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Abstract. We consider the continuous Laplacian on infinite locally finite net-
works under natural transition conditions as continuity at the ramification
nodes and Kirchhoff flow conditions at all vertices. It is well known that one
cannot reconstruct the shape of a finite network by means of the eigenvalues
of the Laplacian on it. The same is shown to hold for infinite graphs in a L

∞–
setting. Moreover, the occurrence of eigenvalue multiplicities with eigenspaces
containing subspaces isomorphic to ℓ

∞(Z) is investigated, in particular in trees
and periodic graphs.

1. Introduction. It is well known that isospectral finite graphs with respect to the
adjacency operator can be non isomorphic, see e.g. [12, 15], as well as isospectral
finite networks, i.e. traces of finite topological graphs, with respect to the contin-
uous Laplacian can be non isometric and, thereby, the underlying abstract graphs
be non isomorphic, see [4, 6]. The node transition conditions for the Laplacian
are the continuity at ramification nodes and a Kirchhoff incident flow condition
at all nodes. The first aim of the present paper is to analyze the same phenom-
ena on infinite uniformly locally finite graphs and networks. The second one is
concerned with the existence of eigenvalues of infinite multiplicity, especially the
occurrence of inseparable eigenspaces. An essential feature of our approach is the
consideration of spaces of bounded functions and of bounded sequences and not a
setting in possibly weighted Hilbert Sobolev spaces. It contains the L2–eigenvalue
approach, but seems to be more appropriate for spectral links between the network
Laplacians and transition or adjacency operators. Often, parts of the continuous
and residual spectrum in the L2–setting belong to the point spectrum in spaces of
bounded functions. Moreover, the canonical fundamental solutions built by sinus–
and cosinus–functions and always belonging to the present setting, can only be
treated in Sobolev spaces with sufficiently rapidly decreasing weights. In general,
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this approach cannot lead to an associated characteristic calculus for the transition
operator, while keeping its symmetry properties.

The spectrum of the Laplacian on finite networks has been considered by many
authors, see e.g. [1, 2, 3, 4, 6, 20, 19, 21, 24] and the references therein. For the
infinite case we can refer to [9, 10, 11, 13, 22], for the finite algebraic graph theory to
the monographs [12, 14, 15], while for the ℓ2–setting in the infinite case we can refer
to [23] and the monograph [27] and the references therein, and for the ℓ∞–setting
to [5, 8, 9, 10, 11].

The present paper is organized as follows. Some graph theoretical preliminaries
and some results about the eigenvalues of the Laplacian under the aforementioned
node transition conditions are summarized in Section 2. Throughout we shall as-
sume that all edge lengths are equal to 1. Section 3 is devoted to the notion of
isospectrality, to the black hole phenomenon, i.e. the occurrence of inseparable ei-
genspaces containing copies of ℓ∞(Z), and to the following result.

Theorem 3.2 All infinite uniformly locally finite trees T with finitely many bound-
ary vertices, but without ramification nodes of valency 2, are isospectral networks.
More precisely, each λ ∈ [0,∞) is an eigenvalue of black hole type for −∆K

T in
C2

K(T ) ∩ L∞(T ).

In Section 4 two non isomorphic infinite graphs containing circuits are shown to
be isospectral with finite geometric multiplicities, while the associated networks are
isospectral and non isometric as well with finite and infinite multiplicities. Section 5
is devoted to the occurrence of black holes in periodic graphs or generalized lattices,
in particular to the following results.

Corallary 5.1 Any real number λ > 0 satisfying sin
√

λ = 0 is a black hole ei-
genvalue for the Laplacian in each periodic graph of rank m ≥ 2 and possesses
eigenfunctions of compact support.

Theorem 5.3 Suppose that λ > 0 is an eigenvalue of the Laplacian on a band,
i.e. a periodic graph of rank 1. Then λ has infinite geometric multiplicity in
C2

K(T ) ∩ L∞(T ) iff λ is a black hole, or, iff λ possesses eigenfunctions belonging
to C2

K(T ) ∩ L∞(T )of finite support.

In the final Section 6 examples of families of isospectral non isometric trees, as well
as some examples of black hole eigenvalues in periodic graphs are presented.

2. Graphs, networks and Laplacian. For any graph Γ = (V, E,∈), the vertex
set is denoted by V = V (Γ), the edge set by E = E(Γ) and the incidence relation by
∈⊂ V × E. The valency of each vertex v is denoted by γ(v) = card{e ∈ E v ∈ e}.
Unless otherwise stated, all graphs considered in this paper are assumed to be
nonempty, simple, connected and uniformly locally finite, i.e.

max
v∈V (Γ)

γ(v) =: γmax < ∞. (1)

The simplicity property means that Γ contains no loops, and at most one edge can
join two vertices in Γ. Moreover, the conditions imply that Γ is countable. For a
given numbering of the vertices vi, i ∈ N, set γi = γ(vi) and define the adjacency
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matrix or adjacency operator by

A(Γ) = (aih)i,h∈N
: R

V (Γ) −→ R
V (Γ), (2)

where

aih =

{

1 if vi and vh are adjacent in Γ,

0 else.

