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Abstract. The general problem under consideration in this paper is the sta-

bility analysis of hyperbolic systems. Some sufficient criteria on the boundary
conditions exist for the stability of a system of conservation laws. We inves-

tigate the problem of the stability of such a system in presence of boundary

errors that have a small C1-norm. Two types of perturbations are considered
in this work: the errors proportional to the solutions and those proportional to

the integral of the solutions. We exhibit a sufficient criterion on the boundary
conditions such that the system is locally exponentially stable with a robustness

issue with respect to small boundary errors. We apply this general condition to

control the dynamic behavior of a pipe filled with water. The control is defined
as the position of a valve at one end of the pipe. The potential application is

the study of hydropower installations to generate electricity. For this king of

application it is important to avoid the waterhammer effect and thus to con-
trol the C1-norm of the solutions. Our damping condition allows us to design

a controller so that the system in closed loop is locally exponential stable with

a robustness issue with respect to small boundary errors. Since the boundary
errors allow us to define the stabilizing controller, small errors in the actuator

may be considered. Also a small integral action to avoid possible offset may

also be added.

1. Introduction. The operation of many physical networks having an engineering
relevance may be represented by hyperbolic partial differential equations (PDE).
The main property of this class of PDE is the existence of the so-called Riemann
coordinates which are a successful tool for the proof of classical solutions, the anal-
ysis and the control among other properties, see e.g. [3, 20].

The stability of homogeneous hyperbolic systems has been analyzed for a long
time in the literature. A sufficient condition is that the Jacobian matrix of the
boundary conditions has a spectral radius less than 1, see [12]. The result of [12] is
based on the analysis of the Riemann coordinates. An other (and weaker) sufficient
condition has been recently proven in [8]. In [21], using again a Riemann coordinates
approach, it is stated a sufficient condition for the stability to be robust with respect
to small non-homogeneous terms. In the present work, we consider the case of
perturbations in the boundary conditions. These boundary errors are of two types:
the errors proportional to the solutions and those proportional to the integral of
the solutions. That part of our work is similar with [10] where, using a Lyapunov
function, an integral action is considered for hyperbolic systems. See also [2, 7] (and
[6]) for the use of Lyapunov functions for the stability of hyperbolic systems.
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Since many physical control problems are modelized by means of hyperbolic
systems with boundary conditions defined by the actuator, our result may be un-
derstood as a sufficient criterion for the stability of some physical networks with a
robustness issue with respect to small actuator errors. In our context the pertur-
bations have to be small in C1-norm.

We apply our main result to the control of the dynamic behavior of a pipe
filled with water. More precisely we consider a hydropower installation to generate
electricity. Different equipments can be considered (see [15]) such as pipes, Francis
turbines, surge tanks... Here we consider a pipe with a valve at one end. For
such installations it is crucial to reduce the waterhammer effect, i.e. to control
the C1-norm of the solutions. Our main result considers precisely this topology,
and suggests a sufficient damping condition. Modelling the hydraulic system by a
hyperbolic system, we succeed to design a controller so that the damping condition
is satisfied. Roughly speaking we compute a suitable valve opening for the pipe.
Moreover the exponential stability is shown to be robust with respect to small
(proportional or integral) actions. On numerical simulations or on real applications,
it may be necessary to add an integral action to the controller to cancel an offset
(due to possible actuator imperfection e.g.). Our main result is thus a theoretical
proof that adding this small integral doesnot destabilize the system and “control the
waterhammer effect”. Other techniques exist for the control of dynamic behavior
of hydraulic installations. Let us consider the impedance method [22], the transfer
matrix method [22, 18] and the method of characteristic curves [22, 23, 4] which
use also the Riemann coordinates.

The number of other applications of hyperbolic systems is quite large. Let us
consider e.g. the control of gas in pipeline networks [1], the study of road junction
[13], or the regulation of open-channels [19]. The present work can be seen as
a generalization of [19], since the Saint-Venant equations that are considered in
that reference do not involve neither errors that are proportional to the fluid flow,
neither errors that are integral of the fluid flow. These kind of errors are of great
interest for practical applications since they can cancel some offset due to actuator
imperfection as in [10, 11]. The main result can thus be seen as a theoretical proof
of the second part of [11] where the interest of the integral action for the stability
condition and the cancelation of the offset is illustrated on numerical simulations
and on experiments.

The paper is organized as follows. First in Section 2, we state our main result,
namely the necessary condition for the stability of two conservation laws. In Section
3, we apply our main result to the dynamic behavior of a pipe filled with water. In
Section 4, we proof our main result. We conclude our paper in Section 5.

