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Abstract. Open channel flow is traditionally modeled as an hyperbolic sys-
tem of conservation laws, which is an infinite dimensional system with complex
dynamics. We consider in this paper an open channel represented by the Saint-
Venant equations linearized around a non uniform steady flow regime. We use
a frequency domain approach to fully characterize the open channel flow dy-
namics. The use of the Laplace transform enables us to derive the distributed
transfer matrix, linking the boundary inputs to the state of the system. The
poles of the system are then computed analytically, and each transfer function
is decomposed in a series of eigenfunctions, where the influence of space and

time variables can be decoupled. As a result, we can express the time-domain
response of the whole canal pool to boundary inputs in terms of discharges.
This study is first done in the uniform case, and finally extended to the non
uniform case. The solution is studied and illustrated on two different canal
pools.

1. Introduction. The Saint-Venant equations are used by hydraulic engineers to
represent open channel dynamics, either for design purposes, or simulation purposes,
or even control purposes [5]. These equations have been largely studied for practical
implementation in softwares using specific numerical schemes. It is well-known
that open channel dynamics are influenced by several factors, among which the
Froude number, the channel slope, the geometry, the friction coefficient and the
boundary conditions. However, their intimate behavior still remains unclear from
the literature. As an example, there is still a debate among researchers about the
dynamic properties of an open channel: How to characterize the dynamics of an
open channel? How does the downstream boundary condition influence the pool
dynamics? How to define the time delay of an open channel?

Some of these questions were addressed by the ASCE Task Committee on Canal
Automation Algorithms (see [17] and references therein), by using a hydraulic based
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approach with time-domain simulations. The paper [17] and related studies pro-
vided a dimensionless expression of Saint-Venant equations, and time domain sim-
ulations were performed in order to evaluate the effect of downstream boundary
condition on the flow routing. However, these studies did not end with general
results for the characterization of open channel flow.

We propose to tackle these questions by using a frequency domain approach,
which gives a better insight into dynamical systems’ properties than the time domain
approach. We follow in this way the approach of automatic control engineers,
but we will also illustrate the analysis in the time domain, in order to show the
link between the two methods. Both methods are strongly related, but this is
unfortunately too rarely pointed out (see e.g. [7] for frequency domain analysis
of Saint-Venant equations). Interesting results were obtained by Dooge et al. [6]
concerning the dynamic analysis of linearized Saint-Venant equations for a semi-
infinite channel around uniform flow, also using a frequency domain approach. Tsai
[20] provided a detailed analysis of Saint-Venant equations and simplified models
for flow routing accounting for backwater effects. However, the developed criteria
uses a local characterization of the flow, and does not provide clues for developing
an integrated criteria based on these results. As we will show in the sequel, the
dynamics of a reach are strongly linked to the poles of the system’s transfer matrix,
which are themselves linked to the reach characteristics (length, geometry, etc.).
Therefore, our results show that an integrated criteria is necessary to characterize
the reach dynamics.

Moussa and Bocquillon [13] and [14] have used a frequency analysis of the lin-
earized Saint-Venant equations to provide a criteria for the choice of a simplified
model. They considered the relative weight of different terms in the solutions of the
equations in order to justify the choice of simplified models. This approach does
not characterize the flow dynamics per se, but is based on a chosen threshold to
separate the different models.

Ridolfi et al. [15] computed the Green’s function of the linearized Saint-Venant
equations, which gives interesting results in terms of characterization of the flow.
However, this does not provide a characterization of a given pool.

Thirriot and Benayada [19] used the Laplace transform to derive an approximate
solution in the uniform case, but they could not compute the poles in an explicit
way because of the boundary condition they used. With a downstream boundary
condition in terms of discharge, we have shown that the poles can be computed
explicitly (see [10]).

The approach developed in this paper is based on the poles of the system, which
enable to fully characterize its dynamic behavior. The study is focused on the
linearized equations, which capture the dynamics around stationary regimes. We
provide a complete characterization in the uniform flow case, where closed-form
solutions are available, and extend the results to the non uniform case using a
numerical approach [10]. We show that the non uniform flow case is mathematically
speaking very close to the uniform flow case, even if closed-form solutions are no
longer available. This opens the way to a proper classification of open channel flow
characteristics, which could be based on the modal decomposition proposed in this
paper.

The outline of the paper is as follows: after this introduction, Section 2 presents
the Saint-Venant equations of open channel flow and the linearized equations around
non uniform flow. Section 3 introduces the frequency domain approach for the
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linearized model around a uniform steady flow, with a complete characterization
of the transfer matrix in terms of poles, delays and modal factors. These results
are then extended to the linearized equations around a non uniform steady flow in
Section 4, using a numerical approach.

2. Modeling of open channel flow.

2.1. Saint-Venant equations. The Saint-Venant equations are two coupled par-
tial derivative equations involving the discharge Q(x, t) (m3/s) and the water depth
Y (x, t) (m). The first one is the mass conservation equation:

∂A(x, t)

∂t
+
∂Q(x, t)

∂x
= 0 (1)

and the second one is the momentum conservation equation:

∂Q(x, t)

∂t
+

∂

∂x

[Q2(x, t)

A(x, t)

]

+ gA(x, t)
(∂Y (x, t)

∂x
+ Sf (x, t) − Sb(x)

)

= 0 (2)

where Sb(x) (m/m) is the bottom slope, A(x, t) (m2) is the wetted area, and g (m/s2)
is the gravitational acceleration. The friction slope Sf (x, t) (m/m) is modeled with
the classical Manning formula [2]:

Sf (x, t) =
Q2(x, t)n2

A2(x, t)R4/3(x, t)
(3)

with n the Manning coefficient (sm−1/3) and R(x, t) the hydraulic radius (m), de-
fined by R(x, t) = A(x, t)/P (x, t), where P (x, t) is the wetted perimeter (m) (see
Fig. 1).

Figure 1. Section of an open channel. Definition of the wetted
perimeter P , wetted area A and top width T .

To complete the equations, we need to introduce initial and boundary conditions.
The initial condition is given in terms of (Q(x, 0), Y (x, 0)), for all x ∈ [0, L], with
L the length of the channel.
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2.2. Steady flow solutions. The steady flow solutions of Saint-Venant equations
are obtained by replacing ∂

∂t by 0 in Eqs. (1) and (2). Then, denoting the variables
corresponding to the equilibrium regime with a subscript zero (Q0(x), Y0(x), etc.),
the Saint-Venant equations become:

dQ0(x)

dx
= 0 (4a)

dY0(x)

dx
=
Sb − Sf0(x)

1 − F0(x)2
. (4b)

F0 is the Froude number F0(x) = V0(x)
C0(x)

with C0(x) =
√

gA0(x)
T0(x) the gravitational

wave celerity (m/s), V0(x) = Q0(x)
A0(x) the flow velocity (m/s).

These two equations define an equilibrium regime given by Q0(x) = Q0 and
Y0(x) solution of the ordinary differential equation (4b), for a boundary condition
in terms of downstream elevation.

When the right-hand side of equation (4b) is equal to zero, the water depth
is constant along the channel. In this case, given Q0(x) = Q0, the equilibrium
solution Y0(x) = Yn (also called normal depth) can be deduced by solving the
following algebraic equation:

Sf (Q0, Yn) = Sb. (5)

This specific solution corresponds to the uniform flow regime. Equation (5) is
usually solved numerically with a fixed-point or Newton-Raphson method.

In some cases, the uniform depth can be computed analytically. For large rect-
angular channels, the hydraulic radius R can be approximated by the water depth
Y , and the Manning equation (3) reduces to:

Sf =
Q2n2

T 2Y 10/3
. (6)

Combining equations (5) and (6) give the uniform depth Yn corresponding to a
discharge Q0 in the large rectangular case:

Yn =
(Q2

0n
2

T 2Sb

)3/10

. (7)

The uniform flow regime will be specifically developed as an example, since this
regime leads to closed-form analytical solutions for the transfer matrix. However,
we will also show that this specific flow regime is not qualitatively different from
realistic non uniform flow regimes.

