] of a substance I is given in
mol/liter. For the chemical reactions (1)–(3), k1 represents dissolution of minerals
whereas k−1 represents precipitation. The unit of ṙ is (mol/liter)s−1. The constants
k1 and k−1 are related to the equilibrium coefficient K for the reaction in question
by the following relationship, obtained by setting ṙ = 0 in (11):

K
def
:=

k1

k−1
=

[X ][Y ]

[A][B]
. (12)

This constant is often referred to as the solubility product and is typically a known
constant. Furthermore, for the rate ṙ associated with the chemical reaction (10),
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we have

ṙ = − 1

V

dnA

dt
= − 1

V

dnB

dt
=

1

V

dnX

dt
=

1

V

dnY

dt
, (13)

where nI represents the number of moles of substance I = A, B, X, Y per unit
volume V . Using the relation that [I] = nI/V for I = A, B, X, Y , we can write (13)
in the form

ṙ = −d[A]

dt
= −d[B]

dt
=

d[X ]

dt
=

d[Y ]

dt
. (14)

Remark 1. Note that the rate coefficients k1 and k−1 may depend on various infor-
mation relevant for the specific chemical reactions under consideration. Examples
of this kind of information include temperature, pressure, activation energy (ionic
strength), area of grain surface, etc. In this work, we shall treat the rate coefficients
as constants.

2.2. Rate equations for the chemical processes involved. The form of the
chemical reaction terms ṙi, for i = c, g, m follows from Section 2.1. Note that in
the following we have tactically assumed that the chemical reactions take place in
an ideal solution since we do not distinguish between concentration and chemical

activity. The inclusion of activity is given in Section 2.7. We also implicitly have
assumed that all three minerals always are present. The general case where one or
several of the minerals vanish or do not exist initially, is accounted for in Section 2.3.
Based on (11) we get the following rate equations associated with the minerals ρc,
ρg, and ρm as described by (1)–(3):

ṙc = kc
1ρh − kc

−1ρcaρhco = kc
1

(
ρh − ρhcoρca

Kc

)
= kc

1Fc(ρca, ρso, ρmg; ρna, ρcl), (15)

ṙg = kg
1 − kg

−1ρcaρso = kg
1

(
1 − ρcaρso

Kg

)
= kg

1Fg(ρca, ρso, ρmg; ρna, ρcl), (16)

ṙm = km
1 ρh − km

−1ρmgρhco = km
1

(
ρh − ρhcoρmg

Km

)
= km

1 Fm(ρca, ρso, ρmg; ρna, ρcl),

(17)

where

Kc =
kc
1

kc
−1

, Kg =
kg
1

kg
−1

, Km =
km
1

km
−1

, (18)

and the functions Fc, Fg, and Fm, are defined by (15)–(17). Here we have used
that the ion activity of a solid component (the minerals) is set to one, see for

example [8], i.e. we have set ρc = ρg = ρm = 1 in (15)–(17). kj
−1 represents the

rate of precipitation whereas kj
1 represents the rate of dissolution associated with

the different minerals j = c, g, m corresponding to CaCO3, CaSO4, and MgCO3.
Similarly, Kj is used to represent the equilibrium constant associated with j =
c, g, m. These are known values. On the other hand, typically much less is known
about the rate of precipitation/dissolution represented by kj

1 and kj
−1.

Applying (14) for the general process (10), we get the following rate equations
associated with the minerals ρc, ρg, and ρm:

dρc

dt
= −ṙc = −kc

1

(
ρh − ρhcoρca

Kc

)
,

dρg

dt
= −ṙg = −kg

1

(
1 − ρcaρso

Kg

)
,

dρm

dt
= −ṙm = −km

1

(
ρh − ρhcoρmg

Km

)
.

(19)
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Similarly, in view of the chemical reactions (2) and (3), respectively, we can apply
(14) and directly put up rate equations for SO2−

4 and Mg2+ of the form

dρso

dt
= ṙso = ṙg = kg

1

(
1 − ρcaρso

Kg

)
,

dρmg

dt
= ṙmg = ṙm = km

1

(
ρh − ρhcoρmg

Km

)
.

(20)

Finally, we see that Ca2+ is involved in both reaction (1) and (2). Thus, we might
consider these two chemical reactions as parallel or competitive reactions. In other
words, the rate associated with Ca2+ should be the sum of the rates ṙc and ṙg.

dρca

dt
= ṙca = ṙc + ṙg = kc

1

(
ρh − ρhcoρca

Kc

)
+ kg

1

(
1 − ρcaρso

Kg

)
. (21)

Here we remark that ρh and ρhco are nonlinear functions of the form

ρh = ρh(ρca, ρmg, ρso; ρna, ρcl), ρhco = ρhco(ρca, ρmg, ρso; ρna, ρcl).

This follows by assuming that the chemical reactions (4)–(6), relevant for the aque-
ous chemistry, is much faster than the dissolution/precipitation processes described
by (1)–(3). Details are given in Section 2.5 as described by (35), (33), and (27).

Remark 2. So far we have followed a rather common practice [8, 30] and assumed
that the activity of aqueous species is given by its concentration when we formulate
rate equations. More generally, it might be important to deal with chemical activity
in the rate equations by taking into account the relation

a = γρ,

where γ is the activity coefficient, a is activity, and ρ is density. This will be done
in Section 2.7 and is used for the numerical calculations in Section 5.

Remark 3. Note that the functional form of the reaction terms given by (19)–(21)
should be considered representative, rather than cast in stone. Typically, most of
the rate laws devised for mineral dissolution and precipitation are more empirical
than theoretical, since the reaction mechanism is unknown. As remarked in [8],
the determination of rates is a topic for intensive research within the geochemical
community [30] in the lack of a general theory of surface dissolution/precipitation
mechanisms. In particular, other functional forms should be explored as we gain
more insight into the kinetics associated with the chemical reactions (1)–(3).

Remark 4. In the proposed model for the chemical reactions we have not at this
stage included adsorption or ion exchange processes on the surface of the rock, see
for example [17, 18]. Focus is on fluid-rock interactions in terms of dissolution and
precipitation.

2.3. A modified model. An important modification is to take into account the
fact that mineral dissolution stops once the mineral has disappeared [8, 36]. To
build this mechanism into the rate equations given by (15)–(17), we change these
equations in the following manner

ṙc = kc
1

[
sgn+(ρc)F

+
c (ρca, ρso, ρmg) − F−

c (ρca, ρso, ρmg)
]
,

ṙg = kg
1

[
sgn+(ρg)F

+
g (ρca, ρso, ρmg) − F−

g (ρca, ρso, ρmg)
]
,

ṙm = km
1

[
sgn+(ρm)F+

m(ρca, ρso, ρmg) − F−
m(ρca, ρso, ρmg)

]
,

(22)



764 S. EVJE, A. HIORTH, M. V. MADLAND AND R. I. KORSNES

where

sgn+(x) =

{
1, if x ≥ 0;
0, otherwise,

FI = F+
I − F−

I , where F+
I = max(0, FI), F−

I = max(0,−FI).

