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INFINITE-DIMENSIONAL NONLINEAR PREDICTIVE CONTROL
DESIGN FOR OPEN-CHANNEL HYDRAULIC SYSTEMS

Didier Georges

Control systems department, Gipsa-lab, Grenoble
Grenoble INP-Ense3, BP 46, 38402 Saint-Martin d’Hères, France

Abstract. A nonlinear predictive control design based on Saint Venant equa-

tions is presented in this paper in order to regulate both water depth and water
flow rate in a single pool of an open-channel hydraulic system. Thanks to vari-

ational calculus, some necessary optimality conditions are given. The adjoint

partial differential equations of Saint Venant partial differential equations are
also derived. The resulting two-point boundary value problem is solved numer-

ically by using both time and space discretization and operator approximations
based on nonlinear time-implicit finite differences. The practical effectiveness

of the control design is demonstrated by a simulation example. A extension

of the predictive control scheme to a multi-pool system is proposed by using
a decomposition-coordination approach based on two-level algorithm and the

use of an augmented Lagrangian, which can take advantage of communication

networks used for distributed control. This approach may be easily applied to
other problems governed by hyperbolic PDEs, such as road traffic systems.

1. Introduction. In this paper, we consider the control of open-channel hydraulic
systems. Such environmental systems are numerous: irrigation or drainage systems,
dam-river systems, waste-water networks, etc ... In this paper we will focus our at-
tention on the case of irrigation systems, but the here-proposed approach may be
easily applied to other open-channel hydraulic systems. Regulation of irrigation
channels has received an increasing interest over the last two decades. In Europe
and in America, a lot of interconnected irrigation networks are already monitored
and controlled by a distant human operator via some communication systems. Since
water is becoming more and more a rare and expensive resource, the need for fully
automatic regulation systems which would be able to satisfy the water demands,
while guaranteeing both minimum water level and overflow avoidance in each canal,
together with minimum wastes of water, is increasing. An irrigation network is usu-
ally made of a primary open-channel canal which deserves open-channel secondary
canals. Canals themselves are made of several long reaches (most of the time, they
are several kilometers long) separated by engineering works (like sliding gates or
weirs for instance). The dynamics of open channels is characterized by important
time lags (due to water transport), wave superposition effects and strong nonlinear-
ities due to control gates or sweirs. A large number of control schemes are based on
both linear modelling and linear control design: PID control [20], LQG controller
[17, 15], linear predictive controller [19], linear robust controller [16] or fuzzy con-
troller [21, 3]. Other researches have been devoted to nonlinear control design based
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on the Saint Venant partial differential equations governing the water flow dynamics.
In [8], the control law is obtained from a Lyapunov function-based stability analysis
in the infinite-dimensional framework. A internal model approach has been also
proposed in this framework [10]. The semigroup theory has also been used for both
control analysis and design [4, 22]. In [11], the design of a finite-dimensional nonlin-
ear controller based on input-output feedback linearization has been proposed; this
approach is based on the reduction of nonlinear partial differential Saint Venant
equations under the form of a set of nonlinear ordinary differential equations of
reduced order through the use of a collocation weighted residual method.

Our main goal in this paper is to propose a nonlinear predictive control design.
This approach is a priori well suited for the control of nonlinear systems with delays.
First of all we analyze the infinite-dimensional optimal control problem associated
to the nonlinear predictive control problem. Some necessary optimality conditions
are then derived thanks to variation calculus (see [5, 6] for an early example of
this approach) and a numerical scheme is proposed in order to compute the so-
lution of the related infinite-dimensional two-point boundary value problem. An
adjoint method has been also proposed for the control of air traffic flow based on a
network of conservation laws [2]. With this approach, both nonlinearities and the
distributed nature of open-channel dynamics can be potentially taken into account
(transport and diffusion phenomena in particular). Rather than first reducing the
Saint Venant equations and then designing a finite-dimensional controller, we con-
sider an infinite-dimensional control design which is finally approximated in order
to be implementable.

The paper is now organized as follows: in section 2, some backgrounds on mod-
elling of open-channel hydraulic systems based on the Saint Venant partial differ-
ential equations are given and a single pool control problem is described. In section
3, model predictive control is briefly recalled and an infinite-dimensional two-point
boundary value problem of the related infinite-dimensional optimal control prob-
lem with receding horizon is then derived. First-order optimality conditions are
provided for a class of nonlinear hyperbolic PDEs. In particular, the adjoint-state
PDEs of the problem are defined. Then the description of the model predictive con-
trol scheme based on the infinite-dimensional two-point boundary value problem is
provided. In section 4, some simulation results are presented which demonstrate the
effectiveness of the approach. The section 5 is devoted to the extension of the pre-
dictive control scheme for multi-pool systems by using a distributed control scheme
based on decomposition-coordination and the use of an augmented Lagrangian.
Finally, the last section is devoted to some conclusions and perspectives.