The article will be illustrated on two trapezoidal prismatic channels, with differ-
ent characteristics (see Fig. 2).

Figure 2. Section of a trapezoidal canal

The two example canals are presented in the following.
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Example 1. The channel characteristics are given in table 1, where L is the channel
length (m), m the bank slope, B the bed width (m), Sb the bed slope (m/m), n
the Manning coefficient (m−1/3s), Yn the normal depth (m) corresponding to the
discharge Q0 (m3s−1). Canal 1 is a short oscillating canal, and canal 2 is a long
delayed canal.

Table 1. Parameters for the two canals

L m B Sb n Yn Q0

Canal 1 3000 1.5 7 0.0001 0.02 2.12 14
Canal 2 6000 1.5 8 0.0008 0.02 2.92 80

Keeping a constant discharge, we compare the backwater curves obtained for
different downstream boundary conditions Y0(L) = Yn × [0.8, 1, 1.2] (see figure 3).
We have two types of backwater curves: if Y0(L) > Yn, then the flow is decelerating
along x, this is a so-called ‘M1’ curve (see e.g. [18]), and if Y0(L) < Yn, then the
flow is accelerating along x, this is a ‘M2’ curve. The M1 curves are the most widely
observed in practice, since they may occur upstream of any kind of obstacle in the
flow (hydraulic structure, gate, weir, bridge, etc.). The M2 type are observed when
there is a sudden drop in the canal or a steepest slope downstream.
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Figure 3. Backwater curves for canal 1 and 2, and various down-
stream boundary conditions Y0(L)

2.3. Linearized equations. The Saint-Venant equations are linearized around an
equilibrium steady state (Q0(x), Y0(x)). The linearized equations are obtained by
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putting Q(x, t) = Q0(x) + q(x, t), and A(x, t) = A0(x) + a(x, t) into equations (1)
and (2) and expanding in series.

After collecting terms in q, a, ∂q
∂x and ∂a

∂x , the linearized equations are obtained
as follows:

∂a

∂t
+
∂q

∂x
= 0 (8a)

∂q

∂t
+ (α− β)

∂q

∂x
+ αβ

∂a

∂x
+ δq − γa = 0 (8b)

with

α = C0 + V0

β = C0 − V0

γ =
C2

0

T0

dT0

dx
+ g
[

(1 + κ)Sb − (1 + κ− (κ− 2)F 2
0 )
dY0

dx

]

δ =
2g

V0

(

Sb −
dY0

dx

)

κ =
7

3
−

4A0

3T0P0

∂P0

∂Y

The solution in terms of variations of water level y(x, t) can readily be deduced
by dividing by T0(x) the solution obtained in terms of variations of wetted area
a(x, t) = T0(x)y(x, t).

To facilitate the mathematical analysis, we rewrite the linearized Saint-Venant
equations as follows:

∂ξ

∂t
+ A(x)

∂ξ

∂x
+ B(x)ξ = 0 (9)

where ξ(x, t) = (a(x, t), q(x, t))T : [0, L] × [0,+∞) → Ω ∈ R2 is the state of the

system and A(x) =

(

0 1
α(x)β(x) α(x) − β(x)

)

, B(x) =

(

0 0
−γ(x) δ(x)

)

.

The initial condition and the boundary conditions are given by:

q(x, 0) = q0(x), y(x, 0) = y0(x) (10a)

q(0, t) = u1(t), q(L, t) = u2(t). (10b)

We also assume that the water level deviations are measured at each boundary:
y(0, t) and y(L, t).

3. Uniform flow case. In the uniform flow case, the parameters α, β, γ and δ are
constant and given by:

α = C0 + V0

β = C0 − V0

γ = g(1 + κ)Sb

δ =
2gSb
V0

,

with κ = 7
3 − 4A0

3T0P0

∂P0

∂Y .
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3.1. Derivation of the transfer matrix. We will now derive the transfer matrix
for the linearized Saint-Venant equations, taking q(0, t) and q(L, t) as boundary
inputs, and the water depth deviations y(x, t) and discharge deviations q(x, t) as
outputs.

We apply Laplace transform to the linear partial differential equations (9), using

the classical relation d̂f
dt = sf̂(s) − f(0) with s the Laplace variable, which yields:

∂ξ̂(x, s)

∂x
= A(s)ξ̂(x, s) + Bξ(x, 0) (11)

with A(s) = −A−1(sI + B) and B = A−1, i.e.:

A(s) =
1

αβ

(

(α− β)s+ γ −s− δ
−αβs 0

)

B =
1

αβ

(

(β − α) 1
αβ 0

)

.

Let us diagonalize matrix A(s):

A(s) = X (s)−1D(s)X (s) (12)

with

X (s) =

(

s
λ2(s) 1
s

λ1(s) 1

)

(13a)

D(s) =

(

λ1(s) 0
0 λ2(s)

)

(13b)

X (s)−1 =
λ1(s)λ2(s)

s(λ1(s) − λ2(s))

(

1 −1
− s
λ1(s)

s
λ2(s)

)

, (13c)

and where λ1(s) and λ2(s) are the eigenvalues of A(s), solutions of the equation:

det(λI −A(s)) = 0.

This equation is a second order polynomial equation in λ:

αβλ2 − [(α− β)s+ γ]λ− s(s+ δ) = 0, (14)

which has in general two solutions:

λ1(s) =
(α− β)s+ γ −

√

d(s)

2αβ
(15a)

λ2(s) =
(α− β)s+ γ +

√

d(s)

2αβ
(15b)

with d(s) = (α+ β)2s2 + 2[(α− β)γ + 2αβδ]s+ γ2.

3.1.1. State-transition matrix. Once matrix A(s) is diagonalized, the differential
equation (11) can be solved analytically:

ξ̂(x, s) = Φ(x, s)ξ̂(0, s) + ξ̄0(x, s) (16)

with

Φ(x, s) = X (s)−1eD(s)xX (s) (17)

and ξ̄0(x, s) = Φ(x, s)
∫ x

0
Φ(v, s)−1Bξ(v, 0)dv.
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The elements of matrix Φ(x, s) are given by:

φ11(x, s) =
λ1(s)e

λ1(s)x − λ2(s)e
λ2(s)x

λ1(s) − λ2(s)
(18a)

φ12(x, s) =
λ1(s)λ2(s)(e

λ1(s)x − eλ2(s)x)

s(λ1(s) − λ2(s))
(18b)

φ21(x, s) =
s(eλ2(s)x − eλ1(s)x)

λ1(s) − λ2(s)
(18c)

φ22(x, s) =
λ1(s)e

λ2(s)x − λ2(s)e
λ1(s)x

λ1(s) − λ2(s)
. (18d)

Φ(x, s) is the state-transition matrix for the differential equation (11). For sim-
plicity, we assume zero initial conditions for the following developments, therefore
ξ̄0(x, s) = 0.

3.1.2. Boundary conditions. Specifying the boundary conditions leads to express
the state as a function of the boundary discharges. To this end, we use Eq. (16)
for x = 0, and get the equality:

T0ŷ(0, s) = −
φ22(L, s)

φ21(L, s)
q̂(0, s) +

1

φ21(L, s)
q̂(L, s). (19)

Once again, this is valid provided φ21(L, s) is not equal to zero. The values of s
such that φ21(L, s) = 0 correspond to the poles of the Saint-Venant transfer matrix.

3.1.3. Poles. The poles are obtained as the solutions of:

φ21(L, s) = 0, (20)

where φ21(x, s) is given by Eq. (18c).

If s0 is such that λ1(s0) = λ2(s0), we have:

φ21(L, s0) = −s0Le
λ1(s0)L

therefore s0 is not a pole.
When λ1(s) 6= λ2(s), equation (20) is equivalent to

s(eλ2(s)L − eλ1(s)L) = 0.