2. Stability of systems of two conservation laws. We consider the class of
hyperbolic PDE obtained as a system of two conservation laws defined in Riemann
coordinates as follows

∂tξ + Λ(ξ)∂xξ = 0 (1)
with ξ: [0, L]× [0,+∞) → R2: (x, t) 7→ (ξ1, ξ2)(x, t), and Λ(ξ) = diag(λ1(ξ), λ2(ξ))
is a continuously differentiable function on a neighborhood of the origin (of R2);
such that

λ1(0) < 0 < λ2(0) . (2)
The generalization to hyperbolic system in Rn, or to hyperbolic systems where

all terms of the diagonal of the matrix Λ have the same sign is possible. However to
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ease the presentation we will consider only the case of a system of two conservation
laws satisfying (2).

As usual, each component ξi of the PDE (1) may be called Riemann invari-
ant. The reason is the following: each Riemann coordinate is constant along the
corresponding characteristic curve, i.e.

dtξi(x(t), t)) = 0 ,

where x is the characteristic curve solution of the differential equation

ẋ(t) = λi(ξ(x(t), t)) .

In order to complete the problem statement, boundary conditions (BC) are
needed. Here we consider the system (1) under the BC of the form(

ξ1(L, t)
ξ2(0, t)

)
= g

(
ξ1(0, t)
ξ2(L, t)

)
+ ep

(
ξ1(0, t)
ξ2(L, t)

)
+ ei

( ∫ t

0
ξ1(0, s) ds∫ t

0
ξ2(L, s) ds

)
, (3)

where g, ep, and ei are three continuously differentiable functions defined on a
neighborhood of the origin, and satisfying g(0) = ei(0) = ep(0) = 0.

The characteristic solution ξ1 (or ξ2) that “leaves” the boundary at x = L (or at
x = 0) is a function of the characteristic solutions that “arrive” at the boundaries
at the same instant. This form of the BC will be further motivated in the next
section. In particular note that ep and ei will be interpreted as errors in the loop
of the boundary control problem under consideration. The subscripts p and i will
allow us to distinguish the error proportional to the value of the solution at the
boundary with the error resulting as the integral of the boundary conditions (like
a memory).

In order to state our main result, we need the following compatibility condition
between the system (1) and the BC (3).

Definition 2.1. A function ξ# ∈ C1(0, L; R2) satisfies the compatibility condition
C if (

ξ#
1 (L)

ξ#
2 (0)

)
= (g + ep)

(
ξ#
1 (0)

ξ#
2 (L)

)
+ ei(0),

and(
λ1(ξ#(L))∂xξ#

1 (L)
λ2(ξ#(0))∂xξ#

2 (0)

)
= (∇g +∇ep)

(
ξ#
1 (0)

ξ#
2 (L)

)(
λ1(ξ#(0))∂xξ#

1 (0)
λ2(ξ#(L))∂xξ#

2 (L)

)
−∇ei(0)

(
ξ#
1 (0)

ξ#
2 (L)

)
,

where ∇g(ξ), ∇ep(ξ), and ∇ei(ξ) denote the Jacobian matrices at ξ ∈ R2 of g, ep,
and ei respectively. �

Some additional notations and definitions are also needed:
• The norm | · | in R2 is defined, for all ξ ∈ R2, by |ξ| = max(|ξ1|, |ξ2|). B(ε)

denotes the ball centered in 0 ∈ R2 with radius ε > 0.
• Given Φ continuous on [0, L] and Ψ continuously differentiable on [0, L], we

denote
|Φ|C0(0,L) = maxx∈[0,L]|Φ(x)| ,
|Ψ|C1(0,L) = |Ψ|C0(0,L) + |Ψ′|C0(0,L) ;

• BC(ε) denotes the set of continuously differentiable functions ξ#: [0, L] → R2

satisfying the compatibility assumption C and |ξ#|C1(0,L) ≤ ε;
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• For a given matrix A = (aij), ρ(A) denotes its spectral radius and abs(A) is
the matrix defined by abs(A) = (|aij |).

The main result of this paper is the following

Theorem 2.2. If
ρ(abs(∇g(0))) < 1, (4)

then there exist ε > 0, E > 0, µ > 0 and C > 0 such that, for all continuously
differentiable functions ep and ei: B(ε) → R2 such that

ep(0) = ei(0) = 0 . (5)

holds together with
max{|∇ep(0)|, |∇ei(0)|} ≤ E , (6)

for all ξ# ∈ BC(ε), there exists an unique function ξ ∈ C1([0, L] × [0,+∞) ; R2)
satisfying the PDE (1), the boundary conditions (3) and the initial condition

ξ(x, 0) = ξ#(x) ,∀x ∈ [0, L]. (7)

Moreover, this function satisfies

|ξ(., t)|C1(0,L) ≤ Ce−µt|ξ#|C1(0,L) ,∀t ≥ 0. (8)

The proof of this result will be based on an estimation of the influence of the
boundary condition on the evolution of the Riemann coordinates. In particular,
we have to prove that the damping condition (4) is strong enough to manage the
unknown errors ep and ei, whose derivative is assumed to be small at the origin
due to (6). This result will be proved in Section 4 below.

