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Abstract. The aim of this paper is to develop a model of the respiratory
system. The real bronchial tree is embedded within the parenchyma, and
ventilation is caused by negative pressures at the alveolar level. We aim to
describe the series of pressures at alveolae in the form of a function, and to
establish a sound mathematical framework for the instantaneous ventilation
process. To that end, we treat the bronchial tree as an infinite resistive tree,
we endow the space of pressures at bifurcating nodes with the natural energy
norm (rate of dissipated energy), and we characterise the pressure field at its
boundary (i.e. set of simple paths to infinity). In a second step, we embed the
infinite collection of leafs in a bounded domain Ω ⊂ R

d, and we establish some
regularity properties for the corresponding pressure field. In particular, for the
infinite counterpart of a regular, healthy lung, we show that the pressure field
lies in a Sobolev space H

s(Ω), with s ≈ 0.45. This allows us to propose a
model for the ventilation process that takes the form of a boundary problem,
where the role of the boundary is played by a full domain in the physical space,
and the elliptic operator is defined over an infinite dyadic tree.

1. Introduction, modelling aspects. The present work addresses some theoret-
ical issues raised by the modelling of the bronchial tree and its interactions with the
elastic medium in which it is embedded. The actual bronchial tree can be repre-
sented as an assembly of connected pipes, structured in a dyadic way, through which
air flows. According to Poiseuille’s law (which we shall assume valid in all branches,
see [16, 17] for more details on this assumption), the flow rate Q through a pipe is
proportional to the drop in pressure between its ends, which can be expressed in
the manner of a Ohmic law:

Pin − Pout = RQ,
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Figure 1. Analogy with Darcy problem.

where R is the resistance of the pipe, which varies with L/D4 (where L is the length,
and D the diameter). According to measurements detailed in Weibel [22], all pipes
have a similar shape, and their size varies with λn, where n denotes the generation
and λ is a parameter close to 0.85 for a healthy lung.

As far as fluid flow is concerned, the respiratory tract can therefore be treated as
a resistive finite tree with 23 generations, with geometrically increasing resistances.
The starting point of the present approach is an extrapolation of the actual tree to
an infinite dyadic tree. Gradient and divergence operators can be defined for such
a tree, so that modelling of the air flow takes the form of a Darcy problem over the
tree. Figure 1 illustrates this analogy. The tree itself plays the role of a domain
occupied by a porous medium through which a fluid flows according to Darcy’s law,
and the root of the tree may be compared to a place in the domain at which the
pressure is set to 0. The typical situation is as follows: a negative pressure is applied
on the boundary Γ of the porous domain, driving fluid through the domain from γ
to Γ.

Our approach has two main objectives :

1. To model the instantaneous ventilation process in a proper mathematical
framework (irrigation of the parenchyma driven by an applied alveolar pres-
sure field) as a Dirichlet to Neuman operator defined for a Darcy-like problem
over the infinite tree in the same way as in the standard Darcy problem. As
a first step, we shall build this operator for functions defined in the abstract
set of ends {0, 1}N. The second step will consist in embedding the set of ends
onto a domain of the physical space Ω, and to extend the definition of this
operator to the embedded situation.

2. To explore the design of new types of constitutive models for the lung con-
sidered as a viscoelastic material. The parenchyma is a complex medium. In
part, its complexity derives from the fact that inner dissipation is due to the
flow of air expelled or driven in the alveolae by non-volume-preserving defor-
mations throughout the dyadic bronchial tree. The special character of these
dissipation effect calls for non-standard damping models. A first step towards
accounting for this type of dissipation effect was proposed in [11] for the one-
dimensional problem. For higher dimensions, the description of trace spaces
for pressure and fluxes which we propose here makes it possible to propose a
new class of constitutive models for these kinds of materials.

In the PDE case, the fact that derivatives of a function are bounded in some
way (e.g. for functions in Sobolev spaces) makes it possible to define their trace on
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zero measure manifolds. In the present case of a tree, a similar approach can be
taken to define a trace on the set of ends of the dyadic tree, which is represented
as Γ = {0, 1}N. This question is strongly related to the properties of Dirichlet
functions and Harmonic functions with finite energy at the end of the tree, as
discussed extensively in the literature. In the 1970’s, Cartier in [8] studied Harmonic
functions via the Green Kernel, introduced the notion of Martin boundary, and
gave a characterisation of positive harmonic functions; subsequently many authors
provided results on this subject (see Woess [24], Ancona [4], Mouton [18]). That
functions with finite energy converge almost surely along random walks is also well
known, as discussed in articles by Yamasaki [21], Ancona-Lyons-Peres [5].

In the present approach, which aims at embedding the set of ends Γ (geometrical
boundary of the tree as defined in [18]) in the physical space, we are especially
interested in describing intrinsic regularity of trace functions. To that end, we pro-
pose a new approach that involves the construction of an explicit basis of harmonic
functions in the energy space, which allows to identify the trace space as a subset
of L2(Γ). We will see that, in the case of geometric trees, trace functions can be
described accurately in terms of Ar regularity (Cohen [9]), where the parameter r
depends on the resistances of the tree. As the real tree is embedded in a three di-
mensional medium (the parenchyma), it is not clear a priori whether the regularity
in the tree is likely to induce any kind of regularity for the corresponding field in the
physical space. In particular, two ends of the tree can be very close to each other
in the physical space, while being far apart in the tree. We prove here that, under
some conditions on the way the tree irrigates the domain, the embedded pressure
field presents indeed some correlation in space, which can be expressed in a precise
way in terms of fractional Sobolev regularity.

As for similar approaches in the context of PDE’s, let us also mention [2, 3], in
which the authors propose a theoretical framework and associated numerical tools
to handle elliptic problems set on bi-dimensional tree-like fractal domains. Their
approach uses the auto-similar structure of the domain intensively. Our framework
is different: we start with a simpler model (Poiseuille’s law in a network of pipes),
with a much lighter set of assumptions. As a consequence, our model can handle
non-homogeneous situations, and all considerations related to the flowing of air
through branches are completely independent from geometric considerations (only
dimensions of the pipes are involved, through the value of local resistance): geo-
metrical aspects are involved only in the embedding process of the boundary leafs
onto a physical domain.

Let us add some remarks related to (apparently) similar questions in the context
of Sobolev spaces to illustrate the difficulties pertaining to these objectives in the
context of trees. As will become apparent, the natural norm (i.e. based on energy
considerations) for the tree is some kind of H1 semi-norm (whose square is the rate
of dissipated energy), to which one adds a term involving the value at a vertex
to handle constant fields. A natural counterpart in R

d of this norm is defined as
follows

‖u‖2
=

∫

B

|u|2 +

∫

Rd

|∇u|2,

where B is the d-dimensional unit ball. Let us denote by H1 the corresponding
Hilbert space (set of all those functions in L2

loc for which the previous quantity
is bounded). The question of how such functions may behave at infinity can be
formulated by introducing H1

0 as the closure of C∞
c (Rd) in H1, and the quotient
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space H̃1/2 = H1/H1
0 . The first question we will address for the resistive tree is

as follows: is H̃1/2 trivial or not ? The situation in R
d is quite poor, as, when the

space is not trivial, it is in fact almost trivial. More precisely, the situation is as
follows:

for d = 1, 2 : no trace can be defined at infinity, H̃1/2 = {0};
for d ≥ 3 : the trace space H̃1/2 is not trivial, but it is one-dimensional. The

only non-trivial instance corresponds to constant functions.
The poorness of H̃1/2 for d ≥ 3 is due to the fact that the finite character of

the H1 semi-norm imposes some rigidity in the transverse direction so that only
asymptotically constant functions qualify (see [10] for a detailed proof, in the case
d = 3). A richer situation can be obtained by integrating some non-isotropic weight
in the norm, in order to lower the correlation in the transverse direction. This
transverse de-correlation corresponds to the native situation for trees: the very tree-
structure allows fields to exhibit highly different values at vertices belonging to the
same generation (as soon as those vertices are far away from each other with respect
to the natural distance in the tree). As a consequence, the quasi-trivial situation
(one dimensional trace space) will not be met for the trees we intend to explore:
the trace space will be either trivial (case H1 = H1

0 ), or infinite dimensional.
The paper is structured as follows. In Section 2, we revisit standard results for

functional spaces on general infinite networks: we give an abstract definition of
the trace space we aim to identify, and we characterise dyadic trees for which the
abstract trace space is not trivial. In Section 3, the abstract trace space introduced
in the previous section is identified with a functional space on the boundary Γ =
{0, 1}N, and we define a counterpart to the trace of the normal derivative on Γ.
Those considerations are applied to a geometric tree for a rigorous definition of the
Dirichlet to Neuman and Neuman to Dirichlet operators associated with the Poisson
problem on the tree. In section 4, the tree is embedded in a domain of R

N (as the
bronchial tree is embedded in the parenchyma), and we investigate the regularity of
the corresponding pressure fields, as well as whether it is possible to define N to D
and D to N operators in the embedded situation. Finally, in Section 5, we discuss
how these considerations can be applied in modelling the human lungs.

2. Functional spaces in infinite trees. This section contains mainly alternative
proofs to some standard properties for Sobolev spaces on trees (see e.g. [19]).

2.1. General setting. In what follows we shall use notation T to define a general
network, as those considerations are to be applied to special networks, namely
dyadic trees. Yet, we do not suppose in this first section that T is actually a tree.

Let T = (V,E, r) denote a resistive network: V is the set of vertices (possibly
infinite), E, subset of V × V , is the set of edges, and r ∈ (0,+∞)E a resistance
field. We will follow the convention that edges are counted only once in E, that is
to say (x, y) ∈ E =⇒ (y, x) /∈ E. As for resistances, we will of course consider that
r(y, x) is defined and equal to r(x, y) as soon as (x, y) ∈ E. We will also use of the
field of conductances, defined by c(e) = 1/r(e) for any e ∈ E.

We shall simply assume in this introductory section that the number of vertices
is countable, and the number of neighbours is uniformly bounded:

sup
x∈V

♯ {y , (x, y) ∈ E}} < +∞.
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As the only functions defined over edges are fluxes, we whall design by R
E the

set of skew symmetric functions over edges:

u(y, x) = −u(x, y) as soon as (x, y) ∈ E.

Definition 2.1. For any u ∈ R
E (skew symmetric flux distribution as defined

above), we define

∂u ∈ R
V , ∂u(x) =

∑

y∼x

u(x, y),

where y ∼ x stands for (x, y) ∈ E or (y, x) ∈ E. Symmetrically, for any field p ∈ R
V

(collection of pressures at nodes), we define

∂⋆p ∈ R
E , ∂⋆p(x, y) = −∂⋆p(y, x) = p(y) − p(x).