2. Open-channel hydraulic system modelling.

2.1. Saint Venant equations. The dynamics of open-channel hydraulic systems
is governed by a set of two nonlinear hyperbolic partial differential equations known
as the Saint Venant equations:

S :


∂A

∂t
+
∂Q

∂x
= q

∂Q

∂t
+

∂

∂x
(
Q2

A
) + gA

∂z

∂x
− gA(I − J) = kq

Q

A

(1)

where z is the water depth(m), Q is the water flow rate (discharge) (m3

s ), A is the
wet area (m2), I is the canal slope, g is the acceleration of gravity ( m

s2 ); J is the
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friction term (m
m ) ; q(x) is the withdrawal per length unit (m2

s ) ; k = 0, if q > 0,
k = 1, if q < 0. The friction term J may be given by Manning-Strickler’s formula
(some other friction models exist):

J =
Q2

K2A2R
4
3

(2)

where R is the wet perimeter and K is Manning-Strickler’s coefficient. In what
follows, we will only consider that J is a function of both z and Q.

Without restriction and for simplification purpose, we will also consider that the
section profile of the canal is rectangular: A = Bz, where B is the canal width, and
q(x) = 0. It follows that:

S :


B∂z

∂t
+
∂Q

∂x
= 0

∂Q

∂t
+

∂

∂x
(
Q2

Bz
) + gBz

∂z

∂x
− gBz(I − J) = 0

(3)

In addition two boundary conditions and some initial state conditions have to be
defined.

2.2. The case study. The regulation of a single pool irrigation system is consid-
ered. The problem is to regulate the pool around a equilibrium state by controlling
the upstream flow gate. The downstream flow gate is acting on the pool as a
disturbance source.

B

hDh

S

P

h
Q

I

L

Upstream Downstream

Transversal section Longitudinal section

Figure 1. A single pool canal

Through the flow gates, which are dissipative elements, water levels and flow are
linked by an expression of the form:

G(Q(t), zus(t), zds(t), u(t)) = 0, (4)

where zus is the upstream water level at the gate and zds is the downstream water
level at the same gate and u is the gate opening (control input).

In the case of underflow gates, we get the following model:

Q2(t) = K2
gu

2 × 2g(zus − zds) (5)
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zus

zds
u

Figure 2. Control gate scheme

where Kg is the so-called gate coefficient.
In the present case where two gates are present, the following boundary conditions

have been introduced:

B.C.

{
Gus(Q(x = 0, t), zus(t), z(x = 0, t), u(t)) = 0,
Gds(Q(x = L, t), z(x = L, t), zds(t), v(t)) = 0, (6)

where zus is now the upstream water level at the upstream gate and zds is now the
downstream water level at the downstream gate.

The control approach will be based on a boundary control of the time derivative
of the upstream gate opening u, while the opening v of the downstream gate acts as
a disturbance. It is of special interest to introduce integrator at the control input
since in this case constant disturbance rejection will be guaranteed.

3. A nonlinear infinite-dimensional predictive control scheme.

3.1. Some backgrounds on predictive control. A general predictive control
scheme can be defined as follows [12]:

Let us consider a nonlinear system of the general form:

ẋ = F (x, u), x(0) = x0 (7)

with F (0, 0) = 0 (the origin is an equilibrium point).
1. At time t, obtain the current state x(t) = xt (through direct measurements

or by mean of a state observer).
2. Compute the optimal solution of an optimal control problem (defined on a

control horizon T by using the available state xt and called in what follows
“related optimal control problem”):

min
u(.)

∫ t+T

t

L(x(τ), u(τ))dτ (8)

s.t. ẋ = F (x, u), x(t) = xt (9)
and x(t+ T ) ∈ E (10)
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where E is a region of the state space in which the state x(t+ T ) is assigned.
In practice, a numerical scheme has to be introduced through the discretiza-

tion of the time interval [t, t+ T ] into N + 1 values t+ i∆t, i = 0, ..., N . The
optimal solution is to be computed as N +1 piecewise constant control inputs
of the form {u(t), u(t+ ∆t), u(t+ 2∆t), ...., u(t+N∆t)}.

3. Apply the first control input u(t) of the sequence {u(t), u(t + ∆t), u(t +
2∆t), ...., u(t+N∆t)}.

4. t+ ∆ → t and go back to 1).

Remark: The constraint on the final state (10) reduces in many cases to x(t+T ) =
0. This “hard” constraint offers the advantage of guaranteeing the closed-loop
stability under some mild assumptions and provided that a global optimal solution
is available for each receding horizon optimal control problem. In this case, it can be
shown that the optimal cost function of the predictive controller with this terminal
constraint is a decreasing Lyapunov function along the trajectory of the closed-loop
system [18, 12]. The main idea here is to use the same approach in the case of a
infinite-dimensional regulation problem of the Saint Venant equation. In this paper
we will only demonstrate the practical effectiveness of infinite-dimensional model
predictive control applied to open-channel hydraulic systems. Derivation of a formal
proof of stability remains an open problem.