Clearly, in view of (19), we see that for FI < 0 where I = c, g, m represents the
mineral in question, the mineral precipitates; for FI = 0 chemical equilibrium exists
and nothing happens; for FI > 0 the mineral dissolves, but only as long as the
mineral exists, i.e., ρI > 0. Using (22) the resulting system now takes the following
form for the minerals

dρc

dt
= −ṙc = −kc

1

[
sgn+(ρc)F

+
c (·) − F−

c (·)
]
,

dρg

dt
= −ṙg = −kg

1

[
sgn+(ρg)F

+
g (·) − F−

g (·)
]
,

dρm

dt
= −ṙm = −km

1

[
sgn+(ρm)F+

m(·) − F−
m(·)

]
,

(23)

and for the aqueous species

dρca

dt
= ṙca = ṙc + ṙg = kc

1

[
sgn+(ρc)F

+
c (·) − F−

c (·)
]

+ kg
1

[
sgn+(ρg)F

+
g (·) − F−

g (·)
]
,

dρso

dt
= ṙso = ṙg = kg

1

[
sgn+(ρg)F

+
g (·) − F−

g (·)
]
,

dρmg

dt
= ṙmg = ṙm = km

1

[
sgn+(ρm)F+

m(·) − F−
m(·)

]
.

(24)

2.4. Kinetics associated with the fluid-rock interaction. In a more complete
description we also will take into account convective and diffusive forces associated
with the brine in the pore space. In order to include such effects we must consider
the following equations for the total concentrations ρc, ρg, ρm, ρl, ρca, ρso, ρmg,
ρna, ρcl:

∂tρl + ∇ · (ρlvl) = 0, (water flowing through the pore space)

∂tρna + ∇ · (ρnavg) = 0, (Na+-ions in water)

∂tρcl + ∇ · (ρclvg) = 0, (Cl−-ions in water)

∂tρca + ∇ · (ρcavg) = ṙc + ṙg, (Ca2+-ions in water)

∂tρso + ∇ · (ρsovg) = ṙg, (SO2−
4 -ions in water)

∂tρmg + ∇ · (ρmgvg) = ṙm, (Mg2+-ions in water)

∂tρc = −ṙc, (precipitation/dissolution of CaCO3)

∂tρg = −ṙg, (precipitation/dissolution of CaSO4)

∂tρm = −ṙm, (precipitation/dissolution of MgCO3).

(25)

The first six equations represent concentrations associated with the pore space, the
last three equations are associated with the matrix. Here vl and vg are, respectively,
the water and ion “fluid” velocities. In the rest of this section we shall focus on the
simplified model where convective and diffusive forces are neglected and main focus
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is on the reaction kinetic. That is, the model takes the form

dρl

dt
= 0,

dρna

dt
= 0,

dρcl

dt
= 0,

dρca

dt
= ṙc + ṙg,

dρso

dt
= ṙg,

dρmg

dt
= ṙm,

dρc

dt
= −ṙc,

dρg

dt
= −ṙg,

dρm

dt
= −ṙm.

(26)

Later, in Section 3, we shall develop the full model where convection and molecular
diffusion is taken into account. This stepwise approach is reasonable in view of
the fact that we shall use an operator splitting approach where we switch between
solving (i) the submodel (26); (ii) the submodel obtained by setting the right hand
side in (25) to zero.

From (26) we calculate the concentrations ρl, ρna, ρcl, ρca, ρso, ρmg, ρc, ρg, and
ρm. What remains then is to determine the concentrations ρh, ρhco, and ρoh, ρco,
which we need for the evaluation of the reaction terms Fc, Fg, and Fm in (23) and
(24). For that purpose we shall apply equilibrium considerations associated with
the chemical reactions (4)–(6), thereby implicitly assuming that these reactions are
much faster than the precipitation/dissolution processes (1)–(3).

2.5. Aqueous chemistry. In the following, we assume that we know the distri-
bution of the concentrations ρna and ρcl determined from the second and third
equation of (25). Based on this, we shall discuss the various equations associated
with the chemical reactions described by (4)–(6). First, we shall assume that the
CO2 partial pressure PCO2

is known, from which the CO2 concentration can be
determined. More precisely, the local equilibrium associated with (4) gives the
relation

C1 = PCO2
K = ρhcoρh, (27)

for an appropriate choice of the equilibrium constant (solubility product) K and
partial pressure PCO2

. The chemical reaction equation (5) gives us

C2 =
ρcoρh

ρhco
, (28)

where C2 is a known solubility constant. Similarly, from (6), we also have the basic
relation for ρh and ρoh

Cw = ρhρoh, (29)

where Cw is known. Moreover, the following aqueous charge balance equation should
hold for the various species contained in the water

∑

i

ρiZi = 0, (30)

where Zi refers to the ionic charge of species i. For the system in question, this
results in the following balance equation:

2ρca + 2ρmg + ρh + ρna = 2ρso + ρhco + 2ρco + ρoh + ρcl. (31)

Thus, (27)–(30) gives us four equations that allow us to solve for ρh, ρhco, ρco, and
ρoh. In particular, the relation (31) can be written in the form

C3 = ρhco + 2ρco + ρoh − ρh, (32)

where

C3 = C3(ρca, ρmg, ρso; ρna, ρcl) = 2(ρca + ρmg − ρso) + (ρna − ρcl). (33)
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This relation can then be rewritten in the form

C3 = ρhco + 2C2
ρhco

ρh
+

Cw

ρh
− ρh, (34)

where we have used (28) and (29). Combining (27) and (34) we get

C3 =
C1 + Cw

ρh
+

2C1C2

ρ2
h

− ρh,

which can be rewritten as a third order polynomial in terms of ρh

ρ3
h + C3ρ

2
h − (C1 + Cw)ρh − 2C1C2 = 0. (35)

We shall in the following make use of the simplifying assumption that the con-
centration ρco of CO2−

3 is low for pH in the range [6, 8] and, thus, can be neglected
in the charge balance equation (31). Consequently, instead of (32) we consider

C3 = ρhco + ρoh − ρh, (36)

where C3 still is given by (33). This simplification implies that (35) is replaced by
the the second order equation ρ2

h + C3ρh − (C1 + Cw) = 0, which gives

ρh =
1

2

(
−C3 +

√
C2

3 + 4(C1 + Cw)
)
, ρhco =

C1

ρh
. (37)

Finally, ρco and ρoh can be determined from the equations (28) and (29). We
note that ρh = ρh(ρca, ρso, ρmg; ρna, ρcl), in view of (33). Now it is timely to recall
the expressions for Fc, Fg, and Fm:

Fc(ρca, ρso, ρmg) =
(
ρh − ρhcoρca

Kc

)
=

(
ρh − ρcaC1

ρhKc

)
,

Fg(ρca, ρso) =
(
1 − ρcaρso

Kg

)
=

(
1 − ρcaρso

Kg

)
,

Fm(ρca, ρso, ρmg) =
(
ρh − ρhcoρmg

Km

)
=

(
ρh − ρmgC1

ρhKm

)
.