There is a pole in zero p0 = 0, which means that the canal pool acts as an
integrator and the other poles verify the equation:

λ1(s) − λ2(s) =
2jkπ

L
,

with k ∈ N∗. The case k = 0 leads to λ1(s) = λ2(s), therefore s = s0, which is not
a pole. Finally, the poles are solutions of the second order equation:

d(s) = −
4α2β2k2π2

L2
,

with k ∈ N∗.
The poles (p±k)k∈N∗ are then given by:

p±k = −
(α− β)γ + 2αβδ

(α + β)2
±

2α2β2

(α+ β)2

√

∆(k) (21)

with ∆(k) = (α+β)2

α2β2

[

(αδ−γ)(βδ+γ)
αβ(α+β)2 − k2π2

L2

]

.
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Let km ∈ N∗ be the greatest integer such that ∆(km) ≥ 0. Then the poles
obtained for 0 < k ≤ km are negative real, and those obtained for k > km are

complex conjugate, with a constant real part equal to − (α−β)γ+2αβδ
(α+β)2 , which means

that they are located on a vertical line in the left half plane. Canal pools with a
dominant oscillating behavior correspond to ∆(1) < 0.

Example 2 (Poles of the example canals). The poles of the canals 1 and 2 are
depicted in Fig. 4. Canal 1 has an oscillating behavior, all its poles being complex
conjugate. Canal 2 has two negative real poles for km = 1, and the other ones are
complex conjugate. The complex poles of canal 2 have a larger negative real part
than the ones of canal 1. It should therefore exhibit a damped behavior compared
to the canal 1.
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Figure 4. Poles of canals 1 and 2 in the complex plane

3.1.4. Input-output transfer matrix. In the Laplace domain, P (s) = (pij(s)) denotes
the 2× 2 transfer matrix relating the inputs to the outputs. Using the algebraic re-
lation (19) and the state-transition matrix (18), we obtain the input-output transfer
matrix:

(

ŷ(0, s)
ŷ(L, s)

)

=

(

p11(s) p12(s)
p21(s) p22(s)

)(

q̂(0, s)
q̂(L, s)

)

(22)

with p11(s) = − φ22(L,s)
T0φ21(L,s) , p12(s) = 1

T0φ21(L,s)
, p21(s) = φ12(L,s)

T0
− φ11(L,s)φ22(L,s)

T0φ21(L,s)

and p22(s) = φ11(L,s)
T0φ21(L,s)

.
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This leads to the final expressions:

p11(s) =
λ2(s)e

λ1(s)L − λ1(s)e
λ2(s)L

T0s
(

eλ2(s)L − eλ1(s)L
) (23a)

p12(s) =
λ1(s) − λ2(s)

T0s
(

eλ2(s)L − eλ1(s)L
) (23b)

p21(s) =
(λ2(s) − λ1(s))e

(λ1(s)+λ2(s))L

T0s
(

eλ2(s)L − eλ1(s)L
) (23c)

p22(s) =
λ1(s)e

λ1(s)L − λ2(s)e
λ2(s)L

T0s
(

eλ2(s)L − eλ1(s)L
) . (23d)

This result is similar to the expressions obtained by several authors [3, 4, 16, 1].
We depict in the following example the transfer functions p21(s) and p22(s) which

are useful in a context of automatic control of open channels.

Example 3 (Bode plots of the input output transfer matrix). Bode plots of transfer
functions p21(s) and p22(s) for example canals 1 and 2 are depicted in Figs. 5 and 6.
We observe that the low frequency behavior of the system is dominated by the
integrator, that there is a delay in transfer function p21(s). In high frequencies, the
oscillating modes of canal 1 are clearly visible, while canal 2 is damped and tends
towards a constant gain.
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Figure 5. Bode plots of transfer functions p21(s) and p22(s) for
canal 1

3.1.5. Distributed transfer matrix. After elementary manipulations, we obtain the
distributed transfer matrix, relating the water depth ŷ(x, s) and the discharge q̂(x, s)
at any point x in the canal pool to the upstream and downstream discharges:

(

ŷ(x, s)
q̂(x, s)

)

= G(x, s)

(

q̂(0, s)
q̂(L, s)

)

(24)
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Figure 6. Bode plots of transfer functions p21(s) and p22(s) for
canal 2

with

g11(x, s) =
λ2(s)e

λ2(s)x+λ1(s)L − λ1(s)e
λ1(s)x+λ2(s)L

T0s(eλ2(s)L − eλ1(s)L)
(25a)

g12(x, s) =
λ1(s)e

λ1(s)x − λ2(s)e
λ2(s)x

T0s(eλ2(s)L − eλ1(s)L)
(25b)

g21(x, s) =
eλ1(s)x+λ2(s)L − eλ2(s)x+λ1(s)L

eλ2(s)L − eλ1(s)L
(25c)

g22(x, s) =
eλ2(s)x − eλ1(s)x

eλ2(s)L − eλ1(s)L
. (25d)

The input-output transfer matrix P (s) can be obtained from the distributed
transfer matrix G(x, s) as follows: p11(s) = g11(0, s), p12(s) = g11(L, s), p21(s) =
g12(0, s) and p22(s) = g12(L, s).

Example 4 (Spatial Bode plot of the distributed transfer matrix). The spatial Bode
plots of the distributed transfer function g11(x, s) are depicted in Figs. 7 and 8 for
example canals 1 and 2. The amplitude of the transfer functions is depicted in dB
vs a log scale for the frequency.

In the spatial Bode plot of canal 1, the integrator is clearly visible in low fre-
quencies. For higher frequencies, the oscillating modes can be seen with the corre-
sponding nodes and anti-nodes of oscillations along the channel.

The canal 2 is much more damped than canal 1, but there are oscillating modes
at the downstream end of the canal. This means that the water level response to
the upstream discharge may exhibit local oscillations close to the downstream end
of the canal. The surprising thing here is that these oscillations do not appear in
the input-output transfer functions (see Fig. 6).
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Figure 7. Spatial Bode plots of transfer function g11(x, s) for
canal 1

Figure 8. Spatial Bode plots of transfer function g11(x, s) for
canal 2

3.2. Properties of the transfer matrix.

3.2.1. Delays.
Input-Output Transfer Matrix. One may show that the input-output Saint-Venant
transfer matrix includes pure time delays. Transfer function p21(s) includes a pure
delay e−τ1s, and p12(s) includes a pure delay e−τ2s. The transfer functions p11(s)
and p22(s) have no delay.
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We finally get the following factorization of all elements of the transfer matrix:

p11(s) = p̃11(s)

p12(s) = p̃12(s)e
−τ2s

p21(s) = p̃21(s)e
−τ1s

p22(s) = p̃22(s)

with

p̃12(s) =
(λ1(s) − λ2(s))

T0s
(

1 − e(λ1(s)−λ2(s))L
)eτ2s−λ2(s)L

p̃21(s) =
(λ2(s) − λ1(s))

T0s
(

1 − e(λ1(s)−λ2(s))L
)eτ1s+λ1(s)L.

Let us note that when |s| → ∞, we have

λ1(s)L = −τ1s+O(1)

λ2(s)L = τ2s+O(1).

This explains why the terms eτ1s+λ1(s)L and eτ2s−λ2(s)L are delay free, since a delay
can be pointed out in high frequencies by its effect on the phase of the transfer
function.