For many physical networks, the boundary conditions of the hyperbolic system
modelling the applications are defined by the controller. This is the case for the ap-
plication of the dynamic behavior of a pipe filled with water as considered in Section
3 below. More precisely, for this application, we succeed to design a stabilizing con-
troller by selecting a feedback so that the damping condition (4) for the hyperbolic
model is satisfied. Also we succeed to ensure a robustness issue with respect to small
proportional and integral actuator errors. When designing stabilizing controller, it
may be also fruitful to add an integral action. The interest of the integral action is
to cancel a possible offset (due to actuator imperfection e.g.) on real experiments
or on numerical simulations. In this context Theorem 2.2 can be reinterpreted as
a proof that adding a small integral action doesnot cancel the stability property.
See also the example of the control of the flow in an open channel as considered
in [11]. In particular note that in [11, Sections IV.D and V.C] an integral action
is added to counteract the actuator imperfection. These numerical simulations and
these experiments can be seen as other illustrations of Theorem 2.2.

Remark 1. Combining this main result and the main result of [21], we obtain
that the damping condition (4) is strong enough to manage small non-homogeneous
terms. More precisely instead of the PDE (1), we may consider

∂tξ + Λ(ξ)∂xξ = h(ξ)

for a given continuously differentiable function h defined on a neighborhood of the
origin. We may prove that if (4) holds, if h(0) = 0 and if |∇h(0)| is sufficiently
small then the conclusions of Theorem 2.2 holds. We illustrate this latter result in
Section 3 below.
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3. Application to the dynamic behavior of a pipe filled with water. In
this section, we show how our main result may be applied for the control of the
dynamic behavior of a pipe filled with water. Let us consider an exploitation of
hydropower resources to generate electricity.

A mathematical model based on mass and momentum conservation can properly
describe the dynamic behavior of a pipe filled with water. Hydraulic installations
feature longitudinal dimensions greater than transversal dimensions, thus justifying
a one-dimensional approach based on the following assumption:

• the flow is normal to the (constant) pipe cross-section A [m2];
• the pressure p [Pa], the flow velocity C [m/s] and the density ρ [kg/m3] are

uniform in a cross-section A.
For a survey and the computation of the model see [15]. The momentum equation
reads (see [15, page 26])

∂tC +
1
ρ
∂xp + C∂xC + g sin(α) +

λC|C|
2D

= 0

where
• x is the abscissa along the pipe of length L [m];
• t is the time [s];
• λ is the local loss coefficient;
• g is the gravity constant [m/s2];
• α is the slope;
• D is the pipe diameter [m].
The absolute value of the velocity ensures always dissipative term.
The continuity equation is given by

∂tp + ρa2∂xC + C∂xp = 0

where a is the wave speed [m/s].
Denoting the discharge by Q and the piezometric head by h, we have

Q = CA , h = Z +
p

ρg

where Z is the elevation of the pipe [m]. Noticing that ∂xZ = sin(α), and assuming
no vertical displacements of the pipe (i.e. ∂tZ = 0), high wave speed (large a) and
low flow velocity (small C and thus the convective terms C∂x can be neglected with
respect to the propagative term ∂t), we obtain the simplified equations (see [15,
page 29]):

∂t

(
Q
h

)
+

(
0 gA
a2

gA 0

)
∂x

(
Q
h

)
=
(
−λQ|Q|

2DA
0

)
. (9)

The boundary conditions depend on the hydraulic components. A large variety
of components may be considered in hydropower exploitations. Consider e.g. the
pipes, the singular losses, the valves, the Francis turbines (see [16, 15]). For the
boundary condition at the beginning of the pipe, we assume that the piezometric
line is given and constant:

h(x = 0, t) = h0 , (10)
for a given h0.

For the boundary condition at the other end of the pipe, we assumed that the
hydraulic installation is equipped with a valve. A valve induces head losses in
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hydraulic systems which are function of the valve obturator position s. The head
losses through a valve are given by (see [15, page 85]):

h(x = L, t)− hL =
Kv(s)
2gA2

v

Q2(x = L, t) (11)

where Kv(s) is the valve head loss coefficient, Av is the reference of the valve area
and hL is given. The system under consideration in this application is depicted by
Figure 1.