3.2. Formulation of the related optimal control problem. A change of time
coordinates is (temporarily) made: t → 0 et t + T → T and the following optimal
control problem is introduced:

min
u

∫ T

0

m(u)dt+
∫ T

0

∫ L

0

l(z(x, t), Q(x, t))dxdt (11)

where m(.) is positive definite and l(., .) is positive semidefinite, subject to the
dynamics

S :


B
∂z

∂t
+
∂Q

∂x
= 0

∂Q

∂t
+

∂

∂x
(
Q2

Bz
) + gBz

∂z

∂x
− gBz(I − J) = 0

µ̇ = u

(12)

with the initial conditions

I.C.

 Q(x, 0) = φ1(x), x ∈ [0, L]
z(x, 0) = φ2(x)
µ(0) = φ3(0)

(13)

the boundary conditions

B.C.

{
Gus(Q(0, t), zus(t), z(0, t), µ(t)) = 0,
Gds(Q(L, t), z(L, t), zds(t), v(t)) = 0, (14)

and the terminal constraint:

{Q(x, T ), z(x, T )} ∈ E, x ∈ [0, L] (15)

The cost function l has now to be determined in order to comply with the control
objective:

In this paper, a regulation problem around an equilibrium state is con-
sidered: m(u) = r

2u(t)
2, r > 0 and l(z,Q) = 1

2 [q1(z(x, t) − z0(x))2 + q2(Q(x, t) −
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Q0(x))2], q1, q2 > 0, with z0(x), Q0(x), x ∈ [0, L] corresponding to a reference
equilibrium state defined as the solution of the equilibrium PDEs:

Seq :


∂Q

∂x
= 0,

∂

∂x
(
Q2

Bz
) + gBz

∂z

∂x
− gBz(I − J) = 0,

(16)

with v0, µ0, zus0, zds0 satisfying the boundary condition:

B.C.

{
Gus(Q0(0), zus0, z0(0), µ0) = 0,
Gds(Q0(L), z0(L), zds0, v0) = 0, (17)

and with the terminal constraint

T.C.

{
Q(x, T ) = Q0(x), x ∈ [0, L],
z(x, T ) = z0(x).

(18)

3.3. Derivation of the first-order optimality conditions for nonlinear hy-
perbolic PDEs. In this section, we will consider the formal derivation of the
first-order optimality conditions for nonlinear hyperbolic PDEs. We will not con-
sider the problem of existence of solutions to such optimal control problems. We
only adopt the convenient differentiability hypotheses on the functions to give a
sense to the optimality conditions.

Consider the following nonlinear hyperbolic PDEs + integrator described by
∂ξ

∂t
=
∂f

∂x
(ξ) + h(ξ)

Lb(µ(t), ξ(0, t), ξ(L, t)) = 0,
µ̇ = u,

(19)

where ξ(x, t) is the state which is defined on the domain Ω = [0, L] with the bound-
ary Γ = {0, L}. Lb denotes the boundary conditions. u(t) is the integral boundary
control to be determined (u is a 2-dimensional vector if we consider that the two
boundaries are controlled).

We intend to find the optimal control u(t)∗, which minimizes the following cost
integral:

J =
∫ T

0

ψ(u(t))dt+
∫ T

0

∫ L

0

l(ξ(x, t))dxdt (20)

where t ∈ [0, T ], x ∈ [0, L], T and L are fixed. The terminal state ξ(x, t = T )
is imposed. ψ(u(t)) is the input control cost function, which is supposed to be
positive definite. l(ξ(x, t)) is the state cost function, which is supposed to be positive
semidefinite.

In order to derive the first-order necessary conditions for optimality, we introduce
the following Lagrangian formulation:

Lf =
∫ T

0

∫ L

0

[l(ξ(x, t)) + λT (
∂f

∂x
(ξ(x, t)) + h(ξ(x, t))− ∂ξ(x, t)

∂t
)]dxdt

+
∫ L

0

φ(ξ(x, T ))dx+
∫ T

0

Ψ(u(t), µ(t), ξ(0, t), ξ(L, t))dt (21)

where λ is the vector of Lagrange multipliers associated to the PDEs (the adjoint
state), and we denote

Ψ(u(t), µ(t), ξ(0, t), ξ(L, t)) = ψ(u(t))+γTLb(µ(t), ξ(0, t), ξ(L, t))+λT
µ (u−µ̇), (22)
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where γ is the vector of Lagrange multipliers associated to the boundary conditions
Lb(ξ, t) and λµ is the adjoint state of µ̇ = u.

