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LAGEP, Université de Lyon, Lyon, F-69003, France
and
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Abstract. This paper aims at providing some synthesis between two alterna-
tive representations of systems of two conservation laws and interpret different

conditions on stabilizing boundary control laws. The first one, based on the in-

variance of its coordinates, is the representation in Riemann coordinates which
has been applied successfully for the stabilization of linear and non-linear hy-

perbolic systems of conservation laws. The second representation is based on
physical modelling and leads to port Hamiltonian systems which are extensions

of infinite-dimensional Hamiltonian systems defined on Dirac structure encom-

passing pairs of conjugated boundary variables. In a first instance the port
Hamiltonian formulation is recalled with respect to a canonical Stokes-Dirac

structure and then derived in Riemann coordinates. In a second instance the

conditions on the boundary feedback relations derived with respect to the Rie-
mann invariants are expressed in terms of the port boundary variable of the

Hamiltonian formulation and interpreted in terms of the dissipation inequality

of the Hamiltonian functional. The p-system and the Saint-Venant equations
arising in models of irrigation channels are the illustrating examples developed

through the paper.

1. Introduction. In this paper we shall be concerned with the stabilization via
boundary control of hyperbolic systems of two conservation laws mainly motivated
by the control of the shallow water equations used as models of irrigation channels,
but also consider as paradigm the p-system [25]. The stabilization by boundary
control of irrigation channels has been intensively studied for instance in [2, 10, 11]
for both linear and non linear cases. Stability of hyperbolic partial differential
equations on a one-dimensional spatial domain is widely studied in the literature [1,
3]. One of the most often suggested approaches, uses Riemann invariants to derive
a stabilizing boundary control [12]. In recent publications, some extensions are
suggested and based on the suitable choice of control Lyapunov function expressed
in terms of the Riemann coordinates of the system [1, 3, 5, 6].

The use of physically motivated control Lyapunov function for the derivation of
stabilizing control laws for non-linear finite-dimensional systems has proven to be
very efficient and has lead to a great variety of results [4, 24, 26]. Very often, when
the system stems from physical modelling, one may derive dissipation inequalities
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related to energy balance equations and energy dissipating phenomena [31]. Using
the dissipative port-Hamiltonian formulation for controlled physical systems [4, 21,
26], one may go one step further and assign in closed loop not only some dissipation
inequality for some suitable control Lyapunov function but also assign the dynamic
behavior by the structure matrices of the Hamiltonian system in closed loop [19,
22]. For infinite-dimensional systems very similar techniques, based on dissipation
inequalities, which in terms of PDE’s amounts to consider some entropy function
[1, 6], have been used for the stabilization of boundary control systems [8, 16].
Recent works have used a boundary port-Hamiltonian formulation of systems of
conservation laws [18, 27] in order to derive stabilizing boundary control for a class
of linear systems defined on one-dimensional spatial domains [15, 17, 29, 30].

The aim of this paper is twofold. Firstly, after a brief recall of the formula-
tion of a system of two conservation laws in terms of port-Hamiltonian systems
defined with respect to the canonical Stokes-Dirac structure [18, 27], it derives the
port-Hamiltonian formulation of these systems in terms of Riemannian coordinates.
Secondly the conditions expressed on the boundary values of the Riemann coordi-
nates used in [12] are related to some conditions expressed on the boundary port
variables of the Hamiltonian formulation. Using the fact that the Hamiltonian func-
tional satisfies a conservation equation, that makes it become a natural candidate
Lyapunov function, these conditions are then interpreted in terms of dissipativity
of the Hamiltonian function and allow an easy physical interpretation.

The sketch of the paper is the following. In the first part, we start with the
motivating example of the p-system and recall briefly the results on boundary sta-
bilization of systems of two conservation laws presented in [12]. In the second part
we recall the definition of port-Hamiltonian systems defined with respect to Stokes-
Dirac structure [18, 27] and then derive its expression using the Riemann invariants.
The formulation is given for the example of the shallow water equation. In the third
part, under some assumptions, we relate the conditions given in terms of the Rie-
mann invariants with conditions given in terms of the port variables. Secondly we
interpret them in terms of a dissipation equality of the Hamiltonian function. The
last part gives some conclusions.