Note that A(Γ) is indecomposable iff Γ is connected. Moreover, with the notation
ℓp(Γ) := ℓp(V (Γ)), A(Γ) maps ℓp(Γ) into ℓp(Γ) for each p ∈ [1,∞]. The same holds
for the row–stochastic transition matrix or transition operator defined by

Z = Diag (A(Γ) e)
−1 A(Γ) = Diagi

(
γ−1

i

)
A(Γ), (3)

where e denotes the sequence with entries equal to 1. For a subgraph Θ in Γ let
Θ̄ = (V (Θ), E(Θ̄),∈) denote the subgraph of Γ spanned by the vertices in Θ with

E(Θ̄) = {e e ∈ E(Γ), e ∩ V (Γ) ⊂ V (Θ)}.
The subgraph Θ is called induced if Θ̄ = Θ. Two subgraphs are called disjoint if
they have no vertex in common, and essentially disjoint if they have only a finite
number of edges in common. The (combinatorial) distance between two vertices v1

and v2 is defined as the minimal number of edges of all paths joining v1 and v2. For
further graph theoretical terminology we refer to [16, 25, 26].

Moreover, without loss of generality, we consider each graph as a connected
topological graph in R

m, i.e. V (Γ) ⊂ R
m, and the edge set consists in a collection of

Jordan curves E(Γ) = {πj : [0, 1] → R
m j ∈ N} all of length 1 with the following

properties: Each support ej := πj ([0, 1]) has its endpoints in the set V (Γ), any two
vertices in V (Γ) can be connected by a path with arcs in E(Γ), and any two edges
ej 6= eh satisfy ej ∩ eh ⊂ V (Γ) and card(ej ∩ eh) ≤ 1. The arc length parameter
of an edge ej is denoted by tj . The trace of the graph Γ = (V, E,∈) defines its
associated network

G =
⋃

j∈N

πj ([0, lj]) ,

that is called a Cν-network, if all πj ∈ Cν([0, 1], Rm). Throughout we shall assume
that at least

∀j ∈ N : πj ∈ C2([0, 1], Rm).

Thus, endowed with the induced topology of R
m, G is a connected and locally

compact space in R
m. We shall distinguish the boundary vertices Vb = {vi ∈

V γi = 1} from the ramification nodes Vr = {vi ∈ V γi ≥ 2}, especially, we define
the essential ramification nodes by Vess = {vi ∈ V γi ≥ 3}.

Two networks G1 and G2 are isometric (G1
∼= G2) if there is an homeomorphism

H : G1 → G2 such that for each edge e ⊂ G1, H
∣
∣
e

is an isometric diffeomorphism
onto some edge of G2. In particular, H is length preserving. Moreover, the underly-
ing abstract graphs Γ1 and Γ2 are called isomorphic as graphs (Γ1 ≃ Γ2) if there is
a bijection V (Γ1) −→ V (Γ2) that preserves the adjacency relation between vertices.
If G1 and G2 are isometric networks, then the underlying abstract graphs Γ1 and
Γ2 are isomorphic as graphs. In fact, in the present case of equal edge lengths, this
is an equivalence:

G1
∼= G2 ⇐⇒ Γ1 ≃ Γ2 (4)

The orientation of the graph Γ is given by the incidence matrix or incidence operator

D(Γ) = (dik)i,k∈N
: R

E(Γ) −→ R
V (Γ) (5)
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with

dij =







1 if πj(1) = vi,

−1 if πj(0) = vi,

0 otherwise.

By (1), D(Γ) is a bounded operator ℓ∞(E(Γ)) −→ ℓ∞(V (Γ)). The corank of the
graph is defined by corank(Γ) = dimkerD(Γ). By definition, a circuit ζ is a 2–
regular connected graph. In the finite case ζ is a classical closed path, while in
the infinite one ζ is the two–sided infinite path Γ1, also known as double ray, with
V (Γ1) = Z and the adjacency relation

aik = 1 ⇐⇒ |i − k| = 1. (6)

Accordingly, the circuit space of the graph Γ is defined as the vector space spanned
by elements of kerD(Γ) having circuit like support:

Π(Γ) =
〈
c ∈ kerD(Γ) supp(c) is a circuit in Γ

〉
.

In the infinite case, in general, the circuit space is a proper subspace of kerD(Γ).
But recall

Lemma 2.1. ([10]) The corank(Γ) is finite iff dimΠ(Γ) is finite. And in that case

Π(Γ) = kerD(Γ) ≤ ℓ∞(E(Γ)).

For a function u : G → R we set uj := u◦πj : [0, 1] → R and use the abbreviations

uj(vi) := uj(π
−1
j (vi)), ∂juj(vi) :=

∂

∂tj
uj(tj)

∣
∣
∣
π
−1

j
(vi)

etc.