Remark 1. The operator ∂ can be seen as the divergence operator on the tree.
Notice that ∂u(x) > 0 means that some fluid enters the domain at x.

Consider now that some viscous fluid flows through the edges of the network
according to Poiseuille’s law, and that some fluid is injected at constant rate 1
through some vertex o. This model takes the form of a discrete Darcy problem:

{
u+ c∂⋆p = 0,

∂u = δo,

where c is the conductance field c(e) = 1/r(e), δo is 1 at o, and vanishes everywhere
else.

Remark 2. Note that ∂⋆ is formally the opposite of the adjoint of ∂, the same way
the divergence operator is the opposite of the adjoint of the gradient operator.

We are interested in solutions with finite energy, or more precisely finite instan-
taneous loss of energy over the network by viscous dissipation. It leads to energy
spaces:

L2(T ) = {u ∈ R
E , ‖u‖2

2 =
∑

(x,y)∈E

r(x, y)u(x, y)2 < +∞},

and its pressure counterpart

H1(T ) = {p ∈ R
V , |p|21 =

∑

(x,y)∈E

c(x, y)[p(y) − p(x)]2 < +∞}.

The flux space is a standard weighted ℓ2 space, and c∂⋆ is an isometry fromH1(T )/R
onto L2(T ). We shall endow H1(T ) with the norm

‖p‖2
1 = c(o)p(o)2 + |p|21.

Remark 3. The way to handle constant functions may affect significantly the
result. In the spirit of [20], an alternative choice would consist in replacing p(o)2

by an L2-like quantity ∑

x∈V

ρ(x)p(x)2,

where ρ is for example the average resistance (i.e. average length, see Remark 5
below) of edges that contain x. This choice would lead to different results, much
more similar to the R

d context: in particular, H1
0 (T ) identifies to H1(T ) as soon

as the diameter of the tree (i.e. the maximal resistance of a single path to infinity)
is infinite. The choice we made is therefore essential, and justified by modelling
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considerations: the L2 norm of the pressure does not make sense in terms of energy,
whereas the H1 semi-norm is the rate of dissipated energy.

Definition 2.2. We denote by D(T ) the set of finitely supported functions in R
V ,

and we define H1
0 (T ) as the closure in H1(T ) of D(T ).

Let us now formulate a discrete counterpart of the Green formula (see [1]).

Proposition 1. (Green formula on the whole network)
Let p ∈ H1(T ) and q ∈ H1

0 (T ) be given. For any sequence (qn) in D(T ) which
converges to q, the quantity

−
∑

x∈V

∂c∂⋆p(x)qn(x)

converges to a value which does not depend on the chosen sequence. This defines
−∂c∂⋆p as an element of H−1(T ) = (H1

0 (T ))′, and it holds

〈−∂c∂⋆p , q〉(H−1(T ),H1
0 (T )) =

∑

e∈E

c(e)∂⋆p(e)∂⋆q(e). (1)

Proof. For qn ∈ D(T ), a summation by parts gives

−
∑

x

∂c∂⋆p(x)qn(x) =
∑

e

c(e)∂⋆p(e)∂⋆qn(e),

and the right-hand side converges to
∑

e c(e)∂
⋆p(e)∂⋆q(e). �

Remark 4. Note the absence of boundary terms in the Green formula. It is due
to the fact that all vertices of T are considered as inner vertices, including those
which are involved in a single connection (like the root of the dyadic tree which
we introduce in the next section). A Green formula with boundary terms can be

recovered by introducing a partition V = V̊ ∪ ∂V , where ∂V stands for any subset
of V (arbitrarily considered as the boundary of V ). For any x ∈ ∂V , the quantity
−∂c∂⋆p(x) is the flux entering the network. Denoting by g(x) = ∂c∂⋆p(x) the flux
getting out of the network (g plays the role of c∂p/∂n in the context of PDE’s), we
may write (1) as follows:

−
∑

x∈V̊

∂c∂⋆p(x)q(x) =
∑

e∈E

c(e)∂⋆p(e)∂⋆q(e) +
∑

x∈∂V

g(x)q(x).

This formula is particularly adapted to the case of a network with some fluid entering
(or flowing out) at some vertices x ∈ ∂V , and conservative (i.e. with no leak) at

vertices in V̊ . Assuming p ∈ H1
0 (the case of fluid entering the network at infinity is

postponed to the next sections), and taking q = p, we get the instantaneous energy
balance ∑

e∈E

c(e)|∂⋆p(e)|2 =
∑

e∈E

r(e)|u(e)|2 = −
∑

x∈∂V

g(x)p(x),

where the left-hand side is the rate of dissipated energy within the network, and
the right-hand side is the power of external forces.

The abstract trace space of H1(T ) can be defined in this general framework as
follows:

Definition 2.3. (Abstract trace space)
Let T be a resistive network. The abstract trace space is defined as H1(T )/H1

0 (T ).
We denote by γ̃0 the abstract trace operator (canonical surjection).

Notice that H1/H1
0 is trivial for any finite network.
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2.2. Abstract trace space on a dyadic tree. We investigate here whether the
abstract trace space is trivial or not, in the case of a dyadic tree. The main properties
presented in this section are also established in [19], in a slightly different formalism.
We propose here alternative proofs, some parts of which will be used in the next
section to define trace operators.

From now on, T designs an infinite dyadic tree with root o (see Fig. 2),

V = {o} ∪ {Xnk , n ∈ N , 0 ≤ k ≤ 2n − 1} ,
E = {(o,X00)} ∪ {(Xnk, Xn+1,2k) , (Xnk, Xn+1,2k+1) , n ∈ N , 0 ≤ k ≤ 2n − 1} .

Definition 2.4. A tree such that the resistance of edges is constant for each gen-
eration is called regular. We denote by rn the common value at generation n:

rn = r (Xn−1,k, Xn,2k) = r (Xn−1,k, Xn,2k+1) , n ≥ 1 , 0 ≤ k ≤ 2n−1 − 1,

and r0 = r(o,X00).

Remark 5. We presented in the introduction some considerations in the context of
R

d. In the comparison with this standard context, it is clear that n plays the role of
the radial component (distance to the origin), and k the role of what we called the
transverse direction. To detail a bit this comparison, let us mention here that the
set of vertices of the tree can be seen as a metric space for the distance canonically
induced by dist(x, y) = r(x, y) for any two connected vertices. Now considering T
as a one-dimensional manyfold T, and identifying a pressure field p ∈ R

V with a
piecewise affine function over T, we get (s is the curvilinear abscissa)

∫

T

∣∣∣∣
∂p

∂s

∣∣∣∣
2

ds =
∑

(x,y)∈E

r(x, y)
|p(y) − p(x)|2

r(x, y)2
,

which is exactly the quantity we defined as |p|21. The transverse decorrelation we
mentioned in the introduction is due to the fact that two vertices of the same
generation may have very little common ancestors, so that their distance may be
large.

Definition 2.5. Let n ≥ 1. We define Tn as the subtree of T with same root o and
height n (see Fig. 2), we denote by V (Tn) (resp. E(Tn)) its set of vertices (resp.
edges), and by Rn the equivalent resistance of Tn, defined as follows: Consider
that a uniform zero pressure is applied at the leafs of the tree, whereas its root is
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maintained at pressure 1. The resistance Rn is defined as the reciprocal of the flux
flowing out of o, so that Poiseuille’s law

1 = proot − pleafs = Rn × (global flux)

is verified.

Note that (Rn) is an increasing sequence, which leads us to the following defini-
tion:

Definition 2.6. The global resistance (or simply resistance when no confusion is
possible) of the infinite tree T is defined by

R = lim
n→+∞

Rn ∈ (0,+∞].

Remark 6. The resistance of a regular tree is simply R =
∑
rn/2

n.

Before stating the main result of this section, which shows that trees with R <
+∞, and only those, exhibit a non-trivial trace space, we present some definitions
and lemmas which will be used also in the following sections.

Definition 2.7. The capacity of o with respect to Tn is defined by

C(o, Tn) = inf{|q|21 , q(o) = 1 and q(Xnk) = 0 , 0 ≤ k ≤ 2n − 1}.
Lemma 2.8. Let Tn be a finite resistive tree of height n. It holds

C(o, Tn) = |pn|21
with pn satisfying






pn(o) = 1

pn(Xnk) = 0 ∀k , 0 ≤ k ≤ 2n − 1

−∂c∂⋆pn(Xjk) = 0 ∀j ≤ n− 1 , 0 ≤ k ≤ 2j − 1.

(2)

Moreover |pn|21 = 1/Rn.

Proof. Let pn be defined as above. For any q satisfying q(o) = 1, q(Xnk) = 0 for
0 ≤ k ≤ 2n − 1, we introduce d = q − pn. It holds

|q|21 = |pn + d|21 = |pn|21 + |d|21 + 2(pn , d)1. (3)

As d is 0 but at internal nodes, Green formula (see Prop. 1) gives

(pn , d)1 = −〈∂c∂⋆p , d〉 = 0,

which yields |q|21 ≥ |pn|21, so that C(o, Tn) ≥ |pn|21, thus equality holds.
Now |pn|21 = 1/Rn simply expresses the fact that the rate of dissipated energy

is the square of the pressure jump divided by the resistance. More precisely, using
again Prop. 1 and the fact that pn vanishes at the leafs,

|pn|21 = (pn , pn)1 = −〈∂c∂⋆pn , pn〉 = −pn(o)∂c∂⋆pn(o). (4)

Noting that −∂c∂⋆pn(o) is just the global flux, and that pn(o) = 1, we obtain
|pn|21 = 1/Rn, by definition of Rn (see Definition 2.5). �

The previous considerations extend straightforwardly to infinite trees:

Definition 2.9. Let T be an infinite resistive tree. The capacity of o w.r.t. T is
defined by

C(o, T ) = inf
{
|p|21 , p finitely supported and p(o) = 1

}
.
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Lemma 2.10. Let T be an infinite resistive tree. Then C(o, T ) = R−1 ∈ [0,+∞).

Proof. It is a consequence of C(o, T ) = limC(o, Tn) = lim 1/Rn = 1/R. �

Lemma 2.11. Let I1T be the function defined on V identically equal to 1. It holds

R = +∞ ⇔ I1T ∈ H1
0 (T ).

