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Abstract. The performance achieved with both adaptive and non-adaptive
Model Predictive Control (MPC) when applied to a pilot irrigation channel is
evaluated. Several control structures are considered, corresponding to various
degrees of centralization of sensor information, ranging from local upstream
control of the different channel pools to multivariable control using only prox-
imal pools, and centralized multivariable control relying on a global channel
model. In addition to the non-adaptive version, an adaptive MPC algorithm
based on redundantly estimated multiple models is considered and tested with
and without feedforward of adjacent pool levels, both for upstream and down-
stream control. In order to establish a baseline, the results of upstream and
local PID controllers are included for comparison. A systematic simulation
study of the performances of these controllers, both for disturbance rejection
and reference tracking is shown.

1. Introduction. Irrigation channels are large, spatially distributed structures in
which wave propagation phenomena occur. Due to this, when control design is
based on lumped parameter approximation models, the interaction among different
sections has to be taken into account. On the other way, multivariable control
demands the centralization of the information provided by different sensors that may
be long distances apart. This naturally rises the issue of evaluating the performance
increase due to the use of multivariable, centralized control, versus partially or
totally decentralized schemes requiring simpler algorithms.

Another difficulty is posed by the uncertainty in the dynamic models available.
Vegetation growing in the banks, mud accumulation and water losses cause changes
in model parameters, making the system time-varying in unpredictable ways. As
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is well known, adaptation is a classical way of tackling the problem of preventing
performance degradation when facing significant levels of uncertainty. But again
there is a counterpart: Adaptive control may induce complex dynamics and requires
an expert to tune its configuration parameters.

The above issues are considered here in relation to a pilot water irrigation channel.
The plant used as a prototype is the experimental channel of Núcleo de Hidráulica
e Controlo de Canais of University of Évora, Portugal. Although a pilot plant,
this channel has dimensions (150 m long) and is provided with equipment (sensors,
actuators, SCADA interfaces) that allows the experiments performed on it to face
problems similar to the ones found in non-pilot channels. For this reason, it has
been used in several experimental works as a test bench [14, 15].

Model Predictive Control (MPC) [16] is a popular tool in industry and it ap-
pears to be quite suitable to irrigation channel control as well. Indeed, it embodies
in an optimization framework important aspects of the problem, viz. constraint
handling, reference management and accessible disturbances. Furthermore, it pro-
vides a flexible tool for controller structuring, including SISO, MISO and MIMO
control. In particular, distributed MPC [5] reveals as a powerful tool for distributed
control over complex networks. This motivates a systematic study of the perfor-
mance achievable by both adaptive and nonadaptive MPC, which is the problem
considered in the present paper.

1.1. State of the art. In recent years, canal control has been a subject of intensive
research [18, 17, 15]. This is motivated both by a strong interest on applications
and by the scientific challenges that this problem raises.

The core of open surface water distribution canals are the Saint-Venant equa-
tions. These form a hyperbolic system of partial differential equations that embody
mass and moment conservation laws [6]. Although providing an accurate tool for
modelling, these equations are not always adequate for control design due to its
complexity and require approximations [21]. As such, a number of control strate-
gies have been designed, including Optimal Control based on LQR methods [9],
LPV and gain-scheduling methods [4], Model Predictive Control, either based on
linear or nonlinear models, [1, 2, 10], Lyapunov methods [7], Rieman invariants [11]
and robust Internal Model Control [13]. A canal with multiple pools is intrinsically
a multivariable system, although many practical control implementations are net-
works of local SISO controllers. This lead to the investigation of issues like stability
properties and suboptimal controllers including feedforward effects [22] and the use
of augmented lagrangian and decomposition/coordination methods [8].

As in many other plants, a significant difficulty is to obtain the model upon
which control design is based. Even if simplified models are used, it is expensive to
perform the experiments in order to get the data needed for identification purposes.
Furthermore, the dynamics of a real canal is prone to time variations due, e. g. to
mundane factors such as mud accumulation or lack of gate lubrication. This is a
major motivation for the use of adaptive methods as described below.

