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Abstract. In this article we analyse the eigenfrequencies of a hyperbolic sys-
tem which corresponds to a chain of Euler-Bernoulli beams. More precisely we
show that the distance between two consecutive large eigenvalues of the spa-
tial operator involved in this evolution problem is superior to a minimal fixed
value. This property called spectral gap holds as soon as the roots of a function
denoted by f∞ (and giving the asymptotic behaviour of the eigenvalues) are all
simple. For a chain of N different beams, this assumption on the multiplicity
of the roots of f∞ is proved to be satisfied. A direct consequence of this result
is that we obtain the exact controllability of an associated boundary control-
lability problem. It is well-known that the spectral gap is a important key
point in order to get the exact controllabilty of these one-dimensional problem
and we think that the new method developed in this paper could be applied
in other related problems.

1. Introduction. In the last few years various physical models of multi-link flex-
ible structures consisting of finitely many interconnected flexible elements such as
strings, beams, plates, shells have been mathematically studied. See [6], [7], [12],
[19], [21] for instance. The spectral analysis of such structures has some applica-
tions to control or stabilization problems ([19] and [20]). For interconnected strings
(corresponding to a second-order operator on each string), a lot of results have
been obtained: the asymptotic behaviour of the eigenvalues ([1], [2], [5], [27]), the
relationship between the eigenvalues and algebraic theory (cf. [3], [4], [19], [26]),
qualitative properties of solutions (see [5] and [29]) and finally studies of the Green
function (cf. [17], [30], [31]).

For interconnected beams (corresponding to a fourth-order operator on each
beam), some results on the asymptotic behaviour of the eigenvalues and on the
relationship between the eigenvalues and algebraic theory were obtained in [14],
[15] and [16] with different kinds of connections using the method developed in [3]
to get the characteristic equation associated to the eigenvalues.

The same method was used in ([24]) to compute the spectrum for a hybrid system
of N flexible beams connected by n vibrating point masses. This type of structure
was studied by Castro and Zuazua in many papers (see [8], [9], [10], [11], [13]) and
Hansen and Zuazua([18]). They have restricted themselves to the case of two beams
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applying their results on the spectral theory to controllability. In a recent paper [25],
the author investigated with V. Régnier the same problem as in [11] but for serially
connected beams: for a chain of N interconnected beams with interior point masses
the asymptotic behaviour of the spectrum was analysed in order to get the exact
controllability. The controllability was proven for N = 2 beams with unspecified
material coefficients. For N ≥ 3, the more complicated asymptotic analysis could be
studied in some particular cases; but for any value of N the problem had remained
open.

The aim of this work is to develop a new method which allows the asymptotic
analysis of the spectrum for a problem of N serially interconnected beams. The
main idea is to get the spectral gap; indeed for that kind of control problem, via
the Hilbert Uniqueness Method (HUM, see [22],[23]), we have to prove an observ-
ability inequality and then, if the solution is expressed in terms of Fourier series,
Ingham’s inequalities lead to the controllability only if the eigenelements satisfy
some conditions. The most important of these conditions is the so-called spectral
gap. Unfortunately, even for simple models the spectral gap is not easy to get.
In this work, we prove the spectral gap for a problem of N serially interconnected
beams.

Let us emphasize on the fact that we think that this method can be used for the
study of other serially connected beams (i.e with other transmission and boundary
conditions or with interior point masses such as treated in [11] or [25]). The different
steps are the same ones; only calculations would be different.

The schedule of the paper is the following one:
In Section 2 we state some notation concerning our 1-d network and introduce the
spatial operator, namely a fourth order operator on each edge with some trans-
mission conditions at interior nodes and clamped boundary conditions at exterior
nodes.

In Section 3 we study the spectrum.
In Subsection 3.1 we explicitly compute the characteristic equation whose roots

are the eigenvalues associated to our problem.
In Subsection 3.2 we give a useful boundary property that we will use in Section

6.
In Section 4 we study the asymptotic behaviour of the spectrum:
In Subsection 4.1, we give a simple example which shows the difficulty in calculat-

ing and analyzing the spectrum for great eigenfrequencies. This example provides
also a motivation to introduce the exterior matrix. In Subsection 4.2 we present
the exterior matrix method (see [28]) which will permit us to compute the function
(denoted by f∞) whose roots are the approximations of the great eigenvalues.

Finally, in Section 5 we prove the spectral gap which is the most important
condition that we need in order to prove the exact controllability.

In section 6, we use our work to solve a problem control linked with our eigen-
values problem.
Remark: Several times in this work, calculations were made with the assistance of
a formal computation software (Mathematica). The specific commands used to get
the result are given in an appendix at the end of the paper.
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2. Data and framework.

2.1. Domain and notations. The domain that we consider is a network of N
(N ∈ IN − {0, 1}) serially connected beams which can be modelled by a graph

G =

N⋃

j=1

kj . Each branch kj having an origin and an end such that the end of the

branch kj , (1 ≤ j ≤ N−1) is connected to the beginning of the branch kj+1. By the
intermediary of a parameterization we will identify each branch kj with the interval
[0, lj], 0 represents the beginning of kj and lj the end. For each branch kj , we fix
mechanical constants mj > 0 (the mass density of the beam kj) and aj = EjIj > 0
(the flexural rigidity of kj). The vibration of the branch kj is modelled by the
function uj(t, x), t ≥ 0, x ∈ [0, lj], j = 1, ..., N. The total vibration of the structure
is the vectorial function u = (uj)j=1,...,N .

Notation for derivative. In this paper, for a fonction u = u(t, x) we make the
choice to denote by ut (utt, ..., ) the first (second,...) time derivative and u(1) (u(2), ...)
the first (second,...) spatial derivative.

2.2. Operator and spectral problem. The Euler-Bernouilli beams connected
problem that we consider is associated to the following operator A on the Hilbert

space H =

N∏

j=1

L2((0, lj)), endowed with the inner product

(u, v)H =

N∑

j=1

mj

∫ lj

0

uj(x)vj(x)dx.





D(A) = {u ∈ H : uj ∈∏N

j=1H
4((0, lj)) satisfying (2) to (6) hereafter}

∀u ∈ D(A) : Au = (
aj

mj

u
(4)
j )N

j=1
(1)

uj(lj) = uj+1(0), j = 1, ..., N − 1. (2)

u
(1)
j (lj) = u

(1)
j+1(0), j = 1, ..., N − 1. (3)

aju
(2)
j (lj) = aj+1u

(2)
j+1(0), j = 1, ..., N − 1. (4)

aju
(3)
j (lj) = aj+1u

(3)
j+1(0), j = 1, ..., N − 1. (5)

u1(0) = u
(1)
1 (0) = uN (lN ) = u

(1)
N (lN ) = 0. (6)

Notice that conditions (2) to (5) represent the transmission conditions while condi-
tions (6) correspond to the boundary conditions.