First of all we apply the Green-Riemann formula to the following double integral∫ T

0

∫ L

0

[l + λT (
∂f

∂x
(ξ) + h(ξ)− ∂ξ

∂t
)]dxdt

=
∫ T

0

∫ L

0

[l + λTh(ξ) + λT (
∂f

∂x
(ξ)− ∂ξ

∂t
)]dxdt

=
∫ T

0

∫ L

0

[l + λTh(ξ) + (
∂λT f(ξ)
∂x

− ∂λT ξ

∂t
)

− ((
∂λ

∂x
)T f(ξ)− (

∂λ

∂t
)T ξ)]dxdt

=
∫ T

0

∫ L

0

[l + λTh(ξ)− ((
∂λ

∂x
)T f(ξ)− (

∂λ

∂t
)T ξ)]dxdt

+
∫ L

0

[λT ξ]T0 dx+
∫ T

0

[λT f(ξ)]L0 dt. (23)

Then we introduce the following functional:

H(ξ, λ) = l(ξ) + λTh(ξ)− (
∂λ

∂x
)T f(ξ) (24)

and by replacing H in (21), we get

Lf (ξ, λ, γ, u, µ) =
∫ T

0

Ψ(u, µ, ξ(0, t), ξ(L, t))dt

+
∫ L

0

[λT ξ]T0 dx+
∫ T

0

[λT f(ξ)]L0 dt+
∫ T

0

∫ L

0

[H + (
∂λ

∂t
)T ξ]dxdt

(25)

The first variation of Lf is given by

δLf = Lf (ξ + δξ, µ+ δµ, u+ δu)− Lf (ξ, µ, u)

=
∫ L

0

[λT δξ]T0 dx+
∫ T

0

[λT ∂f

∂ξ
(ξ)δξ]L0 dt+

∫ T

0

∂Ψ
∂ξ(0, t)

δξ(0, t)dt

+
∫ T

0

∂Ψ
∂ξ(L, t)

δξ(L, t)dt+
∫ T

0

[
∂Ψ
∂u

T

+ λµ]T δudt+
∫ T

0

[
∂Ψ
∂µ

T

+ λ̇µ]T δµdt

+
∫ T

0

∫ L

0

[
∂H

∂ξ

T

+
∂λ

∂t
]T δξdxdt− [λT

µ δµ]T0 . (26)

Since the first order variation of Lf must be equal to zero, we impose that

∂ψ

∂u

T

+ λµ = 0. (27)

We get also the following adjoint equations:

∂λ

∂t
+
∂l

∂ξ

T

+
∂h

∂ξ

T

(ξ)λ− ∂f

∂ξ

T

(ξ)
∂λ

∂x
= 0, (28)

λ̇µ +
∂Lb

∂µ

T

γ = 0. (29)



274 DIDIER GEORGES

The remaining terms, which have to be canceled, provide the boundary and terminal
time conditions as well as the vector of multipliers γ, as a function of the adjoint
state defined at the boundaries:

− ∂f(ξ(0, t))
∂ξ

T

λ(0, t) +
∂Lb

∂ξ(0, t)

T

(ξ(0, t))γ = 0, (30)

∂f(ξ(L, t))
∂ξ

T

λ(L, t) +
∂Lb

∂ξ(L, t)

T

(ξ(L, t))γ = 0, (31)

λ(x, 0), λ(x, T ), free, (32)
λµ(T ) = 0. (33)

3.4. First-order necessary conditions of the related optimal control prob-
lem. The adjoint method is now applied to the related optimal control problem,
which has been previously defined.

Proposition 1. Necessary conditions for optimality. In order the boundary
control input u(t) ∈ [0, T ] and the related trajectory, solution of the problem:

min
u(.)

∫ T

0

r

2
u(t)2dt+

∫ L

0

∫ T

0

1
2
[q1(z(x, t)− z0(x))2 + q2(Q(x, t)−Q0(x))2]dxdt, (34)

subject to

S :


B
∂z

∂t
+
∂Q

∂x
= 0,

∂Q

∂t
+

∂

∂x
(
Q2

Bz
) + gBz

∂z

∂x
− gBz(I − J) = 0,

µ̇ = u,

(35)

with the initial conditions

I.C.

 Q(x, 0) = φ1(x), x ∈ [0, L]
z(x, 0) = φ2(x)
µ(0) = φ3(0)

(36)

the boundary conditions

B.C.

{
Gus(Q(0, t), zus(t), z(0, t), µ(t)) = 0,
Gds(Q(L, t), z(L, t), zds(t), v(t)) = 0, (37)

and the terminal constraint:

T.C.

{
Q(x, T ) = Q0(x), x ∈ [0, L],
z(x, T ) = z0(x).

(38)

are optimal, it is necessary that there exists an adjoint vector
λ = (λ1(x, t), λ2(x, t), λµ), ∀t ∈ [0, T ], ∀x ∈ [0, L], solution of the adjoint equa-
tions:

Sadj :



∂λ1

∂t
+ q1(z − z0)−

∂λ2

∂x
(
Q2

Bz2
− gBz) + λ2(gB(I − J)− gBz

∂J

∂z
) = 0,

∂λ2

∂t
+ q2(Q−Q0) +

1
B

∂λ1

∂x
+ 2

∂λ2

∂x

Q

Bz
− λ2(gBz

∂J

∂Q
) = 0,

λ̇µ +
∂Gus

∂µ
(
∂Gus

∂z(0, t)
)−1(

Q2

Bz2
− gBz)λ2(0, t) = 0,

(39)
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with the boundary conditions

B.C.


