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Abstract. We introduce a new model for rill erosion. We start with a network
similar to that in the Discrete Web [7, 11] and instantiate a dynamics which
makes the process highly non-Markovian. The behavior of nodes in the streams
is similar to the behavior of Polya urns with time-dependent input. In this
paper we use a combination of rigorous arguments and simulation results to
show that the model exhibits many properties of rill erosion; in particular,
nodes which are deeper in the network tend to switch less quickly.

1. Introduction.

1.1. Reinforcement and rill erosion. Stochastic processes with reinforcement
are inherently non-Markovian and therefore may model some real phenomena more
accurately than can their Markovian counterparts. Reinforcement is a mechanism
that provides a bias to a system, making it more likely to occupy states the more
often those states are visited. Some well-studied examples include variations on the
urn of Pólya (the original introduced in [4] and this and subsequent models studied,
for example, in [1] and [9]) and reinforced random walks [3, 15]. The infinite memory
exhibited in these examples can force a system to spend most (or almost all) of its
time in a small subset of its state space. Many natural phenomena exhibit similar
behavior; for instance, the overall pattern of erosion on a hillslope is relatively stable
once it is established, although small details of the pattern may change frequently
and catastrophes that permanently alter it may occasionally occur.

We investigate a discrete time, infinite-memory random process defined on the
nodes and edges of an oriented diagonal lattice (Figure 1) that we propose as a
simple model of hillslope erosion. The lattice starts out smooth in the sense that
it has no edges initially, but it sprouts edges everywhere the instant the process
starts, much as rain can start soil erosion everywhere on a hillslope at once. Edges
may connect an interior node to two, one, or neither of the two nodes directly above
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it. Exactly one edge descends from each interior node, and it points either left or
right. At every node and at every time step a simple two parameter reinforcing law,
based on the entire history of the network above a given interior node, randomly
determines the direction of the node’s descending edge and then is updated. Obvious
modifications of these statements apply to nodes at the top or bottom (if one exists)
of the lattice.

The current pattern of connections among nodes represents the present state of
the process, and the pattern’s stability – measured by the tendency of the same
state, or one similar to it, to occur on subsequent iterations of the process – rep-
resents the pattern’s strength as a memory. The degree of reinforcement is set by
tuning two parameters, r and α. At any given moment the current pattern is a
collection of dendritic networks that appears similar to drainage networks found in
nature; indeed, lattice models have often been used to investigate the morphology
of natural drainage networks (e.g. [17]). We focus on the surficial dynamics of rill
networks [10], rather than their morphology. Put in terms of erosion, we are more
interested in the process of erosion than we are in the result.

The analogy between our model and erosion, specifically rill erosion, is strong: r
can be interpreted as a rainfall rate (or equivalently, as the rate of sediment gener-
ation), α−1 as the resistance of soil to erosion, and the reinforcement dynamics as
the flux of sediment down a hill. Rills are small, ephemeral channels that transport
sediment down hillslopes when it rains [19]. They form when rainfall and runoff
dislodge particles from the soil surface and transport them along flow paths gov-
erned by variations in the surface roughness of soils and the soil’s ability to resist
erosion. Flow depths in rills are typically on the order of a few centimeters or less,
while the longest channels in rill networks can be several meters long. Processes
affecting rill erosion take place over timescales ranging from milliseconds to hours.

The topology of rill networks is relatively unstable when compared to larger scale
natural drainage systems (of which rills may be a part) like gulley systems and river
basins. Rill networks are most unstable at their tops where boundaries between rills
and inter-rill areas are not well defined and shift often, but connectivity can change
downhill as well, usually at a slower rate than uphill. Some rills grow throughout
a rainfall event, others are filled by sediment and disappear, still others alternate.
A detailed description of rill erosion 1) must account for complicated interactions
among rainfall, soil properties, and topography, and 2) often depends on obtaining
a set of physical parameters that are difficult to measure.

Despite the high degree of complexity of rill erosion at small scales, at macro-
scopic scales it is principally determined by particle detachment and sediment trans-
port [16]. In turn, each of detachment and transport depends critically on the rate of
rainfall and the soil’s resistance to erosion. It is not completely surprising that our
simple two-parameter model exhibits some important elements of the macroscopic
behavior of rill formation. In fact, similar to rill erosion, each node in the model
network switches direction infinitely many times but the switching rate depends on
position up or down hill. Furthermore, floods that carry unusually large amounts of
water and catastrophes that significantly alter the flow pattern occur occasionally
in the model, as they do in nature.

1.2. Definition of the model. Consider the vertices of the even sub-lattice of Z2

which have second coordinate non-positive. That is, the set

Z2
even = {(x, y) ∈ Z2 : x + y even and y ≤ 0}
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and edges

E2
even = {< (x, y), (x + 1, y − 1) > : (x, y) ∈ Z2

even}
∪ {< (x, y), (x − 1, y − 1) > : (x, y) ∈ Z2

even}.
Let v = (x, y) be a node with left parent w1 = (x − 1, y + 1), right parent w2 =
(x+1, y+1) (for those nodes with second coordinate 0, parents will not exist), with
left child (x − 1, y − 1), and right child (x + 1, y − 1). We will use the term depth k
to refer to those nodes with y coordinate equal to 1 − k. Conversely, for any node
v the term depth(v) will denote the numerical value of the depth of v.

First we describe the algorithm for the behavior of v heuristically. At the end of
the 0th second, v receives Iv(0) = r units of rain (but does nothing else). During
the nth second, for n ≥ 1, the following sequence occurs:

1. v flips a coin, heads-biased with probability PL
v (n), which reflects T L

v (n), the
total “sediment” load v has sent to its left child by time n.

2. If this coin shows heads (tails), v sends its current input of sediment Iv(n−1)
to its left (right) child. v adds this number to the total sediment, T L

v (n)
(T R

v (n)), it has sent to the left (right) for all time.
3. v receives sediment load from 0,1, or 2 parents and receives r units of rain.

Call the sum of these two Iv(n). Increment time and return to step 1.

The evolution of the node’s behavior depends on two parameters: the rainfall
rate r > 0 and a term α−1 > 0 that resists change. To make this rigorous, we make
several definitions. We start by initializing variables. For each v ∈ Z2

even, let

T L
v (0) = T R

v (0) = Tv(0) = 0

and
Iv(0) = r , PL

v (0) = PR
v (0) = 1/2.

