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Abstract. Critical threshold phenomena in a one dimensional quasi-linear
hyperbolic model of blood flow with viscous damping are investigated. We
prove global in time regularity and finite time singularity formation of solutions
simultaneously by showing the critical threshold phenomena associated with
the blood flow model. New results are obtained showing that the class of
data that leads to global smooth solutions includes the data with negative

initial Riemann invariant slopes and that the magnitude of the negative slope
is not necessarily small, but it is determined by the magnitude of the viscous
damping. For the data that leads to shock formation, we show that shock
formation is delayed due to viscous damping.

1. Introduction. We consider a one-dimensional, reduced model of a viscous, in-
compressible, Newtonian fluid flow in a cylindrical tube. This model can be derived
from the Navier-Stokes equations assuming axially symmetric flow in a cylindrical
tube with elastic walls and with small aspect ratio ǫ = R/L. Here R is the tube
radius and L is the tube length. The model has been used by many authors to simu-
late blood flow through cylindrical sections of the cardiovascular system or through
the network of blood vessel [2, 4, 21, 22, 20] and as such presents a benchmark for
one-dimensional cardiovascular flow studies.

The model equations describe conservation of mass and momentum given in
terms of the cross-sectional area A(t, x) and the flow rate m(t, x) = A(t, x)U(t, x).
Here U denotes the averaged axial velocity Vx(x, r, t) across the cross-section of the
vessel of radius R(t, x):

U(t, x) =
1

R(t, x)2

∫ R(t,x)

0

2rVx(x, r, t)dr.
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The averaged leading-order equations describing conservation of mass and balance
of axial momentum read:

∂A

∂t
+

∂m

∂x
= 0, (1.1)

∂m

∂t
+

∂

∂x
(α

m2

A
) +

A

ρ

∂

∂x
p(A) = −µ

m

A
, (1.2)

t > 0, x ∈ R. Here ρ > 0 denotes fluid density. α > 1 and µ > 0 are constants
defined by

α =
1

R2U2

∫ R

0

2rV 2
x dr ≥ 1 and µ =

2α

α − 1
ν,

where ν > 0 is fluid viscosity. Fluid pressure is denoted by p(A). It is through this
term that modeling of vessel wall mechanics comes into play. We will be assuming

p(A) = G0

(

(

A

Ar

)

β
2

− 1

)

where Ar > 0 is the reference cross-sectional area, G0 describes the stiffness of
the vessel wall and β > 0 captures the linearity/nonlinearity of the stress-strain
response. For β = 1 one gets the well-known Law of Laplace. In this case G0 =

Eh
(

(1 − σ2)A
1/2
r

)−1

, where E is the Youngs modulus, h is the vessel wall thickness,

and σ is the Poisson ratio. In this manuscript we will consider β = 2 since this
captures well the nonlinear pressure-radius relationship observed in experiments
[21]. Extensions of the ideas in this paper to the case β = 1 is straight forward.
A detailed analysis of the conditions under which system (1.1) (1.2) is a good
approximation of the full, three-dimensional model can be found in [3].

Regularity, existence and stability of solutions to system (1.1) (1.2) was studied in
[2, 1]. In both works it was assumed that the viscous damping term given by µm/A
is negligible. The main contribution of this manuscript is in studying the influence
of the viscous damping on the solutions to system (1.1) (1.2). We are concerned
with both global in time regularity and finite time singularity development as in
[6, 13, 14, 19, 24]. We obtain two new results: (1) For µ > 0 the class of data that
gives rise to smooth solutions is richer than that for the case µ = 0; and (2) For
the physiologically relevant data that give rise to shock formation, shock formation
is delayed in time for the case when µ > 0. The precise estimates on the data are
given in Theorem 2.1 for the case when α = 1 and µ > 0, and a generalization to
the case α > 1, α − 1 small, and µ > 0 is given in Section 5.