(38)

2.6. Transient solutions with no convective and diffusive effects included.
In view of (26) we get

dρg

dt
+

dρso

dt
= −ṙg + ṙso = 0,

dρm

dt
+

dρmg

dt
= −ṙm + ṙmg = 0,

dρc

dt
+

dρca

dt
− dρso

dt
= −ṙc + ṙca − ṙso = 0,

where ρl, ρna and ρcl are known quantities. Thus, we can write the system (26) in
the form

dρca

dt
= ṙc + ṙg,

dρso

dt
= ṙg,

dρmg

dt
= ṙm,

dρc

dt
= −ṙc,

d

dt

(
ρg + ρso

)
= 0,

d

dt

(
ρm + ρmg

)
= 0,

d

dt

(
ρc + ρca − ρso

)
= 0.

(39)
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This is equivalent to

ρg(t) = (ρg,0 + ρso,0) − ρso(t),

ρm(t) = (ρm,0 + ρmg,0) − ρmg(t),

ρc(t) = (ρc,0 + ρca,0 − ρso,0) − (ρca(t) − ρso(t)),

dρca

dt
= [ṙc + ṙg ](ρc, ρca, ρso, ρmg),

dρso

dt
= ṙg(ρg, ρca, ρso, ρmg),

dρmg

dt
= ṙm(ρm, ρca, ρso, ρmg),

(40)

where we have suppressed the dependence on ρna and ρcl in the reaction terms since
these are known constants. In other words, we have got a simplified model of the
form

dρca

dt
= kc

1

[
sgn+(ρc)F

+
c (·) − F−

c (·)
]

+ kg
1

[
sgn+(ρg)F

+
g (·) − F−

g (·)
]
,

dρso

dt
= kg

1

[
sgn+(ρg)F

+
g (·) − F−

g (·)
]
,

dρmg

dt
= km

1

[
sgn+(ρm)F+

m(·) − F−
m(·)

]
,

(41)

where ρc(t), ρg(t), and ρm(t) itself are functions of ρca, ρso, ρmg as given by the first
three algebraic relations in (40) and the functional form of Fc, Fg, and Fm are given
by (38). To sum up, let us introduce some new and simpler variables

x = ρca, y = ρso, z = ρmg, u = ρc, v = ρg, w = ρm, d = ρna−ρcl. (42)

The model (40) then takes the form

dx

dt
= kc

1

[
sgn+(u)F+

c (x, y, z) − F−
c (x, y, z)

]
+ kg

1

[
sgn+(v)F+

g (x, y, z) − F−
g (x, y, z)

]
,

dy

dt
= kg

1

[
sgn+(v)F+

g (x, y, z) − F−
g (x, y, z)

]
,

dz

dt
= km

1

[
sgn+(w)F+

m (x, y, z) − F−
m(x, y, z)

]
,

(43)

where

u(t) = −(x − y)(t) + (u0 + x0 − y0),

v(t) = −y(t) + (v0 + y0),

w(t) = −z(t) + (w0 + z0),

(44)

and

Fc(x, y, z) =
(
ρh(x, y, z) − xC1

ρh(x, y, z)Kc

)
,

Fg(x, y, z) =
(
1 − xy

Kg

)
,

Fm(x, y, z) =
(
ρh(x, y, z) − zC1

ρh(x, y, z)Km

)
,

(45)
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and

ρh(x, y, z) =
1

2

(
−C3(x, y, z; d) +

√
C3(x, y, z; d)2 + 4(C1 + Cw)

)
,

with C3(x, y, z; d) = 2(x − y + z) + d.
(46)

2.7. Inclusion of chemical activity coefficients. A more correct modeling of
the chemical reactions would be to use activities. This is taken into account in the
following manner. First, we consider the model (41) where Fc, Fg, and Fm now are
replaced by (see Remark 2)

Fc(aca, aso, amg) =
(
ah − ahcoaca

Kc

)
=

(
γhρh − γcaγhcoρcaρhco

Kc

)
,

Fg(aca, aso) =
(
1 − acaaso

Kg

)
=

(
1 − γcaγsoρcaρso

Kg

)
,

Fm(aca, aso, amg) =
(
ah − ahcoamg

Km

)
=

(
γhρh − γmgγhcoρmgρhco

Km

)
.

(47)

Similarly, we introduce activities a = γρ in the equations (27), (28), and (29) which
gives the following relations:

C1 = (γhcoγh)ρhcoρh, C2 =
(γcoγh

γhco

)ρcoρh

ρhco
, Cw = (γohγh)ρohρh.

Again we use the approximation that we neglect ρco in the charge balance equation
(32) (note that this conservation relation is in terms of the concentrations) yielding

C3(ρca, ρso, ρmg; ρna, ρcl) = ρhco + ρoh − ρh.

This gives the relations

ρh =
1

2

(
−C3 +

√
C2

3 + 4(C̃1 + C̃w)
)
, ρhco =

C̃1

ρh
,

ρco =
C̃2ρhco

ρh
=

C̃1C̃2

ρ2
h

, ρoh =
C̃w

ρh
,

(48)

where

C̃1 =
C1

γhcoγh
, C̃2 =

C2γhco

γcoγh
, C̃w =

Cw

γhγoh
, (49)

and

C3 = 2(ρca + ρmg − ρso) + (ρna − ρcl).

In conclusion,

dρca

dt
= kc

1

[
sgn+(ρc)F

+
c (·) − F−

c (·)
]

+ kg
1

[
sgn+(ρg)F

+
g (·) − F−

g (·)
]
,

dρso

dt
= kg

1

[
sgn+(ρg)F

+
g (·) − F−

g (·)
]
,

dρmg

dt
= km

1

[
sgn+(ρm)F+

m(·) − F−
m(·)

]
,

(50)

where

Fc(ρca, ρso, ρmg) =
(
γhρh − γcaγhcoρcaρhco

Kc

)
=

(
γhρh − γcaC1ρca

γhKcρh

)
,

Fg(ρca, ρso) =
(
1 − γcaγsoρcaρso

Kg

)
,

Fm(ρca, ρso, ρmg) =
(
γhρh − γmgγhcoρmgρhco

Km

)
=

(
γhρh − γmgC1ρmg

γhKmρh

)
.

(51)



PHYSICO-CHEMICAL MODELLING 769

In terms of the (x, y, z, u, v, w) variables, the model now takes the form (43) and
(44) where (45) is replaced by

Fc(x, y, z) =
(
γhρh(x, y, z) − γcaC1x

γhKcρh(x, y, z)

)
,

Fg(x, y) =
(
1 − γcaγsoxy

Kg

)
,

Fm(x, y, z) =
(
γhρh(x, y, z) − γmgC1z

γhKmρh(x, y, z)

)
.