For each n ≥ 1 and v ∈ Z2
even, we define a Bernoulli variable DL

v (n) (the biased
coin) with parameter PL

v (n − 1). These are conditionally independent from vertex
to vertex given the variables {DL

v (i) : v ∈ Z2
even, i < n}. Next, let

T L
v (n) = Iv(n − 1)DL

v (n) + T L
v (n − 1)

and let
Tv(n) = Iv(n − 1) + Tv(n − 1) , T R

v (n) = Tv(n) − T L
v (n).

We create the bias for the next coin:

PL
v (n) =

T L
v (n) + α

Tv(n) + 2α
=

T L
v (n)
r + η

Tv(n)
r + 2η

, (1)

where η = α/r compares the effect of the rain to the system’s inherent resistance
to change. In this paper, we shall always take r = 1 so that η = α. Last we define
the input

Iv(n) =

{

r : depth(v) = 1

Iw1
(n − 1)(1 − DL

w1
(n)) + Iw2

(n − 1)DL
w2

(n) + r : otherwise

and the filtration

Fn = σ({DL
v (k) : v ∈ Z2

even, k = 1, ..., n}).
See Figure 1 for an illustration of the process at the node v.

Denote by dv = (dv(1), dv(2), ...) the sequence of directions that node v chooses
(for example (L,R,L,...)). At the end of time t, after all nodes have sent sediment
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Figure 1. Left: Input and output behavior at node v. The dark-
ened line segments indicate paths of sediment flow. The light line
represents a potential flow path. Right: A small piece of a visual-
ization of ωn for some n. Only edges e with ωn(e) = 1 are solid.

to their children, we may update certain edge variables. Define a sequence of edge
configurations (ωn)n≥0, where for each n, ωn is a map from E2

even → {0, 1}, using
the following rule. If the node v = (x, y) has dv(n) = L then let

ωn(< x − 1, y − 1 >) = 1 , ωn(< x + 1, y − 1 >) = 0.

If, on the other hand, dv(n) = R then let

ωn(< x − 1, y − 1 >) = 0 , ωn(< x + 1, y − 1 >) = 1.

See Figure 1 for a realization of ωn.
We say that nodes v and w are connected at time n if there exists a path of

distinct adjacent edges e1, .., em with ωn(ei) = 1 for all i so that e1 connects v to
one of its children and em connects w to one of its parents. Denote by Cv,n the
set of vertices which are connected to v at time n and define the backward (uphill)
component of v = (x, y) at time n by

C+
v,n := Cv,n ∩ {(x′, y′) : y′ ≥ y, x′ ∈ Z}.

Finally, let ω−1
n = {e : ωn(e) = 1}.

1.3. Regimes for η. The parameter η plays an important role in the behavior of
the model. For a fixed node v (at depth k) we have that for all n ≥ 1,

lim
η→0

P(dv(n) = L | dv(0) = R) = 0.

This indicates that when η is small the node v chooses a direction at time 0 and has
a high probability of sticking to this direction for most values of n ≥ 1. Since this
is true for each node v, the evolution of (ωn) is somewhat simple. In the limit as
η → 0, each node picks a direction and stays with that direction for all time. That
is, for each n ≥ 1, and for each finite subset E ⊂ E2

even,

lim
η→0

P(ω−1
0 (1) ∩ E = ω−1

n (1) ∩ E) = 1, (2)

and the dynamics has no effect on the configuration in any finite subset of Z2
even.

The configurations at any time are the same as those in the discrete web [2, 7].
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In the other direction, as η → ∞, each node “forgets” its history. That is, for
each node v, the conditional probability given Fn that it chooses left at time n + 1
is given in (1), and the limit of this quantity is 1/2. By symmetry,

P(dv(n + 1) = L) = 1/2 = P(dv(n + 1) = R),

and so

lim
η→∞

[P(dv(n + 1) = L) − P(dv(n + 1) = L | Fn)] = 0.

Therefore the variables in any finite subset of {dv(n) : n ≥ 0} converge in distribu-
tion to i.i.d. Bernoulli(1/2) variables. Furthermore, the variables in any finite subset
of {dv(n) : n ≥ 0, v ∈ Z2

even} converge in distribution to i.i.d. Bernoulli(1/2) vari-
ables. Intuitively this holds because distinct nodes only interact with each other
through their input and output loads, and both of these are eventually dominated
by large η. These statements indicate that when η is large, the dynamics of our
erosion model are similar to those in a network in which each node flips a fair coin
at each time n, independently from site to site and from time to time, to determine
in which direction to send sediment. Thus the configurations (ωn) resemble those
taken from the dynamical discrete web [11, 7].

Given the relation that both these extreme cases have to the variables (ωn), it
is natural to view the present model (with 0 < η < ∞) as an interpolation between
the discrete web and the dynamical discrete web. Indeed, for each fixed n, the
distribution of ωn is the same as that in the case of η = 0 at time n = 0 or that
in the case of η → ∞ at any time n. (In both cases, all directions are chosen by
independent fair coin flips).

As we shall see in section 3.2.2, the model with 0 < η < ∞ can be likened to
the case η → ∞ in the following way. Each level k is associated to a measure θk

(defined in Section 3.2.2 in (9)), supported on [0, 1]. Each node at level k samples
(non-independently) from this measure a value pv. For any sequence n1, n2, ..., nm

of distinct times and for any sequence x1, ..., xm of elements from the set {L, R},

lim
T→∞

P(dv(n1 + T ) = x1, ..., dv(nm + T ) = xm) = pNL

v (1 − pv)
NR ,

where NL (NR) is the number of i for which di = L. Because of this fact, we may
view the model (for large time) as one in which each node fixes a Bernoulli parameter
pv and flips a pv-biased coin independently each second n (but not independently
from site to site) to determine the direction in which to move sediment.

1.4. Outline of the paper. In Section 2 we discuss the (relatively simple) behavior
of nodes with depth 1. Since these nodes receive constant input load over time, we
can use the well-known model of Pólya’s Urn to analyze their output. In Section 3
we discuss the more complicated behavior of nodes with depth at least 2. Here we
make use of results of Pemantle [14] for a time-dependent generalization of Pólya’s
Urn. We look more closely at properties of the input load, of the output load, and
of the dynamics of these lower-depth nodes.

2. Top level. Since our top level nodes are equivalent to the model of Pólya’s Urn,
we recall basic facts of Pólya’s model. Start with an urn containing R0 red balls
and B0 black balls and draw one ball from the urn. Return this ball to the urn,
along with another ball of the same color. After this round there are R1 red balls
in the urn and B1 black balls in the urn, with either R0 = R1 or B0 = B1. Repeat



736 MICHAEL DAMRON AND C. L. WINTER

this process infinitely many times, creating sequences (Rn)n≥0 and (Bn)n≥0 so that
for each n,

P(Rn+1 − Rn = 1 | Rn, Bn) =
Rn

Rn + Bn
.