As the basic geometric transition condition at ramification nodes we impose the
continuity condition

∀vi ∈ Vr : ej ∩ es = {vi} =⇒ uj(vi) = us(vi), (7)

that clearly is contained in the condition u ∈ C(G). Moreover, at all vertices we
impose the Kirchhoff flow condition

∀i ∈ N :
∑

j∈N

dij∂juj(vi) = 0. (8)

Note that Condition (8) is the Neumann boundary condition at boundary vertices
and that it does not depend on the orientation. The validity of (8) in a function
space will be indicated by the subscript K. The canonical Laplacian ∆ on a C2–
network G is defined as the operator

∆ = ∆K
G =

(

u 7→
(
∂2

j uj

)

j∈N

)

with the domain C2
K(G) = {u ∈ C(G) ∀j ∈ N : uj ∈ C2([0, 1]), u satisfies (8)} or

a weighted Sobolev space H2
K,c(G). The eigenvalues of −∆K

G in C2
K(G) ∩ L∞(G)

are real and nonnegative [10, 11]. Thus, we can write the corresponding eigenvalue
problem in the form

0 6= u ∈ C2
K(G) ∩ L∞(G) and ∂2

j uj = −λuj for j ∈ N. (9)

For the sake of simplicity, we shall use the following notations for the point spectra
and the geometric multiplicities under Kirchhoff conditions and for operators T on
ℓ∞(Γ).
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Definition 2.2.

S(G) = σp(−∆K
G , C2

K(G) ∩ L∞(G))

s(T , Γ) = σp(T , ℓ∞(Γ))

M(λ) = M(λ, G) = mg(λ,−∆K
G , C2

K(G) ∩ L∞(G))

m(µ, T ) = mg(µ, T , ℓ∞(Γ))

Using the transition operator Z defined in (3), recall the

Theorem 2.3. ([10]) If λ is an eigenvalue of −∆K
G in C2

K(G) ∩ L∞(G) and ϕ ∈
ℓ∞(Γ) a node distribution of an eigenfunction belonging to λ, then

Zϕ = cos
√

λϕ. (10)

Conversely, if cos
√

λ is an eigenvalue of Z admitting the eigenvector ϕ ∈ ℓ∞(Γ),
then λ is an eigenvalue of −∆K

G in C2
K(G) ∩ L∞(G) and ϕ the node distribution of

some eigenfunction belonging to λ. The geometric multiplicities are

M(λ, G) =







m(1,Z) if λ = 0,

m(cos
√

λ,Z) if sin
√

λ 6= 0,

corank(Γ) + 1 if λ > 0 and cos
√

λ = 1,

corank(Γ) + 1 if λ > 0, cos
√

λ = −1 and Γ bipartite,

corank(Γ) − 1 if λ > 0, cos
√

λ = −1 and Γ not bipartite.

In the above formulae the multiplicity identities stem from the corresponding
isomorphisms between the eigenspaces of −∆K

G and Z. In particular for the corank,
either the corresponding eigenspace contains a subspace of codimension one and
isomorphic to the circuit space, or the circuit space contains a subspace of codi-
mension one and isomorphic to the eigenspace. Especially in the case of k–regular
graphs, the eigenvalues λ of the Laplacian and those µ of the adjacency operator A
are related by the formula µ = γ cos

√
λ, and the non vanishing node distributions

of eigenfunctions of −∆K
G in C2

K(G) ∩ L∞(G) are exactly the eigenvectors of A in
ℓ∞(Γ).

3. Isospectral infinite graphs and networks. Two graphs Γ1 and Γ2 are called
isospectral if s(A(Γ1), Γ1) = s(A(Γ2), Γ2) and if the geometric multiplicities coincide

∀µ ∈ s(A(Γ1), Γ1) : mg(µ,A(Γ1), ℓ
∞(Γ1)) = mg(µ,A(Γ2), ℓ

∞(Γ2)).

Two networks G1 and G2 are called isospectral if S(G1) = S(G2) and if

∀λ ∈ S(G1) : mg(λ,−∆K
G1

, C2
K(G1) ∩ L∞(G1)) = mg(λ,−∆K

G2
, C2

K(G2) ∩ L∞(G2)).

Here the identities among the multiplicities are to be understood in the sense that
they have both the same finite value or are both infinite. Of course, there cannot be
an eigenspace having infinite, but countable basis. In the ℓ2–setting all eigenspaces
of Z are separable. But as an operator in ℓ∞, Z can lead to inseparable eigenspaces.
Of particular interest is the case of a black hole eigenvalue in which each bounded
sequence can be considered as an eigenvector by means of a common automorphism
of ℓ∞(Z):

Definition 3.1. An eigenvalue of an endomorphism of a Banach space is called a
black hole if its eigenspace contains a subspace isomorphic to ℓ∞(Z).
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h0

Figure 1. The tree H .