1.2. Paper contributions and organization. In this paper, the performance
achieved with both adaptive and non-adaptive Model Predictive Control (MPC)
when applied to a pilot irrigation channel is evaluated. Several control structures are
considered, corresponding to various degrees of centralization of sensor information,
ranging from local upstream control of the different channel pools to multivariable
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Figure 1. Overall view of the pilot channel and detail of one gate

control using only proximal pools, and centralized multivariable control relying on
a global channel model.

In addition to the non-adaptive version, an adaptive MPC algorithm based on
redundantly estimated multiple models is considered and tested with and without
feedforward of adjacent pool levels, both for upstream and downstream control.
In order to establish a baseline, the results of upstream local PID controllers are
included for comparison. A systematic simulation study of the performances of
these controllers, both for disturbance rejection and reference tracking is shown.
Experimental results on the application of adaptive MPC to the pilot canal are
presented.

The paper is organized as follows: After the Introduction (section 1) that moti-
vates the problem, performs a synthetic state of the art review and describes the
paper contribution and organization, the channel used as a prototype is described
in section 2, together with the models used both for simulation and controller de-
sign. The control algorithms considered are described in section 3 and the results
concerning their comparison are presented in section 4. Experimental results on
adaptive MPC are presented in section 5. Finally, section 6 draws conclusions.

2. The pilot channel. The channel considered as a prototype for testing is de-
scribed hereafter, together with nonlinear and linear incremental models. The non-
linear model aims at representing canal dynamics as accurately as possible and is
needed for simulation purposes. In turn, linear incremental models are required by
MPC algorithms.

2.1. Plant description. A photograph of the pilot channel is seen in figure 1 and
figure 2 shows a schematic longitudinal view.

The automatic channel is controlled by a main computer server equipped with
a SCADA system that allows the remote control and monitoring from the central
post. This system provides facilities for the export of logged data to text files, that
can be then easily imported from post-processing tools like Matlab. It may also be
connected to a personal computer where a C-program is used for real time control.

The channel has four branches (pools) separated by three orifice gates, with the
last having an overshoot gate downstream. It is made of concrete with a trapezoidal
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Figure 2. Schematics of the automatic channel of NuHCC.

cross section, with 0.15 m of bottom width; side slope 1 : 0.15 (V:H); 0.90m vertical
depth; 1.5 · 10−3 longitudinal bottom slope. The design flow is 0.09 m3s−1.

There are water off-takes downstream from each branch (T1, . . . , T4 in figure 2),
that are orifices in the channel walls, with additional pipes and valves and equipped
with flowmeters. The position of the gates, as marked in figure 2, is denoted by
X1, . . . , X4.

In order to make possible real time digital control, water level sensors are in-
stalled, three for each pool, respectively, at the beginning, middle and end of the
pool, as seen in figure 2. Each sensor is installed within an off-line stilling well, a
fibrocement pipe with 300 mm of diameter. In this pipe, a curve with 90◦ and of the
same diameter was installed, for the connection to the channel (near the bottom).
These sensors allow to record variations around 0.7 mm in the water levels. For
gate number i, i = 1, . . . , 4, the upstream level is denoted Mi and the downstream
level Ji (figure 2)

The channel inlet is equipped with a motorized flow control valve that delivers
a chosen discharge to the input of the channel.

2.2. Physical model. In this section the equations that model the dynamics of
the channel and the gates are described. A similar model for the same channel is
described in [14]. The nonlinear model is used to simulated the plant and to obtain
the linearized models required by non-adaptive MPC.

2.2.1. Saint-Venant Equations. The open channel flow along each pool is described
by the Saint-Venant equations [6], a hyperbolic system of nonlinear partial differ-
ential equations. These equations are deduced under the following assumptions:

• the flow is unidimensional;
• the bed slope S0 of the channel is small enough so one can approximate

sin(S0) = S0;
• the water density ρ is constant;
• the pressure distribution is hydrostatic;
• the effects of internal viscosity are negligible face to the external friction.
Under these conditions, the equations are:

∂A

∂t
+

∂Q

∂x
= ql (1)
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Figure 3. channel cross-section showing the hydraulic perimeter