It is well known that the fraction FR
n = Rn

Rn+Bn
has an almost sure limit and that

this limit is distributed as β(R0, B0) (see e.g. [8]).
Let v be a node with depth 1. At the beginning of each second, v receives one

unit of sediment and this input load amount does not change with time. The node
sends this load either to the right or left, depending on the bias rule in (1). We are
interested in the fraction of total load the node sends left (right) up to time n. To
this end, define the load fractions

LFL
v (n) =

T L
v (n)

Tv(n)
, LFR

v (n) =
T R

v (n)

Tv(n)
, n ≥ 1.

Theorem 2.1. The quantities LFL
v (n) and LFR

v (n) have limits as n → ∞. These
limits are random: they are distributed as β(η, η).

Proof. We will indicate the proof only for the case LFL
v (n). An easy calculation

shows that (PL
v (n)) is a martingale w.r.t. {Fn} and, since it is bounded for all n, it

has an almost sure limit. Solving for the limiting distribution is similar to solving
for the related quantity in the standard Pólya urn model. See, for instance, [5].
This gives

lim
n→∞

PL
v (n) = lim

n→∞

T L
v (n) + η

Tv(n) + 2η
= lim

n→∞

T L
v (n)

Tv(n) + η
Tv(n)

1 + 2η
Tv(n)

= lim
n→∞

T L
v (n)

Tv(n)
= lim

n→∞
LFL

v (n), (3)

because η is constant w.r.t. n and Tv(n) → ∞.

Note that the limiting distribution in Theorem 2.1 is supported on [0,1] and has
no atoms. This implies that with probability 1, the node v switches states (L,R)
infinitely often and that neither of these states is transient. This is quite unlike
the “sticking” associated to the dynamics in the η → 0 limit (refer to (2)). The
distribution from the above theorem for different values of η is pictured in Figure
2. For 0 < η < 1 the limiting load fraction has a bimodal distribution, and for
η > 1 the distribution is unimodal, symmetric about 1

2 . This means that when η is
small, each node is likely to have a relatively strong preference for one direction and
that when η is large, each node is likely to favor L and R somewhat equally. The
case η = 1 gives a uniform distribution. Here v is equally likely to have a strong
directional preference as it is not to.

3. Lower levels. The simplicity of behavior at the top level comes from the fact
that each node has an input load which is constant w.r.t. time. This is not true
at lower levels. Each node has an input load whose magnitude is non-trivially time
dependent. To make this more apparent, isolate an arbitrary node v with depth
(v) = k > 1. If at time t = n, v is not connected to either of its parents in
ωn, then its input load is 1 unit (coming only from rain). If, on the other hand,
v is connected to at least one of its parents, then its input load will be strictly
greater than 1 unit. Therefore, the geometry of the connected components of ωn

determines the behavior of each node. This relationship is complex for at least two
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η = 1
2 η = 1 η = 2

Figure 2. Asymptotic distributions for LFL
v (n) with η = .5, 1, 2 respectively.

reasons. First, not only does the geometry of the network influence node behavior,
the node behavior in turn determines the future geometry of the network. In this
sense, our system generates its own randomness. Second, the method by which this
randomness arises involves propagation. The geometry of nodes at depth k − l at
time m affects the behavior of nodes at depth k at time n if and only if m = n− l.
In other words, it takes l seconds for the output load from depth k − l to reach
nodes at depth k. In spite of these complications, we set out to analyze these lower
level nodes.

The node v has an input load sequence

Iv = (Iv(1), Iv(2), ...),

left total output sequence

T L
v = (T L

v (1), T L
v (2), ...),

and output direction sequence

dv = (dv(1), dv(2), ...).

We are interested in analyzing the nature of this input sequence, the nature of the
output sequence, and the relationship between the two.

3.1. Input load. Figure 3 shows a histogram of input load values for all nodes
at (a) depth 5, (b) depth 7, and (c) depth 8 at t = 300s with η = 1 (the precise
value of η does not matter, as a consequence of Theorem 3.1). The simulation was
conducted with periodic boundary conditions, with 106 nodes per row, and with
10 rows. Therefore, the histogram for depth k at time n = 300s should closely
approximate the probability mass function of the distribution of the input load for
depth k at time n = 300s. One notices a few things. First, the support of the
distribution at depth k is integers in the interval [1, 1

2k(k + 1)]. Next, the mass
function appears to decrease from load value 1 to a local minimum at k − 1, to
increase for a bit to a local maximum, and then to decrease to the edge of its
support. About 1/4 of nodes are at the heads of rills, while the fraction of rills
starting short of the top increases with depth. The “bump” in the load distribution
to the right of the value k − 1 appears to travel to the right as depth increases.
Looking at Figure 3, it is tempting to guess that the load distribution at a given
level is a mixture of a distribution for loads that start at the top and one for loads
that do not. Last, the different mass functions have several common values. For
example, the probabilities for load values 1 to 4 are the same in each figure, and
the probabilities for load values 1 to 6 are the same in the center and right figures.

We present three structural theorems regarding the load distribution. The first
gives basic information needed to make calculations, and the second gives us the
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Row 5 Row 7 Row 8

Figure 3. Load distribution for k = 5, 7, 8 respectively.

value of the first moment of the distribution. The third discusses a limiting measure
for the family of loads that do not originate at the top. Because of the simplicity
of the first theorem, we state it without proof.

Theorem 3.1. Basic properties of the load distribution. Let n0 be a fixed time and
let v be a node at depth k.

a. All random variables dv(n0) are i.i.d. with probability 1
2 of being L or R.

b. The distribution of Iv(n0) is laterally translation invariant (i.e., along the
x-axis) and is invariant in time for n0 ≥ k.

c. The distribution of Iv(n0) is equal to the distribution of |C+
w,n0

| for any node w

with depth equal to min(n0, k). Therefore Iv(n0) takes values in [1, n0(n0+1)
2 ].

Theorem 3.2. Let v be a node at depth k. The mean of the load distribution is

E(Iv(n)) =

{

n : n ≤ k

k : n > k
.

Proof. We use induction on k. For k = 1, the statement is trivial, so consider
k > 1. Since the distribution of Iv(n) is constant for n ≥ k, we assume n ≤ k. Let
Nv,k−1 be the number of nodes at level k−1 which send sediment to v at the end of
time n− 1. This variable takes values in {0, 1, 2} with probabilities {1/4, 1/2, 1/4},
respectively. Call w1 (w2) the left (right) parent of v.