Proof. If I1T ∈ H1
0 (T ), then C(o, T ) = 0, and the resistance is infinite. If the

resistance is +∞, then the field pn ∈ D(T ) (defined on Tn by (2) and extended by 0
outside Tn) takes value 1 at o, and its H1 semi-norm goes to 0 as n goes to infinity,
so that its distance to I1T goes to 0. �

Theorem 2.12. Let R be the global resistance of the resistive tree (V,E,r). We
have

R = +∞ ⇔ H1
0 (T ) = H1(T ).

Proof. The sufficient condition is straightforward: identity H1(T ) = H1
0 (T ) implies

I1T ∈ H1
0 (T ) so that, by Lemma 2.11, the resistance is infinite.

Suppose now R = +∞. The purpose is to establish that any f ∈ H1(T )
can be approximated by a sequence (fℓ) of finitely supported functions. Apply-
ing Lemma 2.11 gives I1T ∈ H1

0 (T ). Then there exists a sequence (un)n∈N of finitely
supported functions converging to I1T , so that

lim
n→+∞

|un|1 = 0. (5)

Let f be in H1(T ) and let ε be nonnegative. There exists n ∈ N
⋆ such that

∑

E\E(Tn)

c(x, y)(f(y) − f(x))2 < ε, (6)

where E(Tn) is the set of edges of Tn. The construction of the sequence (fℓ)ℓ∈N is
then possible. If x ∈ V (Tn−1) (set of vertices of Tn except generation n), we set
fℓ(x) equal to f(x). Otherwise there exists k in {0, . . . , 2n − 1} such that x ∈ Tnk,
which is the infinite subtree rooted in Xnk (see Def. 3.1 and Fig. 3.1). We then set

fℓ(x) = f(Xnk)uℓ(x)/max(1/2, uℓ(Xnk)).

As uℓ converges pointwisely to 1, one has max(1/2, uℓ(Xnk)) = uℓ(Xnk) for ℓ suffi-
ciently large, so that fℓ identifies with f on Tn (including the nth generation). The
function fℓ is finitely supported by construction. Let us now establish that |f−fℓ|1
converges to zero. The quantity |f − fℓ|21 reduces to a sum over E \ E(Tn) :

|f − fℓ|1 = |f − fℓ|1,T\Tn
≤ |f |1,T\Tn

+ |fℓ|1,T\Tn
.

The first contribution is less than
√
ε by definition of n. The second one can be

estimated

∑

E\E(Tn)

c(x, y)(fℓ(x) − fℓ(y))
2 ≤

2n−1∑

k=0

f(Xnk)2

uℓ(Xnk)2

∑

E(Tnk)

c(x, y)(uℓ(x) − uℓ(y))
2

≤ max
k∈{0,...,2n−1}

f(Xnk)2

uℓ(Xnk)2
|uℓ|21.

Now as uℓ converges uniformly (for n fixed) to 1 on the set of leafs of Tn, the
maximum in the previous expression is bounded. As |uℓ|21 goes to 0 as ℓ goes to
infinity, the quantity can be controlled by ε for ℓ sufficiently large, which ends the
proof. �
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We finish this section by establishing a Poincaré-like inequality for functions in
H1

0 (T ), and some general properties which will be useful in the following.

Proposition 2. (Poincaré inequality)
Let T be a tree with finite resistance. Then there exists C > 0 satisfying for each
f ∈ H1

0 (T )
‖f‖1 ≤ C|f |1. (7)

Consequently, | · |1 is a norm on H1
0 (T ).

Proof. For any f ∈ D(T ), there exists n such that f is supported within Tn so that,
by Lemma 2.8,

f(0)2 ≤ Rn|f |21 ≤ R|f |21.
The density of D(T ) in H1

0 (T ) ends the proof (with a constant C =
√

1 +R). �

Definition 2.13. The set of finite energy harmonic functions is defined by

H1
∆(T ) = {p ∈ H1(T )/ ∂c∂⋆p = 0}.

Lemma 2.14. We assume R finite. Then H1
0 (T ) ∩H1

∆(T ) = {0}.
Proof. Let f be in H1

0 (T )∩H1
∆(T ). Green formula (Prop. 1) gives |f |1 = 0. As | · |1

is a norm on H1
0 (T ), it yields f ≡ 0. �

It is now possible to define properly an abstract non-homogeneous Dirichlet prob-
lem. Let T be an infinite dyadic tree, and let g̃ ∈ H1/H1

0 be given. We consider
the following problem: 





p ∈ H1(T ),

−∂c∂⋆p = δo,

γ̃0(p) = g̃.

(8)

As a first step, we establish well-posedness (in the finite resistance case) of the
homogeneous Dirichlet problem

{
p ∈ H1

0 (T ),

−∂c∂⋆p = δo.
(9)

Theorem 2.15. Homogeneous Dirichlet problem (9) is well-posed if and only if the
global resistance is finite.

Proof. Let us assume R < +∞. We consider the sequence of fields qn = Rnpn

(extended by 0 outside Tn), where pn is defined by (2). The H1 semi-norm of qn is√
Rn, so that it is bounded inH1(T ) (the value at o is Rn), therefore one can extract

a subsequence (still denoted by (qn)) which converges weakly towards q ∈ H1
0 (T ).

As weak convergence implies pointwise convergence, one has

−∂c∂⋆q = δo.

Uniqueness is a direct consequence of Lemma 2.14 (the only harmonic function in
H1

0 (T ) is 0).
Let us now assume that the resistance is +∞, and that a solution p to Problem (9)

exists. We denote by qn the projection of p onto the affine subspace of all those
fields q which take value p(o) at o, and which vanishe outside Tn:

q(Xmk) = 0 ∀m ≥ n , 0 ≤ k ≤ 2m − 1.

This projection is performed with respect to the H1 norm, which amounts to min-
imize the H1 semi-norm, as the value at o is prescribed. As p is harmonic (if one
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excludes the root o), it turns out that qn identifies (up to a multiplicative con-
stant) to the field pn which was built in Lemma 2.8 (see Eqs. (2)). More precisely,
qn = p(o)pn. As |qn|1 = p(o)/

√
Rn, it goes to 0 as n goes to infinity. On the

other hand, as p is in H1
0 (T ), qn converges strongly to p, so that |p|1 = 0, and p is

constant, which is in contradiction with any non-zero flux flowing through o. �

Proposition 3. (Royden decomposition (Soardi [19]))
We assume R < +∞. For each f ∈ H1(T ) there exists a unique q ∈ H1

0 (T ) and a
unique p ∈ H1

∆(T ) such that
{
f = p+ q,
|f |21 = |p|21 + |q|21.

(10)

Proof. As (· , ·)1 is a scalar product on H1
0 (T ) (see Prop. 2), there exists a unique

q ∈ H1
0 (T ) which minimizes the distance (for the H1 semi-norm) over H1

0 (T ).
Optimality conditions ensure harmonicity of p = f − q. �

Theorem 2.16. We suppose R < +∞. Let g̃ ∈ H1/H1
0 be given. Then there exists

a unique solution to the non-homogeneous Dirichlet problem: Find p ∈ H1(T ) such
that {

−∂c∂⋆p = δo

γ̃0(p) = g̃.
(11)

Proof. We denote by g the harmonic instance of g̃ (given by Prop. 3), and by p∞ the
solution to the homogeneous Dirichlet Problem (9). Then p∞+g is a solution to (11).
Uniqueness is a consequence of the uniqueness for the homogeneous problem. �

In the context of modelling the respiratory process, we will consider the problem
with natural boundary conditions at the root:

Corollary 1. Let g̃ ∈ H1/H1
0 be given. There exists a unique solution p to





−∂c∂⋆p = 0 in T \ {o}
p(o) = 0

γ̃0(p) = g̃.

Proof. Let p1 denote the solution to Eq. (11), and p0 the solution to homogeneous
Dirichlet problem (9). The solution to this new problem is then defined in a unique
way as p1 − (p1(o)/p0(o))p0. �

3. Trace theorems.

3.1. Preliminaries. In the context of PDEs, trace theorems rely on an extension
by density of the notion of restriction to a subset, for regular functions (typically
in D(Ω)). In the case of a tree there is no natural counterpart for the space of
regular functions defined beyond the tree. The strategy we propose is based on the
construction of a Hilbert basis for the set of harmonic function with finite energy.
The basis functions are in some sense asymptotically piecewise constant at infinity,
so that a trace can be defined canonically. The trace operator is then defined by
density.

Proposition 4. We assume R < +∞. We define I : H1/H1
0 −→ H1

∆(T ) as
the operator which maps any q̃ ∈ H1/H1

0 onto its unique harmonic instance (see
Prop. 3). Then I is a bicontinuous isomorphism.
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XnkXnk

Tnk

T 0
nk T 1

nk

−R0
nk R1

nk

Figure 3. Subtrees T 0
nk, T 1

nk, and function ψnk.

Proof. The mapping I is a one-to-one and onto linear mapping by Prop. 3. As
it is continuous between Hilbert spaces, it is bicontinuous by Banach-Steinhaus
Theorem. �

Let us now construct a Hilbert basis of H1
∆(T ).

Definition 3.1. Let T be an infinite resistive tree, n ∈ N, k ∈ {0, . . . , 2n − 1}
and Tnk the associated infinite subtree with root Xnk. Subtree Tnk can be divided
into two infinite subtrees denoted by T 0

nk and T 1
nk with V (T 0

nk) and V (T 1
nk) the

corresponding set of vertices. Let R0
nk and R1

nk be defined as the corresponding
global resistances.

Let n ∈ N and k ∈ {0, . . . , 2n − 1} be fixed. We assume that R0
nk and R1

nk are
finite. Theorem 2.15 ensures existence of a unique solution to the following problem

{
ψ ∈ H1

0 (T 0
nk)

−∂c∂⋆ψ = δXnk
.

(12)

Let ψ̃0
nk be this solution. Similarly, we define ψ̃1

nk as the unique solution to
{
ψ ∈ H1

0 (T 1
nk)

−∂c∂⋆ψ = −δXnk
.

(13)

The idea is to build out of those functions a non trivial function (i.e. non constant
at infinity) on T . To that purpose, we add a constant to each of those functions in
order to set a common pressure value at Xnk (the vertex at which both pressure
fields are to be connected). Therefore we define ψ0

nk and ψ1
nk as

ψ0
nk = ˜ψ0

nk − ˜ψ0
nk(Xnk),

ψ1
nk = ˜ψ1

nk − ˜ψ1
nk(Xnk).