(52)

Again, ρh(x, y, z) is determined from (48), that is,

ρh(x, y, z) =
1

2

(
−C3(x, y, z; d) +

√
C3(x, y, z; d)2 + 4(C̃1 + C̃w)

)
,

with C3(x, y, z; d) = 2(x − y + z) + d.
(53)

3. Convective and diffusive effects. Due to dissolution/precipitation of CaCO3,
CaSO4, and MgCO3, it might be reasonable to treat the porosity as dependent
on the concentration of one or several of the minerals. The following derivation
accounts for this possibility. Then, in Section 3.1, we shall assume that the porosity
φ is constant and focus on that case in the remaining part of the paper. For the
moment, we assume more generally that

φ = φ(ρc, ρg, ρm). (54)

Furthermore, we define the porous concentrations of the various components in
water as the concentration taken with respect to the volume of the pores. The
porous concentrations Cl, Cna, Ccl, Cca, Cmg, and Cso are related to the total
concentrations by

ρl = φCl, ρna = φCna, ρcl = φCcl, ρca = φCca, ρmg = φCmg, ρso = φCso. (55)

Following Aregba-Driollet et al [1, 2, 3], we argue that since water, Na+, Cl−,
Ca2+, Mg2+, and SO2−

4 flow only through the pores of the calcite specimen, the
“interstitial” velocity vl associated with the water and vg associated with the ions
and appearing in (25), have to be defined with respect to the concentrations inside
the pores, and differ from the respective seepage velocities Vl and Vg. The velocities
are related by the Dupuit-Forchheimer relations, see [2] and references therein,

Vl = φvl, Vg = φvg. (56)

Consequently, the balance equations (25) can be written in the form

∂t(φCl) + ∇ · (ClVl) = 0,

∂t(φCna) + ∇ · (CnaVg) = 0,

∂t(φCcl) + ∇ · (CclVg) = 0,

∂t(φCca) + ∇ · (CcaVg) = ṙc + ṙg,

∂t(φCso) + ∇ · (CsoVg) = ṙg,

∂t(φCmg) + ∇ · (CmgVg) = ṙm,

∂tρc = −ṙc,

∂tρg = −ṙg,

∂tρm = −ṙm.

(57)
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In order to close the system we must determine the seepage velocities Vl and
Vg. For that purpose we consider the concentration of the water phase (seawater
or formation water) C that occupies the pore space as a mixture of water Cl and
the various species Na+, Cl−, Ca2+, Mg2+, and SO2−

4 represented by Cg. In other
words,

Cg = Cna + Ccl + Cca + Cmg + Cso, C = Cg + Cl. (58)

Then, we define the seepage velocity V associated with C by

CV = CgVg + ClVl. (59)

Now we are in a position to rewrite the model in terms of V and the diffusive
velocity Ug given by

Ug = Vg − V. (60)

Then the model (57) is given in the form

∂t(φCl) + ∇ · (ClVl) = 0,

∂t(φCna) + ∇ · (CnaUg) = −∇ · (CnaV),

∂t(φCcl) + ∇ · (CclUg) = −∇ · (CclV),

∂t(φCca) + ∇ · (CcaUg) = (ṙc + ṙg) −∇ · (CcaV),

∂t(φCso) + ∇ · (CsoUg) = ṙg −∇ · (CsoV),

∂t(φCmg) + ∇ · (CmgUg) = ṙm −∇ · (CmgV),

∂tρc = −ṙc,

∂tρg = −ṙg,

∂tρm = −ṙm.

(61)

Furthermore, we can assume that the seepage velocity V associated with the mixture
represented by C, is given by Darcy’s law [2, 4, 39]

V = −κ

ν
∇p, (62)

where κ is permeability and ν is viscosity, and p pressure. The diffusive velocity
Ug is expressed by Fick’s law by

CαUg = −D∇Cα, α = na, cl, ca, so, mg, D = (φDm + α|V|)I, (63)

where Dm is the effective molecular diffusion coefficient, α is the dispersion length
(longitudinal and transversal dispersion lengths are here taken to be equal), and I
is the identity tensor. In view of (58) and (63), it follows that

CgUg = −D∇Cg. (64)

Note that we assume that the diffusion coefficient D is the same for all species
α = na, cl, ca, so, mg. This is a reasonable assumption as long as the concentration
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is not too high, see e.g. [8]. Using (62) and (63) in (61) yields

∂t(φCl) + ∇ · (ClVl) = 0,

∂t(φCna) −∇ · (D∇Cna) = −∇ ·
(
CnaV

)
,

∂t(φCcl) −∇ · (D∇Ccl) = −∇ ·
(
CclV

)
,

∂t(φCca) −∇ · (D∇Cca) = (ṙc + ṙg) −∇ ·
(
CcaV

)
,

∂t(φCso) −∇ · (D∇Cso) = ṙg −∇ ·
(
CsoV),

∂t(φCmg) −∇ · (D∇Cmg) = ṙm −∇ ·
(
CmgV

)
,

∂tρc = −ṙc,

∂tρg = −ṙg,

∂tρm = −ṙm,

V = −κ

ν
∇p.

(65)

In particular, summing the equations corresponding to Cna, Ccl, Cca, Cso, and Cmg,
we obtain an equation for Cg in the form

∂t(φCg) −∇ · (D∇Cg) = (ṙc + 2ṙg + ṙm) + ∇ ·
(
Cg

κ

ν
∇p

)
. (66)

In a similar manner, using ClVl = ClV − CgUg (obtained from (59), (60), and
(58)) in the first equation of (65), the following equation is obtained

∂t(φCl) + ∇ · (ClV) = ∇ · (CgUg), (67)

which is equivalent to

∂t(φCl) −∇ · (D∇[Cl − C]) = ∇ ·
(
Cl

κ

ν
∇p

)
. (68)

Summing (68) and (66), we get the following equation for the concentration of the
water phase with its different chemical components, represented by C = Cg + Cl,

∂t(φC) −∇ · (D∇[Cl − C]) −∇ · (D∇Cg) = (ṙc + 2ṙg + ṙm) + ∇ ·
(
C

κ

ν
∇p

)
, (69)

that is,

∂t(φC) −∇ ·
(
C

κ

ν
∇p

)
= (ṙc + 2ṙg + ṙm). (70)
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To sum up, we have a model in the form

∂t(φC) + ∇ ·
(
CV

)
= (ṙc + 2ṙg + ṙm),

∂t(φCna) −∇ · (D∇Cna) = −∇ ·
(
CnaV

)
,

∂t(φCcl) −∇ · (D∇Ccl) = −∇ ·
(
CclV

)
,

∂t(φCca) −∇ · (D∇Cca) = (ṙc + ṙg) −∇ ·
(
CcaV

)
,

∂t(φCso) −∇ · (D∇Cso) = ṙg −∇ ·
(
CsoV

)
,

∂t(φCmg) −∇ · (D∇Cmg) = ṙm −∇ ·
(
CmgV

)
,

∂tρc = −ṙc,

∂tρg = −ṙg,

∂tρm = −ṙm,

V = −κ

ν
∇p,

(71)

where D = D(φ) as given by (63). The unknowns are C, Cna, Ccl, Cca, Cso, Cmg,
ρc, ρg, ρm, and p. We have 10 unknowns and 9 equations. We shall assume in the
following that the water phase is incompressible, i.e., that C is constant. Another
option is to assume that the water mixture is a weakly compressible fluid where we
have a constitutive equation for p as a function of C, i.e., p = p(C).

3.1. Incompressibility. As a first approach, we follow [2, 3] and assume that the
water with its various components is treated as an incompressible fluid, i.e., the
concentration C is constant.