E(Iv(n)) =
2

∑

i=1

[E(Iv(n) | Nv,k−1 = i)P(Nv,k−1 = i)]

= 1/4 + 1/2 [1 + E(Iw1
(n − 1))] + 1/4 [1 + E(Iw1

(n − 1) + Iw2
(n − 1))]

= 1 + E(Iw2
(n − 1)) = 1 + (n − 1) = n,

where to go from the second line to the third line, we use the fact that the variables
Iw1

(n−1) and Iw2
(n−1) have the same distribution (see b. under Theorem 3.1).

Theorem 3.1 lets us use geometric properties of clusters of a static network (ωn0
)

to study something which is dynamic: the load at time n at node v. That load
may have come from a pathway that no longer even exists at time n. We further
exploit this relationship, but to do this we must consider the concept of the dual
web, defined in, for example, [7], and of whose definition we remind the reader.

Consider the odd sublattice

Z2
odd = {(x, y) ∈ Z2 : x + y odd and y ≤ 1}.

For any node v∗ = (x∗, y∗) ∈ Z2
odd we call the node (x∗ +1, y∗ +1) the right child of

v∗ and we call the node (x∗−1, y∗+1) the left child of v∗. Similarly, we call the node
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Figure 4. Portion of an realization of the erosion network, along
with its dual web. The solid lines indicate paths of sediment flow
and the dotted lines show paths of the dual (courtesy of [6]).

(x∗ + 1, y∗ − 1) the right parent of v∗ and we call the node (x∗ − 1, y∗ − 1) the left
parent of v∗. We define the set E2

odd in the obvious way. The set of configurations

{ωn : n ≥ 0} induces a set of configurations {ω∗
n : n ≥ 0} ⊂ {0, 1}E

2
odd by the

following rule. If, in the configuration ωn, a node v = (x, y) is connected to its left
child, we form a connection between the node v∗ = (x, y − 1) and its right child in
the configuration ω∗

n by setting the image under ω∗
n of the edge in E2

odd between v∗

and its right child to 1, and the image of the edge between v∗ and its left child to 0.
If, on the other hand, v is connected to its right child in ωn then we set the image
of the edge from v∗ to its left child under ω∗

n to 1 and the image of the edge from
v∗ to its right child to 0. See Figure 4 and notice that we construct clusters in ω∗

n

so that no occupied edges in ω∗
n cross any occupied edges in ωn.

The upward paths in ω∗
n now resemble the downward paths in ωn. That is, the

upward path starting at the node v∗ is a simple symmetric random walk which is
killed at depth 1. Random walks starting at different nodes are independent until
they meet, at which point they coalesce into one random walk. This is similar to
the coalescing random walks picture of the discrete web, described in [2, 11, 7].

There is an obvious physical interpretation for the paths in the dual web. For any
two adjacent paths in the configuration ωn, there is a path in ω∗

n separating them.
If the paths in ωn represent rills or drains, the paths in ω∗

n represent the divides or
ridges between them. Just as divides between rills do not cross rills, paths in ω∗

n do
not cross paths in ωn.

We now characterize the load distributions for our model. For any node v = (x, y)
(with depth k), let v∗L = (x−1, y) and let v∗R = (x+1, y). Consider the set of edges
in the dual lattice contained in the paths emanating from the vertices v∗R and v∗L
in ω∗

n until either (a) they meet at some vertex w∗ or (b) they reach a depth of 1.
The set of nodes in Z2

even in the interior of this set of edges is exactly the backward
cluster of v in the configuration ωn.

We now make some definitions so that we can work with this load distribution.
Let {XL

i : i ≥ 2} and {XR
i : i ≥ 2} be independent sets of random variables (also

independent of each other) which take the values 1 and -1 each with probability 1
2 .
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For i ≥ 2 let Yi = 1
2 (XR

i − XL
i ) and for i ≥ 1, let Wi = 1 + Y2 + ... + Yi. Consider

the stopping time

τ = min{n : Wn = 0}.
Until the stopping time τ , the random variable Wi represents the width of the
backward cluster of the node v in the real lattice (only valleys and not separating
ridges), where we only consider nodes in this cluster whose depths are between
k − i + 1 and k. Therefore the total number of nodes in this partial cluster should
be

Li := W1 + ... + Wi.

Now we can make an equivalent definition of the distribution of the load Iv(n) by
saying that for each fixed n, it is the same as the distribution of the random variable

Lk(n) := Lmin(τ,n,k). (4)

This variable is a discrete integral of the symmetric random walk {Wi : i ≥ 1}.
Theorem 3.3. Let v be a node at depth kv and let w be a node at depth kw ≥ kv.
For any n ≥ kv and for any l < kv we have

P(Iv(n) = l) = P(Iw(n) = l).

Therefore the limit

lim
kv→∞

Iv(kv) (5)

exists in distribution. This limit is a.s. finite but has infinite mean.

Proof. On the event τ ≥ kv, i.e., the load originated from the top,

Iv(n) = Lmin(τ,n,kv) = Lkv
≥ kv > l

and

Iw(n) = Lmin(τ,n,kw) ≥ Lmin(τ,n,kv) > l.

Hence, we need only consider τ < kv.

P(Iv(n) = l) = P(Iv(n) = l, τ < kv) = P(Lmin(τ,n) = l, τ < kv)

= P(Lmin(τ,n,kw) = l, τ < kv) = P(Iw(n) = l). (6)

The random variable Lkv
(n) is constant for n ≥ kv, so

P(Iv(kv) = l) = P(Iv(kw) = l) = P(Iw(kw) = l),

where in the last equality we use (6). Consequently, for each fixed l, the limit

lim
kv→∞

P(Iv(kv) = l)

exists. By the definition (4), a random variable with this limiting distribution is

L∞ := lim
k→∞

Lmin(τ,k,k) = Lτ .

Since

τ ≤ Lτ ≤ τ(τ + 1)

2
,

the third statement of the theorem will follow if we show that τ is a.s. finite and has
infinite mean. But since the increments (Yi) of the random walk (Wi) have mean
zero, the walk is recurrent. In addition, it is a standard result that the entrance
time of the set {0} has infinite mean. This completes the proof.
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Let L∞ be a random variable with the limiting distribution from Theorem 3.3.
We close this section by proving that the distribution of L∞ decays no faster than
that of a variable with a power law distribution.