Remark that A is a nonnegative selfadjoint operator with a compact resolvant
([16], Th 2.1). Indeed A is the Friedrichs extension of the triple (H,V, a) defined
by

V = {u ∈
N∏

j=1

H2((0, lj)) satisfying (2), (3), (6)},
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which is a Hilbert space with the inner product

(u, v)V =

N∑

j=1

(uj , vj)(H2((0,lj)),

where (., .)(H2((0,lj)) is the usual H2-inner product on (0, lj) and

a(u, v) =

N∑

j=1

aj

∫ lj

0

u
(2)
j (x)v

(2)
j (x)dx.

For our next purpose let us denote σ(A) = (λ2
k)

k∈IN∗ , λk > 0 the monotone increas-
ing sequence of eigenvalues of A and recall the classical result lim

k→+∞
λk = +∞. The

eigenvalue problem associated to the operator A can be written as: λ2
k ∈ σ(A) (λk >

0) is an eigenvalue of A with associated eigenvector Uk = (uk
1 , u

k
2 , ..., u

k
N ) ∈ D(A) if

and only if Uk satisfies the transmission and boundary conditions (2)-(6) and

{ aj

mj

(uk
j )(4)(x) = λ2

ku
k
j (x) on (0, lj), ∀ j ∈ {1, ...,N}

uk
j ∈ H4((0, lj)), ∀j ∈ {1, ..., N}

(7)

3. Spectral properties.

3.1. The characteristic equation. First, let us introduce some useful notations.

Notations.

Let U = (u1, ..., uN ) be a non-trivial solution of the eigenvalue problem (7) (given
in subsection 2.2) and λ2 (λ > 0) be the corresponding eigenvalue.
For each j ∈ {1, ..., N}, the vector function Vj is defined by

Vj(x) = (uj(x), u
(1)
j (x), aju

(2)
j (x), aju

(3)
j (x))t, ∀x ∈ [0, lj].

Keeping the notation aj and lj introduced in Subsection 2.1, the matrix Aj is

Aj = A(qj , bj,mj) with qj = (
mj

aj

)
1

4 , bj = ljqj and A(q, b, m) the square matrix of

order 4 is given by

A(q, b,m) =
1

2




ch+ c
1

q

sh+ s√
λ

q2

m

ch− c

λ

q

m

sh− s

λ
√
λ

q
√
λ(sh− s) ch+ c

q3

m

sh+ s√
λ

q2

m

ch− c

λ
m

q2
λ(ch− c)

m

q5

√
λ(sh− s) ch+ c

1

q

sh+ s√
λ

m

q
λ
√
λ(sh+ s)

m

q2
λ(ch− c) q

√
λ(sh− s) ch+ c




(8)

with the notation c = cos(b
√
λ), s = sin(b

√
λ), ch = cosh(b

√
λ), sh = sinh(b

√
λ).

To finish with, the matrix M(λ) is given by

M(λ) = ANAN−1...A2A1. (9)
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with the trivial but useful properties:

Lemma 3.1. With the notation introduced above, it holds:

Vj(lj) = AjVj(0), ∀j ∈ {1, ..., N}
Vj+1(0) = Vj(lj), ∀j ∈ {1, ..., N − 1}
VN (lN ) = M(λ)V1(0)

Proof. Since uj satisfies the first equation of the eigenvalue problem (7), uj is a
linear combination of the vectors of the fundamental basis

(e1j , e2j , e3j , e4j) =
(
cos(q−1

j

√
λ .), sin(q−1

j

√
λ .), cosh(q−1

j

√
λ .), sinh(q−1

j

√
λ .)
)
.

Let (a1, a2, a3, a4) be the coordinates of uj in this basis. Then, we can write

uj(x) =
4∑

i=1

aieij(x), ∀x ∈ [0, lj], and Vj(x) = Kj(x).(a1, a2, a3, a4)
t, (10)

where Kj(x) is the square matrix:



e1j(x) e2j(x) e3j(x) e4j(x)

e
(1)
1j (x) e

(1)
2j (x) e

(1)
3j (x) e

(1)
4j (x)

aje
(2)
1j (x) aje

(2)
2j (x) aje

(2)
3j (x) aje

(2)
4j (x)

aje
(3)
1j (x) aje

(3)
2j (x) aje

(3)
3j (x) aje

(3)
4j (x)


 .

With a simple calculation, it is easy to see that Kj(0) is invertible. Hence, from
(10), we get

Vj(lj) = Kj(lj)Kj(0)−1Vj(0).

The matrix Aj is the matrix Kj(lj)Kj(0)−1 and its expression given in (8) follows
after some calculations (see Appendix 1.).
Now the transmission conditions (2-4) imply the second equation.
The third one is the logical consequence of the first two applied successively for
j = 1, j = 2, etc...

Theorem 3.2. (The characteristic equation)
Let λ2 > 0 be an eigenvalue of A then λ satisfies the characteristic equation

f(
√
λ) = det(M12(λ)) = 0, (11)

where M12(λ) is the square matrix of order 2 which is the restriction of the matrix
M(λ), given by (9), to its first two lines and its last two columns.

Proof. Let U be a non-trivial solution of the eigenvalue problem (7) and λ2 (λ >
0) be the corresponding eigenvalue. The matrix M(λ) is rewritten as M(λ) =(
M11(λ) M12(λ)
M21(λ) M22(λ)

)
where Mij(λ) is a square matrix of order 2, for (i, j) ∈

{1, 2}2.

Now, using the boundary conditions (6) as well as VN (lN ) = M(λ)V1(0), it follows:

(
0
0

)
= M12(λ)

(
a1u

(2)
1 (0)

a1u
(3)
1 (0)

)
.

It is clear that the vector of the second part of the previous identity is non-trivial
since u is a non-trivial solution of problem (7). The result follows.
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3.2. Multiplicity of the spectrum and boundary estimate for the eigen-

vectors. The aim of this subsection is to prove a useful result that we will use in
section 6.

Lemma 3.3. Let µ = λ2 ∈ σ(A) (with λ > 0) be an eigenvalue of the operator
A with associated eigenfunction u. Then the geometric multiplicity of µ is 1 and

|u(2)
1 (0)|2 + |u(2)

N (lN )|2 6= 0.

Proof. First notice that all the terms of the matrix A(q, b,m) defined in Section 3.1
are of the form

c(λ, q,m)
(
cosh(b

√
λ) + ǫ cos(b

√
λ)
)

or c(λ, q,m)
(
sinh(b

√
λ) + ǫ sin(b

√
λ)
)

where ǫ ∈ {−1; 1}, c(λ, q,m) is strictly positive for any q,m > 0 and λ > 0 and the
functions cosh(x) + ǫ cos(x) and sinh(x) + ǫ sin(x) are strictly positive on (0; +∞).
Thus the terms of the matrix A(q, b,m) are all strictly positive if q, m, b and λ are
all strictly positive.

As a consequence, the matrixM(λ) has only strictly positive terms for any λ > 0.
From that, we deduce that the matrix M12(λ) is not the null matrix for any λ > 0.
Then its rank is one and the geometric multiplicity of µ = λ2 is 1.