∂t(φ) −∇ ·
(κ

ν
∇p

)
=

1

C
(ṙc + 2ṙg + ṙm),

∂t(φCna) −∇ · (D∇Cna) = ∇ ·
(
Cna

κ

ν
∇p

)
,

∂t(φCcl) −∇ · (D∇Ccl) = ∇ ·
(
Ccl

κ

ν
∇p

)
,

∂t(φCca) −∇ · (D∇Cca) = (ṙc + ṙg) + ∇ ·
(
Cca

κ

ν
∇p

)
,

∂t(φCso) −∇ · (D∇Cso) = ṙg + ∇ ·
(
Cso

κ

ν
∇p

)
,

∂t(φCmg) −∇ · (D∇Cmg) = ṙm + ∇ ·
(
Cmg

κ

ν
∇p

)
,

∂tρc = −ṙc,

∂tρg = −ṙg,

∂tρm = −ṙm.

(72)

The first equation can be rewritten by making use of the last three equations for
the solid components

−
( ∂φ

∂ρc
ṙc +

∂φ

∂ρg
ṙg +

∂φ

∂ρm
ṙm

)
−∇ ·

(κ

ν
∇p

)
=

1

C
(ṙc + 2ṙg + ṙm),

that is,

−∇ ·
(κ

ν
∇p

)
=

1

C
(ṙc + 2ṙg + ṙm) + ∆φ, (73)
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where ∆φ is given by

∆φ =
( ∂φ

∂ρc
ṙc +

∂φ

∂ρg
ṙg +

∂φ

∂ρm
ṙm

)
. (74)

In the remaining part of this paper we shall neglect the change ∆φ in the poros-
ity due to chemical precipitation/dissolution of the minerals ρc, ρg, ρm. In other
words, we set ∆φ = 0. The motivation for this is that we first need to understand
basic features of this simpler model, and the behavior of this model compared to
corresponding experimental results, before we take into account finer mechanisms
like dynamic changes in the porosity. Consequently, we shall now deal with the
following model:

∂t(φCna) −∇ · (D∇Cna) = ∇ ·
(
Cna

κ

ν
∇p

)
,

∂t(φCcl) −∇ · (D∇Ccl) = ∇ ·
(
Ccl

κ

ν
∇p

)
,

∂t(φCca) −∇ · (D∇Cca) = (ṙc + ṙg) + ∇ ·
(
Cca

κ

ν
∇p

)
,

∂t(φCso) −∇ · (D∇Cso) = ṙg + ∇ ·
(
Cso

κ

ν
∇p

)
,

∂t(φCmg) −∇ · (D∇Cmg) = ṙm + ∇ ·
(
Cmg

κ

ν
∇p

)
,

∂tρc = −ṙc,

∂tρg = −ṙg,

∂tρm = −ṙm,

−∇ ·
(κ

ν
∇p

)
=

1

C
(ṙc + 2ṙg + ṙm).

(75)

The unknown variables we solve for are Cna, Ccl, Cca, Cso, Cmg, ρc, ρg, ρm, and
pressure p.

Remark 5. For a more complete model it would be reasonable to let the per-
meability κ also depend on the concentration of the solid components, i.e., κ =
κ(ρc, ρg, ρm) similar to the porosity. However, consistent with the above assump-
tion about constant porosity, it is at the current stage natural to assume that the
permeability is also constant.

Noting that the molar density for water is Cl = 5.56×104 mol/m3 = 55.6mol/liter
[43], the molar concentrations associated with the reaction terms ṙc, ṙg, and ṙm

describing precipitation/dissolution of CaCO3, CaSO4, and MgCO3, is expected to
be considerable smaller than C. A natural consequence is then that the right-hand
side term in the last equation of (75) can be neglected. This approximation is
applied in the following, implying that the pressure gradient is constant and must
be determined from, for example, known injection rate.

3.2. Scaled version of the model. In the following we shall restrict ourselves to
a one-dimensional version of the model (75). First, we introduce the variables

b = φCna, c = φCcl, x = φCca, y = φCso, z = φCmg ,

u = ρc, v = ρg, w = ρm,
(76)
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consistent with (42). Let τ be the time scale of the problem. Then, an appropriate
space scale could be given by the diffusive typical length

L =

√
Dmτ , (77)

where Dm is a reference diffusion coefficient. We then define dimensionless space s
and time t variables as follows

s′ =
s√

Dmτ
, t′ =

t

τ
, (78)

and dimensionless coefficients

D′
m =

Dm

Dm

, κ′ =
κ

κ
, p′ =

p

p
, (79)

where p is a reference pressure, κ is reference permeability, and Dm reference diffu-
sion coefficient. Using that D = φDm + ακ

ν |∂sp| and that φ is constant, we get the
following form of the model (75)

∂t′(b) − ∂s′(D′
m∂s′b) = ε∂s′

(
b
κ′

φ
∂s′p′ + µ

κ′

φ
|∂s′p′|∂s′b

)
,

∂t′(c) − ∂s′(D′
m∂s′c) = ε∂s′

(
c
κ′

φ
∂s′p′ + µ

κ′

φ
|∂s′p′|∂s′c

)
,

∂t′(x) − ∂s′(D′
m∂s′x) = τ(ṙc + ṙg) + ε∂s′

(
x

κ′

φ
∂s′p′ + µ

κ′

φ
|∂s′p′|∂s′x

)
,

∂t′(y) − ∂s′(D′
m∂s′y) = τ ṙg + ε∂s′

(
y
κ′

φ
∂s′p′ + µ

κ′

φ
|∂s′p′|∂s′y

)
,

∂t′(z) − ∂s′(D′
m∂s′z) = τ ṙm + ε∂s′

(
z
κ′

φ
∂s′p′ + µ

κ′

φ
|∂s′p′|∂s′y

)
,

∂t′u = −τ ṙc,

∂t′v = −τ ṙg,

∂t′w = −τ ṙm,

−ε∂s′

(
κ′∂s′p′

)
=

τ

C
(ṙc + ṙg + ṙm),

(80)

with

ε =
κ p

νDm

, µ =
α√
Dmτ

. (81)

As indicated above, we shall neglect the precipitation/dissolution effects on the
pressure equation, i.e., the right hand side of the last equation of (80) is set to zero.
This implies that

J := −εκ′∂s′p′ = Constant,

and will be determined from known information about the injection rate. We define

V (t) :=
J(t)

φ
, (82)

where the t-dependency account for possible variations in the injection rate as time
is running. We may, for the sake of simplicity, set the dispersion length to zero
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α = 0, which implies that µ = 0. Consequently, we have the model (where we have
skipped the ’prime’ index)

∂t(b) + ∂s(bV (t)) = ∂s(Dm∂sb),

∂t(c) + ∂s(cV (t)) = ∂s(Dm∂sc),

∂t(x) + ∂s(xV (t)) = ∂s(Dm∂sx) + τ(ṙc + ṙg),

∂t(y) + ∂s(yV (t)) = ∂s(Dm∂sy) + τ ṙg ,

∂t(z) + ∂s(zV (t)) = ∂s(Dm∂sz) + τ ṙm,

∂tu = −τ ṙc,

∂tv = −τ ṙg,

∂tw = −τ ṙm.