Theorem 3.4. There exists c1, c2 > 0 such that for all n,

c1n
−1/2 ≤ P(L∞ > n) ≤ c2n

−1/4.

Proof. We begin by considering the quantity H , the height of the backward cluster
of the node v. H has the same distribution as τ , the hitting time of 0 for the random
walk (Wi). Using the reflection principle for random walks (see, e.g. [18]),

P(τ ≤ n) = P(τ ≤ n, Wn ≤ 0) + P(τ ≤ n, Wn > 0)

= 2P(τ ≤ n, Wn < 0) + P(τ ≤ n, Wn = 0).

But if Wn ≤ 0, then τ ≤ n. Therefore,

P(τ ≤ n) = 2P(Wn < 0) + P(Wn = 0)

= P(Wn < 0) + P(Wn > 2) + P(Wn = 0).

This gives

P(τ > n) = P(Wn = 1 or 2).

By analyzing the characteristic function of Wn, similar to [20, Example 4.1], one
can show that there exist constants c1, c2 > 0 such that for all n,

c1√
n

< P(Wn = 1 or 2) <
c2√
n

.

To finish the proof, notice that for the node v, we have H ≤ L∞ ≤ H2. Therefore,
c1√
n

< P(L∞ > n) ≤ c2

n1/4
.

3.2. Dynamics. Now we investigate some aspects of the effect of η on the stabil-
ity of configurations over time. As noted, the dynamics creates an interpolation
between the discrete web and the discrete dynamical web. The evolution of the
system mirrors some aspects of rill erosion, one being that nodes through which a
large amount of water passes at time n0 have a non-trivial probability to channel
a large amount of water at any time n1 > n0. The degree to which this is true
depends on the parameter η, as we will see.

3.2.1. Load correlation. We start our analysis by inspecting simulation results. For
any two positive integers M, N , let VM,N be an enumeration of the MN nodes in
the box [0, M − 1] × [−N,−1] and define the load correlation coefficient at time n
(for n ≥ N) by

KM,N(n) =

∑

v∈VM,N
I ′v(N)I ′v(n)

√

(
∑

v∈VM,N
I ′v(N)2)(

∑

v∈VM,N
I ′v(n)2)

,

where I ′v(n) = Iv(n) − E(Iv(n)). We define this quantity only for n ≥ N because
two load vectors for a box of depth N are in some sense incomparable if they are
taken at times n0, n1 with n0 < N ≤ n1. For example, a node at depth n only has

a maximum possible load of n(n+1)
2 at time n < N , whereas its maximum possible

load is N(N+1)
2 for n ≥ N .
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Figure 5. Averaged load correlation (vertical axis) versus η (hori-
zontal axis). Data points are taken at η-intervals of 0.1 until η = 2,
and then at intervals of 1.

In Figure 5 we have graphed simulation results for a network 49 nodes deep and
49 nodes wide. The x-axis represents values of the parameter η, as it varies from 0
to 5. The y-axis represents values of a time averaged correlation coefficient, namely
the quantity

1

N ′ − N + 1

N ′

∑

n=N

KM,N(n)

for M = N = 49 and N ′ = 200. Furthermore, we averaged this value over 6
independent trials. This quantity is meant to approximate values of KM,N(n) for
M, N, n large. The time averaging seemed necessary because of fluctuations, most
likely due to finite size conditions, in the quantity KM,N(n).

We can see in Figure 5 that the coefficient approaches 1 as η → 0. This makes
sense because, as remarked in section 1.3, the η → 0 limit of the dynamics (in any
fixed box) is the same as the dynamics (or rather non-dynamics) of the discrete
web. Therefore the load vector for this box should be similar (if not the same)
at any two times. As η increases, the correlation coefficient decreases and appears
to approach 0. Indeed, additional simulations give the following data: for η =
10, 100, 1000, 10000, the coefficients were .2391, .0896, .0189, and .0101. From the
discussion of the η → ∞ limit given in section 1.3, the correlation coefficient should
approach that computed from two load vectors from independent realizations of the
discrete web.

3.2.2. de Finetti measures. Whereas we can compare nodes at the top level to stan-
dard Pólya urns, we can compare lower level nodes to time-dependent input [14] or
random input [13] Pólya urns. We start with an urn with R0 red balls and B0 black
balls, as before, but we also have a time-dependent (or random) input sequence
I = (I0, I1, ...). At time t = n we draw a ball from the urn and we return it to the
urn along with In balls of the same color. Notice that this process with I = (1, 1, ...)
is just the standard Pólya urn.

To analyze these lower level nodes, we will also make use of a fundamental result
in the theory of exchangeable variables.
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Definition 3.5. {0, 1}-valued variables X1, X2, ... are exchangeable if for any
x1, ..., xm ∈ {0, 1} and for any permutation σ of m elements we have

P(X1 = x1, ..., Xm = xm) = P(Xσ(1) = x1, ..., Xσ(m) = xm).

Theorem 3.6 (de Finetti). Let (Ω,F , P) be a probability space and suppose that
{Xn : n ≥ 0} is a set of exchangeable {0, 1}-valued random variables defined on Ω.
Then there exists a random variable F on Ω so that conditioned on F , the random
variables Xn are independent Bernoulli with parameter F .

It is easy to verify that if depth(v) = 1, then the {0, 1}-valued variables in the
set {DL

v (n) : n ≥ 0} are exchangeable. In our case, the variable F from Theorem
3.6 is actually

pv := lim
n→∞

PL
v (n). (7)

Thus if we know the asymptotic fraction of left choices for a node, then our node is
just flipping independent coins each second with the same bias.

At lower levels, the variables (DL
v (n)) are not exchangeable. However, they are

asymptotically exchangeable. We use the definition of Kingman [12].

Definition 3.7. {0, 1}-valued random variables X1, X2, ... are called asymptoti-

cally exchangeable if there exists a sequence Y1, Y2, ... of exchangeable random
variables so that for each x1, ..., xm ∈ {0, 1},

lim
N→∞

P(X1+N = x1, ..., Xm+N = xm)

= P(Y1 = x1, ..., Ym = xm).

In the language of Theorem 3.6, let F be the random variable associated with the
exchangeable variables (Xn). We call the distribution of F the de Finetti measure

for the sequence (Yn).

Let v be a node with depth k ≥ 1.

Theorem 3.8. The variables (PL
v (n))n≥0 form a bounded martingale sequence

w.r.t. Fn. Therefore they have an almost sure limit pv.