On the other hand we established in the proof of Theorem 3.2 that:
(

0
0

)
= M12(λ)

(
u

(2)
1 (0)

u
(3)
1 (0)

)
.

Now if we assume that u
(2)
1 (0) = 0 then u

(3)
1 (0) 6= 0 (else u would vanish). But this

is equivalent to say that

(
0
1

)
is an eigenvector of M12(λ).

This is in contradiction with the fact that all the terms of M12 are strictly
positive. This yields the result

4. Asymptotic behaviour of the eigenvalues. As announced in the introduc-
tion, our aim is to prove the spectral gap in order to get controllability. So we need
to know the asymptotic behaviour of the spectrum. To this end, the asymptotic
behaviour of the characteristic equation (11) as λ→ +∞ is of great interest.

4.1. Example. In order to introduce the method developed in the sequel, we start
with an simple example which shows the difficulty to compute and analyse the spec-
trum for large eigenvalues. We consider the problem of two identical interconnected
beams (N = 2, qi = bi = mi = 1, i = 1, 2). Thus M(λ) = A(1, 1, 1)2, and using the

classical equalities cosh(
√
λ) =

e
√

λ + e−
√

λ

2
and sinh(

√
λ) =

e
√

λ − e−
√

λ

2
, we find

after calculation (see Appendix 2.):

M12(λ) =
1

4




e2
√

λ − 2 cos(2
√
λ) + e−2

√
λ

λ

e2
√

λ − 2 sin(2
√
λ) − e−2

√
λ

√
λ

3

e2
√

λ + 2 sin(2
√
λ) − e−2

√
λ

√
λ

e2
√

λ − 2 cos(2
√
λ) + e−2

√
λ

λ


 .

Consequently we deduce the characteristic equation :

f(
√
λ) = det(M12(λ)) =

−1

4λ2
(e2

√
λ cos(2

√
λ) − 2 + e−2

√
λ cos(2

√
λ)) = 0.
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Multiplying the previous equality by
−4λ2

e2
√

λ
we get that the characteristic equation

is equivalent with:

f∞(
√
λ) + g(

√
λ) = 0,

where we have set f∞(
√
λ) = cos(2

√
λ) and (g

√
λ) = −2e−2

√
λ + e−4

√
λ cos(2

√
λ)).

Now, since lim
k→+∞

λk = +∞ and lim
λk→+∞

g(
√
λk) = 0, the asymptotic behaviour of

the λ2
k’s is given by the roots of f∞

(√
λ
)

= cos(2
√
λ) = 0.

From this example, let us make the following remarks which remain valid in
the general case: Even though we have a way of finding eigenfrequencies with the
equation (11) we have serious problems numerically: indeed, in the numerical com-
putation of the matrixM12(λ) appear exponential terms which increase very quickly
according to λ. This means that calculating (11) via a decimal approximation would
be unreliable. Obviously the same problem remains when we want to analyse the
asymptotic behaviour of the spectrum. In [24] we saw that the asymptotic analysis
of (11) was difficult because calculation is very complicated even for small values
of N (i.e N = 3) and also with the help of softwares such as Mathematica. On
the other hand, we see that the knowledge of f∞ is enough to compute easily large
eigenvalues and, may be, to prove the spectral gap. Unfortunately this example
shows that it is not a easy task to get f∞ in the general case: indeed, the highest

terms in M12(λ) (i.e the factors terms of e2
√

λ) are easy to obtain, but, when one
calculates the determinant of M12(λ) in order to obtain the characteristic equation,

we see that the corresponding term cancel (i.e the factors terms of e4
√

λ). This
phenomenon is still true in the general case (i.e when we consider N beams); when
computing the determinant, several highest terms cancel, thus it is very difficult to
get f∞.

In the following subsection we introduce a method which allows the computation
of f∞.

4.2. The exterior matrix method. The exterior matrix method presented in [28]
is a very useful method which allows to compute asymptotically the eigenfrequencies
for the vibrations of serially connected elements which are governed by fourth-order
equations. The main idea of the exterior matrix method is that it is a way to
compute the determinant before the matrices are multiplied together, so that the
major cancellation occurs first.

First, we simply recall the definition of exterior matrix and some useful results
that we need in the sequel.

Definition 4.1. If M = (mij) is a 4 × 4 matrix, then the exterior matrix of M is
the 6 × 6 matrix given by:

ext(M) =

(
ext(M)11 ext(M)12
ext(M)21 ext(M)22

)
,

where each block ext(M)ij , i, j = 1, 2, is a 3 × 3 matrix given hereafter:
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ext(M)11 =




∣∣∣∣
m11 m12

m21 m22

∣∣∣∣
∣∣∣∣
m13 m12

m21 m23

∣∣∣∣
∣∣∣∣
m11 m14

m21 m24

∣∣∣∣
∣∣∣∣
m11 m12

m31 m32

∣∣∣∣

∣∣∣∣
m11 m13

m31 m33

∣∣∣∣

∣∣∣∣
m11 m14

m31 m34

∣∣∣∣
∣∣∣∣
m11 m12

m41 m22

∣∣∣∣

∣∣∣∣
m13 m12

m41 m23

∣∣∣∣

∣∣∣∣
m11 m14

m41 m24

∣∣∣∣




,

ext(M)12 =




∣∣∣∣
m13 m14

m23 m24

∣∣∣∣ −
∣∣∣∣
m12 m14

m22 m24

∣∣∣∣
∣∣∣∣
m12 m13

m22 m23

∣∣∣∣
∣∣∣∣
m13 m14

m33 m34

∣∣∣∣ −
∣∣∣∣
m12 m14

m32 m34

∣∣∣∣

∣∣∣∣
m12 m14

m32 m33

∣∣∣∣
∣∣∣∣
m13 m14

m43 m24

∣∣∣∣ −
∣∣∣∣
m12 m14

m42 m24

∣∣∣∣

∣∣∣∣
m12 m13

m42 m23

∣∣∣∣




,

ext(M)21 =




∣∣∣∣
m31 m12

m41 m22

∣∣∣∣

∣∣∣∣
m33 m12

m41 m23

∣∣∣∣

∣∣∣∣
m31 m14

m41 m24

∣∣∣∣

−
∣∣∣∣
m21 m22

m41 m42

∣∣∣∣ −
∣∣∣∣
m21 m23

m41 m43

∣∣∣∣ −
∣∣∣∣
m21 m24

m41 m44

∣∣∣∣
∣∣∣∣
m21 m22

m31 m32

∣∣∣∣

∣∣∣∣
m21 m23

m31 m33

∣∣∣∣

∣∣∣∣
m21 m24

m31 m34

∣∣∣∣




,

ext(M)22 =




∣∣∣∣
m33 m14

m43 m24

∣∣∣∣ −
∣∣∣∣
m32 m14

m42 m24

∣∣∣∣
∣∣∣∣
m32 m13

m42 m23

∣∣∣∣

−
∣∣∣∣
m23 m24

m43 m44

∣∣∣∣
∣∣∣∣
m22 m24

m42 m44

∣∣∣∣ −
∣∣∣∣
m22 m23

m42 m43

∣∣∣∣

∣∣∣∣
m23 m24

m33 m34

∣∣∣∣ −
∣∣∣∣
m22 m24

m32 m34

∣∣∣∣
∣∣∣∣
m22 m23

m32 m33

∣∣∣∣




.