(14)

We define now ψnk on the overall tree T :

ψnk(x) =





ψ0
nk(x) if x ∈ V (T 0

nk),

ψ1
nk(x) if x ∈ V (T 1

nk),

0 otherwise.

(15)
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Remark 7. Let us describe the behaviour of ψnk “at infinity” . As ψ0
nk minimizes

the H1 semi-norm among all those fields on H1
0 (T 0

nk) which vanish at infinity, and
which share the same value at Xnk, one has

˜ψ0
nk(Xnk) = 1/C(Xnk, T

0
nk) = R0

nk,

and a similar result for the second subtree. As a consequence, one can say (this
assertion will be made more precise in the following), that ψnk behaves assymptot-
ically like −R0

nk on T 0
nk, like R1

nk on T 1
nk, and like 0 everywhere else (see Fig. 3.1).

Definition 3.2. Let T be an infinite resistive tree. We will say that T is a uniformly
bounded resistive tree if

R0
nk < +∞ , R1

nk < +∞ ∀n ∈ N , ∀k ∈ {0, . . . , 2n − 1}.
Notice that a uniformly bounded resistive tree is automatically finitely resistant,

as R0
00 and R1

00 are finite.

Theorem 3.3. Let T be a uniformly bounded resistive tree. Then (ϕ0, ϕnk)n,k

defined as 



ϕ0 =
√
r0 I1T ,

ϕnk =
ψnk√

R0
nk +R1

nk

, n ∈ N , 0 ≤ k ≤ 2n − 1,
(16)

is a Hilbert basis of H1
∆(T ) (r0 is the resistance of the first edge, and I1T is the

function which is identically equal to 1 on T ).

Proof. The functions ϕnk are harmonic and normalized by construction.
Let us now show that (ϕ0, ϕnk) is an orthogonal family. Firstly, as the H1 semi-

norm of ϕ0 is 0, and ϕnk(o) = 0, (ϕ0, ϕnk)1 vanishes for k ∈ {0, . . . , 2n − 1}. As for
(ϕnk , ϕn′k′)1 products, it is sufficient to establish

(ϕ00, ϕnk)1 = 0 ∀n , k, (17)

the other situations can be handled in the same manner. The scalar product can
be written as a sum of contributions of the two subtrees of T00. As ϕnk is 0 on one
of those subtrees, only one contribution remains, say on T 0

00. As the function ϕ00 is
in H1

0 (T 0
00) up to an additive constant (by construction), and as the constant does

not affect the (·, ·)1 product, Green formula (see Prop 1) can be applied on T 0
00:

(ϕnk, ϕ00)1,T = (ϕnk, ϕ00)1,T 0
00

= 〈−∂c∂⋆ϕnk , ϕ00〉(H−1(T 0
00),H1

0 (T 0
00)) = 0,

by harmonicity of ϕnk.
It remains to prove that the family is total. In order to do that let f be in H1

∆(T )
satisfying

(f , ϕ0)1 = 0 and (f , ϕnk)1 = 0 ∀n , k.
Firstly, as f is harmonic at the root o, ∂⋆f(o,X00) = 0. The purpose of this second
part of the proof is to obtain that the jump of f on each edge is related up to a
constant to ∂⋆f(o,X00). Consider any vertex Xnk 6= o. Orthogonality conditions

(f, ϕnk)1 = 0 and ∂c∂⋆f(Xnk) = 0,

together with Green formula (using again the fact that the restriction of ϕnk to
T i

nk is in H1
0 (T i

nk) up to a constant) lead to a Cramer system. A direct resolution
of this Cramer system proves that each flux through downstream edges of Xnk is
proportional to the upstream flux arriving at Xnk. As the flux through the root
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edge (o,X00) is zero, direct induction over n proves that ∂⋆f is identically 0 over
T , so that f is constant. As its scalar product with I1T is 0, f vanishes over T . �

3.2. Trace operators γ0 and γ1. In this section we present how the trace oper-
ator γ0 can be defined over H1(T ) and we establish that, under some regularity
assumptions on the tree T , γ0(H

1(T )) can be identified to a subset of L2(Γ) (where
Γ = {0, 1}N is the set of infinite paths). We also define the normal derivative op-
erator γ1 over a subspace of H1, and we identifiy the corresponding trace space to
γ0(H

1(T ))′.

Definition 3.4. The cylinder Cnk ⊂ Γ = {0, 1}N is defined as

Cnk = {(νn)n≥1 ∈ Γ , νi = βi for i = 1, . . . , n with k =

n∑

i=1

βi2
n−i}.

We denote by C0
nk (resp. C1

nk) the left-hand (resp. right-hand) half of Cnk:

Ci
nk = {ν = (νn)n≥1 ∈ Γ , ν ∈ Cnk , νn+1 = i} i = 0 , 1.

Note that Cnk can be seen as the set of infinite paths through the tree whose tail
is contained in Tnk.

Definition 3.5. Let Γ = {0, 1}N be the limit set of the infinite tree T. Let σ(C) be
the σ-algebra generated by C, the set of cylinders Cnk defined above. We denote
by (Γ, σ(C), µ) the standard Bernoulli space, with µ(Cnk) = 2−n, and by L2(Γ) the
space of square integrable functions over Γ.

Let us now define the set F which is to play the role of regular functions for
PDE problems, for which a proper restriction to the boundary of a domain can be
defined. In the present context, F is spanned by functions which vanish on the
boundary of T (in the sense of Definition 2.2), except on one subtree Tnk, where
they vanish up to an additive constant.

Definition 3.6. Let F be the linear space spanned by all those pressure fields p
such that there exists n ∈ N, k ≤ 2n − 1, and π ∈ R such that

p|Tnk
− π ∈ H1

0 (Tnk) and p|T\Tnk
∈ H1

0 (T \ Tnk).

We define γ0 : F → L2(Γ) as follows: for all p ∈ F satisfying p|Tnk
− π ∈ H1

0 (Tnk),

and p|T\Tnk
∈ H1

0 (T \ Tnk), we set

γ0(p) = πI1Cnk
.

γ0 is defined over F by linearity.

In particular, it is now possible to define the trace of the Hilbert basis of H1
∆(T ).

Proposition 5. Let T be a uniformly bounded resistive tree. ϕ0 and ϕnk belong to
F , and it holds

γ0(ϕ0) =
√
r0I1Γ

and

γ0(ϕnk)(x) =





−R0
nk√

R0
nk +R1

nk

if x ∈ C0
nk,

R1
nk√

R0
nk +R1

nk

if x ∈ C1
nk,

0 otherwise .

(18)
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Moreover 



‖γ0(ϕ0)‖2
L2(Γ) = r0,

‖γ0(ϕnk)‖2
L2(Γ) =

1

2n+1

(R0
nk)2 + (R1

nk)2

R0
nk +R1

nk

.
(19)

Proof. Recalling the construction of ϕ0 and ϕnk, (18) is immediate. Then a simple
computation shows (19), as µ(C0

nk) = µ(C1
nk) = 1/2n+1. �

The previous considerations lead to a first unformal definition of the trace space
as the set of linear combinations of γ0(ϕnk) with coefficients in ℓ2 :




f = f0γ0(ϕ0) +
∑

n≥0

2n−1∑

k=0

fnkγ0(ϕnk) , (fnk) ∈ ℓ2






In general, this set does not identify to any proper functional space over Γ. It can
be established that this set can be identified to some distribution space over Γ, as
soon as the tree is subgeometric (i.e. |rnk| ≤ Cαn, with α < 2). Yet, in order to
define properly traces as functions on Γ, we must restrict ourselves to the case of
regular trees. Notice that, for such trees, R0

nk = R1
nk = 2R∞

n , where R∞
n is the

global resistance of any subtree Tnk. As a consequence, one has

γ0(ϕnk)(x) =






−
√
R∞

n if x ∈ C0
nk,

√
R∞

n if x ∈ C1
nk,

0 otherwise .

(20)

Notice also that functions γ0(ϕnk) are orthogonal in L2(Γ) in the case of a regular
tree.

Proposition 6. Let T be a regular resistive tree with R < +∞. Then γ0 is contin-
uous from (F, ‖.‖H1(T )) to (L2(Γ), ‖.‖L2(Γ)). As a consequence it can be extended

by density to an operator in L(H1(T ), L2(Γ)).

Proof. Combining p ∈ F and Proposition 3 (R being finite), there exists p0 ∈
H1

0 (T ) and ph ∈ H1
∆(T ), such that (p0, ph)1 = 0, and

p = p(o)I1T + p0 + ph.

Note that necessarily p0(o) = −ph(o). As p ∈ F , the harmonic component ph writes

ph = d0ϕ0 +

N∑

n=0

2n−1∑

k=0

dnkϕnk,

for some N < +∞, with
∑
d2

nk = |ph|21. Now noticing that the constant mode ϕ0

is excited by p(o)I1T and d0ϕ0 = d0
√
r0I1T , and using orthogonality of the family

(γ0(ϕnk)) in L2(Γ), one gets

‖γ0(p)‖2
L2(Γ) = (p(o) + d0

√
r0)

2 +

N∑

n=0

2n−1∑

k=0

d2
nk ‖γ0(ϕnk)‖2

.

In the case of a regular tree, Eq. (19) identifies 2n+1 ‖γ0(ϕnk)‖2
as the global re-

sistance of the subtree T 0
nk, which is less than 2n+1R (the 2n+1 resistive subtrees

T i
nk′ , k′ = 0, . . . , 2n − 1, i = 0, 1 are in parallel).
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As for the first term, one has d2
0r0 = ph(o)2 = p0(o)

2, and Poincaré inequality
(see Lemma 2) implies p0(o) ≤ C|p0|1. Finally, one gets

‖γ0(p)‖2
L2(Γ) ≤ 2p(o)2 + 2C2|p0|21 +R|ph|21

which is controled by ‖p‖2
H1(T ). �

Corollary 2. Suppose that T is a regular resistive tree with R < +∞, then the
trace space H̃1/2(Γ) = γ0(H

1(T )) is exactly



f ∈ L2(Γ) , ∃ f0 ∈ R , (fnk) ∈ ℓ2, f = f0γ0(ϕ0) +
∑

n≥0

2n−1∑

k=0

fnkγ0(ϕnk)




 .

We denote it H̃1/2(Γ). This is a Hilbert space for the norm ‖f‖2
H̃1/2(Γ) = |f0|2 +

|fnk|2ℓ2

Remark 8. The upperscript 1/2 in H̃1/2(Γ) is purely formal. We shall see that
the trace space, in the case of dyadic trees, can be identified in some sense with
Sobolev spaces Hs, where s depends on the resistances (see Section 4).