From the analysis point of view, this work presents a generalization of the classical
results in hyperbolic conservation laws in the following sense. It is well known that
solutions to systems of quasi-linear hyperbolic conservation laws break down in finite
time. Lax [8] studied a development of singularities in homogeneous, genuinely
nonlinear 2 × 2 systems of equations. It was shown that solutions blow up it finite
time if a Riemann invariant has a negative initial slope. John [7] extended the above
results to systems of n equations. Nishida [18] proved that global smooth solutions
to the p-system with damping exist if the initial Riemann invariant slopes are small.
In this work we show that the initial Riemann invariant slopes that lead to global
smooth solutions to system (1.1) (1.2) can be negative and not necessarily small,
but of order of the damping coefficient µ > 0. We show this by using an approach
similar to that of Li and Liu presented in [10, 11, 12] where a large-time regularity
and a finite-time breakdown of solutions was studied for a 2×2 hyperbolic relaxation
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system describing traffic flow. We use the special features of system (1.1) (1.2) to
track the slope dynamics of the Riemann invariants and to track the dynamics of
the system effectively.

2. Statement of the main result for α = 1 and µ > 0. We consider system
(1.1) (1.2) defined on an infinitely long cylindrical domain x ∈ R for t > 0 with
Cauchy data

(A, m)(0, x) = (A0, m0)(x), x ∈ R. (2.1)

The eigenvalues of system (1.1) (1.2) are given by

λ1 =
m

A
−

√

G0A

ρAr
≤

m

A
+

√

G0A

ρAr
= λ2. (2.2)

System (1.1) (1.2) is strictly hyperbolic if A > 0. Canic and Kim [2] showed that if
the system is strictly hyperbolic initially and if the velocity prescribed on the left
boundary satisfies the sub-characteristic condition, λ1 < x′

1(t) < λ2, then it will
stay strictly hyperbolic in the domain of the existence of a smooth solution. The
sub-characteristic condition for a class of 2 × 2 relaxation systems is required in
[5, 9, 15, 16, 17, 23] for linear and nonlinear stability of shock waves.

To state our main results, we introduce the following notation:

r± = A− 1

4

(

m

A
± 2

√

G0A

ρAr

)

x

, (2.3)

g(A) =

∫ A

Amin

µ

2ξ
9

4

(1 + δ)dξ, (2.4)

and

G±(A, m) = −
6µ

A
5

4

(

1 ∓
m

A

√

Arρ

G0A

)

− g(A), (2.5)

where (·)x denotes the partial derivative with respect to x, δ > 0 is defined in (3.10)
and Amin is the minimum of A as defined below. Results in the following theorem
will be stated in terms of the derivatives of the Riemann invariants at time t = 0
via the expression (2.3).

Theorem 2.1. Consider the system (1.1) (1.2) with α = 1, ρ/G0 << 1, µ > 0 and
β = 2, subject to C1 bounded initial data (A0, m0)(x).

There are constants 0 < Amin < Amax, mmin < mmax depending only on the
bounds of initial data (A0, m0) such that for all x ∈ R,

(A(t, x), m(t, x)) ∈ D = [Amin, Amax] × [mmin, mmax].

Furthermore,
i) if initially for at least one point x ∈ R either

r+(0, x) < g(A0(x)) + inf
(A,m)∈D

G+(A, m)

or

r−(0, x) < g(A0(x)) + inf
(A,m)∈D

G−(A, m)
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holds, then the solution must develop a finite time singularity where either r+ or
r− goes to −∞;
ii) if the initial data (m0, A0) is such that

inf
(A, m)∈D

(−g(A) − G±(A, m)) ≥ sup
A∈I

g(A) − inf
A∈I

g(A) + Cµδ, (2.6)

where δ > 0, defined in (3.10), and C > 0, depending only on initial data (A0, m0)(x),
and I = [Amin, Amax], then the solution remains smooth for all time, provided that
for all x ∈ R the following holds

r±(0, x) ≥ g(A0(x)) + sup
(A,m)∈D

G±(A, m) + Cµδ. (2.7)

Remark 2.1. Under condition (2.6), the lower thresholds on the right hand side of
(2.7) is nonpositive and is proportional to µ. Thus the set of initial data leading to
global regularity is rich. In particular, it allows initial Riemann invariant slopes to
be negative. This is in sharp contrast with the generic breakdown in the homoge-
neous hyperbolic systems [8].

Now we outline the plan for the remaining part of the paper. In Section 3,
we reformulate the problem in terms of its Riemann invariants. We then derive a
closed dynamical system for two nonlinear quantities involving solution derivatives
and state the critical threshold results. In Section 4, we establish both lower and
upper thresholds for the corresponding system of ordinary differential equations,
which, when applied to the derived slope dynamics, leads to the claimed threshold
results. In Section 5, we extend the results to the case α > 1 and α − 1 small.
Concluding remarks are provided in Section 6.