This result shows that the Saint-Venant transfer matrix includes delays only
linked to the waves propagations, which correspond to the delays obtained by the
characteristics.
Distributed Transfer Matrix. The delays are obtained directly as e−

x
α
s for the dis-

tributed transfer functions g11(x, s) and g21(x, s) and e−
L−x

β
s for the distributed

transfer functions g12(x, s) and g22(x, s). The transfer functions can therefore be
factorized as

g11(x, s) = g̃11(x, s)e
− x

α
s

g12(x, s) = g̃12(x, s)e
−L−x

β
s

g21(x, s) = g̃21(x, s)e
− x

α
s

g22(x, s) = g̃22(x, s)e
−L−x

β
s

where the delay-free parts g̃ij(x, s) are given by:

g̃11(x, s) =
λ2(s)e

(λ1(s)−λ2(s))(L−x) − λ1(s)

T0s(1 − e(λ1(s)−λ2(s))L)
e

(

s
α

+λ1(s)
)

x

g̃12(x, s) =
λ1(s)e

(λ1(s)−λ2(s))x − λ2(s)

T0s(1 − e(λ1(s)−λ2(s))L)
e

(

s
β
−λ2(s)

)

(L−x)

g̃21(x, s) =
1 − e(λ1(s)−λ2(s))(L−x)

1 − e(λ1(s)−λ2(s))L
e

(

s
α

+λ1(s)
)

x

g̃22(x, s) =
1 − e(λ1(s)−λ2(s))x

1 − e(λ1(s)−λ2(s))L
e

(

s
β
−λ2(s)

)

(L−x).

3.2.2. Asymptotic estimate of the poles. The following proposition proved in [11]
provides an asymptotic estimate of the poles for high frequencies.
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Proposition 1. For k ∈ N, k ≫ kh = L
π(α+β)

√

(αδ−γ)(βδ+γ)
αβ the poles of the

Saint-Venant transfer matrix (22) can be approximated by:

p±k ≈ −
(r1 + r2)L

τ1 + τ2
±

2jkπ

τ1 + τ2
(26)

with r1 = αδ−γ
α(α+β) , r2 = βδ+γ

β(α+β) and τ1 = L
α the delay for downstream propagation,

τ2 = L
β , the delay for upstream propagation.

One can show that this high frequency approximation leads to a relative error
smaller than 10% when k > 5.7 × kh and smaller than 5% when k > 10.7 × kh.

This proposition shows that for high frequencies the poles of Saint-Venant trans-
fer matrix are close to the ones of the following damped wave equation:

( ∂

∂x
+ r1 +

1

α

∂

∂t

)( ∂

∂x
− r2 −

1

β

∂

∂t

)

q = 0

with boundary conditions q(0, t) and q(L, t). Using Laplace transform, this equation
reduces to an ODE in x, with eigenvalues equal to −r1 − s

α and r2 + s
β . The

obtained transfer function has for denominator 1− e−(r1+r2)L−(τ1+τ2)s, whose roots
coincide with the poles approximation (26). This shows that the oscillating modes
correspond to the interaction of two gravity waves, one traveling downstream at
speed α = V0 +C0 with attenuation factor r1, and one traveling upstream at speed
β = C0 − V0 with attenuation factor r2.

3.2.3. Modal decompositions.
Rational Series Expansion. For simplicity, we assume in the following that the poles
have single multiplicity, i.e. that ∆(k) 6= 0, but the solution can easily be extended
to the case where ∆(k) = 0. Then, the Cauchy residues theorem implies that each
transfer function gij(x, s) can be decomposed as an infinite sum:

gij(x, s) = bij(x) +
a
(0)
ij (x)

s
+

∞
∑

k=−∞,k 6=0

a
(k)
ij (x)s

pk(s− pk)
(27)

with

a
(k)
ij (x) = lim

s→pk

(s− pk)gij(x, s) (28)

and

bij(x) =
∂

∂s
[sgij(x, s)]|s=0. (29)

The coefficient a
(k)
ij (x) is the residue of transfer function gij(x, s) at the pole pk.

Proof. See Appendix A.

The residues can be computed analytically with Eq. (28), leading to, for k = 0:

a
(0)
11 (x) =

γ

αβT0

e
γx
αβ

e
γL
αβ − 1

(30a)

a
(0)
12 (x) = −a

(0)
11 (x) (30b)

a
(0)
21 (x) = 0 (30c)

a
(0)
22 (x) = 0 (30d)
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and, for k 6= 0:

a
(k)
11 (x) = −sgn(k)

2k2π2e
((α−β)pk+γ)

2αβ
x

T0L3pk
√

∆(k)
×

[

cos
(kπx

L

)

+
((α − β)pk + γ)L

2αβkπ
sin
(kπx

L

)]

(31a)

a
(k)
12 (x) = sgn(k)(−1)k

2k2π2e
((α−β)pk+γ)

2αβ
(x−L)

T0L3pk
√

∆(k)
×

[

cos
(kπx

L

)

+
((α − β)pk + γ)L

2αβkπ
sin
(kπx

L

)]

(31b)

a
(k)
21 (x) = −sgn(k)

2kπe
((α−β)pk+γ)

2αβ
x

L2pk
√

∆(k)
sin
(kπx

L

)

(31c)

a
(k)
22 (x) = sgn(k)(−1)k

2kπe
((α−β)pk+γ)

2αβ
(x−L)

L2pk
√

∆(k)
sin
(kπx

L

)

, (31d)

and the bij(x) are given by:

b11(x) =
eψ

x
L

T0(eψ − 1)2

[α− β

αβ

(

eψ(1 + ψ(
x

L
− 1)) − 1 − ψ

x

L

)

+
δ

γ

(

eψ(1− x
L

)(eψ − 1) + eψ(1 + ψ(
x

L
− 2)) − 1 − ψ

x

L

)]

(32a)

b12(x) =
1

T0(eψ − 1)2

[α− β

αβ
eψ

x
L

(

ψeψ + (1 − eψ)(1 + ψ
x

L
)
)

+
δ

γ

(

(1 + eψ)ψeψ
x
L + (1 − eψ)

(

1 + eψ
x
L (1 + ψ

x

L
)
)

)]

(32b)

b21(x) =
eψ − eψ( x

L
−1)

eψ − 1
(32c)

b22(x) =
eψ

x
L − 1

eψ − 1
, (32d)

with ψ = γL
αβ .

The modal factors a
(k)
ij (x) are combination of sine and cosine functions of kπx

L ,
modified by a multiplicative exponential term which depends on the difference α−β
and the coefficient γ. Coefficients γ and δ are directly linked to the slope of the
open channel. The larger the slope, the larger their influence on the modal factors.
Rational Decomposition of the Delay-free Part. We have shown that the transfer
functions gij(x, s) could be factorized as a delay times a delay-free part. Therefore,
one can find an approximation of gij(x, s) by applying the Cauchy residues theorem
on transfer functions g̃ij(x, s), and then adding the delay. Finally, each transfer
function g̃ij(x, s) can be decomposed as:

g̃ij(x, s) = b̃ij(x) +
ã
(0)
ij (x)

s
+

∞
∑

k=−∞,k 6=0

ã
(k)
ij (x)s

pk(s− pk)
(33)

with

ã
(k)
ij (x) = lim

s→pk

(s− pk)g̃ij(x, s) (34)
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and

b̃ij(x) =
∂

∂s
[sg̃ij(x, s)]|s=0. (35)

The coefficient ã
(k)
ij (x) is the residue of transfer function g̃ij(x, s) at the pole pk.

Proof. The proof can be easily adapted from the one in Appendix A.

The residues can be computed analytically with Eq. (34), leading to, for k = 0

ã
(0)
ij (x) = a

(0)
ij (x) (36)

and, for k 6= 0:

ã
(k)
11 (x) = e

x
α
pka

(k)
11 (x) (37a)

ã
(k)
12 (x) = e

L−x
β
pka

(k)
12 (x) (37b)

ã
(k)
21 (x) = e

x
α
pka

(k)
21 (x) (37c)

ã
(k)
22 (x) = e

L−x
β
pka

(k)
22 (x), (37d)

and the b̃ij(x) are given by:

b̃11(x) = b11(x) +
x

α
a
(0)
11 (x) (38a)

b̃12(x) = b12(x) +
(L− x)

β
a
(0)
12 (x) (38b)

b̃21(x) = b21(x) (38c)

b̃22(x) = b22(x). (38d)

Example 5 (Modal factors of the example canals). The functions a
(k)
11 (x) of the

distributed modal decomposition of g11(x, s) of the example canals 1 and 2 are
depicted in Fig. 9 and 10.