(83)

The model must be equipped with appropriate initial conditions

b|t=0 = b0(s), c|t=0 = c0(s), x|t=0 = x0(s), y|t=0 = y0(s), z|t=0 = z0(s),

u|t=0 = u0(s), v|t=0 = v0(s), w|t=0 = w0(s),

(84)

and Dirichlet boundary conditions at the left end of the domain

b|s=0 = bL, c|s=0 = cL, x|s=0 = xL, y|s=0 = yL, z|s=0 = zL, (85)

where the brine with a known concentration of the different ions is injected into the
core plug. At the right end, where the brine leaves the core, we use extrapolation.
This model corresponds to (7) under the assumption of constant porosity φ and
constant fluid velocity (in space). In the next section we describe a discretization
strategy for solving the model (83)–(85). We note that the assumption about con-
stant porosity removes a potential strong nonlinear coupling between the various
equations. Instead all the coupling goes through the source terms. This class of
convection-diffusion-reaction models is often referred to as weakly coupled [27]. This
model also represents an extended version of the model studied in [8] and is similar
to the model studied in [20]. A natural solution strategy for this type of problem
is an operator-splitting approach as described in the next section.

4. Discrete approximations.

4.1. Numerical discretization. Let us introduce U = (u, v, w)T and
C = (b, c, x, y, z)T . We assume that we have approximate solutions (Un(·),Cn(·)) ≈
(U(·, tn),C(·, tn)). Now, we want to calculate an approximation at the next time
level (Un+1(·),Cn+1(·)) ≈ (U(·, tn+1),C(·, tn+1)) by using a two-step operator
splitting approach [31, 20].
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Step 1: Chemical reactions. Let St be the operator associated with the solution
of the following system of ODEs:

db

dt
=0,

dc

dt
=0,

dx

dt
=Ac

1

[
sgn+(u)F+

c (x, y, z) − F−
c (x, y, z)

]

+ Ag
1

[
sgn+(v)F+

g (x, y, z) − F−
g (x, y, z)

]
,

dy

dt
=Ag

1

[
sgn+(v)F+

g (x, y, z) − F−
g (x, y, z)

]
,

dz

dt
=Am

1

[
sgn+(w)F+

m(x, y, z) − F−
m(x, y, z)

]
,

du

dt
= − Ac

1

[
sgn+(u)F+

c (x, y, z) − F−
c (x, y, z)

]
,

dv

dt
= − Ag

1

[
sgn+(v)F+

g (x, y, z) − F−
g (x, y, z)

]
,

dw

dt
= − Am

1

[
sgn+(w)F+

m (x, y, z) − F−
m(x, y, z)

]
,

(86)

where AI
1 = τkI

1 , for I = c, g, m. Here FI is given by (52) and (53). That is, we
solve a model of the following form

dC

dt
= F(U,C),

dU

dt
= G(U,C), t ∈ (0, ∆t],

C(·, 0) = Cn(·), U(·, 0) = Un(·).
(87)

Note that this system corresponds to solving (43) and (44) with FI given by (52)
and (53). From this we obtain intermediate approximations (Cn+1/2,Un+1/2) =
S∆t(C

n,Un).

Remark 6. The stiff ODE system given by (86) is in this work solved by using the
Matlab function ode23.

Step 2: Convection and diffusion. Let Dt be the operator associated with the
solution of the following system of parabolic PDEs:

∂t(b) + ∂s(bV (t)) = ∂s(Dm∂sb),

∂t(c) + ∂s(cV (t)) = ∂s(Dm∂sc),

∂t(x) + ∂s(xV (t)) = ∂s(Dm∂sx),

∂t(y) + ∂s(yV (t)) = ∂s(Dm∂sy),

∂t(z) + ∂s(zV (t)) = ∂s(Dm∂sz),

∂tu = 0,

∂tv = 0,

∂tw = 0.

(88)

That is, the model we solve is in the form

∂t(C) + ∂s(CV (t)) = ∂s(Dm∂sC), U(·, t) = Un+1/2(·), t ∈ (0, ∆t],

C(·, 0) = Cn+1/2(·).
(89)
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From this we find (Cn+1,Un+1) = D∆t(C
n+1/2,Un+1/2).

Remark 7. Concerning the discretization of the convection-diffusion model (88),
several options are possible. First, we could use an explicit time discretization,
an implicit treatment, or a convex combination of explicit and implicit similar to
Aregba-Driollet et al [1, 3]. Another option could be to follow Nie et al and use
an integration factor approach where the linear diffusion is treated exactly [38, 13].
Note however that this requires that the diffusion coefficient is a constant, i.e., φ is
taken to be constant. This method was also presented only for a diffusion-reaction
system. Hence, for the sake of simplicity, we currently use an explicit central based
discretization of the diffusion terms together with the second order relaxed-scheme
fluxes, similar to what we used in [49], for the discretization of the convective terms.

Remark 8. In the following we shall use the Strang type of splitting [20, 48]:

(Cn+1,Un+1) = [D∆t/2S∆tD∆t/2](C
n,Un). (90)

We do no attempt to optimize the numerical method we apply. Main focus, at this
stage, is on basic properties of the model itself in terms of its capability to cap-
ture important coupled flow and precipitation/dissolution mechanisms as observed
through the laboratory experiments.

5. Numerical investigations. The purpose of this section is twofold. Firstly, we
want to perform an evaluation of the model (83)–(85) by comparison with some re-
cent laboratory experiments where chalk core plugs are flooded with a brine which
contains only MgCl2. Such type of experiments, with many different brines, have
been explored extensively during the last ten years, see for example [21, 32, 29] and
references therein. The experiments we compare the model with also involve mea-
surements of the creep behavior when the core is subject to stress. Currently, such
effects are not included in the model. Focus is on the interaction between transport
effects and chemical reactions, as observed by changes in ion concentrations at the
outlet. Secondly, we seek further insight into characteristic features of the model
by varying the injection rate and thereby causing a change in the balance between
flow and dissolution/precipitation. Finally, we also explore the behavior predicted
by the model when the length of the core is increased.

5.1. Experimental setup. A brief description of the experimental setup for the
simplified system follows, we refer to [33] for more details. The purpose of these
experiments is not to simulate any water injection of North Sea chalk reservoirs
at in-situ stress conditions, however, rather to select a repeatable type of tests in
order to gain further in depth understanding behind the mechanisms causing the
water weakening of chalks. Hydrostatic- and creep tests with continuous flooding of
various fluids, at an injection rate equal to approximately 1 pore volume per day (1
PV/D), were performed in a standard hydraulically operated triaxial cell equipped
with a heat regulating system. During the experiments the temperature was kept
constant; 130◦C.

Prior to the mechanical testing each chalk core was saturated with distilled water
and thereafter the core was mounted in the triaxial cell; the confining -and pore
pressure were simultaneously increased to an effective stress equal to 0.5 MPa (con-
fining pressure 1.2 MPa and pore pressure 0.7 MPa) while cleaning the cores by
flooding a minimum of 2 pore volumes distilled water. After cleaning, flooding of
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the respective fluid was started and the triaxial cell was heated to chosen test tem-
perature, 130◦C. Then the sample was left over night to equilibrate at a constant
flooding rate of 1 PV/D. The following day the sample was isotropically loaded be-
yond yield, which are the point where the stress-strain curve departs from the linear
trend, and thereafter left to creep at an effective stress level of 10.5 MPa. Flooding
effluent was continuously fractioned during the entire test period and analyzed by
use of an Ion Chromatograph.