3. The reformulated problem. System (1.1) (1.2) has the following Riemann
invariants:

R± = U ± k(A), k(A) := 2

√

G0A

ρAr
. (3.1)

U =
1

2
(R− + R+), A = k−1

(

1

2
(R+ − R−)

)

. (3.2)

They satisfy

R−
t + λ1R

−
x = −

µU

A
, (3.3)

R+
t + λ2R

+
x = −

µU

A
, (3.4)

t > 0, x ∈ R, subject to the corresponding initial data

R±(0, x) = R±
0 (x) =

m0(x)

A0(x)
± k(A0(x)), x ∈ R. (3.5)

Through this reformulated system, there exists a uniform invariant region for the
system (1.1) (1.2), see [16]. Thus there exist constants 0 < Amin < Amax and
mmin < mmax, depending only on the initial data (A0, m0), such that

(A(t, x), m(t, x)) ∈ D = [Amin, Amax] × [mmin, mmax], ∀ x ∈ R,

for t ≥ 0.



CRITICAL THRESHOLDS IN BLOOD FLOW MODELS 531

We now estimate the derivatives of the solution through

r± = A− 1

4 R±
x . (3.6)

It is clear that the boundedness of (Ax, mx) is equivalent to the boundedness of r±

and A ≥ Amin > 0.
In order to estimate the quantities r±, we first derive the dynamical systems

satisfied by r±. Define function h via

h = −
1

4
lnA, (3.7)

and denote

a =
3

4
e−h =

3

4
A

1

4 > 0. (3.8)

We further set

b± =
µ

2A

(

1 ∓ U

√

Arρ

G0A

)

, g =

∫ A

Amin

µ

2ξ
9

4

(1 + δ)dξ. (3.9)

Since in the abdominal aorta typically G0 is at the order of 104N/m2 − 105N/m2,
ρ = 1050kg/m3, the cross sectional area A is bounded and of the same order of
magnitude as the unstressed cross sectional area Ar, the characteristic axial velocity
is bounded and of order 0.1m/s, we choose initial data (A0, m0) in the above range
so that

∣

∣

∣

∣

∣

|U |max

√

Arρ

G0Amin

∣

∣

∣

∣

∣

< δ ≪ 1 (3.10)

for some 0 < δ ≪ 1, where |U |max is the maximum of |U | which can be obtained
through (3.2) and the boundedness of R±.

Thus (3.9) and (3.10) imply that

b± >
µ

2A
(1 − δ) > 0

and

b± =
µ

2A
(1 + δ) − w± (3.11)

where

0 < w± =
µ

2A

(

δ ± U

√

Arρ

G0A

)

<
µ

A
δ ≪ 1. (3.12)

We now derive the dynamical systems satisfied by r±.

Lemma 3.1. The dynamical systems for r± are given by the following

(∂t + λ1∂x)(r− − g) + a(r−)2 + b−r− = w+r+, (3.13)

(∂t + λ2∂x)(r+ − g) + a(r+)2 + b+r+ = w−r−, (3.14)

t > 0, x ∈ R.

Proof. Set s± = R±
x , and differentiate (3.3) and (3.4) w.r.t. x, to obtain

s−t + λ1s
−
x +

(

∂λ1

∂R−
s− +

∂λ1

∂R+
s+

)

s− =

(

−
µU

A

)

x

, (3.15)

s+
t + λ2s

+
x +

(

∂λ2

∂R−
s− +

∂λ2

∂R+
s+

)

s+ =

(

−
µU

A

)

x

, (3.16)

t > 0, x ∈ R.
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From (2.2) and (3.1), we obtain

λ1 =
1

4
R+ +

3

4
R−, λ2 =

1

4
R− +

3

4
R+. (3.17)

This implies that both characteristic families are genuinely nonlinear.
Differentiate function h along the first characteristic curve x′

1(t) = λ1 and use
(3.1), (3.3), (3.4) and (3.17) to derive

h′ = −
A′

4A
=

(R− − R+)′(A)

8Ak′(A)
=

(λ2 − λ1)R
+
x

4k(A)
=

1

4
R+

x =
1

4
s+. (3.18)

Substitution of (3.1), (3.11) and (3.18) into (3.15), yields

(s−)′ + h′s− +
3

4
(s−)2 + b−s− = −

µ

2A
(1 + δ)s+ + w+s+. (3.19)

Multiplying the above equation by eh, we obtain

(r−)′ + a(r−)2 + b−r− = g′ + w+ehs+,

where r−, a, b− and w+ are defined in (3.6), (3.8), (3.9) and (3.12) respectively.
From (3.9) and (3.18), we see that the first term on the right hand side of (3.19) is
nothing but g′. Thus we derived equation (3.13).