For canal 1, which is flat and has oscillating modes, the modes of oscillation
are clearly visible. The integrator in this case is slightly modified by the slope
and the friction. We clearly see the oscillating modes and the associated nodes
and anti-nodes of oscillation. A node corresponds to a point where the traveling
waves interfere negatively with each other. An anti-node corresponds to a positive
interference: the perturbations are in phase and act additively.

For canal 2, which is steep, we see that the dominant term is the integrator,
which is greatly modified by the slope. The poles p±1 are negative real, therefore
not oscillating, and the ones obtained for |k| > 1 are oscillating. The corresponding
modal factors are strongly modified by the slope, compared to the ones of the
example canal 1.

Figure 11 depicts the value of coefficients b11(x) and b12(x) of the distributed
modal decomposition of the transfer functions g11(x, s) and g12(x, s) for canals 1
and 2.

The term bij(x) corresponds to a direct term in transfer function gij(x, s). We
see that this term varies a lot with x for both canals. It even changes sign, which
is a surprising result: this means that the water level change resulting from a step
discharge input contains a direct negative term when x is larger than a certain
value.

The decomposition (27) can be used to obtain rational approximations of open
channel flow.
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4. Non uniform flow case. We now consider the general case of non uniform
flow, where analytical results are no longer possible. We first show that the compu-
tation of the transfer matrix is equivalent to solving a specific ordinary differential
equation parameterized by the complex Laplace variable s. The application of clas-
sical numerical integration methods, such as Runge-Kutta, faces a main difficulty.
Due to structural properties of the considered differential equation, the classical
compromise between precision of the approximate solution and integration step size
necessarily leads to a large computational time for each value of s. The frequency
domain of interest goes from the low frequency behavior of the canal (typically
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Figure 11. Functions b11(x) and b12(x) of the distributed modal
decomposition for canals 1 and 2

ωr/100 with ωr the resonant frequency ωr = 2π/(τ1 + τ2) with τ1 = L/(V0 + C0)
and τ2 = L/(C0−V0) respectively the downstream and upstream propagation time-
delays) to the high frequency behavior (typically 10 times the resonant frequency).
Since it is important to have a good representation in between these extreme fre-
quencies (and especially to correctly reproduce the resonant modes), it is necessary
to compute a large number of frequency points (typically 500 points) [10]. To this
end, it is therefore essential to have an efficient numerical method to compute the
frequency response.

4.1. Computation of the transfer matrix. In the non uniform flow case, it is
no longer possible to diagonalize the system. Indeed, applying Laplace transform
and after elementary manipulations, we obtain the following differential equation:

∂ξ̂(x, s)

∂x
= A(x, s)ξ̂(x, s) + B(x)ξ(x, 0) (39)

with ξ(x, t) = (T0(x)y(x, t), q(x, t))
T and where A(x, s) and B(x) depend on x:

A(x, s) =
1

α(x)β(x)

(

(α(x) − β(x))s + γ(x) −s− δ(x)
−α(x)β(x)s 0

)

B(x) =
1

α(x)β(x)

(

(β(x) − α(x)) 1
α(x)β(x) 0

)

.

To simplify the exposition, we assume in the following that ξ(x, 0) = 0.

One may show that the change of variable that diagonalizes A(x, s) introduces
a supplementary term due to the derivative of matrix X (x, s) with respect to x.

Indeed, let us introduce ζ̂(x, s) = X (x, s)ξ̂(x, s), where X (x, s) is such that A(x, s) =
X (x, s)−1D(x, s)X (x, s). Plugging this variable into Eq. (39) leads to:

∂ζ̂(x, s)

∂x
=
(

D(x, s) +
∂X (x, s)

∂x
X (x, s)−1

)

ζ̂(x, s). (40)
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The matrix D(x, s) + ∂X (x,s)
∂x X (x, s)−1 is not diagonal, because of the term

∂X (x,s)
∂x X (x, s)−1. Therefore we can no longer provide an analytical solution to

this equation.

However, since the differential equation (39) is linear, we know that its general
solution always exists, is unique and is given by [9, p. 598]:

ξ̂(x, s) = Φ(x, s)ξ̂(0, s) =

(

φ11(x, s) φ12(x, s)
φ21(x, s) φ22(x, s)

)

ξ̂(0, s) (41)

where Φ(x, s) is the state-transition matrix associated to the differential equation
(39).

As a matter of fact, one may think that, as in the scalar case, the state-transition
matrix could be written as Φ(x, s) = e

∫

x

0
A(v,s)dv. However, this is not true in

general. Indeed, using the definition of eA ,
∑∞

k=0
Ak

k! , we have:

e
∫

x

0
A(v,s)dv = I +

∫ x

0

A(v, s)dv +
1

2

∫ x

0

A(v, s)dv

∫ x

0

A(v, s)dv + . . .

and therefore:

∂

∂x

(

e
∫

x

0
A(v,s)dv

)

= A(x, s) +
A(x, s)

2

∫ x

0

A(v, s)dv

+

∫ x

0

A(v, s)dv
A(x, s)

2
+ . . .

6= A(x, s)e
∫

x

0
A(v,s)dv !

The only case where this holds is when A(x, s) and
∫ x

0 A(v, s)dv commute. This is
true e.g. when A(x, s) is constant with respect to x, i.e. in the uniform flow case.
In the non uniform flow case, this is generally not true, this is why we need to find
a numerical way to compute the state-transition matrix.

Once the state-transition matrix is obtained, the transfer matrix corresponding
to the original differential equation (39) is then given by:

(

ŷ(0, s)
ŷ(L, s)

)

=

(

p11(s) p12(s)
p21(s) p22(s)

)(

q̂(0, s)
q̂(L, s)

)

(42)

with p11(s) = − φ22(L,s)
T0(0)φ21(L,s)

, p12(s) = 1
T0(0)φ21(L,s) , p21(s) = φ12(L,s)

T0(L) −φ11(L,s)φ22(L,s)
T0(L)φ21(L,s)

and p22(s) = φ11(L,s)
T0(L)φ21(L,s)

, provided φ21(L, s) is not equal to zero. As in the uni-

form flow case, the values of s such that φ21(L, s) = 0 correspond to the poles of
the Saint-Venant transfer matrix.

The problem is therefore to solve the differential equation (39) and compute
the state-transition matrix Φ(x, s). This problem is not easy to solve, due to its
oscillatory and unstable nature.

We proposed an efficient numerical solution to this problem in [10], leading to a
general method to compute the Saint-Venant transfer matrix for any kind of non
uniform flow.

4.1.1. Poles computation. As we have seen, the poles correspond to the values of s
such that φ21(L, s) = 0. In the non uniform case, the poles are obtained numeri-
cally, by finding the zeros of equation (20). Since we can compute numerically the
transition matrix, we know how to compute φ21(L, s) for any s ∈ C, and we can
look for values of s such that φ21(L, s) = 0.
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Practically, we seek the value of s that minimizes the modulus of φ21(L, s). This
search is done starting from the values obtained analytically for the uniform regime.

We used this numerical method to find the values of s that minimize the modulus
of φ21(L, s). This has been done for the first 7 pairs of poles for the canals in
example 1.

The results are depicted in Figs. 12 and 13 for canals 1 and 2, respectively. In
both figures, we see that an accelerating flow tends to dampen the oscillating poles,
while a decelerating flow tends to reduce their damping. However, the first negative
real pole of canal 2 reacts differently: its damping increases for decelerating flow.

This confirms our results from the asymptotic study in high frequencies, but this
does not necessarily apply for low frequencies.
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Figure 12. Location of the poles of Saint-Venant transfer matrix
for canal 1 for non uniform flow conditions.