Z(x)
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��
��
��
��
��
��

��
��
��
��
��
��
��
��

Valve

Gallery
Penstock

h_L

x=Lx=0

h_0

Figure 1. A simple hydraulic circuit

Hydraulic machines are increasingly subject to off-design operation, startup and
shutdown sequences, quick set point changes, etc. The closure of the guide vanes
induces a waterhammer effect in the penstock leading to head fluctuations (see
[15, page 38 and following]. To overcome this waterhammer phenomenon, many
hydraulic installations are equipped with surge tanks. The surge tank is a protection
device against waterhammer effect behaving as a free surface for wave reflection but
where the water level is function of the discharge time history. An hydraulic circuit
with a surge tank is depicted in Figure 2. The surge tanks are often equipped
with pumps which may be regulated. The literature about the study of systems
equipped with controlled surge tanks is immense. Let us cite [9, 24]. See also [17, 25]
where PI control strategies is applied. However as remarked in the introduction
of [5], although PID controllers have been used to regulate the fluid, only few
works develop modern design methods for nonlinear controllers. In particular, the
controller should restrict peak values of the rate of the change of outflow. This
problem may be easily interpreted as a constraint on the norm of the differentiable
function of the flow, and thus a constraint on the C1-norm of the flow. This is
exactly the framework of the present work, and thus our main result is particularly
interesting in this context.

Let us show how we can apply our main result to the system1 (9) with the
boundary conditions (10) and (11). To apply our main result to the system depicted
on Figure 3 we need to consider different boundary conditions. We will come back
on this in the conclusion.

1Let us note that the right-hand side of (9) is not continuously differentiable due to the absolute

value. However, we will see that around the steady-state, the Q variable has a constant sign and
thus, locally around the equilibrium, we may remove the absolute value in (9).



CONTROL OF SYSTEMS OF CONSERVATION LAWS 399
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Figure 2. A hydraulic circuit with a surge tank

Considering the system (9) and the boundary conditions (10) and (11), let us
first compute the steady-state solution of (9). A steady-state solution is such that
∂th = 0 and ∂tQ = 0. We compute dxQ = 0 and, for all x in [0, L],

dxh(x) = − λQ|Q|
2gDA2

,

in other words, Q is constant and h is an affine function. Assuming Q > 0, we
may remove the absolute value in (9) around the steady-state solution. Assuming
moreover h0 > hL (these latter assumptions are valid on hydropower installation)
and using the boundary conditions (10) and (11) we get

Q =

√
2gDA2A2

v(h0 − hL)
Kv(s)DA2 + λLA2

v

,

and, for all x ∈ [0, L],

h(x) = − λQ
2

2gDA2
x + h0 .

Now we note that the characteristic speeds are −a and a with the corresponding
Riemann coordinates ξ1 = Q−Q− gA

a (h− h) and ξ2 = Q−Q + gA
a (h− h). In this

coordinates system (9) rewrites locally around the steady-state:

∂t

(
ξ1

ξ2

)
+ diag(−a, a)∂x

(
ξ1

ξ2

)
=

(
λg

2Da ( ξ1+ξ2
2 + Q)2 + λ

2DAQ
2

− λg
2Da ( ξ1+ξ2

2 + Q)2 + λ
2DAQ

2

)
.

Let us now describe the boundary conditions in the Riemann coordinates. First let
us note that the boundary condition (10) rewrites

ξ2(x = 0, t) = ξ1(x = 0, t) . (12)

Now for any k ∈ R, the boundary condition (11) holds as soon as the boundary
condition

ξ1(x = L, t) = kξ2(x = L, t) (13)
is satisfied together with

a

2gA
(1− k)ξ2(L, t) + h(L)− hL =

Kv(s)
2gA2

v

(
1 + k

2
ξ2(L, t) + Q) .
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This latter condition allows us to define (locally around the equilibrium) the
controller

Kv(s) =
2aA2

v(1− k)ξ2(L, t)
(1 + k)Aξ2(L, t) + 2AQ

+
4gA2

v

(1 + k)ξ2(L, t) + 2Q
(h(L)− hL) (14)

where ξ2(L, t) = Q(L, t) − Q + gA
a (h(L, t) − h(L)). The valve position s may be

computed by inverting the function Kv (the graph of Kv is given in [15, Figure 5.6,
page 86] and it can be checked that the function Kv is indeed invertible).

Note that this controller is a state-feedback. However to compute it we need only
the values of the state at x = L, i.e. at the end where the control is implemented.

Now due to the boundary conditions (12) and (13), the damping condition (4)
of Theorem 2.2 holds as soon as −1 < k < 1. Therefore by defining the controller
with (14) for any −1 < k < 1, we get a stabilizing controller: the Q and h variables
exponentially converge to the equilibrium Q and h in the topology of the C1-norm
i.e. by avoiding too large value of the derivatives (roughly speaking it avoids the
waterhammer effect). Moreover we obtain a robustness issue with respect to small
actuator errors and non-homogeneous terms as proven in Theorem 2.2 (see also
Remark 1), i.e. for the left-hand side of (9) sufficiently small.

Note moreover that for real implementations of the controller (14) it may inter-
esting to add a small integral action to cancel a possible offset. This integral action
can be seen as a small integral error in the boundary conditions of our model. If
this integral action is sufficiently small then the closed-loop system is exponentially
stable.