1
B
λ1(0, t) + (

2Q
Bz

+
∂Gus

∂Q(0, t)
(
∂Gus

∂z(0, t)
)−1(

Q2

Bz2
− gBz))λ2(0, t) = 0,

1
B
λ1(L, t) + (

2Q
Bz

+
∂Gds

∂Q(L, t)
(
∂Gds

∂z(L, t)
)−1(

Q2

Bz2
− gBz))λ2(L, t) = 0,

(40)
and with the additional transversality conditions

Tr.C.

 λ1(x, 0), λ1(x, T ), free, x ∈ [0, L]
λ2(x, 0), λ2(x, T ), free
λµ(T ) = 0.

(41)

For all t ∈ [0, T ], the optimal control, if it exists, is given by u = u∗ :

u∗(t) = −λµ(t)
r

.

Proof. Immediate by using the previous derivations and the following definitions
ξ = (z,Q)T ,

h(ξ) =
(

0
gBz(I − J(z,Q))

)
, (42)

f(ξ) =

 −Q
B

−Q
2

Bz
− 1

2
gBz2

 , (43)

ψ(u) =
r

2
u2, (44)

and

l(ξ) =
1
2
[q1(z(x, t)− z0(x))2 + q2(Q(x, t)−Q0(x))2]. (45)

Finally a two-point boundary value problem is obtained. One can emphasize the
fact that regularity conditions are needed to ensure existence of an optimal solution
to this problem, since both ( ∂Gus

∂z(0,t) )
−1 and ( ∂Gds

∂z(L,t) )
−1 must be defined.

The here-proposed computational method differs from the one proposed in [5])
where a gradient method were used to compute a solution, since a method based
on both time and space discretization of the canonical equations is derived.

3.5. Computation of the two-point boundary value problem. The compu-
tation is defined in two stages:

1. Perform both space and time discretization of the canonical equations by using
the Preissman numerical scheme: applied to both S and Sadj ;

2. Compute the solution of the nonlinear algebraic equations derived from a
two-dimensional grid via a Newton-Raphson method.
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The Preissmann scheme [9] is based on the following approximation of functions
f and their derivatives:

f(x, t) =
1− θ

2
[fi+1 + fi] +

θ

2
[f+

i+1 + f+
i ]

∂f

∂x
(x, t) =

1− θ

∆x
[fi+1 − fi] +

θ

∆x
[f+

i+1 − f+
i ]

∂f

∂t
(x, t) =

1
2∆t

[f+
i − fi + f+

i+1 − fi+1] (46)

where i is the space index, + corresponds to t + ∆t and 0 ≤ θ ≤ 1 is a relaxation
coefficient.

If θ ≥ 0, 5, we get an unconditionally stable integration scheme.

Figure 3. The Preissmann scheme
3.6. The overall model predictive control scheme. The overall control scheme
can be now defined as follows:

1. At each sampling time t: Get the current state zt(x) = z(x, t), Qt(x) = Q(x, t)
and compute the two-point boundary value problem defined by

B
∂z

∂t
+
∂Q

∂x
= 0,

∂Q

∂t
+

∂

∂x
(
Q2

Bz
) + gBz

∂z

∂x
− gBz(I − J) = 0,

µ̇ = −λµ(t)
r

,

(47)

∂λ1

∂t
+ q1(z − z0)−

∂λ2

∂x
(
Q2

Bz2
− gBz) + λ2(gB(I − J)− gBz

∂J

∂z
) = 0,

∂λ2

∂t
+ q2(Q−Q0) +

1
B

∂λ1

∂x
+ 2

∂λ2

∂x

Q

Bz
− λ2(gBz

∂J

∂Q
) = 0,

λ̇µ +
∂Gus

∂µ
(
∂Gus

∂z(0, t)
)−1(

Q2

Bz2
− gBz))λ2(0, t) = 0,

(48)
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with the boundary conditions, defined ∀τ ∈ [t, t+ T ], by

B.C.



Gus(Q(0, τ), ẑus(τ), z(0, τ), µ(τ)) = 0,

Gds(Q(L, τ), z(L, τ), ẑds(τ), v̂(τ)) = 0,

1
B
λ1(0, τ) + (

2Q
Bz

+
∂Gus

∂Q(0, τ)
(
∂Gus

∂z(0, τ)
)−1(

Q2

Bz2
− gBz))λ2(0, τ) = 0,

1
B
λ1(L, τ) + (

2Q
Bz

+
∂Gds

∂Q(L, τ)
(
∂Gds

∂z(L, τ)
)−1(

Q2

Bz2
− gBz))λ2(L, τ) = 0,

(49)
where “̂.” denotes a predicted value of the variable, and with the transversality
conditions

Tr.C.