Lemma 4.2. If M1 and M2 are 4 × 4 matrices, then

ext(M1M2) = ext(M1)ext(M2). (12)

Proof. Sketch of the proof (for more details see Lemma 1 of [28].) Given a matrix
M ∈ M4(IR), we define a linear map M∗ in M4(IR) such that :

∀A ∈ M4(IR), M∗(A) = MAMT .

It is easy to prove that the map M →M∗ is a homomorphism (i.e we haveM∗
1M

∗
2 =

(M1M2)
∗) and that M∗ sends anti-symmetric matrices to anti-symmetric matrices,
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so we can restrictM∗ to this subspace. A basis for the 4×4 anti-symmetric matrices
is

e1 =




0 1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0


 , e2 =




0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0


 , e3 =




0 0 0 1
0 0 0 0
0 0 0 0
−1 0 0 0


 ,

e4 =




0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0


 , e5 =




0 0 0 0
0 0 0 −1
0 0 0 0
0 1 0 0


 , e6 =




0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0


 .

Using this basis, we find that M∗, when restricted to anti-symmetric matrices can
be expressed by the 6 × 6 matrix ext(M) given in Definition 4.1. (12) expresses
that the map M →M∗ is a homomorphism.

Theorem 4.3. (The characteristic equation)
Let λ2 > 0 be an eigenvalue of A then λ satisfies the characteristic equation

f(
√
λ) = et

1ext(M(λ))e4 = 0, (13)

or equivalently

f(
√
λ) = et

1ext(AN )ext(AN−1)...ext(A1)e4 = 0, (14)

where M(λ) is the square matrix of order 4 given by (9), e1 = (1, 0, 0, 0, 0, 0) and
e4 = (0, 0, 0, 1, 0, 0).

Proof. From Definition (4.1) we see that et
1ext(M(λ))e4 is equal to det(M12(λ), this

implies (13).
Then, applying Lemma 4.2 to M(λ) we directly get (13).

4.3. The asymptotic behaviour of the exterior matrix. Using Definition 4.1
and with the help of a formal calculation software (see Appendix 3.) we have the
following property:

Lemma 4.4. Let Aj = A(qj , bj ,mj) be any matrix 4 × 4 given in (8).
Then the matrix ext(Aj) = ext(A(qj , bj ,mj)) has the following expansion:

ext(Aj) =
1

4
ebj

√
λH(qj , bj,mj) + o

(
ebj

√
λ

√
λ

k

)
(15)

with

H(qj , bj ,mj) = (cos(bj
√
λ)C(qj ,mj) + sin(bj

√
λ)S(qj ,mj)), (16)
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C(q,m) =




1
q3

m
√
λ

0 − q4

m2λ2

q

mλ
√
λ

0

m
√
λ

q3
2

1

q
√
λ

− q

mλ
√
λ

0
1

q
√
λ

0 q
√
λ 1 0 − 1

q
√
λ

1

−m
2λ2

q4
−mλ

√
λ

q
0 1 −mλ

q3
0

mλ
√
λ

q
0 −q

√
λ − q3

m
√
λ

2 −q
√
λ

0 q
√
λ 1 0 − 1

q
√
λ

1




, (17)

S(q,m) =




0
q3

m
√
λ

q2

mλ
0 − q

mλ
√
λ

q2

mλ

−m
√
λ

q2
0

1

m
√
λ

q

mλ
√
λ

− 2

q2λ

1

q
√
λ

−mλ
q2

λ −q
√
λ 0

q2

mλ
− 1

q
√
λ

0

0 −mλ
√
λ

q
−mλ
q2

λ 0
m
√
λ

q3
−m

√
λ

q2

mλ
√
λ

q
2q2λ q

√
λ − q3

m
√
λ

0 q
√
λ

−mλ
q2

−q
√
λ 0

q2

mλ
− 1

q
√
λ

0




(18)

and where o

(
ebj

√
λ

√
λ

k

)
represents a 6 × 6 matrix with all its terms are small with

respect to
ebj

√
λ

√
λ

k
as λ −→ +∞, k being any integer (that means that for any k the

limit of all the terms of the matrix

√
λ

k

ebj

√
λ
o

(
ebj

√
λ

√
λ

k

)
is zero λ −→ +∞.)

Proof. First, in the matrix Aj = A(qj , bj,mj) given (8), we use the classical identi-

ties cosh(x) by
ex + e−x

2
and sinh(x) by

ex − e−x

2
. Then, the definition 4.1 applied

to the matrix Aj allows us to compute each terms of ext(Aj). For instance we find
that in the first line and fisrt column is:

(ext(Aj))11 =
1

4
(ebj

√
λ cos(bj

√
λ) + 2 + e−bj

√
λ cos(bj

√
λ))

=
1

4
(ebj

√
λ cos(bj

√
λ) + o(ebj

√
λ)).

Calculating the other terms in the same way, we arrive at (15) and the decomposition
of the matrix H(qj , bj ,mj) given by (16),(17) and (18).

In the sequel we need some properties of the matrices C(q,m) and S(q,m) which
are summarized in the following Lemma 4.5. But before we start with some practical



A SERIALLY CONNECTED EULER-BERNOULLI BEAMS PROBLEM 719

notation.
Notation.

For all −→ǫ = (ǫ1, ..., ǫN) ∈ {0, 1}N and for all i = 1, ..., N we set:
(
Xi,−→ǫ (qi,mi) = C(qi,mi) if ǫi = 0
Xi,−→ǫ (qi,mi) = S(qi,mi) if ǫi = 1

)
, (19)

and (
yi,−→ǫ (bi.) = cos(bi.) if ǫi = 0
yi,−→ǫ (bi.) = sin(bi.) if ǫi = 1

)
, (20)

where yi,−→ǫ (bi.) represents the function x 7→ yi,−→ǫ (bix) defined on IR.

Lemma 4.5.

i) Let q,m > 0, C(q,m) and S(q,m) be matrices defined as in (17)-(18). Then

Ker(C(q,m)) = Ker(S(q,m)),

and

Im(C(q,m)) = Im(S(q,m)) = vect(V1(q,m), V2(q,m)), (21)

where

V1(q,m) = C(q,m)e4 =

(
− q4

m2λ2
,− q

mλ
√
λ
, 0, 1,− q3

m
√
λ
, 0

)t

,

V2(q,m) = S(q,m)e4 =

(
0,

1

λ
√
λ
,
q

m
, 0,− q2√

λ
,
q

λ

)t

,

(22)

and vect(V1(q,m), V2(q,m)) represents the vector space generated by V1(q,m) and
V2(q,m)).
ii) Let us consider constants qi,mi > 0, i = 1, ..., N, −→ǫ ∈ {0, 1}N . Then

et
1XN,−→ǫ (qN ,mN )XN−1,−→ǫ (qN−1,mN−1)...X1,−→ǫ (q1,m1)e4 =

c−→ǫ
λ2

(23)

where c−→ǫ is a constant which depends only on qi,mi, i = 1, ..., N and −→ǫ , but not
on λ.