∂Q

∂t
+

∂Q2/A

∂x
+ gA

∂h

∂x
+ gA(Sf − S0) = kqlV (2)

where:
– t time [s]
– x space [m]
– A(x, t) flow cross sectional area [m2]
– Q(x, t) discharge [m3s−1]
– ql(x, t) lateral discharge per unit length [m2s−1]
– k constant

inflow: ql > 0 → k = 0;
outflow: ql < 0 → k = 1

– g gravitational acceleration [ms−2]
– h(x, t) water level [m]
– Sf (x, t) friction slope
– V (x, t) water velocity [ms−1]
Equation (1) describes mass conservation and equation (2) describes momentum

conservation. The friction is modeled using the Manning-Strickler formula:

Sf =
Q|Q|n2

A2R4/3
(3)

where:
– R(x, t) hydraulic radius [m]
– n Manning coefficient [m−1/3s]
The hydraulic radius R is computed using the hydraulic perimeter P (x, t), defined

as shown in figure 3, by

R =
A

P
(4)

Together with appropriate boundary conditions, these equations fully model the
channel and allow to compute the system behavior from a specific initial state (initial
flow and water level, Q(x, 0) and h(x, 0) respectively). The boundary conditions
used are restrictions to the discharge at the beginning and the end of the channel
(Q(0, t) and Q(x, t), where x is the channel length). The discharge at these points
is given by the gate equations. Because of their complexity, there is no analytical
solution to these equations for the non-stationary case, and a numerical method
ought to be used.
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Figure 4. Example of backwater curves.

2.2.2. Stationary Regime. If both A and Q are assumed to be constant in time, their
time derivatives vanish and it is possible to simplify the Saint-Venant equations for
this stationary case. After some algebraic manipulation the following equations
hold:

∂Q

∂x
= 0 (5)

∂h(x)
∂x

=
S0 − Sf (x)
1− F 2

r (x)
(6)

in which Fr is the Froude number, computed by:

F 2
r =

Q2

g ·A3

∂A

∂h
(7)

It is assumed that the flow is subcritical, i.e., Fr < 1. By solving these equations
the stationary regime is obtained, which corresponds to a constant flow along the
channel and a water level that is derived from eq.(6). The solutions to these equa-
tions are called backwater curves. Note that in the general case the water level is
not constant over the length of the channel, as could be expected. One particular
solution of the equations is the one with constant water level, where:

Sf (x) = S0 (8)

Figure 4 shows backwater curves obtained with the parameters of the Évora
channel, except for length, which is considered to be 1000m, for demonstration
purposes. In this case, the downstream water level is considered to be 0.5m and the
nominal flow Qmax = 0.09m3s−1.

These solutions are used in the simulator as initial conditions for the water levels.

2.2.3. Gate Equations. In a generic gate, the flow Q passing through the gate de-
pends on the gate position hgate, and the water levels upstream, hleft, and down-
stream, hright, from it:

Q = f(hleft, hright, hgate) (9)
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Figure 5. Schematic side view of an orifice gate
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Figure 6. Schematic side view of an overshoot gate

In an orifice gate (figure 5), the water flows below the gate, and its characteristic
is given by:

Q = Cds A
√

2g (hleft − hright) (10)

where A(hgate) [m2] is the effective area of the orifice and Cds is the gate’s discharge
coefficient.

In an overshoot gate (figure 6) the water flows over the gate, and the following
model [14] is used:

Q = B Cd

√
2g (hleft − hgate)3/2 (11)

where B is the gate width.
In both cases, the gates are characterized by the discharge coefficient Cd, that

can be determined experimentally.

2.2.4. Numerical Solution of the Equations. In order to solve the Saint-Venant equa-
tions, one needs to use numerical methods for solving PDEs, because these equations
do not have an analytical solution for the non-stationary case. To solve these equa-
tions the well known Preissmann scheme [21] is used, which is an implicit method
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Figure 7. Preissmann four-point scheme.

that consists in approximating the space and time derivatives by finite difference in
four points (figure 7).