Q(x, t) = Qt(x), x ∈ [0, L]
z(x, t) = zt(x),
µ(t) = φ3(0),
Q(x, t+ T ) = Q0(x), x ∈ [0, L],
z(x, t+ T ) = z0(x),
λ1(x, t), λ1(x, t+ T ), free, x ∈ [0, L]
λ2(x, t), λ2(x, t+ T ), free
λµ(t+ T ) = 0.

(50)

2. Apply u(t) defined as the first optimal control input sampling of the sequence
computed on [t, t + T ]: the system reaches state (z(x, t + ∆t), Q(x, t + ∆t)),
∀x ∈ [0, L].

3. t+ ∆t→ t and go to 1).

4. A simulation example. In order to illustrate the effectiveness of this infinite-
dimensional control scheme, we consider the following example:

• The simulation is based on Preissmann’s numerical scheme;
• A 5 km long canal divided into 10 sections of 500 m each is considered;
• The problem consists in controlling the pool around a uniform equilibrium

state corresponding to a constant relative water level z0 of 1.05 m, along the
pool;

• The initial condition is a uniform equilibrium of 1 m;
• At each time sampling ∆t, we consider N = 11 spatial samplings and M = 6

time samplings, with ∆t = 100s: we have to solve a problem defined by
4N ×M + 2M = 288 equations for 4N ×M + 2M = 288 unknown variables.

• The computation time were < 60 s on a Pentium 1,8 Mhz, 512 Mo Laptop:
this means real-time control is possible.

The figures 4 et 5 show the dynamics of the different states of the pool corre-
sponding to the values of both water flow and depth at each space discretization
point of the Preissmann scheme. From the left to the right of the figure 4, we get
the system behavior from the downstream end to the upstream end.

5. The multi-pool case: A decomposition-coordination scheme. Now we
consider an extension to the case of a N pools cascaded via N + 1 regulation gates.
Each pool i is defined on a domain Ωi = [L+

i , L
−
i+1].
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Figure 4. Closed-loop response

According to the notations introduced by the figure 6, the multi-pool system can
be modeled by the following set of conservation laws:

Spooli , i = 1, ..., N


B
∂zi

∂t
+
∂Qi

∂x
= 0,

∂Qi

∂t
+

∂

∂x
(
Q2

i

Bzi
) + gBzi

∂zi

∂x
− gBzi(I − J(Qi, zi)) = 0,

(51)
with the boundary conditions (based on the regulator gate models)

(B.C.)i, i = 1, ..., N
{
Gi(Qi(L+

i , t), zi−1(L−i , t), zi(L+
i , t), µi(t)) = 0,

Gi+1(Qi(L−i+1, t), zi(L−i+1, t), zi+1(L+
i+1, t), µi+1(t)) = 0,

(52)
and the integrator associated to each gate control

µ̇i = ui, i = 1, ..., N + 1. (53)

We give sense to the variables z0(L−1 , t) and z+
N+1 which will correspond to the

water level at the upstream end and the downstream end of the multi-pool system,
respectively.
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Figure 5. 3D plot of the closed-loop response

We intend to design a model predictive control scheme based on the receding
horizon [t, t+ T ] defined by

min
u

N+1∑
i=1

∫ T

0

mi(ui)dt+
N∑

i=1

∫ T

0

∫ L−i+1

L+
i

li(zi(x, t), Qi(x, t))dxdt (54)

s.t. Spooli (51) + (52)+ (53).

The first-order optimality conditions can be derived by using the adjoint method.
However the computation of a two-point boundary value problem for such a large
system becomes a very complex task. In this paper, two main issues are faced:

• How to reduce the computational complexity?
• How to take advantage of distributed control architecture (supervisory control

and data acquisition: SCADA) used in large-scale water distribution systems?

Here we propose to use of a decomposition-coordination algorithm based on La-
grangian relaxation. To that purpose, we introduce the following augmented La-
grangian formulation where the regulator gate model Gi (52) are the constraints
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Figure 6. Two interconnected pools in a multi-pool system

introduced in the Lagrangian functional

Lc(u,Qg, p) = min
u,Qg

N+1∑
i=1

∫ T

0

mi(ui)dt+
N∑

i=1

∫ T

0

∫ L−i+1

L+
i

li(zi(x, t), Qi(x, t))dxdt

+
N+1∑
i=1

∫ T

0

(pi +
c

2
Gi(Qi

g(t), zi−1(L−i , t), zi(L+
i , t), µi(t)))T

×Gi(Qi
g(t), zi−1(L−i , t), zi(L+

i , t), µi(t))

(55)

s.t. Spooli , i = 1, ..., N (51), with the new boundary conditions

Qi(L+
i , t) = Qi

g(t),

Qi+1(L−i+1, t) = Qi+1
g (t), (56)

and (53), where c > 0, Qg is the vector of the Qi
g’s, u is the vector of the ui’s,

p denotes the vector of the Lagrange multipliers associated to the regulator gate
models Gi, i = 1, ..., N + 1 52.