Proof. i) We check that Ker(C(q,m)) = Ker(S(q,m)) and that their dimen-
sion is 4. Moreover, we show that C(q,m)Vi(q,m) = 4Vi(q,m), i = 1, 2 and
S(q,m)Vi(q,m) = 4Vj(q,m), i, j = 1, 2, i 6= j. (see Appendix 4.) which leads to
(21).
ii) is shown without difficulty by iteration

Lemma 4.6. The characteristic equation has the following expansion

f(
√
λ) =

4N exp((

N∑

i=1

bi)
√
λ)

λ2
f∞(

√
λ) + r(

√
λ), (24)

where

f∞(
√
λ) =

∑

−→ǫ ∈{0,1}N

[c−→ǫ

1∏

i=N

yi,−→ǫ (bi
√
λ)] (25)

where c−→ǫ is a constant coming from (23) in Lemma 4.5, and the function yi,−→ǫ is
given by (20). (Notice that in formula (25) the product is not commutative and that
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∏1
i=N means that the terms are in decreasing order from N to 1).

The remainder r satisfies r(
√
λ) = o




exp((

N∑

i=1

bi)
√
λ)

λ2




for large values of λ.

Proof. Inserting (15)-(16) in (14) of Theorem 4.3 we get

f(
√
λ) = 4N exp((

N∑

i=1

bi)
√
λ)et

1

1∏

i=N

(cos(bi
√
λ)C(qi,mi) + sin(bi

√
λ)S(qi,mi))e4

+ o




exp((

N∑

j=1

bi)
√
λ)

λ2



.

(26)
With Notation (19)-(20) it holds:

et
1

∏1
i=N (cos(bi

√
λ)C(qi,mi) + sin(bi

√
λ)S(qi,mi))e4

= et
1(

∑

−→ǫ ∈{0,1}N

1∏

i=N

yi,−→ǫ (bi
√
λ)Xi,−→ǫ (qi,mi))e4

=
∑

−→ǫ ∈{0,1}N

(

1∏

i=N

yi,−→ǫ (bi
√
λ))et

1(

1∏

i=N

Xi,−→ǫ (qi,mi))e4

=
∑

−→ǫ ∈{0,1}N

(

1∏

i=N

yi,−→ǫ (bi
√
λ))

c−→ǫ
λ2
.

Inserting this last identity in (26) leads to (24) and (25)

Remark 1.

f∞
(√

λ
)

= P
(

(cos(bj
√
λ), sin(bj

√
λ))j∈{1,...,N}

)
(27)

and P is a polynomial function with 2N variables. Consequently from (24) we
deduce that the asymptotic behaviour of the spectrum σ(A) corresponds to the
roots of the asymptotic characteristic equation

f∞
(√

λ
)

= 0 (28)

Example 1: N = 2

f∞(
√
λ) = −(

q41
m2

1

+
q31q2 + q1q

3
2

m1m2
+

q42
m2

2

) cos(b1
√
λ) cos(b2

√
λ)

+
(q21 − q22)q1q2

m1m2
cos(b1

√
λ) sin(b2

√
λ)

− (q21 − q22)q1q2
m1m2

cos(b2
√
λ) sin(b1

√
λ)

+
(q1 + q2)

2q1q2

m1m2
sin(b1

√
λ) sin(b2

√
λ)
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Example 2: N = 4, qj = j, bj = mj = 1, j = 1, ..., 4.

f∞(
√
λ) =

83825

6144
+

165725

4608
cos(

√
λ) +

1990625

18432
cos(4

√
λ) +

9275

576
sin(2

√
λ).

Remark that in this case the function f∞ is π-periodic. See Figure 1 for the graph
of f∞.

0.5 1 1.5 2 2.5 3

-100

-50

50

100

150

Figure 1. f∞(x), x ∈ [0, π]. (N = 4, qj = j, bj = mj = 1, j =
1, ..., 4).

5. Spectral gap. The verification of the spectral gap is based on the knowledge
of the minimal distance between two consecutive roots of f∞. In view of this study
we start with the following Lemma:

Lemma 5.1. For all j = 1, ..., N − 1 we have

(

1∏

i=j

H(qi, bi,mj))e4 = αj(
√
λ)V1(qj ,mj) + βj(

√
λ)V2(qj ,mj) (29)

where Vk(qj ,mj), k = 1, 2 are defined in Lemma 4.5, αj(.), βj(.) are trigonometrical
polynomials which depend only on qi, bi,mi, i = 1...j.
Moreover, there exists a constant dj > 0 (which depends only on the material con-

stants) such that the Wronskian Wj(x) = αj(x)β
′

j(x) − α
′

j(x)βj(x) satisfies

Wj(x) ≥ dj > 0, ∀x ∈ IR. (30)

Proof. We argue by iteration. We suppose that j = 1; by (16) and (22) of Lemma
4.5 we have :

H(q1, b1,m1)e4 = cos(b1
√
λ)V1(q1,m1) + sin(b1

√
λ)V2(q1,m1).

Thus (29) holds with α1(x) = cos(b1x), β1(x) = sin(b1x). Since ∀x ∈ IR, W1(x) =
b1, then (30) is true with d1 = b1 > 0.
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Now, suppose that (29) holds for j−1 and that there exists a constant dj−1 such
that: ∀x ∈ IR, Wj−1(x) ≥ dj−1 > 0.
Thus, with (16) of Lemma 4.4 we may write:

(

1∏

i=j

H(qi, bi,mi))e4 = H(qj , bj ,mj)(αj−1(
√
λ)V1(qj−1,mj−1)

+ βj−1(
√
λ)V2(qj−1,mj−1)

= (cos(bj
√
λ)C(qj ,mj−1) + sin(bj

√
λ)S(qj ,mj−1))

× (αj−1(
√
λ)V1(qj−1,mj−1) + βj−1(

√
λ)V2(qj−1,mj−1)

(31)
Now, from (21) of Lemma 4.5, we know that there exist constants zi, i = 1, ...8.
such that

C(qj ,mj)V1(qj−1,mj−1) = z1V1(qj ,mj) + z2V2(qj ,mj)
C(qj ,mj)V2(qj−1,mj−1) = z3V1(qj ,mj) + z4V2(qj ,mj)
S(qj ,mj)V1(qj−1,mj−1) = z5V1(qj ,mj) + z6V2(qj ,mj)
S(qj ,mj)V1(qj−1,mj−1) = z7V1(qj ,mj) + z8V2(qj ,mj),

(32)

Using the expressions of C(qj ,mj) , S(qj ,mj), V1(qj−1,mj−1) and V2(qj−1,mj−1)
given in Lemma 4.4 and Lemma 4.5 we get after some computations (see Appendix
5.):

z1 =
(mjqj−1 +mj−1qj)(mjq

3
j−1 +mj−1q

3
j )

m2
j−1q

4
j

z2 =
qj−1(q

2
j−1 − q2j )

m2
j−1q

2
j

z3 = −mj

qj
z2

z4 =
(qj−1 + qj)

2

q2j

z5 = −mj

qj
z2

z6 =
qj

mj

z1

z7 = −mj

qj
z4

z8 =
mj−1

qj−1
z2.