Examples of black holes for the adjacency operator can be found in [10] and in
Section 6. It has been shown in [4, 6, 7] that finite isospectral networks are not
necessarily isometric by using regular isospectral graphs that are not isomorphic. In
the infinite case, Theorem 3.2 presents a family of infinite trees that are isospectral
as networks, but not isospectral as graphs, since the regular (=homogeneous) trees
Tγ belong to it and fulfill s (Tγ) = [−γ, γ]. In Section 4 we present a pair of two
graphs that are isospectral in both senses and that have only finite multiplicities
except for the eigenvalues belonging to vanishing node distributions, i.e. sin

√
λ = 0.

For the following result we have to bear in mind that all edge lengths are supposed
to be equal.

Theorem 3.2. All infinite uniformly locally finite trees T satisfying

Vess = Vr and card Vb(T ) < ∞
are isospectral networks, or more precisely: For such a tree, the point spectrum S(T )
in C2

K(T )∩L∞(T ) is equal to [0,∞), and each λ ∈ [0,∞) is a black hole eigenvalue
of −∆K

T in C2
K(T ) ∩ L∞(T ).

Lemma 3.3. Under the hypotheses of Theorem 3.2, the tree T contains a countable
family {Hk k ∈ Z} of disjoint subtrees each of them being isomorphic to the tree H

having one distinguished node of valency 2 and all other valencies equal to 3, see
Figure 1.

Proof. By hypotheses, T contains a ramification node that is adjacent to two sub-
trees containing no boundary vertex of T . Thus, admitting one possible ramification
node v∞ of valency 2, we can assume that Vb(T ) = ∅.

If necessary, the following construction will be made in one of the trees adjacent
to v∞. Choose a ramification node v0 and find a subtree H0 isomorphic to H

by identifying v0 and h0. Next, find a node v1 with dist(H0, v1) ≥ 3 and find a
subgraph H1 ≃ H with v1 corresponding to h0. Having found n − 1 disjoint copies
of H satisfying

dist(Hi, vn−1) ≥ n − 1 + 2 − i for 0 ≤ i ≤ n − 2,
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find a vertex vn with

dist(Hi, vn) ≥ n + 2 − i for 0 ≤ i ≤ n − 1

and a subgraph Hn ≃ H with vn corresponding to h0. This defines inductively the
desired family.

Proof. (Theorem 3.2) By [9, Thm. 5.5] and [10, Thms. 8.4, 8.6],

S(T ) = [0,∞) and ∀λ ∈ [0,∞) : M(λ, T ) = ∞.

According to Lemma 3.3, we find a family {Hk k ∈ Z, Hk ≃ H} of disjoint subtrees
in T . The constructions in the proofs of the cited theorems are such that for any
λ ∈ [0,∞) and for each k ∈ Z there exists an eigenfunction uk belonging to λ with
support in Hk and vanishing at the node vk corresponding to h0. Then, to any
(xk)k∈Z

= x ∈ ℓ∞(Z), we can associate the eigenfunction u = Φ(x) belonging to λ

by defining
∀k ∈ Z : u

Hk

= xk uk

and by extending it by 0 to the remaining nodes of T . By disjointness, Φ defines a
monomorphism from ℓ∞(Z) into the eigenspace. This permits to conclude.

Remark 3.1. If the tree contains nodes of valency 2, then the assertion of Theorem
3.2 is no longer true since the eigenvalue 0 can be of finite multiplicity, see [9, Ex.
5.9]. Using the terminology and the results from [9] we obtain that the assertion
of Theorem 3.2 remains true for all infinite uniformly locally finite trees T with
constant edge lengths satisfying

card Vess = ∞, card Vb(T ) < ∞ and L(T ) >
1

min{γ(v) v ∈ Vess(T )} − 1
,

where L(T ) is the minimal ratio of incident viaducts in T . Recall that, by definition,
a viaduct in a graph Γ is a path π of length at least 2 in Γ joining two distinct vertices
u and v such that there is no other path in Γ joining u and v having a vertex in the
set V (π)\{u, v}.

Note further that in Γ0 and Γ1 each eigenvalue is of multiplicity at most 2, see
e.g. [10].

Moreover, the condition of finitely many boundary vertices is essential. In the
opposite case, the multiplicities can become finite, see the graphs Γn

1 in 6.1, where
two families of isospectral and non isomorphic trees for the Laplacian with finite
multiplicities are presented that are also isospectral as graphs.

For the eigenvalues satisfying sin
√

λ = 0, the finite and infinite circuits of the
graph play a distinguished role for the multiplicities, especially when the circuit
space possesses an uncountable basis.

Theorem 3.4. Suppose that Γ contains infinitely many disjoint finite circuits or
infinitely many essentially disjoint infinite circuits. Then any real number λ > 0
satisfying sin

√
λ = 0 is a black hole eigenvalue for the network Laplacian, and

possesses eigenfunctions of compact support in the first case.