Notice that some “slack” variables Qi
g corresponding to the water flow rate at

each regulator gate i have been introduced.
An augmented Lagrangian differs from an ordinary Lagrangian by an additional

term proportional to the square of the norm of the constraints. The motivation for
using an augmented Lagrangian is found in the fact that for nonconvex problems
and for c > 0 large enough, there exists at least one saddle-point of Lc under es-
sentially the assumption that the second-order Kuhn-Tucker conditions hold for the
constrained optimization (see [7] for example). As a consequence, the convergence
of dual algorithms (such as the Uzawa algorithm) is ensured (absence of duality
gaps).
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5.1. A decomposition-coordination algorithm for the related optimal con-
trol problem solution. In order to motivate the decomposition-coordination sche-
me proposed in this paper, we consider the following optimization problem:

min
ui

N∑
i=1

Ji(ui) (57)

s.t. θ(u) = 0 (58)

with u = (u1, ..., uN ).
The augmented Lagrangian associated to the problem is given by

Lc(u, p) =
N∑

i=1

Ji(ui)+ < p, θ(u) > +
c

2
‖θ(u)‖2 (59)

where < .,> denotes the inner product and ‖.‖ is the associated norm.
Computation of a saddle-point of Lc may be obtained thanks to the classical

Uzawa algorithm (that is based on a gradient ascent method for maximizing the
dual functional w(p) = min

u
Lc(u, p)):

1. At iteration k = 0: Choose p0

2. At (dual) iteration k: Solve min
u
J(u)+ < pk, θ(u) > +

c

2
‖θ(u)‖2 ⇒ uk+1

3. pk+1 = pk + ρθ(uk+1)
4. if ‖pk+1− pk‖ < α, sufficiently small: stop, otherwise k+ 1 → k and go to 2).

By using linearization of the square of the constraint norm, Cohen (in [7], pp.
234-236) has proposed an algorithm which is closely related to Uzawa algorithm.
This algorithm offers the major advantage of allowing decomposition of stage 2) of
Uzawa algorithm into N independent subproblems, which can be solved in parallel:

1. At iteration k = 0: Choose p0 and u0
i , i = 1, ..., N

2. At iteration k: Solve each primal subproblem i, i = 1, ..., N : min
ui

Ji(ui) +

‖ui − uk
i ‖2/2ε+ < pk + cθ(uk), θ′i(u

k).ui >⇒ uk+1
i

3. pk+1 = pk + ρθ(uk+1)
4. if ‖pk+1− pk‖ < α, sufficiently small: stop, otherwise k+ 1 → k and go to 2).

where θ′i denotes the Jacobian matrix of θ with respect to ui.
Convergence of this algorithm is obtained for convex problems with 0 < ε < 1/cτ2

and 0 < ρ < 2c, where τ is the Lipschitz constant of θ and some mild additional
conditions (such as constraint qualification condition and simple convexity).

This algorithm is a so-called two-level algorithm: Level 1 is devoted to the solu-
tion of N independent subproblems (decomposition level), while level 2 is a coordi-
nation level whose goal is to compute the Lagrangian multipliers of the constraint
θ(u) = 0. This feature can be exploited in the context of networked control sys-
tems where N optimization agents can be coordinated by a simple coordination
agent whose main task is to evaluate the interconnection constraints linking each
sub-system i related to each agent i to update the Lagrangian multipliers and to
broadcast the update of the Lagrangian multipliers to each optimization agent.
One can also imagine that the coordination task is carried out by each agent i by
computing a part pk+1

i = pk
i + ρθi(uk+1) of the coordinator task.

Following this approach, we get the following algorithm for solving the related
optimal control problem of the predictive control scheme:
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1. At iteration k: for all i = 1, ..., N , solve a two-point boundary value
problem for the pool i (which is denoted TBV Pi and can be associ-
ated to the control system of each gate i, i = 1, ..., N):

min
ui,Qi

g

∫ T

0

[mi(ui) +
1
2ε

(ui − uk
i )2 +

1
2ε

(Qi
g −Qi

g

k
)2]dt

+
∫ T

0

∫ L−i+1

L+
i

li(zi(x, t), Qi(x, t))dxdt

+
∫ T

0

[pk
i + cGi(Qi

g

k
, z−i−1

k
, z+

i

k
, µk

i ]T [
∂Gi

∂Qi
k

k

Qi
g +

∂Gi

∂z+
i

k

z+
i

∂Gi

∂µi

k

µi]dt

+
∫ T

0

[pk
i+1 + cGi+1(Qi+1

g

k
, z−i

k
, z+

i+1

k
, µk

i+1]
T ∂Gi+1

∂z−i

k

z−i dt (60)

s.t. Spooli , (56) and µ̇i = ui,
=⇒ uk+1

i (.), Qi
g
k+1(.), z−i

k+1
(.), z+

i

k+1
(.), µi

k+1(.),

and compute the control of the gate N + 1:

min
uN+1,QN+1

g

∫ T

0

[mN+1(uN+1) +
1
2ε

(uN+1 − uk
N+1)