Equation (3.14) is derived in a similar way. Thus Lemma 3.1 is proved.

4. Critical thresholds. The reformulated dynamical systems (3.13) (3.14) enable
us to identify both upper and lower thresholds for r±. This is stated in Theo-
rem 4.1. The main result of this paper, namely, Theorem 2.1, will follow directly
from Theorem 4.1.

Theorem 4.1. Assume that the initial data (A0, m0) is such that (3.10) holds.
i) If at least at one point x ∈ R, either

r+(0, x) < g(A0(x)) + inf
(A, m)∈D

(

−g(A) −
b+(A, m)

a(A)

)

(4.1)

or

r−(0, x) < g(A0(x)) + inf
(A, m)∈D

(

−g(A) −
b−(A, m)

a(A)

)

(4.2)

holds, then the solution of system (3.13) (3.14) must develop a singularity at finite
time.
ii) If

inf
(A, m)∈D

(

b±(A, m)

a(A)

)

≥ sup
A∈I

g(A) − inf
A∈I

g(A) + Cµδ, (4.3)

where δ > 0, defined in (3.10), and C > 0, depending only on initial data (A0, m0)(x),
and I = [Amin, Amax], then the solution of system (3.13) (3.14) remains smooth
for all time, provided that for all x ∈ R

r±(0, x) ≥ g(A0(x)) + sup
(A, m)∈D

(

−g(A) −
b±(A, m)

a(A)

)

+ Cµδ. (4.4)

Moreover, the right hand side of (4.4) is nonpositive.
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Proof. We first prove that under condition (4.3), the right hand side of (4.4) is
nonpositive. Indeed,

g(A0(x)) + sup
(A,m)∈D

(

−g(A) −
b±(A, m)

a(A)

)

+ Cµδ

≤g(A0(x)) + sup
A∈I

(−g(A)) + sup
(A,m)∈D

(

−
b±(A, m)

a(A)

)

+ Cµδ

≤ sup
A∈I

g(A) − inf
A∈I

g(A) − inf
(A,m)∈D

b±(A, m)

a(A)
+ Cµδ

≤0.

Along each characteristic field, under (3.10) (3.12), equations (3.13) (3.14) for
r± are perturbations of ordinary differential equations of the form

d

dt
(r − g) + ar2 + br = 0, r(0) = r0.

The above equation can be written as

d

dt
B + a(t)(B − b1(t))(B − b2(t)) = 0, B(0) = B0 (4.5)

where

B = r − g, b2 = −g, b1 = −g −
b

a
, B0 = r0 − g(0).

Threshold results for ordinary differential equation (4.5) are given in Lemma 3.1 in
[12], which will be stated below. Applying this lemma to equations (3.13) (3.14),
we see that

B = r± − g, b2 = −g, b1 = −g −
b±

a
.

It is easy to check that the conditions in the lemma, namely, a > 0, b1 ≤ b2 and
a, b1, b2 are uniformly bounded for all time, are satisfied. Under condition(3.10),
(3.12) holds. Modifying the proof of Lemma 3.1 in [12], we obtain the desired
threshold conditions (4.1)-(4.4).

Lemma 4.1. Consider equation (4.5) with inf a > 0, b1 ≤ b2 and such that a, b1, b2

are uniformly bounded. We have
(i)If initial data B0 is such that B0 < min b1, then solution to (4.5) will experience
a finite time blow up at 0 < t∗ ≤ t∗ < +∞

lim
t→t∗

B(t) = −∞,

where t∗ satisfies
∫ t∗

0

a(s)ds =
1

min b2 − min b1
ln

(

1 +
min b2 − min b1

min b1 − B0

)

which equals to 1
min b2−B0

if min b2 = min b1.