Proof. This is a direct consequence of the above results. �
We describe now how a counterpart to the normal derivative on the boundary can

be defined in the present context, at least for functions which are harmonic in the
neighbourhood of Γ. To be more precise, we will define γ1 as the oulet flux, which
is the discrete counterpart of −c∂p/∂n in the context of standard Darcy problem
(see Fig. 1).

Such a quantity is defined in the PDE context for functions p in H1 such that
c∇p is divergence free, or at least has a divergence which is controlled in L2. We
define here this counterpart to the trace of the normal derivative for functions in
H1(T ) which are harmonic in T \ {o} :

Definition 3.7. We define H̊1
∆(T ) ⊂ H1(T ) as the subspaces of functions which

are harmonic over T \ {o}. This space can be written

Rϕ1 +H1
∆(T ),

with ϕ1 = p − p(o)I1T , where p is the solution to the homogeneous Dirichlet prob-
lem (9).

The construction of γ1 is based on the following decomposition :

p ∈ H̊1
∆(T ) ⇐⇒ p = p0ϕ0 + p1ϕ1 +

∑∑
pnkϕnk , (pnk) ∈ ℓ2.

Notice that ϕ0 corresponds to a uniform pressure, with no flux associated. Moreover,
as the tree is regular, the flux associated to ϕ1 is uniformly distributed over Γ.
As its integral balances the inlet flux exactly, this flux identifies to the uniform
density 1 over Γ. Similarly, the flux associated to the pressure field ϕnk is uniforlmy
distributed on each generation of the subtrees T 0

nk and T 1
nk. The normal trace γ1

of a basis function ϕnk is then simply defined over Ci
nk as the global flux through

T i
nk divided by the measure of Ci

nk :

Definition 3.8. Le T be a regular tree with finite resistance, and let Λ be defined
as span(ϕ0, ϕ1, ϕnk) (see Th. 3.3 for the definition of ϕ0, ϕnk, and Def. 3.7 for the
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definition of ϕ1). The operator γ1 : Λ → L2(Γ) is defined as follows : γ1(ϕ0) ≡ 0,
γ1(ϕ1) ≡ 1 and, for any n ∈ N, 0 ≤ k ≤ 2n − 1,

γ1(ϕnk)(x) =






−2n/
√
R∞

n if x ∈ C0
nk,

2n/
√
R∞

n if x ∈ C1
nk,

0 otherwise .

(21)

Proposition 7. Let T be a regular resistive tree with R < +∞. Then γ1 is contin-
uous from (Λ, ‖.‖H1(T )) to the dual space H̃1/2(Γ)′, which we denote by H̃−1/2(Γ).
As a consequence it can be extended by density to an operator in
L(H̊1

∆(T ), H̃−1/2(Γ)).

Proof. Let us consider g ∈ H̃1/2(Γ), and q ∈ H̊1
∆(T ) its harmonic extension (see

Corollary 1). It admits the decomposition (Proposition 3 and Theorem 3.3)

q = q0ϕ0 +
∑∑

qnkϕnk , with ‖g‖2
H̃1/2(Γ) = |q0|2 +

∑∑
|qnk|2

so that one can compute explicitly

|〈γ1(ϕnk), g〉| =

∣∣∣∣
∫

Γ

γ1(ϕnk)γ0(q)

∣∣∣∣ = |qnk|
∣∣∣∣
∫

Γ

γ1(ϕnk)γ0(ϕnk)

∣∣∣∣ = |qnk|.

As the tree is regular, functions γ1(ϕnk) are proportional to I1C1
nk

− I1C0
nk

, for any

n, k, and therefore (γ1(ϕ1), γ1(ϕnk)), is an orthogonal system in L2(Γ). As a

consequence, one has, for any g ∈ H̃1/2(Γ), any u ∈ H̊1
∆, (we omit the ϕ1 component

for convenience)

∣∣∣∣∣

〈
γ1

(
∑

n

∑

k

unkϕnk

)
, g

〉∣∣∣∣∣

2

≤
(
∑

n

∑

k

|unk||〈γ1(ϕnk) , g〉|
)2

≤ ‖u‖2
H1 ‖g‖2

H̃1/2(Γ) ,

which ends the proof. �

3.3. Geometric trees. We finish this section by considering the case of geometric
trees, i.e. trees whose resistances follow the geometric law rn = r0α

n, where α
is a positive parameter. We suppose α < 2, so that the resistance is finite (see
Remark 6).

Definition 3.9. The Haar basis (Φ0,Φnk) of L2(Γ) is defined as Φ0 = I1Γ and

Φnk(x) =






−2n/2 if x ∈ C0
nk,

2n/2 if x ∈ C1
nk,

0 otherwise.
(22)

It is a Hilbert basis of L2(Γ).

Definition 3.10. For any r > 0, let Ar(Γ) be defined by

Ar(Γ) = {f ∈ L2(Γ) ,
∑

n≥0

2n−1∑

k=0

22nrcnk(f)2 < +∞},
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with cnk(f) = (f,Φnk)L2(Γ). If we denote by Vn the space of functions spanned by
the characteristics functions of the cylinders Cnk, for k = 1, . . . , 2n − 1, Ar(Γ) can
be defined equivalently (see Cohen [9]) as

Ar(Γ) = {f ∈ L2(Γ) , (distL2(f, Vn)2nr)n∈N ∈ ℓ2}.
Proposition 8. Let T be a geometric tree with α ∈ (0, 2). Then

H̃1/2(Γ) = γ0(H
1(T )) = Ar(Γ) with r =

1

2
− lnα

2 ln 2
.

Proof. Let f ∈ H̃1/2(Γ) be given. By Corollary 2, it expresses

f = f0γ0(ϕ0) +
∑

n≥0

2n−1∑

k=0

fnkγ0(ϕnk).

A simple computation shows that

Φnk =
γ0(ϕnk)

‖γ0(ϕnk)‖L2(Γ)
, with ‖γ0(ϕnk)‖L2(Γ) = C

(α
2

)n/2

.

This, combined with the fact that r =
1

2
− lnα

2 ln 2
, leads to 2nr

(α
2

)n/2

= 1, which

yields
2nrcnk(f) = Cfnk ∀n ∈ N , ∀k ∈ {0, . . . , 2n − 1} ,

which ends the proof. �

Proposition 9. Let T be a geometric tree, with α ∈ (0, 2). Then, for any function

g ∈ Ar(Γ), with r = (1−lnα/ ln 2)/2, there exists a unique pressure field p ∈ H̊1
∆(T )

such that γ0(p) = g. In other terms, the Dirichlet problem





−∂c∂⋆p = 0 in T \ {o},
p(o) = 0,

γ0(p) = g

(23)

admits a unique solution.

Proof. This is a direct consequence of Proposition 8 and Corollary 1. �

Definition 3.11. We define A−r as the dual space of Ar. It can be identified to
the complete closure of L2(Γ) for the norm

‖f‖2
= c0(f)2 +

∑

n≥0

2n−1∑

k=0

22nrcnk(f)2 with c0(f)

=(f,Φ0)L2(Γ) , cnk(f) = (f,Φnk)L2(Γ).

Proposition 10. Let T be a homogeneous geometric tree with α ∈ (0, 2). Then

H̃−1/2(Γ) = γ1(H̊
1
∆(T )) = A−r(Γ).

Proof. This is a direct consequence of proposition 7. �

We may now define operators C and R (as Conductance and Resistance opera-
tors). The conductance operator C models the instantaneous ventilation process:
to a pressure field it associates a flux field which corresponds to the air which flows
through the set of ends Γ. We shall consider here the situation of free out/in-let
condition at the root, to model the fact that the root is connected to the outside
world, at atmospheric pressure (set to 0 here, see Corollary 1).
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Definition 3.12. Let T be a geometric tree with α ∈ (0, 2). The conductance
operator is defined as follows: For any g ∈ Ar, with r = (1 − lnα/ ln 2)/2, one
denotes by p the unique solution to Problem (23) (see Proposition 9). The image
of g is then defined as Cg = γ1p. Thanks to Proposition 10, it is well defined as an
element of L(Ar , A−r). The resistance operator R ∈ L(A−r, Ar) is defined as its
reciprocal.

Remark 9. The resistance operator can be seen as the Neuman to Dirichlet op-
erator for the Laplace problem : for any v ∈ A−r, if one denotes by p the unique
solution to

−∂c∂⋆p = 0 in T \ {o}
p(o) = 0

γ1p = v

the image of v is then defined as Rv = γ0p.

We finish this section by some numerical analysis for the conductance operator
C.

Definition 3.13. Let T be a geometric tree, with α ∈ (0, 2). For any N > 0,
we recall that TN designs the subtree of T with same root and N generation (see

Definition 2.5). We design by T̃N the tree obtained by condensation of the 2N

truncated subtrees. More precisely, T̃N has the same set of vertices and edges than
TN , but the resistances of the edges containing a leaf, which are rN = αN , for TN ,
are replaced by

rN +R∞
N = αN +

1

2
αN+1 +

1

22
αN+2 + . . . .

We denote by c̃N the corresponding collection of conductances, and by by ΓN the set
of leafs of T̃N (whose cardinal is 2N). For any g ∈ L2(Γ), we denote by PNg ∈ L2(Γ)
its projection onto VN (see Definition 3.10), and by gN the corresponding collection
of 2N values. We define now pN as the solution to the truncated Dirichlet problem





−∂c̃N∂⋆pN = 0 in T̃N \ {{o} ∪ ΓN},
pN (o) = 0,

pN = gN on ΓN .

(24)

CNg ∈ VN is defined as the piecewise constant function over Γ which is equal to
u(XNk)2N (the correcting factor 2N stands for the reciprocal of µ(CNk)) on cylinder
CNk, where u(XNk) is the flux getting out of the tree through XNk.

As in the context of finite element methods, one may not expect more than point-
wise convergence of CN towards C if one considers both operators in
L(Ar(Γ), A−r(Γ)). Yet, a controlled uniform convergence can be established if g
is assumed more regular than Ar, as asserted by the following proposition:

Proposition 11. Let T be a α-geometric tree with α ∈ (0, 2), r = (1− lnα/ ln 2)/2,
and consider r′ such that r < r′. There exists C > 0 such that

‖CNg − Cg‖A−r ≤ C

2N(r′−r)
‖g‖Ar′ ∀g ∈ Ar′

.
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o

Ω

Figure 4. Embedding onto a domain.