2. Motivation through the stabilization of the p-system using the Rie-
mann invariants.

2.1. Reminder on the stabilization of system of two conservations laws.
In this section, we shall very briefly recall the main result on the stabilization of
a hyperbolic system of two conservation laws suggested by Greenberg & Li [12].
Consider a spatial domain consisting of the finite interval [0, L] 3 x with L ∈ IR∗

+

and time domain being the real interval [0,+∞) 3 t. The state space is a non-empty
connected open set in IR2, denoted by Ω. Consider the system of two conservations
laws:

∂tY + ∂xf(Y ) = 0, (1)
where

• Y = (y1 y2)T : [0,+∞) × [0, L] → Ω is the vector of the two dependent
variables;

• f : Ω → IR2 is a C1-function called the flux vector.
Note that the system (1) may also be written:

∂tY + F (Y )∂xY = 0 (2)
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where F is the Jacobian of the flux vector f . Assuming that the system is hyperbolic,
implies that this system can be diagonalised using the Riemann invariants (see for
instance [14, pages 34 - 35]). This means that there exists a change of coordinates
ξ(Y ) whose Jacobian matrix is denoted D(Y ),

D(Y ) =
∂ξ

∂Y
, (3)

and diagonalises F (Y ) in Ω:

D(Y )F (Y ) = Λ(Y )D(Y ) Y ∈ Ω.

In the coordinates ξ, the system (1) can then be rewritten in the following (diagonal)
characteristic form:

∂tξ + Λ(ξ)∂xξ = 0 (4)

with ξ: [0, L]× [0,+∞) → IR2, (x, t) 7→ ξ(x, t), and Λ(ξ) = diag(λ1(ξ), λ2(ξ)), with
λ1(ξ), λ2(ξ) satisfying the conditions:

• the λi’s are continuously differentiable functions on a neighborhood of the
origin;

• λ2(0) < 0 < λ1(0).

In this paper we shall consider the following result of Greenberg and Li [12] which
may be recalled as follows.

Theorem 2.1. Consider the hyperbolic system of conservation laws in Riemannian
coordinates (4) with the following relations on the boundary variables:

ξ1(0) = K1(ξ2(0)), ξ2(L) = K2(ξ1(L)) (5)

with the functions K1 and K2 being C1 and satisfying:

K1(0) = K2(0) = 0 and |K1
′(0)K2

′(0)| < 1. (6)

Consider initial values:

lim
t→0+

(ξ1, ξ2)(x, t) = (ξ1,0, ξ2,0)(x), 0 < x < L, (7)

being C1 and satisfying the assumption that to be small in the C1 norm and the
compatibility conditions:

ξ1,0(0) = K1(ξ2,0(0)) (8)
ξ2,0(L) = K2(ξ1,0(L)) (9)

λ1(ξ1,0, ξ2,0)(0) ∂xξ1,0(0) = λ2(ξ1,0, ξ2,0)(0)K1
′(0) ∂xξ2,0(0) (10)

λ2(ξ1,0, ξ2,0)(L) ∂xξ2,0(L) = λ1(ξ1,0, ξ2,0)(L)K2
′(L) ∂xξ1,0(L) (11)

Then the initial value problem, for this system, has a unique C1 solution. Moreover,
its solution decays to zero in the C1 norm with an exponential rate.
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2.2. Application to the p-system. In their paper [12], the authors consider the
p-system defined by the following system of conservation laws:

∂t

(
u
v

)
− ∂x

(
v

σ(u)

)
= 0 (12)

where σ is a C1 function satisfying:

σ(0) = 0, σ′(u) > 0. (13)

They consider the following relations on the boundary values:

σ(u(0, t))− rv(0, t) = 0, v(L, t) = 0 (14)

with r ∈ IR∗
+

Using the Riemann invariants:

ξ1 =
1
2

(
v −

∫ u

0

√
σ′(η)dη

)
and ξ2 =

1
2

(
v +

∫ u

0

√
σ′(η)dη

)
(15)

the authors show that the theorem 2.1 applies under the condition that r ∈ IR∗
+.