(ii) If there exists a constant b̄ such that

b1(t) ≤ b̄ ≤ b2(t),

then (4.5) admits a unique global bounded solution satisfying

b̄ ≤ B(t) ≤ max{B0, max b2}

provided that B0 ≥ b̄.
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5. The case α > 1, α − 1 small and µ > 0. Now we consider the case α > 1,
α − 1 small and µ > 0. The aim is to derive the dynamical system for Riemann
invariants as in the previous case and see that the resulting system can be written
as a perturbation of system (3.15) and (3.16) in terms of the parameter α−1. Then,
for small enough α − 1 the same results will hold as for the unperturbed system
corresponding to α = 1.

The eigenvalues of system (1.1) (1.2) for α > 1 and α − 1 small can be written
as:

λ1(α) =
αm

A
−

√

α(α − 1)(
m

A
)2 +

G0A

ρAr
= λ1(1) + O(α − 1)

m

A
, (5.1)

λ2(α) =
αm

A
+

√

α(α − 1)(
m

A
)2 +

G0A

ρAr
= λ2(1) + O(α − 1)

m

A
, (5.2)

where λ1(1) and λ2(1) are the eigenvalues of system (1.1) (1.2) when α = 1 and
they are defined in (2.2).

For systems of two hyperbolic equations, there exist the Riemann invariants
R−(α) and R+(α) such that

∇R−(α) · r2 = 0, ∇R+(α) · r1 = 0,

where r1 and r2 are the right eigenvectors corresponding to λ1(α) and λ2(α) re-
spectively and

R−
t (α) + λ1(α)R−

x (α) = −
µ

A
U, (5.3)

R+
t (α) + λ2(α)R+

x (α) = −
µ

A
U, (5.4)

t > 0, x ∈ R.
From (5.1) (5.2) we derive

R±(α) = R±(1) + O(α − 1)
m

A2
= R±(1) + O(α − 1)

U

A
.

Thus (5.3) (5.4) imply

R−
t (α) + λ1(α)R−

x (α) = −
µ

2A
(R−(α) + R+(α)) + O(α − 1)

U

A
,

R+
t (α) + λ2(α)R+

x (α) = −
µ

2A
(R−(α) + R+(α)) + O(α − 1)

U

A
,

x ∈ R, t > 0.
Differentiate (5.3) (5.4) w.r.t. x and use

r± = R±
x

to obtain

r−t + λ1r
−
x +

∂λ1

∂R−
(r−)2 + (

µ

2A
+

µU

2A

√

Arρ

G0A
+

∂λ1

∂R+
r+)r−

= −
µ

2A
(1 − U

√

Arρ

G0A
)r+ + O(α − 1)(r−, r+)

r+
t + λ2r

+
x +

∂λ2

∂R+
(r+)2 + (

µ

2A
−

µU

2A

√

Arρ

G0A
+

∂λ2

∂R−
r−)r+

= −
µ

2A
(1 + U

√

Arρ

G0A
)r− + O(α − 1)(r−, r+),

x ∈ R, t > 0.
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These equations are small perturbations of their counterparts (3.15) and (3.16)
when α = 1.

Therefore global smooth solution global in time regularity and finite time singu-
larity formation of solutions of (1.1) (1.2) (2.1) under conditions similar to those
stated in Theorem 2.1, provided that α − 1 is small enough, namely

0 < α − 1 ≤ Cµ

which is equivalent to
(α − 1)2

α
≤ Cν

for some constant C > 0.

6. Concluding remarks. We proved global in time regularity and finite time
singularity formation of solutions by showing the critical threshold phenomena for
a hyperbolic model of blood flow. In particular, we identified lower thresholds for
finite time singularities in solutions and upper thresholds for the global existence
of the smooth solutions. The thresholds are represented in terms of the initial
slopes of the Riemann invariants and the initial cross-section. Two new results were
obtained. The first says that shock formation due to the viscous damping term is
delayed compared with the shock formation without viscous damping, which is as
expected physically. The second says that the class of initial data for which global
smooth solutions exist is rich er than the one predicted by inviscid theory. Namely,
the slope of the Riemann invariants associated with the initial data can be negative,
and the magnitude of the negative slope is proportional to the magnitude of the
viscous damping term.
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