Proof. Similar to the proof of [13, Theorem 2.1]. Since each PL
v (n) is a probability,

it is bounded by 1. To show that the variables form a martingale sequence, we

calculate, writing δv(n) for the quantity Iv(n)
Tv(n)+2η :

E(PL
v (n + 1) | Fn) = PL

v (n)

[

PL
v (n) + δv(n)

1 + δv(n)

]

+ (1 − PL
v (n))

[

PL
v (n)

1 + δv(n)

]

=
PL

v (n)(1 + δv(n))

1 + δv(n)
= PL

v (n).

Remark 1. Using the same equations which produce (3), the limit pv in Theorem
3.8 is the same as the limit of the variables (LFL

v (n))n≥0.

For any number 0 ≤ p ≤ 1, define the measure Qp on the set {0, 1} by

Qp({0}) = 1 − p , Qp({1}) = p.

Let {v1, ..., vr} ⊂ Z2
even be a finite set of vertices. For any vector of real numbers

(p1, ..., pr) ∈ [0, 1]r, define the measure Q~p on vectors in {0, 1}r to be the product
measure

∏r
i=1 Qpi

.
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Theorem 3.9. For fixed v, the variables (DL
v (n) : n ≥ 1) are asymptotically

exchangeable with de Finetti measure equal to the distribution of pv. Further-
more, let ~v = (v1, ..., vr) be a vector of vertices and for each n, let DL

~v (n) =

(DL
v1

(n), ..., DL
vr

(n)). If ~d1, ..., ~ds are vectors in {0, 1}r, then with probability one,

lim
T→∞

P(DL
~v (1 + T ) = ~d1, ..., D

L
~v (s + T ) = ~ds | ~p) =

s
∏

i=1

Q~p(~di), (8)

where ~p = (pv1
, ..., pvr

).

Proof. Similar to the proof of [13, Theorem 2.2]. In that theorem, the authors prove
statements equivalent to (a) for fixed v, the variables (DL

v (n)) are asymptotically
exchangeable and (b) equation (8) for the case r = 1 (only one vertex). The proof of
(8) for r > 1 follows from almost identical arguments to those for the case r = 1.

Because of lateral translation invariance, the de Finetti measure for v depends
only on the value of depth(v). In light of this, we define

θk = de Finetti measure for row k. (9)

With this framework we will be able to study the switching rate of each node v once
we have the following lemma.

Lemma 3.10. For any node v, almost surely,

lim
n→∞

1

n

n
∑

i=1

DL
v (i) = pv. (10)

Proof. Similar to the proof of [13, Theorem 2.3], using a method like the one outlined
below in the proof of Theorem 3.11.

We now define the switching function sv for n ≥ 2 by sv(n) = DL
v (n)(1−DL

v (n−
1))+DL

v (n−1)(1−DL
v (n)). Define the switching rate Sv(n) to be the time average

of sv, that is

Sv(n) =
1

n − 1

n
∑

i=2

sv(i).

Theorem 3.11. The n → ∞ limit of Sv(n) exists a.s.

lim
n→∞

Sv(n) = 2pv(1 − pv). (11)

Proof. The proof is similar to the proof of [13, Theorem 2.3]. Let dn = DL
v (n) and

pn = PL
v (n). A straightforward calculation gives

E(dn+1 | Fn) = pn , E(pn+1 | Fn) = pn. (12)

Now,

lim
n→∞

1

n

n
∑

i=2

sv(i) = lim
n→∞

1

n

n
∑

i=2

(di(1 − di−1) + di−1(1 − di))

= lim
n→∞

1

n

n
∑

i=2

(di + di−1) − 2 lim
n→∞

1

n

n
∑

i=2

didi−1 = 2pv − 2 lim
n→∞

1

n

n
∑

i=2

didi−1,
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by Lemma 3.10. We must show that the last limit above is a.s. equal to p2
v. Define

Mn =
∑n

i=2(di − pn)di−1. Mn is a martingale with respect to Fn:

E(Mn+1 | Fn) = E(
n

∑

i=2

(didi−1) −
n

∑

i=2

(pn+1di−1) + dn+1dn − pn+1dn | Fn)

=

n
∑

i=2

(didi−1) −
n

∑

i=2

(pndi−1) + pndn − pndn = Mn,

where we use both equations in (12). Note also

lim
n→∞

1

n

n
∑

i=2

pndi−1 = pv lim
n→∞

1

n

n
∑

i=2

di−1,

which is p2
v, by Lemma 3.10. Therefore it suffices to show that with probability one,

Mn

n
→ 0. (13)

By summing the series

1

n
(M1 + ... + Mn) =

n
∑

i=2

Mi

i

(

i

n

)

by parts, it can be shown that (13) will follow once we show that

∞
∑

i=2

Mi+1 − Mi

i

converges. To this end, define M ′
n =

∑n−1
i=2

Mi+1−Mi

i . We leave the reader to verify

that M ′
n is a martingale. Using L2-orthogonality of martingale differences,

E(M ′
n)2 = E(

n−1
∑

i=2

(

Mi+1 − Mi

i

)2

) = E(

n−1
∑

i=2

(

(di − pn)(di−1)

i

)2

)

≤
n

∑

i=2

1

i2
< ∞.

Therefore M ′
n is an L2 bounded martingale and converges a.s. This completes the

proof.

If pv ∈ (0, 1) then neither of the choices L or R are transient for v. This prompts
the question of whether or not the de Finetti measures θk have atoms at 0 or 1. For
any fixed k, the answer is no.

Theorem 3.12. For each k ≥ 1, the measure θk has no atoms.

Proof. In [14, Theorem 4] it is shown that the de Finetti measure for a time-
dependent input Pólya Urn cannot have atoms if there is a C so that Iv(n) ≤ C for

all n. For each realization of the dynamics and for each v, we have Iv(n) ≤ kv(kv+1)
2

for all n, where kv = depth(v). The result follows.

Corollary 1. Each node v has a nonzero asymptotic switching rate. Therefore, for
each v, the states L and R are recurrent.

Proof. This is a direct consequence of Lemma 3.10 and Theorem 3.12.
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Corollary 2. With probability one, for each node v, the variable Iv(n) takes each

value in [1, kv(kv+1)
2 ] for infinitely many values of n. Here, kv = depth(v).

Proof. The statement of the corollary is trivial if kv = 1; therefore, suppose that

kv ≥ 2. Let v1, ..., vm be the m = kv(kv+1)
2 − 1 nodes above v which can send

sediment to v and let ~d1, ..., ~dkv
∈ {0, 1}m. Let N ≥ 1 and write DL

~v (n) for the
vector (DL

v1
(n), ..., DL

vm
(n)). Using Theorems 3.9 and 3.12, we see that

lim
N→∞

lim
T→∞

P(∩N
j=1 ∪kv

i=1 {DL
~v (T + jkv + i) 6= ~di}) = 0.