4. Proof of Theorem 2.2. This section is devoted to the proof of Theorem 2.2.
In Section 4.1, we recall an existence result of a solution in finite time. In Sections
4.2 and 4.3, estimates of |ξ(·, t)|C0(0,L) and |∂xξ(·, t)|C0(0,L) are derived, and we
conclude the proof of Theorem 2.2 in Section 4.4.

Note that the outline of this proof is analogous to the one of the proof of the
main result of [21] where it is studied the effect of small non-homogeneous terms
on hyperbolic systems. Therefore to ease the presentation, we prefer to focus on
the main difficulties and the differencies between the proof of Theorem 2.2 with the
proof of the main result of [21] (consider in particular Claim 4.3).

4.1. Existence result. The following existence result on a finite time interval is
a basic tool for the proof of Theorem 2.2. It combines the existence result of [20,
Chap. 5, Theo. 1.1] together with the result of the continuity with respect to
parameters as given in [3, Chap. 3] (see also the proof of [21, Lemma 1]):

Lemma 4.1. ([20, 3]) Let T2 > T1 > 0 and T = T2 − T1. Assume that the BC
satisfy (4). Then there exist ε1(T ) > 0, C1(T ) > 0 and E1(T ) such that, for all
0 < E < E1(T ), for all ξ# ∈ BC(ε1(T )) and for all continuously differentiable
functions ep and ei: B(ε1(T )) → R2 such that (5) holds and

max{|∇ep(0)|, |∇ei(0)|} ≤ E , (15)

there exists a unique function ξ ∈ C1([0, L] × [T1, T2]; R2) satisfying the PDE (1)
with boundary conditions (3) and initial condition (7). Moreover, this function ξ
satisfies, for all t ∈ [T1, T2],

|ξ(., t)|C0(0,L) ≤ C1(T )|ξ#|C0(0,L) , (16)

|ξ(., t)|C1(0,L) ≤ C1(T )|ξ#|C1(0,L) . (17)
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In the following, Lemma 4.1 is applied several times on intervals which will be
defined with the help of two decreasing sequences of positive numbers ε2, ε3, ... and
E2, E3, ... We consider initial conditions ξ# successively in BC(ε2), BC(ε3), ...

Let, for i ∈ {1, 2},

si = L
|λi(0)| , (18)

τ1 > max{s1, s2}. (19)

Let A = (aij) ∈ R2×2 and a > 1 such that

|(∇g)ij(0)| < aij < a, ∀(i, j) ∈ {1, 2}2, (20)
ρ(A) < 1. (21)

From (21), there exists a sufficiently larger integer K ≥ 2 such that
c(2τ1)

∑
k≥K

|Ak| < 1, where c(2τ1) is given by Lemma 4.1 applied on [0, 2τ1]. Let

τ2 := (K + 2)τ1 , (22)

and

ν = c(2τ1)
∑
k≥K

|Ak| < 1 . (23)

4.2. Estimation of |ξ(., t)|C0(0,L). Let ε2 = ε(τ2) and E2 = E(τ2) given by Lemma
4.1 applied on [0, τ2]. For all 0 < E < E2, for all continuously differentiable func-
tions ep and ei: B(ε2) → R2 satisfying (5) and (15), for all ξ# ∈ BC(ε2), the PDE
(1), with the boundary conditions (3) and the initial condition (7), admits a unique
solution ξ ∈ C1([0, L]× [0, τ2]; R2).

In view of (2), and by using a continuity argument, we may assume without loss
of generality (i.e. with ε2 sufficiently small) that

λ1(ξ(x, t)) < 0 < λ2(ξ(x, t)) . (24)

The aim of this section is to prove the following

Lemma 4.2. We have the existence of ε5 in (0, ε2) and E5 > 0, such that for all
continuously differentiable functions ep and ei: B(ε2) → R2 satisfying (5) and (15),
for all ξ# ∈ BC(ε5), we have

|ξ(., τ2)|C0(0,L) ≤ ν|ξ#|C0(0,L). (25)

Let x ∈ [0, L]. Hereafter the characteristic curves are defined backwards in
time from (x, τ2). In what follows, N denotes the set of nonnegative integers. For
k ∈ N \ {0} and for (i1, ..., ik) ∈ {1, 2}k, we define ti1...ik

∈ [0, T ] and pi1...ik
∈

[0, L]× {ti1...ik
} by induction on k as follows (see also [21] for the construction and

an illustration of these values).
Initial step k = 1
• Let us consider the solution y1 of the Cauchy problem

ẏ1(t) = λ1(ξ(y1(t), t)), y1(τ2) = x.

In view of (24), it allows us to define the time instant t1 ≤ τ2 by y1(t1) = L
and we set p1 = (L, t1).
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• Let us consider the solution y2 of the Cauchy problem

ẏ2(t) = λ2(ξ(y2(t), t)), y2(τ2) = x.