5.2. Input data for the model. We consider a core of length L = 0.07 m. We use
the reference time τ = 1 day = 24 · 3600 sec. In view of (77), this corresponds to a
reference molecular diffusion coefficient Dm = L2/τ = 5.6713 ·10−8 m2/s. We want
to determine J = −εκ∂sp (constant) from the known injection rate Q = q PV/day,
where q is a dimensionless quantity, typically around 1 and PV represents pore
volume. In particular,

Q = q
φAL

τ
, (91)

where A is the area of an intersection of the core, L is length of the core, and τ is
the reference time. Clearly, in accordance with Darcy’s law, we have

Q = −κκA

ν

(∆P

L

)
. (92)

Combining (91) and (92) gives the relation

q
φL

τ
= −κκ

ν

(∆P

L

)
, or

∆P

p
= −q

φL2ν

τκκ p
.

In light of (81) we note that

εκ∂xp = εκ
∆P

p
= −q

φL2

Dmτ
= −q

φDmτ

Dmτ
= −qφ,

by using that Dm = L2/τ . In other words,

J = −εκ∂sp = qφ.

Thus, in view of (82), we conclude that V (t) = q in (83).

Activity coefficients. We consider the simplified system composed of water, Cl−,
and Mg2+ ions. The values for chemical activity coefficients we use, relevant for
the simplified flow system considered at temperature T = 130◦C, are calculated as
follows. First, according to the Debuye-Hückel equation, see for example [41, 30, 10],
the activity γi is given by

− log10(γi) =
AZ2

i

√
I0

1 + a0
i B

√
Io

, (93)

where the index i refers to the different species involved. Moreover, Zi refers to the
ionic charges, A(T ) and B(T ) are temperature dependent given functions, and I0

refers to the ionic strength defined by

I0 =
1

2

∑

i

ρiZ
2
i . (94)

The following values, taken from [10, 26], are used for the constants a0
i :

a0
h = 9, a0

oh = 3.5, a0
ca = 6, a0

hco = 4,

a0
na = 4, a0

cl = 3, a0
mg = 8, a0

so = 4, aco = 4.5.
(95)
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Moreover, we shall use the following values for A(T ) and B(T ) taken from [10, 26]:

A(T = 130) = 0.6623, B(T = 130) = 0.3487. (96)

Moreover, the following solubility products are used:

T=25 T=70 T=90 T=130
Kc 10+1.86 10+1.21 10+0.92 10+0.35

Kg 10−4.3 10−4.87 10−5.21 10−5.94

Km 10+2.3 10+1.24 10+0.79 10−0.01

K 10−7.87 10−8.05 10−8.33 10−9.01

Cw 10−14.05 10−12.72 10−12.47 10−12.26

C2 10−10.32 10−10.09 10−10.08 10−10.15

Kc, Kg, Km refer to (15)–(18), K refer to (27), C2 refer to (28), and Cw to (29).
In order to calculate C1 in (27), we have used the given K value from the above
table and the CO2 partial pressure PCO2

constant is set to PCO2
= 10−3.5, see also

[33]. All these constants have been taken from the EQAlt-simulator [10, 26].

5.3. Study of a simplified laboratory core plug experiment.

Core properties.

• Length L = 0.07 m
• Porosity φ = 0.48
• Volume of core Vc = 75 ml
• Volume of matrix Vm = 36 ml
• Mass of rock Mc = 100 g

In view of the fact that the molecular weight of CaCO3 is 100g/mol, it follows that
the solid part of the core corresponds to 1 mol CaCO3. Consequently, the molar
density is ρc = 1/Vm mol/liter ≈ 28 mol/liter.

Some parameters. In this section, parameters for convection, diffusion, and re-
actions are chosen as follows:

kc
1 = 60, kg

1 = kc
1, and km

1 = 0.08kc
1 (in terms of (mol/liter) sec−1) (97)

q = 1.3, Dm = 6 · 10−8 m2/s. (98)

The choice of q and Dm are motivated as follows: From the experimental setup,
the injection rate should be approximately 1 PV/day. We have set q = 1.3, and
the choice of the molecular diffusion coefficient has then be made such that the
concentration profile for Cl−, given by ρcl, as a function of time measured at the
outlet, fits reasonable well with the experimental behavior, see Figs. 1 and 2. The
underlying assumption here, and also used in the model, is that Cl− to a minor
extent is active in the chemical reactions but are transported through the core as a
result of the convective and diffusive forces only.



780 S. EVJE, A. HIORTH, M. V. MADLAND AND R. I. KORSNES

Case I: 0.109mol MgCl2.

Initial and boundary data. As initial data for this first case we have a core composed
of the mineral CaCO3. As described above, the following densities (mol/liter) are
given initially for the minerals associated with the core

ρc,0 = 28, ρg,0 = 0, ρm,0 = 0.

Moreover, it is assumed that the core is initially filled with pure water, in other
words, all ion concentrations are set to zero inside the core. As far as boundary
conditions are concerned, we shall consider a case where a water mixture with
0.109 mol MgCl2 is injected at the left inlet with a constant rate. In particular, the
concentration (mol/liter) of Mg2+ and Cl− at the left inlet is set to

ρcl,L = 0.218, ρca,L = 0, ρmg,L = 0.109.

We use the concentration of the injected mixture of MgCl2 given by 0.109 mol to
calculate the ionic strength I0 given by (94)

I
(1)
0 = 0.3270. (99)

This, in turn, allows us to calculate the various activity coefficients from (93) by
using (95) and (96). In particular, the following values are obtained:

γca = 0.204 γso = 0.144 γmg = 0.261 γna = 0.616 γcl = 0.580
γh = 0.732 γoh = 0.598 γco = 0.159 γhco = 0.616.

(100)

Verification of convergence properties. We check that the obtained approx-
imations are not sensitive relative the grid that is used. A reasonable choice of
discretization parameters turns out to be a grid of N = 60 cells and a time splitting
step corresponding to ∆t = 1 hour, at least for the reaction rates we have used.
When reaction rates becomes large, the chemical reactions take place on a faster
time scale, and the number of time splitting steps should be increased in order to
capture accurately the balance between flow and dissolution/precipitation. We also
mention that, given the initial ion concentrations inside the core, we find updated
concentrations such that the system is in thermodynamical equilibrium before we
start the flooding.

Comparison with experimental data. From Fig. 1, the following observations
are made:

• The experimental concentration profiles reflect that there is a loss of Mg2+ ions
inside the core and a production of Ca2+ ions. After some time (approximately
8000 minutes) a steady state is reached. Clearly, the results produced by the
proposed model fit well with the experimental results, and indicate that the
ion concentrations of Mg2+ and Ca2+ can be understood as a result of an
interplay betweeen (i) convection and diffusion; (ii) dissolution of CaCO3 and
precipitation of MgCO3.