Proof. Consider first an infinite countable family of finite and mutually disjoint
circuits {ζk k ∈ Z} in Γ. For sin

√
λ = 0, each circuit ζk contains the support

of a suitable eigenfunction fk. These latter ones are all linearly independent and
give rise to an injection of ℓ∞(Z) into the corresponding eigenspace by associating
to x = (xk)k∈Z

the eigenfunction defined by xkfk on ζk and extended by 0 to the
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remaining edges. In the infinite circuit case we can proceed similarly for the black
hole character.

0 4 62 8

0 4 62 8

1 3 5 7 9

1 3 5 7 9

L1

L2

R1

R2

Figure 2. The graphs B1 and B2.

4. Two isospectral infinite graphs with circuits. Let B1 denote the two–sided
infinite ladder depicted in the upper part of Figure 2 and B2 the graph depicted
in the lower part of Figure 2. We shall show that both graphs are isospectral with
only finite multiplicities, but not isomorphic, while the associated networks are
isospectral with finite and infinite multiplicities, but not isometric.

Lemma 4.1. The graphs B1 and B2 are not isomorphic.

Proof. Numerate the vertices and denote by Li and Ri the same infinite connected
subgraphs of B1 and B2 not containing the vertices v0, . . . , v9 as indicated in Figure
2. Suppose that ϕ : V (B1) → V (B2) is a graph isomorphism. Then ϕ maps circuits
of length ℓ in B1 into circuits of length ℓ in B2, especially squares into squares,
adjacent squares into adjacent squares and finite sequences of squares into finite
sequences of squares preserving the adjacencies. Thus vertical edges in the graphs
Li and Ri have to be mapped into themselves. Thus, ϕ maps L1 onto L2 or R2 and
R1 onto R2 or L2 respectively. In any case

ϕ (V (L1 ∪ R1)) = V (L2 ∪ R2).

This enforces that ϕ maps the vertices v0, . . . , v9 into themselves and constitutes a
permutation belonging to S10 compatible with the adjacencies in the finite graphs
F1 and F2 depicted in Figure 3. But these two graphs are not isomorphic, since

0 4 62 8

1 3 5 7 9 1 3 5 7 9

0 4 62 8

Figure 3. Two non isomorphic subgraphs F1 and F2.

F1 contains four squares, while F2 contains only two squares. This shows the
assertion.
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We note in passing that the graph B1 is planar, while B2 is not. This yields another
proof of Lemma 4.1, defining planarity in infinite graphs by planarity of all finite
subgraphs according to [17].

Lemma 4.2. The graphs B1 and B2 are isospectral: σp(A) = [−3, 3] and

m (µ,A(Bi)) =







1 for µ = ±3,

2 for − 3 < µ < −1 or 1 < µ < 3,

3 for µ = ±1,

4 for − 1 < µ < 1.

Proof. We have to show that the point spectra of both adjacency operators coincide
counting multiplicities. The proof consists in the following steps.

...

−k x−1 x0 x1 x k

y
k

y1y
−1

y−k y
0

...

x

Figure 4. Eigenvector notation for both graphs.

(1) Throughout let u ∈ ℓ∞(Bi) be an eigenvector of the eigenvalue µ. Numerate
the values of u at the vertices as indicated in Figure 4.

(2) First, note that any geometric multiplicity amounts at most to 4 since the
values x0, x1, y0, y1 determine completely any eigenvector. Secondly, we can
reduce the determination of the eigenvalues to the interval [0, 3] since both
graphs are bipartite.

(3) Let S denote the symmetry with respect to the horizontal middle line, i.e. the
exchange of the values xk and yk for each k ∈ Z. Each eigenvector u can be
decomposed in a unique way into

u =
1

2
(u + Su)

︸ ︷︷ ︸

=:a

⊕ 1

2
(u − Su)

︸ ︷︷ ︸

=:b

with Sa = a, Sb = −b.

(4) A symmetric vector Su = u in B1 leads to the Γ1–recurrence

xk+1 + xk−1 = (µ − 1)xk, k ∈ Z

while the antisymmetric case yields

xk+1 + xk−1 = (µ + 1)xk, k ∈ Z.

(5) A symmetric vector Su = u in B2 leads to the conditions

x1 + x−1 = (µ − 1)x0, x2 + x0 + x−1 = µx1, x−2 + x0 + x1 = µx−1,

and the recurrence

xk+1 + xk−1 = (µ − 1)xk, k ∈ Z, |k| ≥ 2.

For Su = −u we get

x1 + x−1 = (µ + 1)x0, x2 + x0 − x−1 = µx1, x−2 + x0 − x1 = µx−1,
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and the recurrence

xk+1 + xk−1 = (µ + 1)xk, k ∈ Z, |k| ≥ 2.