For this sake, a function of t and x, and its derivatives is approximated as follows:

f(x, t) ' M fn
j =

θ

2
(fn+1

i+1 + fn+1
i ) +

1− θ

2
(fn

i+1 + fn
i ) (12)

∂f

∂x
' Dx fn

j = θ
fn+1

i+1 − fn+1
i

∆x
+ (1− θ)

fn
i+1 − fn

i

∆x
(13)

∂f

∂t
' Dt fn

j =
fn+1

i+1 − fn
i+1 + fn+1

i − fn
i

2∆t
(14)

Here, i is the spatial index, n is the time index and θ is a weighting constant that
has a value between 0 and 1. The choice θ = 0.65 was made. The symbols M ,
Dx and Dt denote finite difference operators. Replacing the unknown functions in
the Saint-Venant equations by the given approximations yields a system of implicit
equations that can be solved numerically using the Newton method.

2.2.5. Modular SIMULINK implementation. The implementation of the models of
the channel and gates was made in MATLAB/SIMULINK, using S-functions. An
effort was made to allow the resulting model to be modular and easy to adapt to
different channels.

A channel pool (branch) is represented by a SIMULINK block that has as in-
puts the boundary conditions for the channel (input and output discharges) and as
outputs the water levels upstream, downstream and in the middle of the branch.

A gate is represented by a SIMULINK block that has as inputs the water levels
upstream and downstream of the gate and the gate opening, and as output the
discharge flow through the gate. Two SIMULINK blocks were developed, one
representing an overshoot gate and another representing an orifice gate.

Figure 7 shows the SIMULINK blocks of an orifice gate, of a branch of channel
and of an overshoot gate, with the respective input and output signals.

In order to simulate the behavior of a full channel with several pools and gates,
multiple SIMULINK blocks are connected. Each pool, as well as each gate, is
represented by a SIMULINK block. In this way, a modular structure is built that
allows to easily represent virtually any channel. The output of a “branch” block
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Figure 9. Connection between SIMULINK blocks to make a 2
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(representing a pool) is connected to the input of the a “gate” block, whose outputs
are also connected to the inputs of the same “channel” and to the next “channel”
block. The input of a “channel” block can alternatively be connected to any other
signal source. Water offtakes downstream of a branch of a channel can be modelled
by simply adding the outflow to the pool flow output.

Figure 9 shows an example of the connections between blocks. This model rep-
resents two pools connected through an orifice gate. The first pool has a constant
discharge input upstream, while the second one has an overshoot gate downstream.
There is a water offtake downstream of the first pool. The model of the pilot chan-
nel considered is more complicated (having four pools and four gates), but is build
according to the same procedure.
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2.2.6. Parameter estimation and model validation. In the mathematical description
of the channel a number of parameters need to be estimated from experimental data.
Regarding the channel pools only the Manning coefficient is to be estimated since
its geometry data can be retrieved from tables. It is also necessary to determine
the discharge constants of the gates. These parameters have major impact on the
behavior of the complete model, so most attention was set in their calibration.

In order to determine the parameters that most accurately characterize the chan-
nel considered, a minimization of the mean square error between the experimental
and simulated data was made. It was noticed that experimental data is affected by
an offset due to the wrong calibration of the water level sensors. For this reason,
sensor offsets have been estimated as well. Another reason for the differences be-
tween experimental data and model output is that the SIMULINK model does not
completely represent the channel in the segment upstream of the gates, that has a
geometry different from the one modeled.

Figures 10, 11 and 12 show a comparison between simulated and experimental
data. The experiment consisted in the opening and closing of some of the water off-
takes, maintaining the gate levels constant. The first water offtake (T1) was opened
to 0.005m3s−1, then to 0.01m3s−1, and finally was closed. The same procedure was
repeated with the second water offtake (T2). The water levels represented in the
figures correspond to levels H0, M2 and J3 in figure 2.

2.3. Linear incremental model. A multivariable linear incremental model is
needed for the MPC algorithm. In this case, the model inputs are increments
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Figure 13. Block diagram of the global incremental model.

around the operating point of plant manipulated variables (gate positions, side-
take valve positions, and MONOVAR valve position) and the model outputs are
the measured incremental variables (3 levels per pool, as shown in figure 2).