• The measured concentration profiles indicate that the sum of the concentra-
tion of Mg2+ and Ca2+ remains constant and close to the concentration of
Mg2+ in the injected water mixture, that is, 0.109 mol/liter. The model
explains this behavior in terms of dissolution and precipitation.

• The experimental behavior of Ca2+ and Mg2+ during the first time period
(up to approximately 2000 minutes), is somewhat unclear. Clearly, the rapid
increase in the ion concentration of Ca2+ before it slowly decreases towards a
steady state, is not taken into account by the model.
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Figure 1. Case I. Concentrations at outlet for various ions, Ca2+,
Mg2+, and Cl−. Comparison between experimental results and
calculated solutions of the model for a brine with 0.109 mol MgCl2.
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Figure 2. Case II. Concentrations at outlet for various ions,
Ca2+, Mg2+, and Cl−. Comparison between experimental results
and calculated solutions of the model for a brine of 0.218 mol
MgCl2.

Case II: 0.218mol MgCl2.

Initial and boundary data. This example is very similar to the first where we now
have doubled the concentration of MgCl2. That is, a water mixture with 0.218 mol
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Figure 3. Case II. Concentration of Ca2+ (left) and Mg2+ (right)
along the core at initial time T0 = 0 and at times T1 = 1, T2 = 2,
T3 = 10, T4 = 20, T5 = 30, and T6 = 40 hours. Convergence to
steady state profiles is demonstrated.

MgCl2 is injected at the left inlet with the same constant rate. Hence, the concen-
tration (mol/liter) of Mg2+ and Cl− at the left inlet is set to

ρcl,L = 0.436, ρca,L = 0, ρmg,L = 0.218.

We use the concentration of the injected mixture of MgCl2 given by 0.218 mol to
calculate the ionic strength I0 given by (94)

I
(2)
0 = 0.6540. (101)

This, in turn, allows us to calculate the various activity coefficients from (93) by
using (95) and (96). In particular, the following values are obtained:

γca = 0.160 γso = 0.099 γmg = 0.220 γna = 0.560 γcl = 0.513
γh = 0.706 γoh = 0.538 γco = 0.114 γhco = 0.560.

(102)

Again we use the parameters given by (97) and (98) in the model. The resulting
concentration profiles, both experimental and computed, are shown in Fig 2. The
steady state levels of the ion concentrations measured at the outlet fit well with the
computed concentrations. Clearly, the model seems to capture some of essential
flow/chemical reaction mechanisms for this simplified water-rock system.

Finally, we want to study the behavior predicted by the model concerning the
distribution of the various ion concentrations along the core for different times for
the case with 0.218 mol MgCl2. This also gives a visualization of the precipita-
tion/dissolution of the minerals inside the core plug. First, in Fig. 3 the concentra-
tions of Ca2+ (left figure) and Mg2+ (right figure) at different times are presented.
The left figure clearly demonstrates how the injection of the MgCl2 brine (without
Ca2+) leads to a low concentration close to the left inlet. However, there is a steady
dissolution of CaCO3 that produces Ca2+ ions inside the core. As time becomes
large enough, a steady state concentration profile is reached. This profile marks a
situation where a perfect balance between convection, diffusion, and reaction has
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Figure 4. Case II. Concentration of Ca2+ (left) and Mg2+ (right)
during the first 3 days of flooding.
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Figure 5. Case II. Concentration of CaCO3 (left) and MgCO3

(right) along the core at initial time T0 = 0 and at times T1 = 1,
T2 = 2, T3 = 10, T4 = 20, T5 = 30, and T6 = 40 hours. Dissolution
of CaCO3 and precipitation of MgCO3.

been reached. In a similar manner, the figure for Mg2+ shows that there is a steady
precipitation of MgCO3 that consumes Mg2+ ions inside the core such that the con-
centration of Mg2+ in the injected water cannot be reached throughout the core. A
visualization of the change in space and time is also shown in Fig. 4.

The corresponding concentration profiles for the minerals considered at the same
times, are shown in Fig. 5. The left figure clearly demonstrates the steady dissolu-
tion of CaCO3 taking place inside the core as time is running. Similarly, the right
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Figure 6. Case II. Concentrations at outlet for various ions,
Ca2+, Mg2+, and Cl− where we increase or decrease the injection
rate q after T = 5 days.

figure shows the corresponding precipitation of MgCO3. Note that these dissolu-
tion/precipitation processes will continue as long as there is still more CaCO3 left
to be dissolved. Ultimately, it should lead to changes in the pore structure that can
be observed experimentally.

Reduction of injection rate. We now want to explore how the ion concentration
profiles at the outlet depends on the injection rate. We consider the example with
injection of a water mixed with 0.218 mol MgCl2. We run the flooding for 10 days.
For the first 5 days, the injection rate is q=1.3 as before. Then we reduce it to
q/4. Afterwards, we run a similar example, however, now the rate is increased to
4q after 5 days. The results are shown in Fig. 6. Clearly, when the injection rate
is increased after 5 days, the dissolution of CaCO3 goes down. In other words, the
production of Ca2+ decreases and the concentration of Mg2+ shows a corresponding
increase reflecting that the precipitation of MgCO3 also decreases. Similarly, when
the injection rate is reduced after 5 days, this will imply a stronger dissolution
of CaCO3 (increase of Ca2+) and stronger precipitation of MgCO3 (decrease of
Mg2+). However, the changes in these ion concentrations are relatively small since
the molecular diffusion remains the same and now represents a relatively strong part
of the transport effect. In this sense, we may say that the dissolution/precipitation
processes are dictated by convection and diffusion.

5.4. Uscaling to a larger core plug. Finally, we would like to employ the model
to predict the behavior for an upscaled problem. That is, we consider a core which
is ten times the length of the core used in the experiments and used for the above
simulations. Otherwise, parameters are set as before. In particular, the injection
rate should now be one tenth of the injection rate used above. That is,

• L = 0.7 m
• q = 0.13.
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Figure 7. Case II. In situ concentrations for the ions Ca2+ and
Mg2+ after T1 = 6, T2 = 12, T3 = 24, and T4 = 48 hours with a
long core, L = 0.7 m.
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Figure 8. Case II. In situ concentrations for the minerals CaCO3

and MgCO3 after T1 = 6, T2 = 12, T3 = 24, and T4 = 48 hours
with a long core, L = 0.7 m.

We have used a grid of 120 cells and consider the situation after T = 2 days. We
apply 960 time splitting steps, i.e., ∆t = 3 minutes. The various ion concentrations
are shown in Fig. 7 and the corresponding concentrations for the minerals are shown
in Fig. 8. A characteristic dissolution/precipitation front is seen in Fig. 8 that moves
from left to right. A corresponding “pulse”-like concentration for Ca2+, see Fig. 7,
is generated that reflects the production of these ions due to dissolution of CaCO3.
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Further investigations of the speed of the dissolution/precipitation front, as well
as its sensitivity for various parameters, are certainly of interest and will be ad-
dressed in the forthcoming time. The growth rate of the “thickness” of the dissolved
layer of CaCO3 (see Fig. 8), and knowledge about different parameters that affect
this rate, also becomes important when we want to extract information relevant for
chalk weakening effects on the reservoir scale.
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