(6) For µ ∈ [0, 1) we find m (µ,A(Bi)) = 4 with the recurrences (4) and (5) that
define on each graph four independent solutions since there are exactly two
such solutions on Γ1 in both cases:

dim [ker (A(Bi) − µI) ∩ {u ∈ ℓ∞(Bi) Su = u}] =

dim [ker (A(Bi) − µI) ∩ {u ∈ ℓ∞(Bi) Su = −u}] = 2.

(7) For µ ∈ (1, 3), the antisymmetric part b of the eigenvector has to vanish since
otherwise, it would lead to an unbounded sequence on Γ1 according to the
µ + 1 cases in the recurrences (4) and (5). On the other hand, in the case
Su = u, we obtain exactly two linearly independent solutions on both graphs.
Thus, m (µ,A(Bi)) = 2.

(8) The eigenvalue µ = 3 is simple for both graphs, since the constant vector is
the only bounded solution of the recurrence xk+1 + xk−1 = 2xk.

(9) For µ = 1, the recurrences (4) and (5) corresponding to µ − 1 = 0, define on
each graph two linearly independent solutions, but only one such solution on
Γ1 for µ + 1 = 2 for both graphs:

dim [ker (A(Bi) − µI) ∩ {u ∈ ℓ∞(Bi) Su = u}] = 2

dim [ker (A(Bi) − µI) ∩ {u ∈ ℓ∞(Bi) Su = −u}] = 1

Possible independent eigenvectors are given for B1 by

x1 = (. . . , 1, 0,−1, 0, 1, 0,−1, x0 = 0, 1, 0,−1, 0, 1, 0,−1, . . .) = y1,

x2 = (. . . , 0,−1, 0, 1, 0,−1, 0, x0 = 1, 0,−1, 0, 1, 0,−1, 0 . . .) = y2,

x3 = e = −y3,

and for B2 by x1, x3 and

x4 = (. . . ,−1, 2, 1,−2,−1, 2, 1, x0 = 0,−1,−2, 1, 2,−1,−2, 1, . . .) = y4.

Thus, m (µ,A(Bi)) = 3.

Using Theorem 2.3 and Lemma 4.2, we obtain

Corollary 4.1. The Laplacians of B1 and B2 in C2
K∩L∞ have the same eigenvalues,

their multiplicities coincide and satisfy

M (λ, Bi) =







1 if λ = 0,

m
(

3 cos
√

λ,A(Bi)
)

if λ ∈ (0,∞) and sin
√

λ 6= 0,

∞ if λ ∈ (0,∞) and sin
√

λ = 0.

5. Infinite multiplicities in periodic graphs. A periodic graph or generalized
lattice, see [5, 27] is a uniformly locally finite graph whose automorphism group
contains a transitive subgroup G isomorphic to some Z

m. More precisely:

Definition 5.1. A uniformly locally finite graph Γ is called periodic of rank m with
translation group G = ⊕m

i=1Zbi ≤ Aut(Γ), with kernel N and with cell F , if the
following conditions hold:

(a) Γ is connected.



ISOSPECTRAL INFINITE GRAPHS AND NETWORKS 463

(b) {bi 1 ≤ i ≤ m} is a basis of the free abelian group G.

(c) N and F are finite connected subgraphs of Γ such that F = N ∪ ⋃m
i=1 N bi ,

V (N)G = V (Γ) and E(F )G = E(Γ).
(d) ∀g, h ∈ G : g 6= h =⇒ V (Ng) ∩ V (Nh) = ∅.
Here the group action on vertices and edges is indicated as exponent. The kernel

defines the periodicity of the vertices, while the cell stands for the one of the edges.
The group can always be thought of as a translation group of rank m in some R

n.
In the case of rank m = 1, periodic graphs are called bands. E.g. the two–sided
infinite ladder graph B1 from Section 4 is a band with each vertical edge as kernel.

Other classical examples of periodic graphs are given by the graphs of Kepler’s
plane tilings, as e.g. the tiling with regular triangles and dodecagons in Fig. 10,
where a kernel is given by any pair of adjacent triangles. Examples of black holes
in periodic graphs can be found in [7, 10] and in Section 6. Periodic networks are
Liouville networks, and the eigenvalue 1 of their transition operators Z is simple,
see [9].

If an eigenvalue of a periodic graph admits an eigenvector or an eigenfunction of
finite support, then it must be a black hole. The simplest example is given by the
graph in Figure 5 in which a pair of a big white and black dots in a square stands for

Figure 5. Eigenvectors of finite support leading to the black hole 0.

an arbitrary value and its negative, while no dot stands for the value 0. The values
can change from one square to another. In this way eigenvectors of finite support
are defined for the eigenvalue 0 for the transition operator Z and lead to a black
hole. It corresponds to the black holes for the Laplacian defined by cos

√
λ = 0.