In order to obtain the linear incremental model, discrete time transfer functions
Hi, j(z) relating input number i with output number j were estimated from data
generated using the nonlinear model. The sampling time is selected as 5 s. This
replicates well the canal dynamics and, furthermore, is appropriate for the con-
trollers considered in this paper. From these transfer functions a matrix model was
build, with the structure shown in figure 13. Although the resulting model is not
of minimal order, this proved to be an adequate approach. The validation of the
entries of the incremental model is seen in figure 14. Here, both plots are simula-
tions, one obtained with the nonlinear model and the other with the linear model.
The objective is to show that both curves are close, and therefore that the linear
model is a good approximation to the nonlinear model, around the operating point
considered.

3. Control. The channel, whose schematic view is shown on figure 2, is a multi-
variable system, with 4 manipulated inputs ui = Xi, i = 1, . . . , 4 and 4 outputs
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Figure 14. Comparison of the linear incremental and nonlinear models.

given by the upstream levels yi = Mi, i = 1, . . . , 4. Furthermore, the outtakes Ti,
i = 1, . . . , 4, are disturbances that may be considered accessible for measure. The
control objective consists on acting on the manipulated inputs such that the output
level signals have the desired values with a minimum of control effort.

Although this control objective can be attained with a multivariable controller,
other structures based on networks of local controllers may be used, with the advan-
tage of requiring simpler communication networks. Hence, hereafter the following
control structures are considered:

• Upstream control. A SISO controller is associated with each pool and uses as
feedback signal the closest upstream level measure i. e., for gate i, controller
Ci computes the gate position, Xi, using as feedback signal Mi.

• Downstream control. A SISO controller is associated with each pool and uses
as feedback signal the closest downstream level measure i. e., for gate i,
controller Ci computes the gate position, Xi, using as feedback signal Ji.
This type of control applies only to gates 1 to 3.

• Feedforward from accessible disturbances. To both the above structures one
may add to each manipulated variable a term proportional to the error in other
local control loops. This exerts a feedforward action that helps to coordinate
the different local controllers. Two possibilities tried hereafter consist on using
either the tracking error from the previous pool or the sum of the tracking
errors in all the up-stream pools. Using the sum of the tracking errors from
up-stream pools is motivated by the fact that it anticipates disturbances that
will appear in the future due to correction actions made by the controllers in
those pools.

• Multivariable control based on a proximal model. This refers to a controller
based on a model that only takes into consideration the adjacent pools to the
one being considered, using a MISO model.

In this paper, the local controllers are variants of Model Predictive Controllers
(MPC). PIDs are also considered in order to establish a base line for comparison.

3.1. Model predictive control. Model Predictive Control (MPC) [16] is a well
established procedure for process control. Its advantages include the ability to tackle
constraints and multivariable problems, yielding robust controllers. Although MPC
based on nonlinear models is available [20], linear model based MPC is considered in
this work. As is well known, in a deterministic framework, the manipulated variable
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is obtained by minimizing the multistep quadratic cost

J(k) =
Tp∑

i=0

[‖(y(k + i)− r(k + i))‖2Wy
+

+
Tu∑

i=0

[‖u(k + i)‖2Wu
+ ‖∆u(k + i)‖2W∆u

] (15)

subject to operational and state constraints [16]. Here u, y and r are, viz., the
vectors of manipulated variables, plant output and reference and Wy, Wu and W∆u

are matrices of weights, with ‖z‖Q

=

4 zT Qz for any column vector z and a matrix Q.
The parameters Tp and Tu are, respectively, the prediction and the control horizons.
The connection between the input and the output is established through a model.
In the situation considered, the model consists of a matrix of discrete time transfer
functions estimated using data obtained from the nonlinear plant model described
in section 2 and corresponding to the nominal operating point. According to the
receding horizon principle, only the first element u(k) of the optimal sequence is
actually applied to the plant, the whole procedure being repeated at discrete time
k + 1.

3.2. Adaptive MPC. Adaptive MPC is obtained by coupling to it an identifica-
tion procedure to estimate on-line the model parameters. Many possibilities may
be considered. Here, a stochastic framework is assumed in order to obtain a gener-
alization of the MUSMAR algorithm [19], closely related to LQ stochastic control.