In view of (24), it allows us to define the time instant t2 ≤ τ2 by y2(t2) = 0.
and we set p2 = (0, t2).

By the invariance of the Riemann coordinates along the characteristic curves, we
get

ξi(x, τ2) = ξi(pi). (26)

General induction step
Now let k ∈ N \ {0} be arbitrarily fixed and assume that ti1...ik

∈ [0, τ2] and
pi1...ik

∈ [0, L]× {ti1...ik
} are defined. Then, for ik+1 ∈ {1, 2}, we define ti1...ik+1 ∈

[0, τ2] and pi1...ik+1 ∈ [0, L]×{ti1...ik+1} by considering two cases (as done above for
k = 1):

• Consider the Cauchy problem

dty1(t) = λ1(ξ(y1(t), t)), y1(ti1...ik
) = 0

and define ti1...iki ∈ [0, ti1...ik
) by y1(ti1...iki) = L. If such ti1...iki exists, it

is unique and we define pi1...iki by pi1...iki = (L, ti1...iki). In contrast, if such
ti1...iki does not exist, we do not define ti1...iki, neither pi1...iki, nor ti1...iki...il

and pi1...iki...il
for l > k + 1.

• Consider the Cauchy problem

dty2(t) = λ2(ξ(y2(t), t)), y2(ti1...ik
) = L,

and define ti1...ikj ∈ [0, ti1...ik
) by y2(ti1...ikj) = 0. Again, if such ti1...ikj exists,

it is unique and then we define pi1...ikj by pi1...ikj = (0, ti1...ikj). However
if such ti1...ikj does not exist, we do not define ti1...ikj , neither pi1...ikj , nor
ti1...ikj...il

and pi1...ikj...il
for l > k + 1.

Similarly to (26), by construction of ti1...ik+1 and pi1...ik+1 , we have

ξ1(0, ti1...ik
) = ξ1(pi1...ik1) , (27)

and
ξ2(L, ti1...ik

) = ξ2(pi1...ik2) . (28)

Note that, in view of (18)-(19) and (22), there exists a finite number of k ≥ 1
such that

si1 + · · ·+ sik
≤ τ2 − τ1 , ∀i1, . . . , ik ∈ {1, 2} .

Let us prove the following result which studies the effect of the boundary errors
on the Riemann coordinates evaluated at the points pi1...ik

.

Claim 4.3. There exist ε4 ∈ (0, ε2) and E4 ∈ (0, E2), such that, for all 0 < E < E4,
for all continuously differentiable functions ep and ei: B(ε4) → R2 satisfying (5)
and (15), for all ξ# ∈ BC(ε4) and for all x ∈ [0, L], for all integer k ≥ 1, for all
(i1, ..., ik, ik+1) ∈ {1, 2}k+1 such that si1 + · · · + sik

≤ τ2 − τ1, the time instant
ti1...ikik+1 and the point pi1...ikik+1 exist.

Moreover we have

|ξik
(pi1...ik

)| ≤
∑

j=1,2

aikj |ξj(pi1...ikj)|. (29)
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Proof. (Proof of Claim 4.3)
Let (i1, ..., ik, ik+1) ∈ {1, 2}k+1 such that si1 + · · ·+ sik

≤ τ2 − τ1. Due to (18),
(19), the time instant ti1...ikik+1 and the point pi1...ikik+1 exist.

Now, by the Mean-Value Inequality, also called Finite-Increment Theorem (see
[26, Prop. 2. p. 78]), and conditions (5) and (15), and using Lemma 4.1, there
exists positive values ε3 and E3, and an increasing positive function w, defined for
sufficiently small positive values and satisfying w(ε) → 0 as ε → 0, such that, for
all 0 < E < E3, for all ξ# ∈ BC(ε3), for all continuously differentiable functions ep:
B(ε3) → R2, for all s ∈ [ti1 , τ2], we have

|ep(ξ(yi1(s), s))| ≤ (E + w(c(τ2)ε3))|ξ(yi1(s), s)|.
Similarly, up to reducing the values ε3 and E3 and the function w, we may assume

that for all 0 < E < E3, for all ξ# ∈ BC(ε3), for all continuously differentiable
functions ei: B(ε3) → R2, for all s ∈ [ti1 , τ2], we have

|ei(ξ(yi1(s), s))| ≤
(E + w(c(τ2)ε3))

τ2
|ξ(yi1(s), s)|.

Therefore by using the boundary conditions (3) and inequalities (20) and by picking
ε4 and E4 such that

|(∇g(0))ij |+
1
2
(E4w(c(τ2)ε4)ε4 < aij

we get for all 0 < E < E4, for all continuously differentiable functions ep and ei:
B(ε4) → R2 satisfying (5) and (15), for all ξ# ∈ BC(ε4), the estimation (29). This
concludes the proof of Claim 4.3.