Let us define the functions γ → C(γ) and γ → U(γ) such that:

C(γ) =
√

σ′(U(γ)),

and U(γ) is defined implicitly by

γ =
∫ U(γ)

0

√
σ′(η)dη.

Then the eigenvalues of this system are:

λ1(ξ1, ξ2) = C(ξ2 − ξ1), λ2(ξ1, ξ2) = −C(ξ2 − ξ1).

In [12], the authors construct a unique smooth solution using the properties of
invariance of the Riemann coordinates along the Riemann forward characteristic
ξ̇ = λ1 and the backward one ξ̇ = λ2.

This approach has been used too in [11] and others papers of the authors of [3].
Another approach is to construct a Lyapunov function in the Riemann coordinates
[1, 2, 3, 5, 6, 10] which can but necessary be linked to the entropy of the system.

However, Greenberg and Li have made the remark that for the p-system example,
the stability condition looks like the dissipativity condition of the energy of this
system. Let’s see how it can be interpreted in the following subsection in terms of
dissipativity and Hamiltonian Structure.

2.3. Link with Hamiltonian structure. It is remarkable that, for this classical
physical example, the authors use the physical variables (u being the volume, v
the velocity of some isentropic gas for instance and σ denoting the opposite of the
pressure) in order to express the boundary relations (14) and not the Riemann
invariants. Furthermore they note that the condition on the parameter r in the
boundary relations may be interpreted in terms of dissipativity properties. Indeed
consider the energy of the system (sum of the kinetic and the internal energy of the
gas):

H(u, v) =
∫ L

0

(
v2

2
+
∫ u

0

σ(η) dη

)
dx (16)
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and its balance equation:
dH

dt
= v(t, L)σ(u(t, L))− v(t, 0) σ(u(t, 0)). (17)

The boundary relations (14) and the positivity of r imply then energy dissipation:

dtH = −rv2(0, t) ≤ 0. (18)

Actually the relation between energy dissipation and the inequality in the condi-
tions (6) on the boundary relation of the theorem 2.1, may be expressed as follows.
Consider a slight generalization of the boundary relations (14) by assuming that
the relation at x = 0 is given by some C1 function G0:

σ(u(0, t)) = G0(v(0, t)) (19)

Hence the energy balance equation becomes1:

dtH = −G0(v(0))T v(0) (20)

and the energy is dissipated if G′
0 > 0, and G(0) = 0, this last point is obvious by

definition of G(x) = −rx.
Using the definition of the Riemann invariants and that σ(u) is a strictly in-

creasing function, it follows that there exist a C1 function ū such that the inverse
coordinate transformation may be written:{

u = ū(ξ2 − ξ1)
v = ξ2 + ξ1

(21)

Using the coordinate transformation and the implicit function theorem, there is a
function K1 such that the boundary relations on the physical variables translates
as follows on the Riemann invariants:{

ξ1(0) = K1(ξ2(0))
ξ2(L) = K2(ξ1(L)) = −ξ1(L) (22)

The inequality conditions of the theorem 2.1 reduce in this case to:

|K ′
1(0)| < 1. (23)

Denoting the celerity of the system in Riemann coordinates by
λ(ξ2 − ξ1) = λ1(ξ1, ξ2) = −λ2(ξ1, ξ2) > 0, a straightforward calculation on the
boundary relations at x = 0, leads to the following relation between the function
K1 and G0:

|K ′
1(0)| =

∣∣∣∣λ(ξ2 − ξ1) + G′
0(ξ2 + ξ1)

λ(ξ2 − ξ1)−G′
0(ξ2 + ξ1)

∣∣∣∣ . (24)

This is clearly a Cayley transformation and hence the negativity of −G′(0) which
implies the energy dissipation (in equation (20)) is equivalent with the circle con-
dition (23) given by the theorem 2.1.