(33)

Using (32) in the development of the last expression of (31) and replacing
z3, z5, z6, z7, z8 given in (33) we arrive at

(
1∏

i=j

H(qi, bi,mi))e4 = αj(
√
λ)V1(qj ,mj) + βj(

√
λ)V2(qj ,mj)

with 



αj(x) = cos(bjx)(z1αj−1(x) +
mj−1mj

qj−1qj
z2βj−1(x))

+ sin(bjx)(−
mj

qj
z2αj−1(x) −

mj

qj
z4βj−1(x))

βj(x) = cos(bjx)(
qj

mj

z1αj−1(x) +
mj−1

qj−1
z2βj−1(x))

+ sin(bjx)(z2αj−1(x) + z4βj−1(x))

(34)
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That proves (29). Thanks to (34), we compute Wj(x) and we find:

Wj(x) =
bj

mjq
2
j−1qj

[q2j−1(z
2
1 +m2

jz
2
2)α

2
j−1(x)

+ 2mjqj−1qj(mj−1qjz1 +mjqj−1z4)αj−1(x)βj−1(x)
+ m2

j(m
2
jz

2
2 + q2j−1z

2
4)β2

j−1(x)]

+ (z1z4 −
mj−1mj

qj−1qj
z2
2)Wj−1(x)

(35)

Since

q2j−1(z
2
1 +m2

jz
2
2) +m2

j(m
2
jz

2
2 + q2j−1z

2
4) − [mjqj−1qj(mj−1qjz1 +mjqj−1z4)]

2

= m2
jq

2
j−1(mj−1mjz

2
2 − qj−1qjz1z4)

2 ≥ 0

and
bj

mjq
2
j−1qj

> 0, it clearly holds

Wj(x) ≥ (z1z4 −
mj−1mj

qj−1qj
z2
2)Wj−1(x).

From identities 1., 2. and 4. of (33) and a calculation (see Appendix 6.) we find
that

z1z4 −
mj−1mj

qj−1qj
z2
2 =

(qj−1 + qj)
2(mjq

2
j−1 +mj−1q

2
j )2

m2
j−1q

6
j

> 0.

Due to these last two inequalities, we get the conclusion :

dj = (z1z4 −
mj−1mj

qj−1qj
z2
2)dj−1 > 0

Now we can state the following property of f∞:

Lemma 5.2. The roots of f∞ are all simple. Moreover, there exists a constant
d > 0 (which depends only on the material constants) such that for all the roots x0

of f∞

|f ′

∞(x0)| ≥ d. (36)

Proof. By Lemma 4.6 and (26) in the proof of the same Lemma we may write:

1

λ2
f∞(

√
λ) = et

1[

1∏

i=N

H(qi, bi,mi)]e4.

Thus

1

λ2
f∞(

√
λ) = et

1H(qN , bN ,mN )[
∏1

i=N−1H(qi, bi,mi))e4]

= et
1[cos(bN

√
λ)C(aN ) + sin(bN

√
λ)S(aN )]

× [αN−1(
√
λ)V1(qN−1,mN−1) + βN−1(

√
λ)V2(qN−1,mN−1)]

= cos(bN
√
λ)[αN−1(

√
λ)et

1C(qN ,mN )V1(qN−1,mN−1)

+ βN−1(
√
λ)et

1C(qN ,mN )V2(qN−1,mN−1)]

+ sin(bN
√
λ)[αN−1(

√
λ)et

1S(qN ,mN )V1(qN−1,mN−1)

+ βN−1(
√
λ)et

1S(qN ,mN )V2(qN−1,mN−1)].

We set and compute ki, i = 1, ..., 4 :
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k1 = λ2et
1C(qN ,mN )V1(qN−1,mN−1)

= −
(mNqN−1 +mN−1qn)(mNq

3
N−1 +mN−1q

3
n)

m2
N−1m

2
N

k2 = λ2et
1C(qN ,mN )V2(qN−1,mN−1) =

−q3N−1qN + qNq
3
N−1

mN−1mN

k3 = λ2et
1S(qN ,mN )V1(qN−1,mN−1) = −k2

k4 = λ2et
1S(qN ,mN )V2(qN−1,mN−1) =

(qN−1 + qN )(qN−1 + qN )2

mN−1mN

Thus f∞ has the following form:

f∞(x) = cos(bNx)f1(x) + sin(bNx)f2(x) (37)

where {
f1(x) = k1αN−1(x) + k2βN−1(x)
f2(x) = k3αN−1(x) + k4βN−1(x)

Let us remark that

W (f1, f2)(x) = (f1(x)f
′

2(x) − f
′

1(x)f2(x)) = (k1k4 − k2k3)WN−1(x)

and that

k1k4 − k2k3 = −qN−1qN (qN−1 + qN )2(mNq
2
N−1 +mN−1q

2
N )

q3N−1q
3
N

< 0.

Consequently, from Lemma 5.1 we deduce that there exists a constant d > 0 such
that

∀x ∈ IR,W (f1, f2)(x) ≤ d < 0. (38)

Now, for all x ∈ IR we have

f
′

∞(x) = cos(bNx)[f
′

1(x) + bNf2(x)] + sin(bNx)[f ′
2(x) − bNf1(x)]

We deduce that for all x ∈ IR, ∆(x) = f∞(x)2 + f ′
∞(x)2 has the following form:

∆(x) = (cos(bNx) sin(bNx))M(x)

(
cos(bNx)
sin(bNx)

)
, (39)

where the matrix M(x) is symmetric, positive and given by

M(x) =

(
M11(x) M12(x)
M21(x) M22(x)

)

and




M11(x) = f1(x)
2 + b2Nf2(x)

2 + 2bNf2(x)f
′

1(x) + f
′

1(x)
2

M12(x) = (1 − b2N )f1(x)f2(x) − bN (f1(x)f
′

1(x) − f2(x)f
′

2(x)) + f
′

1(x)f
′

2(x)
M21(x) = M12(x)

M22(x) = b2Nf1(x)
2 + f2(x)

2 − 2bNf1(x)f
′

2(x) + f2
′(x)2

Let λmin(x), λmax(x) be the two eigenvalues of M(x) such that 0 ≤ λmin(x) ≤
λmax(x). After some computation we find

λmin(x)λmax(x) = det(M(x))
= b2N(f1(x)

2 + f2(x)
2)2 − 2bN(f1(x)

2 + f2(x)
2)W (f1, f2)(x)

+ W (f1, f2)(x)
2.