According to [5, Lemma 8.10], a periodic graph Γ of rank m ≥ 2 contains finite
circuits. Then, by periodicity, there is an infinite countable family of finite and
mutually disjoint circuits, and Theorem 3.4 yields the

Corollary 5.1. Any real number λ > 0 satisfying sin
√

λ = 0 is a black hole
eigenvalue for the Laplacian in any periodic graph of rank m ≥ 2 and possesses
eigenfunctions of compact support.

The assertion of Theorem 3.4 is false for bands, see e.g. Γ0
1 in Section 6. Note that

there are black holes without eigenvectors of finite support for Z, and consequently
black holes without eigenfunctions of compact support for −∆K

G . An example is
given by the eigenvalue −2 of Kepler’s plane tiling with regular triangles, see [10],
others by Examples 6.2 and 6.3. This phenomenon is not possible in the ℓ2–setting
where it is well–known that eigenvalues of infinite multiplicity have eigenfunctions
of compact support, see e.g. [18]. Clearly, without periodicity, infinite graphs can
have eigenfunctions or -vectors of compact or finite support with finite multiplicity.
But in bands, eigenvalues of infinite multiplicity in the ℓ∞–setting necessarily have
eigenvectors of finite support. This is part of the following results.
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Theorem 5.2. An eigenvalue of the transition operator Z or of the adjacency
operator A in a band B has infinite geometric multiplicity iff it admits eigenvectors
of finite support.

Proof. Let µ be an eigenvalue of Z. If there is an eigenvector v of finite support S,
then there is a sufficiently large induced kernel M containing S such that v vanishes
at the nodes that are incident to nodes outside M . Under the one–dimensional group
Za1 and for the translated kernels Mka1 with k ∈ Z and for any x = (xk)k∈Z

∈
ℓ∞(B), define a corresponding eigenvector u ∈ ℓ∞(B) by

∀k ∈ Z : u
Mka1

= xkv
M

.

Thus, µ is a black hole eigenvalue of Z.
Next, suppose that µ has infinite multiplicity. Choose a kernel N in B and

denote by Nk the translated kernel Nkb1 under the one–dimensional group Zb1.
Without restriction we can assume that N is induced and sufficiently big such that
the minimal distance between vertices in N being incident with N1 and vertices in
N0 being incident with N−1 is at least 2. Let Dk denote the maximal subgraph of
B containing Nk such that each value of an eigenvector belonging to µ is uniquely
determined by its values in Nk. In fact, Dk is the maximal subgraph in B of all
subgraphs Σ with property

x = 0 in Nk =⇒ x = 0 in Σ,

since Dk clearly is one of those graphs Σ, while in each Σ the values of an eigenvector
are uniquely determined by those in Nk due to linearity and injectivity of the
determining operations. By periodicity it follows that Dk = Dkb1

0 for all k ∈ Z.
If Dk = B for some k ∈ Z, then µ is of finite multiplicity. Thus each Dk is a

proper subgraph of B.
If there is a pair k < h with an eigenvector x vanishing in Nk and Nh, and

thereby vanishing also in Dk and Dh, but taking non zero values between both
kernels, then there is another eigenvector, if not x, of finite support between and
outside Dk and Dh.

If there is no such a pair, then each eigenvector of µ vanishing in Nk and Nh with
k < h, vanishes also in the vertex set of the smallest connected induced subgraph
containing V (Nk) ∪ V (Nh). But then Dk contains Nh, and Dh contains Nk. Thus
Dk = Dh for all k, h ∈ Z, which is absurd since then D0 = B.

Corollary 5.2. Each eigenvalue of infinite multiplicity of Z or A in a band is a
black hole.

For the Laplacian we can state the following equivalence.

Theorem 5.3. Suppose that λ > 0 is an eigenvalue of the Laplacian on the band
B. Then the following conditions are equivalent:

1. λ has infinite geometric multiplicity.
2. λ is a black hole.
3. λ possesses eigenfunctions of finite support.

Proof. Clearly, the third condition implies the second one and the second one the
first one. By Theorems 2.3 and 5.2 it remains to handle the case sin

√
λ = 0

supposing that λ has infinite geometric multiplicity. But, then B cannot be a tree
by Theorem 2.3, since a band like tree can only contain one infinite circuit up to
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translation. Thus, B contains finite circuits, and, again by periodicity, a countable
family of those. Finally, Theorem 3.4 permits to conclude.

For periodic graphs of rank m ≥ 2, the finite support property has to be replaced
by supports lying in periodic subgraphs of rank m − 1 or less. The proofs of the
corresponding results are quite technical and their details are omitted here. The
simplest rank 2 example requiring band–like infinite supports is the eigenvalue µ = 0
of the adjacency operator of the graph K1 of Kepler’s plane tiling by squares, that
corresponds to eigenvalues cos

√
λ = 0 for the Laplacian. Other examples of finite

support eigenvalues in higher rank periodic graphs are displayed in Example 6.4.

6. Examples.

............