This raised for us the question wether such an equivalence holds for some physical
systems, in particular these systems stemming from physical systems models and
their Hamiltonian formulation [18, 27].

1The transpose of a vector or matrix x is denoted as xT .
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3. Port Hamiltonian formulation of a hyperbolic system of two conser-
vation laws.

3.1. Boundary port Hamiltonian systems. Boundary port Hamiltonian sys-
tems are extensions of infinite-dimensional systems defined with respect to some
Hamiltonian differential operator [20] in the sense that they allow for functions
whose support is not necessarily strictly included in the spatial domain. In such a
way boundary port Hamiltonian systems allow the description of physical system
which exchange a non-zero energy flow through its boundaries in the Hamiltonian
frame [18, 27]. Numerous physical systems have been treated in this frame and
the formulation has also been extended to dissipative systems [17], [29, 30]. For
linear systems, the relation with boundary control systems, the well-posedness and
the stabilization by positive real controllers on the boundary port variables have
been carried out [15] [28, 29]. In this section we shall recall the definition of port
Hamiltonian systems in the case of a system of two conservation laws on a one-
dimensional domain. Let us first recall the definition of the variational derivative
with respect to α, denoted by δαH, of a smooth functional H on smooth functions
α(x) defined on the spatial domain, is defined as the function which satisfies:

H(α + εη) = H(α) + ε

∫ L

0

δH

δα
(x, α(x)) η(x) dx + O(ε2) (25)

for any ε ∈ R and any smooth function η(x) such that α + εη satisfies the same
boundary conditions as α [20]. Let us also recall that a Hamiltonian operator is a
differential operator which defines a Poisson bracket on the set of smooth functions
with compact support strictly included in the interval [0, L] by the relation:

{e1, e2} =
∫ L

0

e1(x)J e2(x) dx. (26)

The system of two conservation laws given in equation (1) may be written as a
Hamiltonian system, if there exist a smooth functional H(Y ) and a Hamiltonian
operator J such that the second term of the conservation laws may be written:

∂x e(Y ) = J
(

δy1H
δy2H

)
. (27)

Models of physical systems involving two conservation laws have a canonical
structure corresponding to a dimensionless canonical coupling between two physical
domains [18, 27]. In this case the Hamiltonian operator takes the elementary form:

J = ε

(
0 ∂x

∂x 0

)
(28)

where ε ∈ {1, −1}.
Note that this is precisely the case of the p-system which may be written as a

Hamiltonian system with respect to the Hamiltonian operator (28), generated by
taking the Hamiltonian equal to the energy of the system given in (16).

If one wants to relax the condition on the considered functions and extend their
domain to the whole spatial domain, one may define an extension of Hamiltonian
systems to port boundary Hamiltonian systems. Although port-boundary systems
may be defined for more general Hamiltonian operators [15] [17], we shall restrict
ourselves to the operators (28) corresponding to the canonical physical models. The
extension of the Hamiltonian system is based on the definition of a pair of external
variables, in the sense of control theory [31], called port boundary variables.
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Therefore, compute the symmetric pairing obtained from the bracket (26) and
consider smooth functions which have a support is not necessarily strictly included
in the spatial domain [0, L]:

{e1, e2}+ {e2, e1} =
∫ L

0
e1(x)J e2(x) dx +

∫ L

0
e2(x)J e1(x) dx

= 2ε
∫ L

0
∂x(eT

1

(
0 1
1 0

)
e2)

= ε

[
(eT

1

(
0 1
1 0

)
e2)
]L

0

It is hence immediately seen that when the support of the functions is not strictly
included in the spatial domain [0, L], the bracket (26) is no more skew-symmetric.
It has been shown however [15, 27] that the operator J may be extended in order
to recover the property of skew-symmetry. Therefore one uses the concept of Dirac
structure which has been suggested in [7, 9] and is a generalization of symplectic
and Poisson tensors. It represents these skew-symmetric tensors in terms of vector
subspaces (or distributions) which are isotropic and co-isotropic with respect to
some non-degenerated symmetric pairing.