But this number is no less than the probability of the complement of the event

{DL
~v (n+1) = ~d1, ..., D

L
~v (n+kv) = ~dkv

for infinitely many n}. The result follows.

Here an interesting picture of our network emerges. On the one hand we may
view the system as an infinite lattice (the lower half plane), where each node is a
random input Pólya Urn. The output of the urns at depth k at time n becomes the
input of the urns at depth k + 1 at time n + 1. On the other hand, we may first
sample (non-independently) a value pv from the de Finetti measures {θk : k ≥ 1}
to create an infinite array. As time n approaches infinity, the behavior of the system
approaches the behavior of the same network in which each node v sends its current
load left with probability pv and right with probability 1 − pv, independently at
each second. Therefore this picture is of a network of two variables, a realization of
values pv from the de Finetti measures, and realization of dynamics which coincides
with the dynamics of a much simpler network. This second network is an obvious
generalization of the Dynamical Discrete Web.

Figure 6 shows histograms for the de Finetti measures (θk) for k = 2, 5, 9 and for
values of η = .5, 1, 2. One sees that the measures become more biased as k increases
(for fixed η). In other words, the mass of θk is concentrated on domains closer to
0 and 1 than is the mass of θk−1. This would seem to imply that the expected
asymptotic switching rate of a node at level k (which is 2pv(1− pv)) must decrease
with k. Similarly, if k is fixed and η decreases to 0, it seems that the expected
switching rate should decrease.

Figure 7 represents data given by simulations conducted with an erosion network
with width 105, depth 50, and η = .1, 1, or 10. The simulation ran for n = 1000
steps and at the end, switch rates for each node in the network were computed.
In each row, each node’s rate was averaged. Since two nodes v1 and v2 with the
same depth k have independent behavior as long as they are at least a distance of
2k apart, the ergodic theorem gives that, as the network size approaches infinity,
the resulting average should resemble the expected switch rate for a row. The
above results were averaged by row over 3 independent trials. Finally, the data
were plotted by row. Not only do the average switch rates appear to decrease as k
increases, there appears to be a non-trivial (i.e., non-zero and η dependent) limit
for the switch rate.

The above data on expected switching rates gives some insight into possible limits
for the measures (θk). If a limit exists for this sequence, one would expect it to be
the de Finetti measure associated with the “infinity process.” To define this process,
we start with a lattice of nodes which extends infinitely far in both positive and
negative y directions. Since the behavior of a node v at time n in the present model
depends only on the nodes in the n − 1 levels above it we may consider the input
to the node v at time n in the infinity model to be a function of the output of this
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η = 1
2 , row 2 η = 1

2 , row 5 η = 1
2 , row 9

η = 1, row 2 η = 1, row 5 η = 1, row 9

η = 2, row 2 η = 2, row 5 η = 2, row 9

Figure 6. De finetti measures for k = 2, 5, 9 (from left to right)
and η = .5, 1, 2 (from top to bottom).

Figure 7. Average switch rate (vertical axis) versus row (horizon-
tal axis). The values of η are 10 (top curve), 1 (middle curve), .1
(bottom curve).
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finite number of ancestors. In the same way we have analyzed in this paper, it is
possible to show that a de Finetti measure θ∞ for this process exists and that

θ∞ = lim
n→∞

θn(n), (14)

where the term inside the limit is the measure given by

θn(n)([a, b]) = P(PL
v (n) ∈ [a, b]) for depth(v) = n.

Does the measure θ∞ have atoms for some values of η? In the case that the limit
of (θk) is indeed θ∞, Figure 7 seems to indicate that the answer is no, i.e., that the
measure θ∞ does not have atoms. Indeed, if this were true, then for some values of
η, the average switching rate at row k should approach zero as k → ∞. It appears
that this is not the case. Therefore, for at least some values of η, the limit of the
measures (θk) (if it exists) is most likely not equal to 1

2 (δ0 + δ1).

3.2.3. Catastrophes. Next, we study the following situation. Suppose a node v at a
large depth k (for this section we assume the depth is at least 2) starts with a small
input load and keeps a relatively small input load until a much later time. Then
v’s load changes dramatically. If this new load is sufficiently large, it could bring
v’s de Finetti measure much closer to 1

2 (δ0 + δ1). This analysis is from the point of
view of the node v, whereas the analysis of the last half of the section will be from
the point of view of the parent.

Let

Av(n) =
Tv(n − 1)

n
, n ≥ 1.

Definition 3.13. For any n ≥ 1, define the flood ratio Fv(n) = Iv(n)
Av(n) . For c ≥ 1,

we say that a flood of order c occurs at time n if Fv(n) ≥ c.

Remark 2. Since Iv(n), Av(n) ∈ [1, 1
2 (k(k + 1))], we have

2

k(k + 1)
≤ Fv(n) ≤ k(k + 1)

2
. (15)

Proposition 1. For any v, Av(n) has a limit a.s. Therefore,

lim inf
n→∞

Fv(n) < lim sup
n→∞

Fv(n).

Proof. We show the first statement by induction on depth(k). Clearly this is true
if depth(v) = 1. Otherwise, let w1 be the left parent of v and assume that for all
nodes w′ with depth equal to that of w1, Aw′(n) has a limit. Let NR

w1
(n) be the

number of i ≤ n such that DR
w1

(i) = 0. By Lemmas 3.8 and 3.10,

lim
n→∞

T R
w1

(n)

n + 1
= lim

n→∞

T R
w1

(n)Tw1
(n)

(n + 1)Tw1
(n)

= (1 − pw1
) lim

n→∞
Aw1

(n + 1)

exists. The same argument shows that, if w2 is the right parent of v, limn→∞
T L

w2
(n)

n+1

exists. Therefore,

lim
n→∞

Tv(n − 1)

n
= lim

n→∞

n − 1 + T R
w1

(n − 2) + T L
w2

(n − 2)

n

exists.
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For the second statement of the proposition, we use Corollary 2 from Section 3.2.2
to see that

lim inf
n→∞

Fv(n) =
1

limn→∞ Av(n)
<

k(k + 1)

2 limn→∞ Av(n)
= lim sup

n→∞
Fv(n).

Remark 3. The above proof shows also that limn→∞
T R

v (n)
n+1 exists and equals (1−

pv) limn→∞ Av(n).