Consequently with (38) we see that

∀x ∈ IR, det(M(x)) = λmin(x)λmax(x) ≥W (f1, f2)(x)
2 ≥ d2. (40)
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On the other hand, since f1 and f2 are trigonometric polynomials the trace of M(x)
is bounded on IR: Thus, there exists d′ > 0 such that

∀x ∈ IR, 0 ≤ tr(M(x)) = λmin(x) + λmax(x) ≤ d′2. (41)

From (40) and (41) we deduce that λmin(x) ≥ (
d

d′
)2 > 0. Therefore from (39) we

get

∀x ∈ IR, ∆(x) ≥ (
d

d′
)2 > 0.

That means that if x0 is a root of f∞ then |f ′

∞(x0)| ≥ (
d

d′
)2 > 0

Finally we arrive at the main result:

Theorem 5.3. (The spectral gap) Let λ2
k, k ∈ IN∗, (λk > 0) be the (strictly) mono-

tone increasing sequence of eigenvalues of A, then

lim
k→+∞

(λk+1 − λk) = +∞. (42)

Proof. First we recall that from Lemma 5.2 the roots of f∞ are simple. On the
other hand, since f∞ and all its derivatives are trigonometric polynomials, they are
all bounded on IR. Then

∀x ∈ IR, |f ′
∞(x+ h) − f ′

∞(x)| = |f ′′
∞(x + θh)| · |h| ≤ ‖f ′′

∞‖∞ · |h| (43)

and it follows that f ′
∞ is uniformly continuous on IR.

Thus, there exists h0 > 0 such that, for any x0 satisfying f∞(x0) = 0

|x− x0| ≤ h0 ⇒ |f ′
∞(x)| ≥ d

2
.

Due to Rolle’s Theorem, this property implies that x0 is the unique root of f∞ in
the interval [x0 − h0, x0 + h0], which also means that the minimal distance between
two consecutive roots of f∞ is h0.

By Lemma 14 and Lemma 16 multiplying the characteristic equation f(
√
λ) = 0

by
λ2

4N exp((
∑N

i=1 bi)
√
λ)

we see that it is equivalent to:

f̃(
√
λ) = f∞(

√
λ) + r̃(

√
λ) = 0,

where the function r̃ is analytical on IR∗
+ and there exists a constant C > 0 such

that for all x ≥ 1, r̃(x) ≤ C

x
and

dr̃

dx
(x) ≤ C

x
. Consequently using (43) and the

relation f̃ = f∞ + r̃, proceeding as for f∞ we can see that there exists X0 ≥ 1

such that f̃
′

is uniformly continuous on [X0,+∞). As previously we deduce that

the minimal distance between two consecutive nonnegative roots of f̃ is a constant
h

′

0 > 0. The spectral gap is a direct consequence of this property

6. Controllability. As a consequence of the main result of this paper (that is to
say the spectral gap) we show the controllability of an associated problem. In fact,
this control problem was studied in [15] where the authors show that controllability
holds under sufficient conditions which remain to prove. These conditions are the
spectral gap and a boundary estimate satisfied by the eigenfunctions. Remark that
only for some simple examples (two or three beams) these conditions are checked in
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[15]; thus an important contribution of this paper is to prove that these assumptions
hold for a chain of N beams with various materials. Let us briefly recall this control
problem and some results that we can find in [15].

6.1. The Petrovsky system. By the properties of the triple (H,V, a) defined in
Section 2, we can recall a first result concerning the associated dynamic problem:

Theorem 6.1. Let u0 ∈ D(As), u1 ∈ D(As− 1

2 ) and f ∈ L1(0, T ;D(As− 1

2 )), with

s ≥ 1

2
. Then the problem






utt + Au(t) = f(t), t ∈ [0, T ],
u(0) = u0,

ut(0) = u1,

(44)

has a unique solution u ∈ C([0, 1], D(As)) ∪ C1([0, 1], D(As− 1

2 )) fullfilling

‖u‖C([0,T ],D(As) + ‖u‖
C1([0,T ],D(As− 1

2 )
≤ C{‖u0‖D(As) + ‖u1‖

D(As− 1

2 )

+ ‖f ||
L1(0,T ;D(As− 1

2 ))
}, (45)

for some constant C > 0 independent of u.

Remark: Theorem 6.1 is Theorem 3.1 of [15].
In particular, if f = 0, then the energy E(t) := 1

2{‖ut‖2
H + a(u(t), u(t))} is

constant, for all t ∈ [0, T ] and we have E(t) = E0 = 1
2{‖u1‖2

H + a(u0, u0)}, ∀t ∈
[0, T ].

6.2. Weak solutions of the wave equation. The weak formulation of the control
problem is given by:

Theorem 6.2. For all u0 ∈ H,u1 ∈ V ′, w1, wN ∈ L2((0, T )) there exist unique
u ∈ L∞(0, T ;V ′), (ψ1, ψ0) ∈ V ′ ×H, which are solutions of

∫ T

0

< u(t), f(t) >V ′,V dt+ < ψ1, φ0 >V ′,V −(ψ0, φ1)H

=< u1, φ(0) >V ′,V −(u0, φ
′

(0))H

−(

∫ T

0

(w1φ
(2)
1 (t, 0)dt+ wNφ

(2)
N (t, lN ))dt,

∀f ∈ L1(0, T ;V ), {φ0, φ1} ∈ V ×H,

(46)

where φ is the unique solution of
{
φ ∈ C([0, T ], V ) ∪ C1([0, T ], H),
φtt(t) + Aφ(t) = f(t), t ∈ [0, T ], φ(T ) = φ0, φt(T ) = φ1.

(47)

and < ., . >V ′,V represents the duality bracket between the spaces V ′ and V .

Remark: Theorem 6.2 is Theorem 5.1 of [15]. Formally the solutions u, (ψ1, ψ0)
in the previous theorem satisfy





(uj)tt(t, x) +
aj

mj

u
(4)
j (t, x) = 0, on (0, T ) × (0, lj), ∀j = 1, ..., N

uj(t, .) satisfies (2) to (5)
u1(0) = uN (lN ) = 0,

−u(1)
1 (0) =

1

a1
w1, u

(1)
N (lN ) =

1

aN

wN ,

u(0) = u0, ut(0) = u1,

(48)
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and the final conditions
u(T ) = ψ0, ut(T ) = ψ1. (49)

We can now formulate the results which lead to the exact controllability result
for any time:

Lemma 6.3. (Observability inequalities) ∀T > 0,the expression

||(u0, u1)|| := (

∫ T

0

|u(2)
1 (t, 0)|2 + |u(2)

N (t, lN )|2dt) 1

2 ,

where u is the solution of (44) or (48) satisfying w1 = wN = 0, is a norm on V ×H.