For the canonical Hamiltonian operator J defined in (28), the first step consist
in considering additional functions defined on the boundary of the spatial domain,
i.e. R{0, L} and called boundary port variables. It has been shown in [27] that these
port boundary variables may be chosen as a linear combination of the functions e1

and e2 restricted at the boundary:

(
f∂

e∂

)
= diag (1, 1, −1, 1)


e1(0)
e1(L)
e2(0)
e2(L)

 (29)

where diag denotes a diagonal matrix with the coefficient of the diagonal being the
arguments.

In the case of the p-system the boundary port variables are simply the velocity
and the pressure at the boundaries of the domain.

Defining the space of flow variables is F = C∞ ([0, L]) × C∞ ([0, L]) × R{0,L}

and the space of efforts E = C∞ ([0, L]) × C∞ ([0, L]) × R{0,L}, the linear subset
D ⊂ F × E defined by:

D =


 f1

f2

f∂

 ,

 e1

e2

e∂

 ∈ F × E /

(
f1

f2

)
= ε

(
0 ∂

∂z
∂
∂z 0

)(
e1

e2

)

and
(

f∂

e∂

)
= ε

(
0 1
1 0

) (
e1

e2

)∣∣∣∣
0,L

}
(30)

is a Dirac structure with respect to the symmetric pairing:〈 e1

e2

e∂

 ,

 f1

f2

f∂

〉 =
∫ L

0

(e1 f1 + e2 f2) dz + e∂(L) f∂(L)− e∂(0) f∂(0) (31)

It is clear from the definition of the Dirac structure that it extends the definition
of the Hamiltonian operator defined in (28).

The infinite Hamiltonian system defined with respect to the Hamiltonian oper-
ator (28) may then also been extended to an implicit Hamiltonian system defined
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with respect to the Stokes-Dirac structure as follows: ∂α1(t)
∂t

∂α2(t)
∂t
f∂

 ,

 δH
δα1
δH
δα2

e∂

 ∈ D (32)

As a consequence of the definition of the Stokes-Dirac structure, the Hamiltonian
functional is no more conserved but is subject to the following balance equation:

dH

dt
= eT

∂ f∂ (33)

3.2. Boundary port Hamiltonian systems and Riemann coordinates.

3.2.1. Hamiltonian operator expressed in the Riemann coordinates.
In this section we shall consider a hyperbolic system of two conservation laws (1)
which admits a Hamiltonian representation, that is such that vector of flux variables
may be written following (27) and furthermore that it is defined with respect to the
canonical Hamiltonian operator (28). Hence the system is written:

− ∂tY =
(

0 ∂x

∂x 0

)
(δY H). (34)

In the sequel we express the Hamiltonian system in terms of the Riemannian invari-
ants and give the expression of the Hamiltonian operator as well as of the boundary
port variables. Denote by H̃(ξ) the Hamiltonian expressed in the Riemann invari-
ants: H̃(ξ) = H ◦ Y (ξ) where Y denotes, with an abuse of notation, the inverse
change of coordinates to the Riemann coordinates.

Recall that D denotes the Jacobian of change of coordinates to the Riemann
invariants defined in (3) and define Dξ = D ◦ Y (ξ). One obtains by multiplying
both terms of (34) by D:

−D(Y )∂tY = D(Y )
(

0 1
1 0

)
∂x(δY H)

⇔ −∂tξ = Dξ(ξ)
(

0 1
1 0

)
∂x(DT (ξ)δξH̃(ξ))

⇔ −∂tξ = Dξ

(
0 1
1 0

)
∂x(DT

ξ )δξH̃(ξ) + Dξ

(
0 1
1 0

)
DT

ξ ∂x(δξH̃(ξ)).