4.1.2. Input-output transfer matrix. Once the state-transition matrix Φ(x, s) is com-
puted, the input-output transfer matrix can easily be obtained as follows:

(

ŷ(0, s)
ŷ(L, s)

)

=

(

p11(s) p12(s)
p21(s) p22(s)

)(

q̂(0, s)
q̂(L, s)

)

with

p11(s) =
1

T0(0)

(

φ12(0, s) − φ11(0, s)
φ22(L, s)

φ21(L, s)

)

(43a)

p12(s) =
1

T0(0)

φ11(0, s)

φ21(L, s)
(43b)

p21(s) =
1

T0(L)

(

φ12(L, s) − φ11(L, s)
φ22(L, s)

φ21(L, s)

)

(43c)

p22(s) =
1

T0(L)

φ11(L, s)

φ21(L, s)
. (43d)

Example 6 (Bode plots for non uniform flow). We compute the Bode plots for
the three situations: uniform flow, decelerating flow (M1 backwater curve) and
accelerating flow (M2 backwater curve). The results are depicted in Figs. 14 and 15.



MODAL DECOMPOSITION OF LINEARIZED OPEN CHANNEL FLOW 345

−7 −6 −5 −4 −3 −2 −1 0

x 10
−3

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

real

im
ag

 

 

accelerating
uniform
decelerating

Figure 13. Location of the poles of Saint-Venant transfer matrix
for canal 2 for non uniform flow conditions.

The integrator gain increases for accelerating flow, while it decreases for decel-
erating flow. This also is consistent with the physical intuition: in a first approxi-
mation, the integrator gain is inversely proportional to the area of the pool. In the
case of a trapezoidal geometry, the area increases when the water level increases.
For a constant discharge, this corresponds to a decelerating flow. This explains why
the integrator gain tends to decrease for a decelerating flow. The reverse occurs for
accelerating flow.

For the oscillating modes, we see that their damping decreases for decelerating
flow, while it increases for accelerating flow. This will be confirmed by the direct
study of the poles.

4.1.3. Distributed transfer matrix. Using the proposed numerical solution, we can
also compute the distributed transfer matrix G(x, s). Indeed, the proposed nu-
merical solution enables us to compute the state-transition matrix Φ(x, s) for all
x ∈ [0, L]. Then, the distributed transfer matrix G(x, s) is directly obtained as
follows:

(

ŷ(x, s)
q̂(x, s)

)

= G(x, s)

(

q̂(0, s)
q̂(L, s)

)

(44)

with

g11(x, s) =
1

T0(x)

(

φ12(x, s) − φ11(x, s)
φ22(L, s)

φ21(L, s)

)

(45a)

g12(x, s) =
1

T0(x)

φ11(x, s)

φ21(L, s)
(45b)

g21(x, s) = φ22(x, s) − φ21(x, s)
φ22(L, s)

φ21(L, s)
(45c)

g22(x, s) =
φ21(x, s)

φ21(L, s)
. (45d)

These expressions generalize the results already obtained in Section 3.1.5 to the non
uniform flow case.
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Figure 14. Bode plots of transfer functions p21(s) and p22(s) for
canal 1 in accelerating (· · · ), uniform (—) and decelerating (− ·−)
flow.
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Figure 15. Bode plots of transfer functions p21(s) and p22(s) for
canal 2 in accelerating (· · · ), uniform (—) and decelerating (− ·−)
flow.

4.2. Properties of the transfer matrix.

4.2.1. Delays. In the non uniform flow case, the delays of the Saint-Venant transfer
functions can be computed by integrating the characteristics lines along the channel.

Indeed, we can show that the delays for the transfer functions p21(s) and p12(s)
in the non uniform case are given by:

τ1 =

∫ L

0

dx

V0(x) + C0(x)
(46)
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for p21(s) and

τ2 =

∫ L

0

dx

C0(x) − V0(x)
(47)

for p12(s).

This result is consistent with our physical intuition, and confirms that an open
channel in non uniform flow behaves very similarly to an open channel in uniform
flow: the main difference lies in the fact that the results can no longer be expressed
in a closed form, but the proposed numerical scheme enables to compute the transfer
function for any realistic flow configuration.

Example 7 (Delays for non uniform flow). Let us define the dimensionless time
t∗ = αnt

L , where αn stands for the uniform value of α = V0 + C0. This enables us
to compare the delays τ1 and τ2 for various non uniform flow conditions: for the
uniform flow, we have τ∗1 = 1, and τ∗2 = αn

βn
, where the subscript n denotes the

uniform flow values.
Fig. 16 depicts the way the dimensionless delays vary with the flow in both canals.

The two canals have a very different behavior: the delay τ1 varies much more with
the downstream water level in the case of canal 1 than in the case of canal 2. Indeed,
the backwater curve affects only a small portion of the canal 2, while it affects the
whole canal 1. The delay τ2 is much larger than τ1 in the case of canal 2, because
β is relatively much lower than α for canal 2 than for canal 1.
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Figure 16. Variation of the dimensionless delays τ∗1 and τ∗2 as
function of Y0(L)/Yn

4.2.2. Asymptotic estimates of the poles. It is also possible to derive a closed-form
expression for the high frequency behavior of the system.

We start from the characteristics form:

∂χ

∂t
+ D(x)

∂χ

∂x
+ E(x)χ = 0 (48)

where χ(x, t) = X(x)ξ(x, t) with ξ(x, t) = (T0(x)y(x, t), q(x, t))
T ,

X(x) =

(

β(x) 1
−α(x) 1

)

, D(x) =

(

α(x) 0
0 −β(x)

)

,

and E(x) = [X(x)B(x) − D(x)X′(x)]X(x)−1, with B(x) =

(

0 0
−γ(x) δ(x)

)

.
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The elements of matrix E(x) are given by:

e11 =
1

α+ β

[

−γ + αδ − αβ′
]

(49a)

e12 =
1

α+ β

[

γ + βδ + αβ′
]

(49b)

e21 =
1

α+ β

[

−γ + αδ − βα′
]

(49c)

e22 =
1

α+ β

[

γ + βδ + βα′
]

, (49d)

where we have dropped the argument x for readability, and α′ and β′ denote the
derivatives of α and β with respect to x.

Applying Laplace transform to Eq. (48) leads to the ODE:

∂χ̂

∂x
(x, s) = C(x, s)χ̂(x, s) (50)

with C(x, s) = −D(x)−1(sI + E(x)).
For high frequencies, the diagonal terms in C(x, s) dominate the anti-diagonal

terms. Then, the high frequency approximate solution of Eq. (50) is given by:

χ̂(x, s) ≈ exp
(

∫ x

0

Cdiag(v, s)dv
)

χ̂(0, s)

where Cdiag(x, s) =

(

− s
α(x) − r1(x) 0

0 s
β(x) + r2(x)

)

, with

r1(x) =
α(x)δ(x) − γ(x) − α(x)β′(x)

α(x)(α(x) + β(x))

r2(x) =
β(x)δ(x) + γ(x) + α′(x)β(x)

β(x)(α(x) + β(x))
.

Therefore, using the previous developments, a high frequency approximation of
the poles is obtained by solving:

exp

(

∫ L

0

[( 1

α(x)
+

1

β(x)

)

s+ r1(x) + r2(x)

]

dx

)

= 1

which leads to:

p±k ≈ −

∫ L

0 [r1(x) + r2(x)]dx

τ1 + τ2
±

2jkπ

τ1 + τ2
(51)

with τ1 =
∫ L

0
dx
α(x) and τ2 =

∫ L

0
dx
β(x) .

We recover an expression similar to the one already obtained in the uniform case.
The high frequency poles have an imaginary part which is linked to the forward and
backward delays, and a real part which is linked to the forward and backward damp-
ing.

Let us note that:

r1 + r2 =
2αβδ + (α − β)γ

αβ(α + β)
+
α′ − β′

α+ β
,

where the argument x has been dropped for readability.
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Therefore, the high frequency poles damping is the sum of a positive term plus
a term whose sign depends on the derivative of α(x) − β(x) = 2V0(x) with respect
to x. This means that the system will tend to be more damped if the velocity
tends to increase along the canal. On the contrary, it shows that the system will
tend to be more oscillating if the velocity tends to decrease along the canal. This
is consistent with our intuition: we expect more damping in an accelerating flow,
while a decelerating flow will be more prone to possible oscillations.