Proof. As a straightforward consequence of the second part of Definition 3.10,
there exists C > 0 such that

‖PNg − g‖Ar ≤ C2−N(r′−r) ‖g‖Ar′ ∀g ∈ Ar′

.

As Problem (24) is set in T̃N (with condensation of resistances), it is clear that
CNg = CPNg, so that

‖CNg − Cg‖A−r = ‖C(PNg − g)‖A−r ≤ ‖C‖
L(Ar,A−r) ‖PNg − g‖Ar

≤ C

2N(r′−r)
‖g‖Ar′ .

�

4. Embedding onto a domain of R
d. The approach presented in this section

is based on the following strategy: Firstly, we introduce a dyadic decomposition
of a connected bounded Lipschitz domain Ω ⊂ R

d (which aims at modelling the
parenchyma in the case d = 3). With respect to this decomposition, we define a
trace operator γΩ

0 from H1(T ) onto L2(Ω). We then investigate the properties of
the obtained pressure fields in terms of standard fractional Sobolev regularity.

The main result of this section states that if the tree irrigate the domain in
a regular way, and if the tree is geometric (rn = αn), the embedded trace space
γΩ
0 (H1(T )) can be identified to a standard Sobolev space Hs, under some conditions

on α.

4.1. Trace space as a subset of L2(Ω). We consider a connected, bounded do-
main Ω ⊂ R

d. Each vertex Xnk of the tree irrigates, through the subtree of its
descendants, a portion of the parenchyma (see Fig. 4) which we denote by Ωnk ⊂ Ω.
This irrigation process exhibits a hierarchical structure. Thus, it is natural to in-
troduce for Ω the following multi-scale decomposition:

Definition 4.1. (Multiscale decomposition)
Let (Ωnk)n∈N,k=0,...,2n−1 be a sequence of open nonempty connected subsets of Ω.
We say that O = (Ωnk) is a multi-scale decomposition of Ω if
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(i)

2n−1⋃

k=0

Ωnk = Ω ∀n,

(ii) Ωnj ∩ Ωnk = ∅ as soon as j 6= k,

(iii) Ωn+1,2k ∪ Ωn+1,2k+1 = Ωnk ∀n ∈ N , ∀k = 0, . . . , 2n − 1.

Definition 4.2. (Balanced multiscale decomposition)
The multiscale decomposition O = (Ωnk) is said to be balanced if

|Ωnk| = 2−n|Ω| ∀n , ∀k = 0, . . . , 2n − 1,

where |A| denotes the Lebesgue measure of the measurable set A.

We aim here at defining the trace of a function inH1(T ) as a function defined over
Ω, according to a multiscale decomposition (Ωnk). To that purpose, we consider
again the subspace F ⊂ H1(T ) spanned by cylindrical functions, i.e. functions
which are constant on the boundary of a subtree, and vanish on the rest of the
boundary (see Def. 3.6 for a proper definition of this space). Note that, thanks to
the construction of the trace operator in Section 3, spanning functions of F can
now be defined as functions whose trace is the characteristic function of a cylinder.

Definition 4.3. Let O = (Ωnk) be a multiscale decomposition of Ω. We define the
mapping γΩ

0 : F → L2(Ω) as follows: for all spanning function p ∈ F , γ0(p) =
πI1Cnk

, π ∈ R, we set

γΩ
0 (p) = πI1Ωnk

.

γΩ
0 is defined over F by linearity.

Note that γΩ
0 is highly dependent on the decomposition O = (Ωnk). We drop

this explicit dependence to alleviate notations.

Proposition 12. Let T be a regular resistive tree with R < +∞, and (Ωnk) a
balanced multiscale decomposition (see Definition 4.2). Then γΩ

0 is continuous from
(F, ‖.‖H1(T )) to L2(Ω). As a consequence it can be extended by density to a mapping

in L(H1(T ), L2(Ω)). Its range will be simply denoted by γΩ
0 (H1).

Proof. As no regularity is required, the proof of proposition 6 can be reproduced.
Indeed, considering (ϕ0, ϕnk) the Hilbert basis of H1(T ) (which is included in F ),
the balanced character of the decomposition ensures orthogonality in L2(Ω) of the
family (γΩ

0 (ϕ0), γ
Ω
0 (ϕnk)). Furthermore, as |Ωnk| = 2−n|Ω| , the proof of Proposi-

tion 6 can be reproduced here, up to a multiplicative factor |Ω| as soon as integrals
over the domain Ω are involved. �

4.2. Regularity results. This section is devoted to a finer desciption of γΩ
0 (H1) ⊂

L2(Ω). We establish here that the trace space γΩ
0 (H1) lies in fractional Sobolev

spaces, as soon as certain conditions are met by the mutliscale decomposition. Some
properties presented here are proved in a different context in [9].

4.2.1. Geometric issues.

Definition 4.4. (Regular / quasi-regular multiscale decomposition)
We say that a multi-scale decomposition O of a bounded connected Lipschitz domain
Ω is regular if the following properties hold

(i) O is balanced,
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(ii) there exists a constant C such that for all n ∈ N, k ∈ {0, . . . , 2n − 1}
diam(Ωnk) ≤ C2−

n
d .

(iii) There exists C > 0 such that

‖τhI1Ωnk
− I1Ωnk

‖L1(Ω) ≤ C|h|2−
n(d−1)

d , ∀h ∈ R
d , ∀n ∈ N , k ∈ {0, . . . , 2n − 1},

where τh is the translation operator: τhϕ(·) = ϕ(· + h).

We say that a multi-scale decomposition (Ωnk) is quasi-regular if there exists a

regular multi-scale decomposition (Ω̃nk) and a bi-Lipschitz map φ : Ω → Ω̃ such
that for all n ∈ N and k ∈ {0, . . . , 2n − 1}

φ(Ωnk) = Ω̃nk.

Remark 10. The previous definition of a regular decomposition presents some
similarities with the notion of a regular family of triangulations in the context of
Finite Element discretization. Indeed, if we assume that all cells Ωnk are piecewise
smooth, a regular decomposition is a decomposition for which cells behave asymp-
totically like balls in the relations between volume, measure of the boundary, and
diameter. For d = 3, it writes

diam (Ωnk) ≤ C|Ωnk| 1/3 , area (∂Ωnk) ≤ C|Ωnk| 2/3

The following lemma, which states essentially that the number of neighbors is
controlled for regular and quasi-regular decompositions, will be essential in the proof
of regularity results.

Lemma 4.5. Let O be a quasi regular decomposition. There exists a constant C
such that

Mnk = ♯{j , dist(Ωnj ,Ωnk) ≤ 2−n/d} ≤ C ∀n , k.
Proof. As diam(Ωnj) ≤ C12

−n/d, all cells which contribute to Mnk are entirely
contained in

{x ∈ Ω , dist (x,Ωnk) ≤ (1 + C1)2
−n/d},

which is itself contained in some ball B of radius C22
−n/d, whose measure |B|

behaves like C32
−n. As |Ωnj | ≥ C42

−n, it yields |B| ∼ C32
−n ≥MnkC42

−n, which
gives the expected estimate. �

4.2.2. Sobolev spaces and As spaces. This section contains some definitions, techni-
cal lemmas, mainly related to the spaces Ar which are somewhat similar to standard
Sobolev spaces, but differ in the way oscillations are estimated: a Haar-like basis
(which depends on the decomposition) is used instead of sine functions. Yet, as
detailed in [9] for the case where Ω is a square, Ar can be identified to a space
Hs for certain values of r, under suitable assumptions on the decomposition, This
section is essential, as we aim at expressing the regularity of pressure fields in terms
of standard criteria (Sobolev framework), whereas the requirement to have finite
H1 energy on the tree, the natural regularity exhibited by our problem, is expressed
in terms of decreasing properties of spectral decompositions with respect to a Haar-
like basis. Explicit references to the trace space that we aim at describing are put
off until the next section.

Definition 4.6. Let O be a multiscale decomposition of Ω. We define

Vn = span(I1Ωnk
)n∈N,k∈{0,...,2n−1}.

We denote by Pnf the projection of f ∈ L2(Ω) onto Vn.



TRACE THEOREMS FOR TREES 491

We denote by mnk(f) the average of f on the domain Ωnk. The projection of f
can be written explicitely:

Pnf =

2n−1∑

k=0

mnk(f)IΩnk
.

Proposition 13. Let O be a decomposition of Ω such that (ii) of Definition 4.4
holds true. Then

⋃
n∈N

Vn is dense in L2(Ω). As a consequence, density holds for
quasi-regular decompositions.

Proof. Because the diameter of the cells is assumed to go to 0 as n goes to infinity,
any open subset of Ω contains a Ωnk. As a consequence, any continuous function
orthogonal to

⋃
n∈N

Vn is identically 0. �

The approximation properties of spaces Vn are linked to fractional Sobolev regu-
larity:

Lemma 4.7. (Jackson)
Let r < 1 be given, O a decomposition which verifies (i) and (ii) of Definition 4.4,
and (Vn) the associate family defined as above. There exists a constant C such that
for all n ∈ N the following estimate holds

‖f − Pnf‖L2(Ω) ≤ C2−nr/d‖f‖Hr(Ω) ∀f ∈ Hr(Ω).

Proof. The proof extends standard arguments (see e.g. [9]) to the present situation
of general decompositions (no assumption is made on the cells, except on measure
and diameter) and fractional Sobolev regularity.

We have

‖f − Pnf‖2
L2(Ω) =

2n−1∑

j=0

‖f − Pnf‖2
L2(Ωnj)

=

2n−1∑

j=0

‖f −mnj(f)‖2
L2(Ωnj)

.

Let n ∈ N, j ∈ {0, . . . , 2n − 1} and f ∈ Hr(Ωnj). Then, we have
∫

Ωnj

|f −mnj(f)|2dx =

∫

Ωnj

|f |2 − |Ωnj |mnj(f)2.

We deduce that
1

2|Ωnj |

∫

Ωnj

∫

Ωnj

|f(x) − f(y)|2dxdy = ‖f −mnj(f)‖2
L2(Ωnj)

.

But∫

Ωnj

∫

Ωnj

|f(x) − f(y)|2dxdy ≤
∫

Ωnj

∫

Ωnj

|f(x) − f(y)|2
|x− y|d+2r

dxdy diam(Ωnj)
d+2r.

Now (i) and (ii) of Definition 4.4 ensure existence of a constant C such that

1

|Ωnj |
diam(Ωnj)

d+2r ≤ C2−2rn/d ∀n , 0 ≤ j ≤ 2n − 1.