As discussed in [3], for an ARMAX plant model, the minimization of the modified
quadratic criterion

J∞ = E

[(
1
r

)2k (
y2

k + ρu2
k

)
]

(16)

with r < 1 yields closed-loop systems with guaranteed exponential stability. For a
control law minimizing this cost, the variables yk (process output) and uk (manip-
ulated variable) must decay to zero at least as fast as rk, when k grows, and hence
the closed loop poles are inside the circle |z| ≤ r. It is assumed that the innovations
in the underlying ARMAX plant model are such that their covariance goes to zero
as rk.

In a predictive control framework, and according to a receding horizon strategy,
replace (16) by the multi-step quadratic cost approximation

JT =
1

2T
E

[
T∑

k=1

(
1
r

)2k (
y2

t+k + ρu2
t+k−1

) |It

]
(17)

where E[·|It] denotes the mean conditioned on the σ−algebra generated by the
observations up to time t. This is an approximation to the exact guaranteed ex-
ponential stability controller that goes tighter when the horizon T increases. The
inclusion of an exponential weight that grows along the horizon relates the algo-
rithm to other receding horizon controllers that impose a constraint on the final
state, e. g. by using a final penalty in order to guarantee stability with a finite
horizon for receding horizon schemes [20].

The MUSMAR adaptive MPC algorithm modified to include an exponential
weight and feed-forward from accessible disturbances reads as follows:

Modified MUSMAR with exponential cost
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At the beginning of each sampling interval t (discrete time), recursively perform
the following steps:

1.Sample plant output, y(t) and compute the tracking error ỹ, with respect to
the desired set-point y∗(t), by:

ỹ(t) = y∗(t)− y(t) (18)

2.Using Recursive Least Squares (RLS), update the estimates of the parameters
θj , ψj , µj−1 and φj−1 in the following set of predictive models:

ỹ(t + j) ≈ θju(t) + ψ′js(t) (19)

u(t + j − 1) ≈ µj−1u(t) + φ′j−1s(t) (20)
j = 1, . . . , T

where ≈ denotes equality in least squares sense and s(t) is a sufficient statistic for
computing the control, hereafter referred as the pseudo-state, given by

s(t) = [ỹ(t) . . . ỹ(t− n + 1) u(t− 1) . . . u(t−m)

w1(t) . . . w1(t− nw1) . . . wN (t) . . . wN (t− nwN ) 1]′ (21)
where the wi are samples of auxiliary variables such as intermediate process variables
or accessible disturbances. Since, at time t, ỹ(t + j) and u(t + j) are not available
for j ≥ 1, for the purpose of estimating the parameters, the variables in (19,20) are
delayed in block of T samples. The estimation equations are thus,

K(t) =
P (t− 1)ϕ(t− T )

1 + ϕ′(t− T )P (t− 1)ϕ(t− T )[1− β(t)]
(22)

P (t) = [I −K(t)ϕ′(t− T )(1− β(t))]P (t− 1) (23)
with, for j = 1, . . . , T :

Θ̂j(t) = Θ̂j(t− 1) + K(t)[y(t− T + j)− Θ̂j(t− T )′ϕ(t− T )] (24)

and, for j = 1, . . . , T − 1:

Ω̂j(t) = Ω̂j(t− 1) + K(t)[u(t− T + j)− Ω̂j(t− T )′ϕ(t− T )] (25)

In these equations, Θ̂j represents the estimate of the parameter vector of the output
predictors, given at each discrete time and for each predictor j by

Θ̂j = [θj ψ′j ]
′

and ϕ(t− T ) represents the regressor, common to all predictors, given by

ϕ(t− T ) = [u(t− T ) s′(t− T )]′

Similarly, Ω̂j represents the estimate of the parameter vector of the input predictors,
given at each discrete time and for each predictor j by

Ω̂j = [µj φ′j ]
′

Note that, since the regressor ϕ(t− T ) is common to all the predictive models, the
Kalman gain update (22) and the covariance matrix update (23) are also common
to all the predictors and need to be performed only once per time iteration. This
greatly reduces the computational load.