As in the uniform case, we may show that for high frequencies, the Saint-Venant
equations are close to the following damped wave equation:

( ∂

∂x
+ r1(x) +

1

α(x)

∂

∂t

)( ∂

∂x
− r2(x) −

1

β(x)

∂

∂t

)

q = 0

with boundary conditions q(0, t) and q(L, t).
The high frequency modes are therefore the result of the interaction of two grav-

ity waves, one traveling downstream at speed α(x) = V0(x)+C0(x) with attenuation
factor r1(x), and one traveling upstream at speed β(x) = C0(x)−V0(x) with atten-
uation factor r2(x). The high frequency estimate of the poles is the direct extension
of the result obtained in the uniform case.

4.2.3. Distributed modal decomposition. We extend here the results obtained in sec-
tion 3.2.3 to the non uniform flow case, where the distributed transfer matrix is given
by Eq. (44).

We know using Eq. (51) that the high frequency poles are complex conjugate,
and close to a vertical line in the left half plane. Using similar arguments as in
the uniform case, the Cauchy residues theorem implies that each transfer function
gij(x, s) can be decomposed as an infinite sum:

gij(x, s) = bij(x) +
a
(0)
ij (x)

s
+

∞
∑

k=−∞,k 6=0

a
(k)
ij (x)s

pk(s− pk)
(52)

where the coefficient a
(k)
ij (x) = lims→pk

(s − pk)gij(x, s) is the residue of transfer

function gij(x, s) at the pole pk, and bij(x) = ∂
∂s [sgij(x, s)]|s=0.

Contrarily to the uniform case, we have no analytical expression for the residues

a
(k)
ij (x). However, the proposed numerical method also enables us to compute the

terms numerically.

Proposition 2. In the non uniform case, the coefficient of the distributed modal
decomposition can be computed as follows:

• The coefficients a
(0)
ij (x) are given by:

a
(0)
11 (x) = −

1

T0(x)

φ11(x, 0)

φ̃21(L, 0)
(53a)

a
(0)
12 (x) =

1

T0(x)

φ11(x, 0)

φ̃21(L, 0)
(53b)

a
(0)
21 (x) = 0 (53c)

a
(0)
22 (x) = 0, (53d)
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where φ̃21(L, 0) is defined by:

φ̃21(L, 0) = −

∫ L

0

φ11(v, 0)dv. (54)

• The modal coefficients a
(k)
ij (x) are given by:

a
(k)
ij (x) =

Nij(x, pk)

φ′21(L, pk)
, (55)

where the Nij(x, pk) are given by:

N11(x, pk) = −
1

T0(x)
φ11(x, pk)φ22(L, pk) (56a)

N12(x, pk) =
1

T0(x)
φ11(x, pk) (56b)

N21(x, pk) = −φ21(x, pk)φ22(L, pk) (56c)

N22(x, pk) = φ21(x, pk), (56d)

and φ′21(L, pk) is the term of the matrix Φ′(x, s) given by:

Φ′(x, s) = Φ(x, s)

∫ x

0

Φ(v, s)−1 ∂A(v, s)

∂s
Φ(v, s)dv. (57)

• The coefficients bij(x) are given by:

bij(x) =
1

φ̃21(L, 0)

(

N ′
ij(x, 0) −

φ̃′21(L, 0)

φ̃21(L, 0)
Nij(x, 0)

)

. (58)

where the N ′
ij(x, 0) are given by:

N ′
11(x, 0) =

1

T0(x)

(

φ12(x, 0)φ′21(L, 0) − φ′11(x, 0) − φ11(x, 0)φ′22(L, 0)
)

(59a)

N ′
12(x, 0) =

1

T0(x)
φ′11(x, 0) (59b)

N ′
21(x, 0) = φ′21(L, 0) − φ′21(x, 0) (59c)

N ′
22(x, 0) = φ′21(x, 0), (59d)

φ̃21(L, 0) is given by Eq. (54), and φ̃′21(L, 0) is given by:

φ̃′21(L, 0) = −

∫ L

0

φ′11(x, 0)dx. (60)

Proof. See Appendix B.

Example 8 (Coefficients a
(k)
ij (x) and bij(x) for non uniform flow). The absolute

value of functions a
(k)
11 (x) of the distributed modal decomposition of g11(x, s) of

the example canals 1 and 2 are depicted in Fig. 17 and 18. We see that in both
canals the modes in non uniform flow are similar to the ones in uniform flow. For
canal 1, the spatial functions a

(k)
11 (x) are only slightly modified in non uniform flow

conditions. The change in the integrator gain a
(0)
11 (x) amounts to about 10% in

decelerating flow, and about 20% in accelerating flow. We see that the change in
flow speed modifies the location of the nodes of oscillation: the nodes are slightly
moved downstream for accelerating flow, and upstream for decelerating flow.
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For canal 2, the non uniformity has an important effect on the modal decom-
position. The nodes are modified following the same pattern observed for canal
1, but the change in amplitude is much more important, especially in the case of
accelerating flow.
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Figure 17. Coefficients |a
(k)
11 (x)| of the distributed modal decom-

position for canal 1 in accelerating (· · · ), uniform (—) and decel-
erating (− · −) flow.
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Figure 18. Coefficients |a
(k)
11 (x)| of the distributed modal decom-

position for canal 2 in accelerating (· · · ), uniform (—) and decel-
erating (− · −) flow.
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Figure 19 depicts the value of coefficients b11(x) and b12(x) of the distributed
modal decomposition of the transfer function g11(x, s) and g12(x, s) for canals 1

and 2. We observe the same trends already discussed for coefficients a
(k)
11 (x).
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Figure 19. Functions b11(x) and b12(x) of the distributed modal
decomposition for canals 1 and 2 in accelerating (· · · ), uniform (—)
and decelerating (− · −) flow.

4.2.4. Modal decomposition of the delay-free part. The modal decomposition of
g̃ij(x, s) can also be obtained as

g̃ij(x, s) = b̃ij(x) +
ã
(0)
ij (x)

s
+

∞
∑

k=−∞,k 6=0

ã
(k)
ij (x)s

pk(s− pk)
, (61)

where the coefficient ã
(k)
ij (x) = lims→pk

(s − pk)g̃ij(x, s) is the residue of transfer

function g̃ij(x, s) at the pole pk.

For the delay-free decomposition, we have: ã
(0)
ij (x) = a

(0)
ij (x), and for k 6= 0:

ã
(k)
11 (x) = a

(k)
11 (x)e

∫

x

0
dv

α(v)
pk (62a)

ã
(k)
12 (x) = a

(k)
12 (x)e

∫

L

x
dv

β(v)
pk (62b)

ã
(k)
21 (x) = a

(k)
21 (x)e

∫

x

0
dv

α(v) pk (62c)

ã
(k)
22 (x) = a

(k)
22 (x)e

∫

L

x
dv

β(v) pk , (62d)
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and the b̃ij(x) are given by:

b̃11(x) = b11(x) + a
(0)
11 (x)

∫ x

0

dv

α(v)
(63a)

b̃12(x) = b12(x) + a
(0)
12 (x)

∫ L

x

dv

β(v)
(63b)

b̃21(x) = b21(x) (63c)

b̃22(x) = b22(x). (63d)

5. Conclusion. We have derived the Saint-Venant transfer matrix, first for the
uniform flow case, and then for the general non uniform flow case. We have ana-
lyzed the transfer matrix for boundary conditions in terms of discharges, and have
computed its poles, first analytically for the uniform case, then numerically for the
backwater case. We also characterized the model in terms of delays, which gives an
a priori evaluation of the available bandwidth for the controlled system.

These results are important for the control of open channel flow. As shown in
[12], the modal decomposition can be used to show that the transfer matrix belongs
to the Callier-Desoer class of transfer matrices. This fact allows us to use classical
frequency domain tools such as the Nyquist criteria for closed-loop stability.