Putting everything together, we deduce that

‖f−Pnf‖2
L2(Ω) ≤ C2−2rn/d

2n−1∑

j=1

∫

Ωnj

∫

Ωnj

|f(x) − f(y)|2
|x− y|d+2r

dxdy ≤ C2−2rn/d‖f‖2
Hr(Ω),

which ends the proof. �

Remark 11. Notice that Condition (iii) of Definition 4.4 is not necessary to es-
tablish the result.
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We may now define spaces Ar , following [9]:

Definition 4.8. Let O be a balanced multiscale distribution (Def. 4.2). Let r ≥ 0.
We define the space Ar(Ω) as follows

Ar(Ω) = {f ∈ L2(Ω) , (distL2(f, Vn)2nr)n∈N ∈ ℓ2}
endowed with the norm

‖u‖2
Ar = ‖P0u‖2

L2(Ω) + ‖distL2(f, Vn) 2nr‖2
ℓ2 .

Proposition 14. We define Qn ∈ L(L2(Ω), Vn+1) as

Qnf = Pn+1f − Pnf.

For any r > 0, it holds

‖u‖2
Ar ∼ ‖P0u‖2

L2 +

+∞∑

n=0

‖Qnf‖2
L2 22nr.

Proof. See [9]. �

Remark 12. Although we do not make explicit reference to the decomposition
O to alleviate notations, the space Ar defined above depends a priori on it. We
will see that, under particular conditions on the geometry (quasi-regularity of the
decomposition), and for rd < 1/2, it can be identified to the standard Sobolev
space Hrd(Ω), which of course does not see the decomposition. Yet, in general, it
is highly dependent on the way Ω is decomposed. It is particularly true for high
values of r, for which belonging to Ar requires high regularity in a certain sense (high
correlation of mean values on the two legs of the high frequency Haar functions),
which for example does not imply continuity across interfaces between cells.

Definition 4.9. (Besov spaces)
Let f ∈ L2(Ω). We set

w(1, t, f) = sup
|h|≤t

‖τhf − f‖L2(Ωh)

where Ωh = {x ∈ Ω, x+ h ∈ Ω}, and τh is the translation operator. Let 0 < γ < 1.
We define the space Bγ

2,2 by

Bγ
2,2(Ω) = {f ∈ L2(Ω), ‖f‖2

L2 +

+∞∑

j=0

22jγw(1, 2−j , f)2 < +∞}.

In particular, Bγ
2,2(Ω) = Hγ(Ω) for all 0 < γ < 1, for any Lipschitz domain Ω.

In the next lemma, we prove that, because of the absence of high frequencies, the
quantity w(1, t, f) which conditions Besov regularity can be controlled with respect
to t for functions of Vn.

Lemma 4.10. Let O be a regular decomposition (see Def. 4.4), and (Vn) the as-
sociated family of functional spaces (see Def. 4.6). There exists a constant C such
that for all t ∈ R

+ the following estimate holds

w(1, t, f) ≤ Cmin
(
1, 2n/dt

)1/2

‖f‖L2 ∀f ∈ Vn. (25)
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Proof. If t ≥ 2−n/d, then estimate holds trivially. Let us prove that (25) holds for
t = 2−ℓ where ℓ ≥ n/d. Any f ∈ Vn writes

f =
2n−1∑

k=0

fnkI1Ωnk
.

Consider |h| ≤ 2−ℓ, with ℓ ≥ n/d, and x ∈ Ωnk. As f is constant over Ωnk,

|f(x+ h) − f(x)|2 = |τhI1Ωnk
− I1Ωnk

|2|f(x+ h) − f(x)|2

≤ |τhI1Ωnk
− I1Ωnk

|2 sup
j∼k

|fnj − fnk|2,

where j ∼ k stands here for dist(Ωnj ,Ωnk) ≤ 2−n/d, so that

sup
j∼k

|fnj − fnk|2 ≤ C
∑

j∼k

|fnj |2.

By Condition (iii) of Definition 4.4,
∫

Ωnk

|τhI1Ωnk
− I1Ωnk

|2 ≤ |h|2−n(d−1)/d.

Now summing up over k and using Lemma 4.5 (which allows to control the number
of j such that j ∼ k), we get

∫

Ω

|f(x+ h) − f(x)|2 ≤ C|h|2−n(d−1)/d
∑

j

|fnj |2

The sum behaves like 2n ‖f‖2
L2(Ω), so that

‖τhf − f‖2
L2(Ω) ≤ C|h|2n/d ‖f‖2

L2(Ω)

which yields the estimate. �
The following proposition identifies the spaces Ar with a standard Sobolev space

Hs, with s = rd, for some values of s. Note that such an identification cannot be
expected to hold for large values of s, as straight discontinuities across hypersurfaces
are ruled out as soon as s is greater than 1/2, whereas highly “regular” functions
in the Ar sense exhibits such discontinuities.

Remark 13. Such an identification between Ar spaces is proposed in [15], and it
takes the form Ar = Hr, which is in apparent contradiction with the next result.
This is due to the fact that definitions of Ar differ. More precisely, both are based
on the same general definition (see [9]), but the approximation spaces are different.
In [15], the regularity is expressed in terms of the behaviour of expansions with
respect to a Haar-like basis, which is built in a tensor way from the one-dimensional
Haar basis. Because of this construction, it is natural to make index n depend on
the size of one-dimensional basis functions, and finite dimensional spaces are built
in this spirit, so that functions at generation n explore oscillations at frequency 2n.
In our situation, as we aim at investigating unstructured decompositions connected
with dyadic trees, n corresponds to the generation index. As a consequence, it takes
us d (= the dimension) steps in the decomposition process to divide by 2 the average
cell diameter, which amounts to double the explored frequency. This explains that
Ar functions, according to our definition, are more regular.
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Proposition 15. Let O be a regular multiscale decomposition, and Ar the associated
space (see Def. 4.8). Then, for all r ≥ 0

Ar(Ω) = Hrd(Ω) if rd <
1

2
,

Ar(Ω) →֒ H r̃(Ω) if rd ≥ 1

2
∀ r̃ < 1

2
,

Hrd(Ω) →֒ Ar̃(Ω) if 0 ≤ r̃ ≤ rd < 1.

Proof. Let us first prove Ar(Ω) →֒ Hrd(Ω), under the condition rd < 1
2 . We have

f = P0f +

j−1∑

ℓ=0

(
Pℓ+1 − Pℓ

)
f + f − Pjf = P0f +

j−1∑

ℓ=0

Qℓf + f − Pjf.

Using the fact that w(1, t, f + g) ≤ w(1, t, f) + w(1, t, g), we obtain

w(1, 2−j, f) ≤ w(1, 2−j , P0f) +

j−1∑

ℓ=0

w(1, 2−j , Qℓf) + w(1, 2−j, f − Pjf).

By Lemma 4.10, we deduce that

w(1, 2−j , f) . 2−j/2

j−1∑

ℓ=0

2ℓ/2d‖Qℓf‖L2 + ‖f − Pjf‖L2

hence

w(1, 2−j , f) . 2−j/2

j∑

ℓ=0

2ℓ/2d‖f − Pℓf‖L2. (26)

Multiplying by 2jrd, we find that

w(1, 2−j , f)2jrd . 2(rd−1/2)j

j∑

ℓ=0

2ℓ/2d−rℓ2rℓ‖f − Pℓf‖L2.

Hence we obtain

w(1, 2−j , f)2jrd . (an)n∈Z ∗ (bn)n∈Z

where

an = 2n(rd−1/2)
In≥0 and bn = 2rn‖f − Pnf‖L2In≥0.

We have bn ∈ ℓ2 because f ∈ Ar(Ω) and an ∈ ℓ1 because rd < 1/2. We deduce
Ar →֒ Hrd by using Young inequalities in the case rd < 1/2. In the case rd ≥ 1/2,
we follow the same reasoning except that we multiply equation (26) by 2jγ where
0 ≤ γ < 1/2 to obtain

Ar(Ω) →֒ Hγ(Ω).

Let us prove that, for rd < 1/2,

‖f‖Ar ≤ C‖f‖Brd
2,2

∼ ‖f‖Hrd . (27)

Let β = rd < 1/2. We shall make use of the following characterization of Hβ

obtained by real interpolation between L2 and Hβ . Let

K(f, t) = inf
g∈Hβ

‖f − g‖L2 + t‖g‖Hβ .

Then (see for example [7]),

‖f‖Hβ = ‖ρjK(f, ρ−j)‖ℓ2
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with ρ > 1. To prove estimate (27), we are reduced to showing that there exists a
constant C > 0 such that

‖f − Pjf‖L2 ≤ CK(f, 2−jβ/d). (28)

Let f ∈ L2, g ∈ Hβ. By Lemma 4.7, we obtain

‖f−Pjf‖L2 ≤ ‖f−Pjg‖L2 ≤ ‖f−g‖L2 +‖g−Pjg‖L2 ≤ ‖f−g‖L2 +C2−jβ/d‖g‖Hβ ,

which ends the proof. �

4.3. Sobolev regularity for embedded geometric trees. In this section we
establish that the embedded trace of H1(T ) pressure fields (introduced by Propo-
sition 12) possess some Sobolev regularity. We consider a geometric tree, as in the
beginning of section 3.3, with

rn = r0α
n , α ∈ (0, 2).

We choose r0 = 2(2−α), so that the values involved in (20) simplify down to αn/2.
As a consequence, the trace of the Hilbert basis of H1(T ) can be expressed

γΩ
0 (ϕnk) = αn/2

(
I1Ωn+1,2k

− I1Ωn+1,2k+1

)
.

Theorem 4.11. Let T be a α geometric tree, Ω a bounded connected Lipschitz do-
main, O = (Ωnk) a quasi-regular decomposition (see Def. 4.4), and γΩ

0 the associated
embedded trace operator (see Prop. 4.3). Then

γΩ
0 (H1(T )) = Hs(Ω) if s <

1

2
,

γΩ
0 (H1(T )) →֒ Hs′

(Ω) if s ≥ 1

2
, for all s′ <

1

2
,

where s = d(1 − lnα/ ln 2)/2.

Proof. Assume that we are in the regular case. As T is regular and O is balanced,
the family (γΩ

0 (ϕ0), γ
Ω
0 (ϕnk)) is orthogonal in L2(Ω). Let us now consider p ∈ F ,

with (the sum over n is actually finite)

p = p0ϕ0 +
+∞∑

n=0

2k−1∑

k=0

pnkϕnk.