The variable β(t) denotes the quantity of information discarded in each iteration,
being given according to a directional forgetting scheme [12] by

β(t) = 1− λ +
1− λ

ϕ′(t− T )P (t− 1)ϕ(t− T )
(26)



MPC OF AN IRRIGATION CANAL 317

where the forgetting factor λ is a constant to be chosen between 0 (complete for-
getting) and 1 (no forgetting) that determines the rate of forgetting in the direction
of incoming information. In practice, a factorized version is used to implement
equations (22, 23).

3.Apply to the plant the control given by

u(t) = f ′s(t) + η(t) (27)

where η is a white dither noise of small amplitude and f is the vector of controller
gains, computed from the estimates of the predictive models by

f = − 1
α




T∑

j=1

(
1
r

)2j

θjψj + ρ

T−1∑

j=1

(
1
r

)2j

µjφj


 (28)

with the normalization factor α given by

α =
T∑

j=1

(
1
r

)2j

θ2
j + ρ


1 +

T−1∑

j=1

(
1
r

)2j

µ2
j


 (29)

Here, r is the inverse of the basis of the exponential weight. In other words, r is the
radius of the circle to which the closed-loop poles are confined by the algorithm.

4. Control algorithm comparison. The control algorithms and structures de-
scribed on section 3 are compared hereafter when applied to the pilot channel con-
sidered. In all the tests performed, the sampling interval Ts was 5 s as mentioned
in section 2.3. For all the non-adaptive MPC controllers, Tp = 15, Tu = 10. As
such, the MPC takes decisions on the manipulated variable based on pool level
predictions that go as far as Tp × Ts = 75 s ahead of current time. This was found
to be an appropriate value from the point of view of controller performance.

The weight matrices depend on the type of controller. For the multivariable
MPC with global model the following choice was made:

Qy = diag{0.1, 0.1, 0.1, 0.1} Qu = diag{1, 1, 1, 3} Q∆u = diag{0.7, 0.7, 1, 4}
For MUSMAR, T = 10, ρ = 0.01, n = 3, m = 2, r = 1 and λ = 0.995.

An overall view of the performance yielded by the different control algorithms
considered is shown in Table 1. For each control structure, this table shows the
results both for reference tracking and for disturbance rejection. For reference
tracking the reference level for pools 1 and 3 is made to vary as a square wave whose
value changes asynchronously, while the reference for pools 2 and 4 is kept constant.
For the sake of illustration, figure 15 shows the results for multivariable MPC with
a global model, and figure 17 shows the results for MUSMAR for reference tracking.

For the disturbance rejection test all the pool level set-points are kept constant.
Disturbances are induced by making the offtakes of pools 1 and 3 to vary, while
the offtakes of pools 2 and 4 are kept closed. Figure 16 shows the results for
multivariable MPC with a global model.

Table 1 shows the variance for the tracking error and the manipulated variable
in units of [m2].

The resulting performances are of the same order of magnitude. The best per-
formance for reference tracking is obtained with multivariable MPC with a global
model. This is expected since the different pools strongly interact: A change in
the set-point of pool 1 induces disturbances in the other pool levels that, in turn,
disturb pool 1. Hence, it is not surprising that MPC with the proximal model (a
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Figure 15. Set-point tracking by MPC with global model. Com-
pare with fig. 17.

local controller that takes into account the movement of the gates of the neighbor-
hood pools) leads to a performance between the one of the local MPC controllers
(i. e. 4 SISO MPC, one for each gate, with to feedforward terms) and the one of
multivariable MPC with the global model.

When using a network of local controllers, the inclusion of feedforward clearly
improves the performance. Feedforward terms may be computed in several ways.
The one that leads to best results was to use as feedforward signal the sum of
the tracking errors from the preceding pools (i. e. no feedforward for pool 1,
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Figure 16. Disturbance rejection by MPC with global model.
The signal at the bottom of each graphic is the outtake flow of
the corresponding pool.

feedforward from the tracking error of pool 1 to pool 2, feedforward from the sum
of tracking errors of pools 1 and 2 for pool 3 and so on).

Although not apparent in Table 1, handling rate constraints in the manipulated
variables was a major issue since the gate movement presents a slew-rate limita-
tion. This can be done by including a penalty term in the cost functional (15).
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Figure 17. Set-point tracking by MUSMAR with long distance
upstream control and feedforward from accessible disturbances.
Compare with fig. 15.