Finally, we have shown that the dynamic behavior of an open channel in non
uniform flow is qualitatively very similar to its behavior in uniform flow. The only
difference is that in non uniform flow, the nice analytical expressions can no longer
be used, but efficient numerical methods are available to compute poles, delays and
modal factors.

Acknowledgements. We would like to thank an anonymous referee for his valu-
able comments and suggestions.

Appendix A. Proof of the modal decomposition.

Proof. To show that the transfer matrix G(x, s) can be expressed as an infinite sum
of simple elements, we apply the residue theorem to each element of the transfer
matrix. The proof is closely related to the proof of the series decomposition of cot(z)
in [8]. To simplify the exposition, we assume that the poles have simple multiplicity
but the proof can easily be adapted to the general case.

Let {CN ; N ≥ 0} a series of nested circular contours such that there are exactly
two poles pN and p−N between CN−1 and CN . N is chosen sufficiently large such
that the poles pN and p−N are complex conjugate.

Let us first define the function s 7→ fij(x, s) = gij(x, s)−
a
(0)
ij (x)

s , with a
(0)
ij (x) the

residue of the function gij(x, s) in zero. This function is meromorphic and can be

continuously extended in s = 0 by fij(x, 0) = d
ds [sgij(x, s)]|s=0.

We apply the Cauchy residue theorem to the function s 7→
fij(x,s)
z−s . For all N > 1,

we have:

1

2jπ

∮

CN

fij(x, s)

z − s
ds =

N
∑

n=−N,n6=0

a
(n)
ij (x)

z − pn
− fij(x, z) (64)

with a
(n)
ij (x) = lims→pn

(s− pn)fij(x, s).
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For z = 0, equation (64) leads to:

1

2jπ

∮

CN

fij(x, s)

s
ds = fij(x, 0) +

N
∑

n=−N,n6=0

a
(n)
ij (x)

pn
(65)

Subtracting (65) from (64) gives:

fij(x, z)

=fij(x, 0) +
N
∑

n=−N,n6=0

a
(n)
ij (x)

( 1

z − pn
+

1

pn

)

+
1

2jπ

∮

CN

fij(x, s)
( 1

z − s
+

1

s

)

ds

or

fij(x, z) = fij(x, 0) +

N
∑

n=−N,n6=0

a
(n)
ij (x)

( 1

z − pn
+

1

pn

)

+
z

2jπ

∮

CN

fij(x, s)

s(z − s)
ds

Now, since |fij(x, s)| is bounded, the integral on the right hand side tends to
zero as N tends to infinity.

Finally, going back to the original transfer functions, we obtain:

gij(x, s) = fij(x, 0) +
a
(0)
ij (x)

s
+

∞
∑

n=−∞,n6=0

sa
(n)
ij (x)

pn(s− pn)

which is the result we wanted to prove.

Appendix B. Proof of Proposition 2.

Proof. We use in this proof the well-known fact that the state-transition matrix
Φ(x, s) obtained from Eq. (41) verifies the differential equation (39).

Therefore, the φij(x, s) verify the following linear differential system:

∂φ11

∂x
(x, s) =

(α(x) − β(x))s + γ(x)

α(x)β(x)
φ11(x, s) −

s+ δ(x)

α(x)β(x)
φ21(x, s) (66a)

∂φ12

∂x
(x, s) =

(α(x) − β(x))s + γ(x)

α(x)β(x)
φ12(x, s) −

s+ δ(x)

α(x)β(x)
φ22(x, s) (66b)

∂φ21

∂x
(x, s) = −sφ11(x, s) (66c)

∂φ22

∂x
(x, s) = −sφ12(x, s) (66d)

where by (41), the initial condition is given by the identity matrix Φ(0, s) = I.
Let us first note that for s = 0 this system simplifies, and the solution can be

expressed explicitly as follows:

φ11(x, 0) = e
∫

x

0
γ(v)

α(v)β(v)
dv (67a)

φ12(x, 0) = −

∫ x

0

φ11(x, 0)

φ11(v, 0)

δ(v)

α(v)β(v)
dv (67b)

φ21(x, 0) = 0 (67c)

φ22(x, 0) = 1. (67d)
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Computation of a
(0)
ij (x). Let us introduce the modified transfer function φ̃21(x, s)

such that:

φ̃21(x, s) =
1

s
φ21(x, s).

This transfer function is well defined in s = 0 since 0 is a root of φ21(x, s).

Using Eq.(66c), φ̃21(x, s) verifies the following differential equation:

∂

∂x
φ̃21(x, s) = −φ11(x, s), (68)

with an initial condition given by φ̃21(0, s) = 0.

Therefore φ̃21(L, 0) is obtained by integrating Eq. (67a):

φ̃21(L, 0) = −

∫ L

0

φ11(v, 0)dv.

Finally Eqs. (53) provide a way to compute the integrator gains a
(0)
ij (x) for the

general case of non uniform flow.

Computation of a
(k)
ij (x). Let us introduce the matrix Φ′(x, s) = ∂

∂sΦ(x, s), with

Φ(x, s) the state-transition matrix given by Eq. (41).
Then, we have:

∂Φ′(x, s)

∂x
= A(x, s)Φ′(x, s) +

∂A(x, s)

∂s
Φ(x, s) (69)

with

∂A(x, s)

∂s
=

(

α(x)−β(x)
α(x)β(x) − 1

α(x)β(x)

−1 0

)

.

The solution of Eq. (69) is obtained as follows:

Φ′(x, s) = Φ(x, s)Φ′(0, s) + Φ(x, s)

∫ x

0

Φ(v, s)−1 ∂A(v, s)

∂s
Φ(v, s)dv.

By definition, we have

Φ′(0, s) , lim
|δs|→0

Φ(0, s+ δs) − Φ(0, s)

δs

=
I − I

δs
= 0.

Therefore the value of Φ′(x, s) at x = 0 is 0 and we finally get Eq. (57). This
equation provides a way to compute Φ′(x, s) for any s ∈ C.

Finally, in order to compute the coefficients a
(k)
ij (x), we need to compute the

Nij(x, pk). For any s ∈ C, the Nij(x, s) are given by:

N11(x, s) =
1

T0(x)

(

φ12(x, s)φ21(L, s) − φ11(x, s)φ22(L, s)
)

(70a)

N12(x, s) =
1

T0(x)
φ11(x, s) (70b)

N21(x, s) = φ22(x, s)φ21(L, s) − φ21(x, s)φ22(L, s) (70c)

N22(x, s) = φ21(x, s) (70d)

The equations simplify since by definition of a pole, we have φ21(L, pk) = 0,
which yields Eqs. (56).
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Computation of bij(x). The coefficients bij(x) are defined by:

bij(x) =
∂

∂s
[sgij(x, s)]|s=0. (71)

Then, we have:

bij(x) =
∂

∂s
[sgij(x, s)]|s=0

=
∂

∂s

[

sNij(x, s)

φ21(L, s)

]∣

∣

∣

∣

∣

s=0

=
∂

∂s

[

Nij(x, s)

φ̃21(L, s)

]
∣

∣

∣

∣

∣

s=0

,

which yields Eq. (58).
The N ′

ij(x, 0) can be computed using Eqs. (70) and the solution Φ′(x, 0) given
by Eq. (57) for s = 0. In that case, the expressions simplify, and lead to Eqs. (59).

To compute φ̃′21(L, 0), we differentiate Eq. (68) with respect to s, which gives:

∂

∂x
φ̃′21(x, s) = −φ′11(x, s),

with an initial condition given by φ̃′21(0, s) = 0.

Therefore, once φ′11(x, 0) is computed, φ̃′21(L, 0) is directly obtained by integra-
tion, as in Eq. (60).

Therefore, we have derived a numerical means to compute all the coefficients of
the modal decomposition in the non uniform case, which ends the proof.
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