By a repetitive application of Claim 4.3, we obtain the following result.

Claim 4.4. For all 0 < ε < ε4, for all 0 < E < E4, for all continuously differen-
tiable functions ep and ei: B(ε2) → R2 satisfying (5) and (15), for all ξ# ∈ BC(ε4)
and for all x ∈ [0, L], for all integer k ≥ 1, for all (i1, ..., ik, ik+1) ∈ {1, 2}k+1 such
that

τ2 − 2τ1 ≤ si1 + ... + sik
≤ τ2 − τ1 ,

the existence of ti1...ikik+1 is guaranteed and the time instant ti1...ik
is in the interval

[0, 2τ1]. Moreover
|ξ(pi1...ik

)| ≤ c(2τ1)|ξ#|C0(0,L). (30)

Proof. (Proof of Claim 4.4) The existence of ti1...ikik+1 follows from Claim 4.3. The
estimation ti1...ik

≤ 2τ1 follows from τ2 − 2τ1 ≤ si1 + ... + sik
and the definition of

the time instant ti1...ik
.

Estimation (30) is a consequence of Lemma 4.1 applied on [0, 2τ1].

By an decreasing induction on l, and following the same lines as the proof of [21,
Claim 7], we may prove the following

Claim 4.5. There exist ε5 > 0 and E5 > 0 such that for all l in N, we have the
property (Pl):

For all 0 < ε < ε5, for all 0 < E < E5, for all continuously differentiable
functions ep and ei: B(ε5) → R2 satisfying (5) and (15), for all ξ# ∈ BC(ε5), for
all (i1, . . . , il) ∈ {1, 2}l such that si1 + · · ·+ sil

≤ τ2 − 2τ1, we have

|ξil
(pi1...il

)| ≤
∑
k≥l

∑
Ik

∑
j=1,2

ailil+1ail+1il+2 · · · aikj |ξj(pi1···ikj)|
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where Ik denotes the set of indices ij, j ∈ {1, . . . , k} such that

τ2 − 2τ1 ≤ si1 + · · ·+ sil
+ sil+1 + · · ·+ sik

≤ τ2 − τ1 .

We are now in a position to prove Lemma 4.2.

Proof. (Proof of Lemma 4.2) Due to Claim 4.5, (P1) is true and thus with (26), for
all 0 < ε < ε5, for all 0 < E < E5, for all continuously differentiable functions ep

and ei: B(ε5) → R2 satisfying (5) and (15), for all i1 ∈ {1, 2}, for all x ∈ [0, L] and
ξ# ∈ BC(ε5),

|ξi1(x, τ2)| ≤
∑
k≥1

∑
τ2−2τ1≤si1+...+sik

≤τ2−τ1

∑
j=1,2

ai1i2ai2i3 ...aikj |ξj(pi1...ikj)|

which gives with (30)

|ξi1(x, τ2)| ≤ c(2τ1)|ξ#|C0(0,L)

∑
k≥1

∑
τ2−2τ1≤si1+...+sik

≤τ2−τ1∑
j=1,2

ai1i2ai2i3 ...aikj (31)

Note that the sums in (31) are finite. Moreover, due to (19) and (22)

(si1 + ... + sik
≥ τ2 − 2τ1 = Kτ1) ⇒ k ≥ K. (32)

Observe also that, by the definition of matrix product, we have, for all N ∈ N,

∑
(i2,...,ik,j)∈{1,...,N}k

ai1i2ai2i3 ...aikj =
N∑

j=1

(Ak)i1j ≤ |AN |. (33)

From (31), (32) and (33), we get, for all continuously differentiable functions ep

and ei: B(ε5) → R2 satisfying (5) and (15), for all ξ# ∈ BC(ε̄), we have

|ξi1(x, τ2)| ≤ c(2τ1)|ξ#|C0(0,L)

∑
k≥K

|Ak|

which gives with (23) |ξi1(x, τ2)| ≤ ν|ξ#|C0(0,L), for all i1 in {1, 2} and for all x in
[0, L]. This is (25). This concludes the proof of Lemma 4.2.

4.3. Estimation of |∂xξ(., t)|C0(0,L). Let η: [0, L] × [0, τ2] → R2 be defined by
η = Λ̄∂xξ where ξ ∈ C1([0, L]× [0, τ2]; R2) is defined by ξ# ∈ BC(ε̄), the PDE (1),
the boundary conditions (3), and the initial condition (7).

Similarly let us define η1: [0, L]× [0, τ2] → R and η2: [0, L]× [0, τ2] → R defined
respectively by η = (η1, η2)T .