Remark 4. A simple extension of the above proof using Theorem 3.12 shows that
for any level k, the distribution of the limiting time-average of the load for level k
has no atoms.

If v has an asymptotic average input load Av, then v will have infinitely many

floods of order k(k+1)
2Av+ǫ for any ǫ > 0. This number can be quite large if Av is small.

We study numerically the rates of these large floods as they relate to both depth(v)
and η. For a fixed node v, define the random measure

µv,n =

n
∑

i=2

δFv(i).

Let (vi)i≥1 be an enumeration of the nodes with the same depth as that of v. By
the ergodic theorem, the average

1

M

M
∑

i=1

µvi,n → E(µv,n)

as M → ∞. See Figure 8. The graphs come from a simulation run for 105 seconds
on a network with a width of 104 nodes and a depth of 50 nodes. We graphed the

density function for the measure 1
N

∑10000
i=1

[

µvi,105 − µvi,9000

]

for N = (104)(105 −
9000) in an attempt to approximate 1

n−9000E(µv,n) for n large and for v with depth
5, 20, and 50. The reason we subtracted µvi,9000 is to decrease the effect of small
times, during which the ratio Fv(n) is likely to be an integer.

As η → 0 with a fixed row or as the row increases with fixed η, each measure
seems to concentrate its mass at 0 and 1. In other words, the measure of any
interval which does not include either of these two points appears to approach 0. In
addition, Table 1 shows that as η increases with a fixed row or as the row increases
with fixed η, the expected fraction of time during which a large flood occurs (ratio
above 5) increases. Since the time average of flood ratios approaches 1 as n → ∞,
the above facts indicate a trend that as η increases or as the row increases, the
time variance of measures increases, giving more possible variability of the flood
ratios. As η → 0 or as the row increases, values near 1 (on the x-axis) show that
the fraction of time that flood ratios spend near 1 increases. In spirit, this is in
accordance with previous results, as we explain. Figure 7 shows that as the row
increases, the expected switching rate of a node decreases. It is reasonable to believe
that the same conclusion holds if the depth is fixed but η decreases. Therefore the
network prefers to be more static in these circumstances and we would expect a
node to receive a relatively constant load, forcing flood ratios to be near 1.

We now change focus to the parent. Make the following definition.
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η = 1
10 , row 5 η = 1

10 , row 20 η = 1
10 , row 50

η = 1, row 5 η = 1, row 20 η = 1, row 50

η = 10, row 5 η = 10, row 20 η = 10, row 50

Figure 8. Histograms approximating the measure E(µv,n) for n large.

η Row 5 Row 20 Row 50

.1 .00035 .00205 .00308
1 .00136 .01235 .01789
10 .00024 .02356 .03711

Table 1. Expected fraction of time during which a large flood
(ratio at least 5) occurs.

Definition 3.14. For any n ≥ 2, define the right catastrophe ratio

CR
v (n) =

Iv(n)

AR
v (n)

whenever DL
v (n) = 0.

Here, AR
v (n) =

T R
v (n−1)

NR
v (n−1) , where NR

v (n) is the number of i ≤ n such that DR
v (i) = 0.

For c ≥ 1, we say that a right catastrophe of order c occurs at time n if CR
v (n) ≥ c.

Make similar definitions for left catastrophe ratio and left catastrophe.

Remark 5. From a similar argument to that used in Proposition 1, we have

lim inf
n→∞

CR
v (n) < lim sup

n→∞
CR

v (n).

We investigate the relationship between floods and catastrophes. Figure 9 shows
the expected fraction of right catastrophes from the left parent which result in a
flood of at least the same magnitude. The simulation was performed with a network
of width 1000, depth 50, η equal to either .1, 1, or 10, and for a duration of 105

seconds. The calculation of fractions was only made between 9000s and 10000s and
we only consider catastrophes with ratio at least 1. It is clear from the figure that



A NON-MARKOVIAN MODEL OF RILL EROSION 751

Figure 9. Expected fraction of right catastrophes from left parent
which result in a flood of at least the same magnitude. The values
of eta are 10 (top), 1 (middle), and .1 (bottom). The data are
plotted by row.

as the row increases, this expectation decreases. As η decreases for a fixed row, the
expectation also decreases. As n → ∞,

AR
v (n) =

(n − 1)T R
v (n − 1)

(n − 1)NR
v (n − 1)

→ lim
n→∞

Av(n),

by Remark 3 and Lemma 3.10. Therefore, we may use Remark 4 to show that
almost surely for large n a right catastrophe of order c occurs for the node v at
time n if v has a flood of order c at time n − 1. In other words, whenever a node
receives a flood of order c at a large time, it has either a left or right catastrophe
of the same order at the next second.

Now we may interpret the probability that a node has a flood given that its left
parent has a right catastrophe as the probability that a parent’s catastrophe incites
a catastrophe in the child. This would be a step of a possible catastrophe cascade.
The simulation results indicate that cascades become less present at lower levels (on
average) but that they should never cease to exist. Two questions naturally arise.
Given that a node has a right catastrophe of order c, how far does its catastrophe
cascade travel? At each step of the cascade, the relevant (right or left) catastrophe
ratio will generally increase. Indeed, a child node may even receive a catastrophe
from both parents. How large does this ratio become in a typical cascade?

4. Conclusion. We have shown that the erosion model exhibits many properties of
rill erosion. Each node chooses a random initial direction (right or left) in which to
send sediment and further such choices become biased at a rate largely determined
by the parameter η. This is similar to the method by which rills are cut into a
hillslope. As more water and sediment flows through a rill, a channel is cut deeper,
giving reinforcement to the path, making it more likely to carry sediment in the
future. Though the dynamics manifests itself through reinforcement, no fixed node
can become fully biased (i.e., have a de Finetti measure equal to a sum of two
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delta masses). That is, since each node has a non-trivial asymptotic switching rate,
sediment flow emerging from it will take both a left and right path a positive fraction
of time. This rate of switching appears to decrease as we move further down the
hill.

There are a number of questions which deserve careful analysis, the most obvious
of which concern possible limits of the de Finetti measures (θk). Do the measures
(θk) have a limit? If so, one would expect the limit to be the de Finetti measure
associated with the “infinity process,” described at the end of Section 3.2.2. Refer-
ring to (14), does the measure θ∞ have atoms for some values of η? If so, is there
a critical η∗ so that for 0 < η < η∗, θ∞ has atoms? If the limit of (θk) (assuming it
exists) is not the equal to θ∞, does this limit have atoms and is there a critical η
associated with it?
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