Figure 6. The graph Γ1,n for n = 5.

6.1. Isospectral tree families with finite Laplacian multiplicities. Two fam-
ilies of trees that are isospectral as graphs and as networks, but non isomorphic as
graphs, and thereby not isomorphic as networks as well, can be found as follows.
For n ∈ N

∗, let Γ1,n denote the tree obtained by adding in Γ1 to n consecutive
vertices one edge incident to a boundary vertex as displayed in Fig. 6. Then it is
easily seen that S (Γ1,n) = [0,∞) and

M (λ, Γ1,n) =

{

1 if λ = 0,

2 if λ > 0,

while s (Γ1,n) = (−2, 2) and m (µ, Γ1,n) = 2 for µ ∈ (−2, 2). Note that the spectral
radius 2 of the adjacency operator of Γ1,n is not an eigenvalue of A(Γ1,n) since a
bounded eigenvector would have to be constant on the two one–sided infinite paths
in Γ1,n that contain exactly one ramification nodes of valency 3 of Γ1,n. By the
bipartite character of Γ1,n, the same holds for −2.

............

Figure 7. The graph Γn
1 for n = 5.

Moreover, for n ∈ N, let Γn
1 be the infinite tree obtained by adding in Γ1 to each

vertex one edge incident to a boundary vertex except at n consecutive vertices as
displayed in Fig. 7. Then S (Γn

1 ) = [0,∞)\
(

π
2 + πZ

)
and

M (λ, Γn
1 ) =

{

1 if λ = 0,

2 if λ > 0 and cos
√

λ 6= 0.
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Figure 8. The black hole 1 for the adjacency operator of K2.

A reduction to the adjacency spectrum and to the eigenvectors of Γ1 yields that

µ ∈ s (Γn
1 ) ⇐⇒

(

µ − 1
µ

)

∈ [−2, 2] and, thereby,

s (Γn
1 ) =

[

−1 −
√

2, 1 −
√

2
]

∪
[

−1 +
√

2, 1 +
√

2
]

and

m (µ, Γn
1 ) =

{

1 if µ = ±(1 +
√

2) or µ = ±(1 −
√

2),

2 if µ ∈ (−1 −
√

2, 1 −
√

2) ∪ (−1 +
√

2, 1 +
√

2).

6.2. A black hole for K2. The eigenvalue 1 (as well as −1) is a black hole for the
adjacency operator of the graph K2 of Kepler’s plane tiling by hexagons. In Figure
8 as well as in the following ones, a big white dot stands for the value 1 at the node, a
big black dot for −1, and no dot for the value 0. In this way an eigenvector of band–
like support is defined, that leads also to the node distribution of an eigenfunction
for the Laplacian belonging to the black hole λ defined by 3 cos

√
λ = 1.

6.3. A black hole for K4. The eigenvalue 1 (as well as −1) is a black hole for
the adjacency operator of the graph K4 of Kepler’s plane tiling by squares and
octagons with an eigenvector of band–like support as defined in Figure 9. It leads
to the node distribution of an eigenfunction for the Laplacian belonging to the black
hole λ defined by 3 cos

√
λ = 1.

6.4. Black holes for K5. Figure 10 displays band–like and finite supports of
eigenvectors for the adjacency operator of Kepler’s plane tiling by triangles and
dodecagons, all to be read separately. The two upper ones belong to the black
hole −2, while the two lower ones correspond to the black hole 0. They lead to
node distributions of eigenfunctions for the Laplacian belonging to the black hole
λ defined by 3 cos

√
λ = −2 and cos

√
λ = 0, respectively.

Acknowledgments. The authors would like to express their gratitude to the ref-
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Figure 9. The black hole 1 for the adjacency operator of K4.

Figure 10. The black holes −2 and 0 for the adjacency operator of K5.
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2007, 143–170.

[8] J. von Below, An index theory for uniformly locally finite graphs, Lin. Alg. Appl., 431 (2009),
1–19. doi:10.1016/j.laa.2008.10.030.

[9] J. von Below and J. A. Lubary, Harmonic functions on locally finite networks, Results in
Math., 45 (2004), 1–20.

[10] J. von Below and J. A. Lubary, The eigenvalues of the Laplacian on locally finite networks,
Results in Math., 47 (2005), 199–225.

[11] J. von Below and J. A. Lubary, The eigenvalues of the Laplacian on locally finite networks

under generalized node transition, Results in Math., (2009), to appear.
[12] N. L. Biggs, “Algebraic Graph Theory,” Cambridge Tracts Math. Vol. 67, Cambridge Uni-

versity Press, 1967, 19932.
[13] C. Cattaneo, The spectrum of the continuous Laplacian on a graph, Monatshefte für Mathe-

matik, 124 (1997), 215–235.
[14] Fan R. K. Chung, “Spectral Graph Theory,” AMS Reg. Conf. Ser. Math. Vol. 92, AMS Rhode

Island, 1997
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