Another possibility, that only applies to the non-adaptive MPC controllers consid-
ered, consists in explicitly imposing a constraint on the maximum rate of change of
the manipulated variable.

Although MUSMAR does not present the best performance, its adaptation fea-
tures make it a quite useful tool in practical situations. Indeed, the good perfor-
mance of non-adaptive controllers depends on a fixed tuning (made through a plant
model valid at an operating point for MPC, that is costly to obtain). If the channel
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Controller Results for Results for
ref. tracking disturb. reject.

Average Average Average Average
quadr. error quadr. act. quadr. error quadr. act.

P
ID

upstream 0.0400 1.12× 10−3 0.0082 0.47× 10−3

upstream with 0.0492 1.34× 10−3 0.0063 0.50× 10−3

feed-forward

M
U

S
M

A
R

upstream 0.0717 0.51× 10−3 0.0190 0.25× 10−3

upstream with 0.0670 0.67× 10−3 0.0156 0.48× 10−3

accessible dist.
upstream with 0.0570 0.41× 10−3 0.0163 0.20× 10−3

added access. dist.
downstream 0.0593 0.66× 10−3 0.0103 0.77× 10−3

downstream with 0.0468 0.43× 10−3 0.0093 0.47× 10−3

accessible dist.

M
P

C

upstream 0.0899 0.76× 10−3 0.0205 0.38× 10−3

with proximal 0.0487 0.47× 10−3 0.0117 0.28× 10−3

model
with global 0.0250 0.25× 10−3 0.0097 0.20× 10−3

model
Table 1. Control method comparison. Units are [m2].

dynamics change, e. g. due to mud accumulation, vegetation growth or operating
point change) MUSMAR will be able to retune its gains but constant controllers
will not.

5. Experimental results with adaptive MPC. Figs. 18 and 19 show the si-
multaneous proximal upstream level control of pools 1 and 2 using the adaptive
MPC algorithm. After the extinction of the adaptation transient for pool 1, the
controller for pool 2 starts (remark that the time origin for the two graphics is the
same). The gates for pools 3 and 4 are kept at constant positions.

After an initial adaptation transient in pool 2 (lasting for about the first 50
samples), the gains converge to what is seen by the algorithm as their optimal values,
and the algorithm proceeds then normaly (figure 19). During the transient, the
upstream level of pool 2 raised to a temporary incorrect control action and, in turn,
this caused pool 1 upstream level to raise. The local controller of pool 1 rejected
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Figure 18. Experimental results with adaptive MPC. Simultane-
ous level control of two pools – pool 1. Level and reference (up),
manipulated variable (middle) and controller gains (below).
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Figure 19. Experimental results with adaptive MPC. Simultane-
ous level control of two pools – pool 2. Level and reference (up),
manipulated variable (middle) and controller gains (below).
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this disturbance by slightly oppening its gate (figure 18). The corresponding gains
were not much disturbed from their convergence values.

6. Conclusions. A comparison of different, adaptive and non-adaptive, Model
Predictive Control (with linear models) structures has been made when applied
to a 4 pool pilot water delivery channel. For that sake, simulations have been made
using a non-linear channel model, validated against experimental plant data. The
non-linear model served not only the purpose of replacing the plant in the simula-
tions, but it was also used to generate the linear incremental models required by
MPC.

The controller with the best performance, either for regulation and set-point
tracking, is the multivariable MPC. This not only superseeds controllers based on
PID, but has the advantage of providing a systematic design procedure. MPC with a
global model requires the concentration of plant signals in one point. If a distributed
solution is sought, a possibility is to use MPC based on a MISO model that takes
into consideration the positions of adjacent gates. The resulting performance lays
between upstream local control, using 4 MPC’s with local models and MPC with a
global model and may be an interesting choice if a distribution solution is sought.

Channel dynamic characteristics may change with time, suggesting the use of
adaptive MPC. Among several other possibilities, the MUSMAR algorithm has
been used with a modification to include feedforward from tracking errors, taken as
accessible disturbances. Although not presenting the best performance, this option
requires less tuning effort, in particular if successive adjustments are to be made.
The adaptive MPC was demonstrated experimentally.
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