It holds

‖γΩ
0 (p)‖2

Ar(Ω) = |p0|2 +

+∞∑

n=0

22rn
2n−1∑

K=0

|pnk|2‖γΩ
0 (ϕnk)‖2

L2(Ω)

∼ |p0|2 +

+∞∑

n=0

2n−1∑

k=0

|pnk|2 = ‖p‖2
H1(T )

which, together with Proposition 15, proves Theorem 4.11 for a regular multi-scale
decomposition.

As for the quasi-regular case, we recall that Hr(Ω), for 0 < r < 1 is the set of all
those L2(Ω) functions such that the quantity

∫

Ω×Ω

|f(x) − f(y)|2
|x− y|d+2r

dxdy

is finite. The stability of this criterium with respect to bi-lipschitz transformations
of the domain ensures the conclusion in the quasi-regular case. �
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4.4. Resistance and conductance operators. In this section we extend the
approach proposed in Section 3.3 to the embedded situation. As a first step, we
extend the definition of γ1 to the embedded tree :

Definition 4.12. Let Λ = span(ϕ0, ϕ1, ϕnk) denote the set of finite linear combi-
nations of the basis functions defined in Th. 3.3 and Def. 3.7. Operator γΩ

1 : Λ →
L2(Ω) is defined as follows : γΩ

1 (ϕ0) ≡ 0, γΩ
1 (ϕ1) ≡ 1/|Ω| and, for any n ∈ N,

0 ≤ k ≤ 2N − 1,

γΩ
1 (ϕnk)(x) =






− 1√
R∞

n

1

|Ωn+1,2k|
if x ∈ Ωn+1,2k,

1√
R∞

n

1

|Ωn+1,2k+1|
if x ∈ Ωn+1,2k+1,

0 otherwise.

(29)

Proposition 16. Let T be a regular resistive tree with R < +∞, and let O be a regu-
lar multiscale decomposition. We assume that α is such that s = d(1−lnα/ ln 2)/2 <

1/2. Then γΩ
1 can be extended by density to an operator in L(H̊1

∆(T ), H−s(Ω)).

Proof. As the decomposition is regular, the extension of γΩ
1 to an operator in

L(H̊1
∆(T ), A−r(Ω)), with r = (1 − lnα/ ln 2)/2 is straightforward (following the

approach of Proposition 7), and the identification of the trace space with a dual
Sobolev space follows from Theorem 4.11. �

Proposition 17. Let T be a geometric tree, Ω ⊂ R
d, and O a regular multiscale

decomposition. We assume that α is such that s = d(1− lnα/ ln 2)/2 < 1/2. Then,
for any g ∈ Hs(Ω), there exists a unique pressure field p ∈ H1(T ) such that





−∂c∂⋆p = 0 in T \ {o},
p(o) = 0,

γΩ
0 (p) = g.

(30)

Proof. This is a direct consequence of Proposition 9 and Theorem 4.11. �

We may now define the conductance and resistance operators as follows:

Definition 4.13. Let T be a geometric tree with s = d(1 − lnα/ ln 2)/2 < 1/2,
Ω ⊂ R

d, and O a regular multiscale decomposition. For any g ∈ Hs(Ω), we define
CΩg as γΩ

1 p, where p is the solution to (30). Operator R is defined as the reciprocal
of C.

Approximation of CΩ . We end this section by extending Proposition 11 to
the embedded operator CΩ by describing how the conductance operator C can be
approximated by a truncated operator CN , for N ∈ N.

Definition 4.14. For any N > 0, we recall that T̃N designs the subtree of T with
same root, N generations, and condensated resistances (see Definition 3.13). We

denote by ΓN the set of leafs of T̃N (whose cardinal is 2N). For any g ∈ L2(Ω),
we denote by PNg ∈ L2(Ω) its projection onto VN (see Definition 4.6), and by gN

the corresponding collection of 2N values. We define now pN as the solution to the
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truncated Dirichlet problem




−∂c∂⋆pN = 0 in T̃N \ {{o} ∪ ΓN},
pN(o) = 0,

pN = gN on ΓN .

(31)

CNg is defined as the piecewise constant function over Ω which is equal to
u(XNk)/|ΩNk| on ΩNk, where u(XNk) is the flux getting out of the tree through
XNk. Notice that the scaling factor is simply 2N/|Ω| in the case of a balanced
decomposition.

Proposition 18. Let T be a geometric tree, Ω ⊂ R
d, and O a regular multiscale

decomposition of Ω. We assume that α is such that

0 < s = d(1 − lnα/ ln 2)/2 < 1,

and we consider s′ such that s < s′ < 1. There exists C > 0 such that

‖CNg − Cg‖H−s ≤ C

2N(s′−s)/d
.

Proof. Let us introduce r = s/d and r′ = s′/d. One has

‖PNg − g‖Ar ≤ 2−N(r′−r) ‖g‖Ar′ ≤ C2−N(r′−r) ‖g‖Hs′ ,

by Proposition 15. The estimate is then a direct consequence of Propositions 11
and 15. �

5. Application to the human lungs. We present here how this theoretical
framework can be applied to the modeling of the human lungs.

5.1. Relevancy of the modelling assumptions. First of all, Weibel’s measure-
ments ([23]) establish that the average healthy human respiratory tract presents
some geometrical regularity which makes it possible to extrapolate it to an infinite
tree. More precisely, all pipes have about the same shape, and a pipe at generation
n+ 1 is 0.85 smaller than the pipes at generation n (see [23]). As Poiseuille’s law
gives a resistance of a pipe proportional to L/D4 (L is the length, and D is the di-
ameter), the homogeneity coefficient −3 with respect to the size (for a given shape)
yields

α = 0.85−3 ≈ 1.63.

As it is smaller than 2 the tree has a finite resistance. Notice that this simple fact is
quite sensitive to the 0.85 factor. Indeed, it converges because 0.85 > 2−1/3 ≈ 0.79.
It is also noteworthy that 2−1/3 is a critical value for the volume also. As pointed
out in [22], the volume of the extrapolated version of the actual tree is infinite, for
the very same reason 0.85 > 2−1/3. We must admit that our infinite tree model
does not make sense from the geometrical point of view, as far as the bronchial
tree itself is concerned, because of this reason. It addresses only the functional
nature of this system as a resistive network. Concerning the dimension in which
the set of ends is to be embedded, Weibel [22] makes it clear that alveolae are quite
uniformly distributed over the volume occupied by the lungs, except of course for
the conducting tree itself. See Fig. 5 for a picture of the local structure of the lungs,
in particular the uniform foamy zone (right-hand side of the picture) around the
branches (essentialy on the left-hand side).
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Figure 5. Scanning electron micrographs of alveolar ducts sur-
rounded by alveoli arising from branched bronchioles in human
lung, at two different scales (Courtesy E.R.Weibel, University of
Berne).

As for the geometrical assumptions in Definition 4.4, although they correspond
to a idealization of the actual tree, some facts support their relevancy in terms of
modelling :

1. Sizes of the alveolae are quite uniformy distributed, at a given time of the
ventilation cycle and, due to the very dyadic structure of the tree, the number
of alveolae irrigated by a given bronchus does depend on its generation only,
so that the balanced character of the decomposition is natural.

2. Assumptions (ii) and (iii) in Definition 4.4 assert that subdomain are not too
far from balls, in the sense that their diameter and area vary asymptotically as
those of a ball. This is more conjectural, as accurate measurements of irrigated
subdomains for higher generations do not exist. Yet, the zones irrigated by
the bronchi of the first generations are well documented, and they appear to
have an aspect ratio close to 1, and a piecewise smooth surface.

5.2. Ventilation process as a Dirichlet to Neumann operator. We consider
here a regular, geometric tree, which embeds onto the parenchyma which we identifiy
to a Lipschitz domain Ω ⊂ R3. Now assuming that the way the tree irrigates the
parenchyma is quasi-regular, one can then define the operator γΩ

0 onto L2(Ω), whose
range is Ar(Ω), with r = (1−ln α/ ln 2)/2 ≈ 0.15. For the physical dimension d = 3,
one gets s = rd ≈ 0.45, which is (again, the inequality is tight) less than 1/2, so that
the embedded trace space is the standard Sobolev space H0.45 (see Theorem 4.11).

We may now interpret Proposition 17 and Definition 4.13 as a model for the
instantaneous ventilation process. The alveolar pressure field g ∈ Hs drives some
air through the tree, and the way this air irrigates the parenchyma is described by
a flux field u = CΩg.

Remark 14. An interesting consequence of 0.45 ≤ 1/2 is that the set of feasible
pressure fields over the parenchyma does not depend on the multiscale decompo-
sition (as soon as it is quasi-regular). In the case of a smaller α, say α = 1.4 for
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example, one would have s = 0.25, and consequently γΩ
0 (H1) = A0.75 in the three

dimensional setting. In this latter situation, the trace space no longer identifies to a
Sobolev spaces, and it strongly depends on the decomposition. For example, it ad-
mits functions with discontinuities accross the interface between the two lobes Ω10

and Ω11, but discontinuities accross other interfaces might rule out the belonging
to A0.75

5.3. Constitutive models for the parenchyma. We end this paper by explor-
ing how the presented approach can be used to design constitutive models for the
lung. As already mentioned in the introduction, we proposed in [11] a first attempt
to establish a constitutive equation for an elastic medium subject to dissipation
phenomena due to the flow of incompressible fluid through a dyadic tree. The
continuous model (only one-dimensional in [11]) is obtained as the limit of spring-
mass systems intertwined with the leafs of a resistive tree. The equation takes the
following form :

∂ttη − ∂xxη − ∂xR∂x∂tη = 0.

The damping term can be interpreted the following way : ∂tη is the horizontal
velocity (in the direction of the array of masses), so that ∂x∂tη is the defect in local
conservation, which must be compensated by some flux through the tree. Operator
R maps the flux field to the pressure field, which acts on the momentum equation
by its gradient.

The present work allows to propose similar models in higher dimensions (in
particular the dimension which is physically relevant, d = 3). Let us assume that the
structure of the parenchyma (solid parts in Fig. 5) can be described by a constitutive
relation σ = σ(e), where σ is the stress tensor, and e the strain tensor. In the case
of a Lam material (see [6] for more sophisticated models), one has for example

σ = µ
(
∇η + (∇η)T

)
+ λ(∇ · η)Id,

where µ and η are the Lam coefficients, and Id is the identity tensor.
Considering now a geometric infinite tree, embedded in a regular way to a Lip-

schitz domain Ω assumed to be occupied by an elastic material, the previous con-
siderations lead to the model

∂ttη −∇ · σ(η) −∇R∇ · ∂tη = 0.
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