Proof. Since Theorem 5.3 and Lemma 3.3 prove the conditions (24) and (25) of [15],
then, the results follows directly from Theorem 4.3 of [15]

Remark 2. We emphasize on the fact that the controllability time can be chosen
arbitrarily small due the fact that (from (42) in Theorem 5.3) the distance between
two consecutive eigenvalues tends towards the infinite

Finally, we recall the controllability result which is Theorem 6.1 of [15]:

Let F the closure of V ×H for this norm.

Theorem 6.4. (Exact controllability) For all (u1,−u0) ∈ F ′, there exist w0, w1 ∈
L2((0, T )) such that the weak solution u ∈ C([0, T ], H) ∪ C1([0, T ], V ′) of the wave
equation (48) satisfies

u(T ) = ut(T ) = 0.

Appendix.

1.
• {e[1][x],e[2][x],e[3][x],e[4][x]} =

{Cos[
√
λ q x], Sin[

√
λ q x], Cosh[

√
λ q x], Sinh[

√
λ q x]}

• K[x]=
{ Table[i][x],{i,1,4}],Table[D[e[i][x],{x,1}],{i,1,4}],
Table[a*D[e[i][x],{x,2}],{ i,1,4 }],a*Table[D[e[i][x],{ x,3} ],{ i,1,4 } ] }
• a =

m

q4
; l =

b

q
;

• A[q,b,m]=K[l].Inverse[K[0]]

2.
• A[q, b,M]=A[q, b, M] /.

{ Cosh[b
√
λ] −→ (Exp[b

√
λ] + Exp[-b

√
λ]) /2,

Sinh[b
√
λ] −→ (Exp[b

√
λ] - Exp[-b

√
λ]) /2 }

• M=A[1,1,1].A[1,1,1]
• M12=Simplify[Table[M12[[i,j]],{i,1,2},{j,3,4}]]

3.
• (Definition of the function ext)

Do[
{f[i, 1][mat] = det[{{mat[[1,1]], mat[[1,2]]}, {mat[[i + 1,1]], mat[[i + 1,2]]}} ];
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f[i, 2][mat] = det[{{mat[[1,1]], mat[[1,3]]}, {mat[[i + 1,1]], mat[[i + 1,3]]}}];
f[i, 3][mat] = det[{{mat[[1,1]], mat[[1,4]]}, {mat[[i + 1,1]], mat[[i + 1,4]]}}];
f[i, 4][mat] = det[{{mat[[1,3]], mat[[1,4]]}, {mat[[i + 1,3]], mat[[i + 1,4]]}}];
f[i, 5][mat] = -det[{{mat[[1,2]], mat[[1,4]]}, {mat[[i + 1,2]], mat[[i + 1,4]]}}];
f[i, 6][mat] = det[{{mat[[1,2]], mat[[1,3]]}, {mat[[i + 1,2]], mat[[i + 1,3]]}}]}

, {i, 1, 3}];
f[4, 1][mat] = det[{{mat[[3,1]], mat[[3,2]]}, {mat[[4,1]], mat[[4,2]]}}];
f[4, 2][mat] = det[{{mat[[3,1]], mat[[3,3]]}, {mat[[4,1]], mat[[4,3]]}}];
f[4, 3][mat] = det[{{mat[[3,1]], mat[[3,4]]}, {mat[[4,1]], mat[[4,4]]}}];
f[4, 4][mat] = det[{{mat[[3,3]], mat[[3,4]]}, {mat[[4,3]], mat[[4,4]]}}];
f[4, 5][mat] = -det[{{mat[[3,2]], mat[[3,4]]}, {mat[[4,2]], mat[[4,4]]}}];
f[4, 6][mat] = det[{{mat[[3,2]], mat[[3,3]]}, {mat[[4,2]], mat[[4,3]]}}];
f[5, 1][mat] = -det[{{mat[[2,1]], mat[[2,2]]}, {mat[[4,1]], mat[[4,2]]}}];
f[5, 2][mat] = -det[{{mat[[2,1]], mat[[2,3]]}, {mat[[4,1]], mat[[4,3]]}}];
f[5, 3][mat] = -det[{{mat[[2,1]], mat[[2,4]]}, {mat[[4,1]], mat[[4,4]]}}];
f[5, 4][mat] = -det[{{mat[[2,3]], mat[[2,4]]}, {mat[[4,3]], mat[[4,4]]}}];
f[5, 5][mat] = det[{{mat[[2,2]], mat[[2,4]]}, {mat[[4,2]], mat[[4,4]]}}];
f[5, 6][mat] = -det[{{mat[[2,2]], mat[[2,3]]}, {mat[[4,2]], mat[[4,3]]}}];
f[6, 1][mat] = det[{{mat[[2,1]], mat[[2,2]]}, {mat[[3,1]], mat[[3,2]]}}];
f[6, 2][mat] = det[{{mat[[2,1]], mat[[2,3]]}, {mat[[3,1]], mat[[3,3]]}}];
f[6, 3][mat] = det[{{mat[[2,1]], mat[[2,4]]}, {mat[[3,1]], mat[[3,4]]}}];
f[6, 4][mat] = det[{{mat[[2,3]], mat[[2,4]]}, {mat[[3,3]], mat[[3,4]]}}];
f[6, 5][mat] = -det[{{mat[[2,2]], mat[[2,4]]}, {mat[[3,2]], mat[[3,4]]}}];
f[6, 6][mat] = det[{{mat[[2,2]], mat[[2,3]]}, {mat[[3,2]], mat[[3,3]]}}];
ext[mat] = Table[f[i, j][mat], {i, 1, 6}, {j, 1, 6}];
• Expand[ext[A[q,b,m]]]/. Exp[b

√
λ]−→ z

• H[q,b,m]=D[%,z]

• C[q,m]=4*H[q,b,m]/.{ Cos[b
√
λ]−→ 1, Sin[b

√
λ] −→ 0 }

• S[q,m]=4*H[q,b,m]/.{ Cos[b
√
λ]−→ 0, Sin[b

√
λ] −→ 1 }

4.
• NullSpace[c[q,m]]
NullSpace[s[q,m]]
NullSpace[c[q,m]]-NullSpace[s[q,m]]
e4=0,0,0,1,0,0
v1=c[q,m].e4
v2=s[q,m].e4
c[q,m].v1-4*v1
c[q,m].v2-4*v2
s[q,m].v2+4*v1
s[q,m].v1-4*v2

5. Computation of z1 et z2
• V1[q,m]=v1
V2[q,m]=v2
w=c[q2,m2].V1[q1,m1]-z1*V1[q2,m2]-z2*V2[q2,m2]
Solve[w[[1]],w[[2]]==0,0,z1,z2]
z1=Factor[z1]
z2=Factor[z2]
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(verification) Simplify[w]

6.
• Factor [z1*z4-m1*m2/(q1*q2)*z22]
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