2 +
1
2ε

(QN+1
g −QN+1

g

k
)2]dt

+
∫ T

0

[pk
N+1 + cGN+1(QN+1

g

k
, z−N

k
, z+

N+1

k
, µk

N+1]
T

×[
∂GN+1

∂QN+1
k

k

QN+1
g +

∂GN+1

∂µN+1

k

µN+1]dt (61)

s.t. µ̇N+1 = uN+1, =⇒ uk+1
N+1(.), Q

N+1
g

k+1(.), µN+1
k+1(.),

2. Coordination:

pk+1
i = pk

i + ρGi(Qi
g

k+1
, z−i−1

k+1
, z+

i

k+1
, µi

k+1), i = 1, ..., N + 1 (62)

k + 1 → k and go to 1)
where z−i and z+

i denote the variable zi evaluated at x = L−i and x = L+
i respec-

tively.
The solution of each problem TPBV Pi can be obtained with an adjoint method

very similar to the one described in the sections 3.3 and following, while the sub-
problem (61) is a simple LQ optimal control problem if m is a quadratic functional.

5.2. A distributed predictive control scheme. The overall predictive control
scheme may be described as follows, at each sampling time t (see also the figure 7):

1. Each agent i (corresponding to the control system of each gate i) broadcasts
the current state (Qi(., t), zi(., t)).

2. A local receding horizon problem is solved by each agent i on horizon [t, t+T ],
using last information sent by the other agents.

3. Each agent i broadcasts through the communication network its local infor-
mation Qi

g(.), z
−
i (.), z+

i (.), µi(.), which correspond to the solution of the local
receding horizon problem.

4. The coordination agent updates the Lagrangian multipliers pi by using (62):
if the norm of the constraints is less than α, go to 5), otherwise go to 2).
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5. Each agent i applies to the system the first optimal control input for the
current instant t of the last computed optimal sequence ui, t→ t+∆t and go
to 1).

A distributed predictive control scheme

At each time t, parallel computation of the N local two-point boundary value sub-
problems + the control of the gate N+1

POOL 1 ...

Computation of a  two-point 
boundary value problem (similar to a 
single-pool problem)

The local variables Qg1(.), z1-(.), 
z1+(.) and μ1(.) at iteration k are sent 
through the network

POOL N

Computation of a  two-point 
boundary value problem (similar to a 
single-pool problem)

The local variables QgN(.), zN-(.), 
zN+(.) and μN(.) at iteration k are 
sent through the network

Coordination: The coordination variables are the Lagrangian 
multipliers p associated to the gate constraints 

Update of p ; their new values are sent through the network

k+1 -> k

Broadcast of variables through the communication 
network 
until convergence

NETWORK

Figure 7. Distributed model predictive control

6. Conclusions and perspectives. We can state what follows:
1. The practical extension of finite-dimensional predictive control techniques to

the infinite-dimensional framework for the control of open-channel hydraulic
systems is possible, provided that no shock wave appears.

2. However it is well known that nonlinear conservation laws may exhibit shock
wave propagation (depending on both the initial conditions and the boundary
conditions), leading to nonsmoothness of the solutions. In the presence of
shocks, traditional variational calculus is not appropriate, since the linearized
equations have Dirac masses. A method was proposed in [1] in order to derive
linearizations of nonlinear hyperbolic equations based on Frechet derivation in
the distributional interpretation. Such an approach was used for the optimal
control of traffic conservation laws in [14]. It is important to point out that



284 DIDIER GEORGES

the here-proposed approach may be adapted without restriction to consider
shock waves in the sense of distributions.

3. A decomposition-coordination technique has been proposed for the computa-
tion of the model predictive control of a multi-pool system, which takes advan-
tage of communication networks used for control purpose. This approach re-
mains to be implemented to evaluate its practical effectiveness. However a sim-
ilar two-level algorithm has been successfully applied to a finite-dimensional
model predictive control problem intended for the load-frequency control of a
power system [13].

4. This approach may be easily applied to other problems governed by hyperbolic
PDEs, such as road traffic systems.

5. The computation of the related two-point boundary value problem by using
a discretization method based on Preissmann integration scheme has been
validated.

6. A theoretical analysis has still to be performed to provide assumptions guaran-
teeing existence of optimal solutions and closed-loop stability of the predictive
control scheme.

7. For practical implementation, a state observer (which can be derived by using
variational calculus as a “dual control problem”) is needed.
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