Differentiating (1) with respect to x and denoting Λ̄ = Λ(0), we get

∂tη + Λ̄Λ(ξ)Λ̄−1∂xη = −Λ̄(∇Λ(ξ)∂xξ)∂xξ , (34)

along the characteristic curves.
Moreover, differentiating (3) and using (1), it gives
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(
(−Λ(ξ)Λ̄−1η)1(L, t)
(−Λ(ξ)Λ̄−1η)2(0, t)

)
= (∇g +∇ep)

(
ξ1(0, t)
ξ2(L, t)

)(
(−Λ(ξ)Λ̄−1η)1(0, t)
(−Λ(ξ)Λ̄−1η)2(L, t)

)
+∇ei

( ∫ t

0
ξ1(0, s) ds∫ t

0
ξ2(L, s) ds

)(
ξ1(0, t)
ξ2(L, t)

)
.

Note that (34) is a system of conservation laws perturbed by non-homogeneous
terms (as those considered in [21]), whose boundary conditions are given by the
previous equation. A development similar to ξ can be used as for ξi along the
trajectories of (34). We obtain the

Lemma 4.6. There exist ε6 > 0, E6 > 0, and 0 < ν′ < 1 such that, for all
0 < E < E6, for all continuously differentiable functions ep and ei: B(ε6) → R2

satisfying (5) and (15), for all ξ# ∈ BC(ε6), we have

|η(., τ2)|C0(0,L) ≤ ν′|η(., 0)|C1(0,L). (35)

4.4. Proof of Theorem 2.2. In this section, we conclude the proof of Theorem
2.2. Let ν′′ = min{ν, ν′}, ε7 = min{ε5, ε6} and E7 = min{E5, E6}. We combine
(25) and (35) to get for all 0 < E < E7, for all continuously differentiable functions
ep and ei: B(ε7) → R2 satisfying (5) and (15), for all ξ# ∈ BC(ε7),

|ξ(., τ2)|C1(0,L) ≤ ν′′|ξ#|C1(0,L) .

This estimate allows a repeated application of Lemma 4.1 on intervals of length τ2

to give, for all 0 < E < E7, for all continuously differentiable functions ep and ei:
B(ε7) → R2 satisfying (5) and (15), for all ξ# ∈ BC(ε7), the existence of a unique
solution of (1), (3), and (7) over any interval [0, Nτ2] with N ∈ N \ {0} and

|ξ(., Nτ2)|C1(0,L) ≤ ν′′N |ξ#|C1(0,L) .

Thus, by letting C = max(c(τ2), 1)e− ln ν′′
and µ = − ln(ν′′)

τ2
, we get (8). This

concludes the proof of Theorem 2.2.

5. Conclusion. The aim of this paper is to state a sufficient condition for the
stability of systems of conservation laws. We consider the case of small (proportional
or integral) perturbations in the boundary conditions. To prove this theoretical
result we use the Riemann coordinates and we study the effect of the perturbations
on the characteristic curves. We need to assume that the perturbations are small
in C1-norm.

Then we apply this result to the dynamic behavior of a pipe filled with water. The
potential application is the hydropower installations to generate electricity. For such
applications it is important to avoid the waterhammer effect and thus to control the
C1-norm of the solutions. Our damping condition allows us to design a controller
so that the system in closed-loop is locally exponential stable with a robustness
issue with respect to small boundary errors. Since the boundary conditions allow
us to define the stabilizing controller it appears that small errors in the actuator
may be considered. Also a small integral action to avoid possible offset may be also
added. For this hydraulic application the boundary condition consist of a constant
piezometric line at one end, and of a valve at the other end. The case of hydraulic
equipment with a surge tank asks to consider more complicate boundary conditions
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and two coupled systems (one for the gallery, and an other one for the penstock).
This study needs further investigation.

An other illustration of this theoretical result is [11]. Consider in particular Sec-
tions IV.D and V.C where a small integral action has been added on the controller.
It is noted in [11] that a small integral action cancels the offset on experiments, and
that this integral action doesnot destabilize the system. Our main result Theorem
2.2 can be seen as a proof that the controller of [11] is robust with respect to such
integral actions.

Acknowledgments. The author is grateful to the reviewer for helpful comments.
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works of scalar conservation laws, Networks and Heterogeneous Media, 2 (2007), 749–757.

[3] A. Bressan, “Hyperbolic Systems of Conservation Laws. The One-Dimensional Cauchy Prob-
lem,” Oxford University Press, 2000.

[4] M. H. Chaudhry and L. W. Mays, “Computer Modeling of Free-Surface and Pressurized

Flows,” Kluwer Academic Publisher, Dordrecht, Boston, London, 1994.
[5] J. M. C. Clark and R. B. Vinter, A differential dynamic games approach to flow control,

Proceedings of the 42nd IEEE Conf. on Decision and Control, Maui, Hawai, 2003, 1228–1231.

[6] J.-M. Coron, “Control and Nonlinearity,” Mathematical Surveys and Monographs, 136, Amer-
ican Mathematical Society, Providence, RI, 2007.
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