Hence in terms of the Riemann invariants the system is written:

− ∂tξ = (B∂x + C)δξH̃(ξ), (35)

where B = Dξ

(
0 1
1 0

)
DT

ξ and C = Dξ

(
0 1
1 0

)
∂x(DT

ξ ). The following properties

may be noted: firstly the matrix B is symmetric and secondly it is related with the
matrix C by:

∂xB = CT + C. (36)



A HAMILTONIAN PERSPECTIVE TO STABILIZATION OF SYSTEMS 257

3.2.2. Boundary port variables. In this section we shall check the formal skew-
symmetry of the differential operator (B∂x + C) and then define port boundary
variables associated with it. Let us define the following bracket on smooth func-
tions on the spatial domain [0, L]:

{e1, e2} =
∫ L

0

eT
1 (B∂x + C)e2 dx (37)

and consider the symmetric product:

{e1, e2} + {e2, e1} =
∫

Ω

eT
1 (B∂x + C)e2 + eT

2 (B∂x + C)e1 dx

=
∫ L

0

∂x(eT
1 Be2)− eT

1 ∂x(B)e2 + eT
2 ∂x(B)e2 + eT

2 Ce1

+eT
1

(
C + CT − ∂x B

)
e2 dx.

By using the fact that B is symmetric and the relation (36), the symmetric product
reduces to:

{e1, e2}+ {e2, e1} =
∫ L

0

∂x(eT
1 Be2) =

[
(eT

1 Be2)
]L
0

. (38)

The product (38) corresponds to Stokes theorem applied to the equation for the
differential operator (B∂x + C). Furthermore the second member of (38) vanishes
for all functions e1, e2 with compact support strictly included in the domain [0, L]
and hence for these functions the bracket is skew-symmetric.

Remark 1. Actually in the original coordinates the skew-symmetry matrix differ-
ential operator is trivial and as it has constant coefficients, the Jacobi identities are
satisfied. This property remains with the change of variables of course. Hence the
system (35) is an infinite dimensional Hamiltonian system as long as one consider
functions with compact support strictly included in the domain [0, L] .

However considering functions which do not vanish on the boundary of the do-
main, the bracket (37) is no more skew-symmetric. In this case the time variation
of the Hamiltonian becomes:

dH̃(ξ)
dt

=
[
(δξ1H̃

T B δξ2H̃)
]L
0

. (39)

Thus one may account for the energy flow through the boundary of the domain,
however the structure of an infinite-dimensional Hamiltonian system is lost.

Using the notion of Dirac structure and following [27] one may still define a
Hamiltonian system by extending the system with external variables associated
with the boundary. Naturally the choice is not unique.

The most natural choice related to the balance equation (39) consist in choosing
the following pair of variables:

(
w1

w2

)
=


δξ1H̃(0)
δξ1H̃(L)
−δξ2H̃(0)
δξ2H̃(L)

 (40)

then the balance equation (39) is written in form of a dissipation equality [31]:

dH̃(ξ)
dt

= wT
1

(
B(0) 0

0 B(L)

)
w2 (41)
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where B(0) = B(ξ(0)) and B(L) = B(ξ(L)).

Remark 2. Following the definition of Dirac structure [7] and adapting the proofs
in [15] [27], one may prove that the differential operator (B∂x + C)combined with
(40) generates a Dirac structure. This Dirac structure is defined with respect to
the pairing (symmetric bilinear form) defined on

(
C∞[0, L]× C∞[0, L]× IR2

)
×(

C∞[0, L]× C∞[0, L]× IR2
)
3 ((f, w1) , (e, w2)):

〈(f, w1) , (e, w2)〉 =
∫ L

0

eT f dx− wT
1 B w2.

The drawback of this choice of external variable is that they correspond to a non-
canonical product which actually depends on the differential operator.

Another choice which corresponds rigourously to the definitions in [15] consists
in choosing the so-called boundary port variables. Consider the matrix:

Rext =
1√
2

(
Σ2 −Σ2

I I

)(
DT

ξ (L) 0
0 DT

ξ (0)

)
. (42)

which satisfies the condition:

RT
extΣRext =

(
B(L) 0

0 −B(0)

)
=

(
Dξ(b) 0

0 Dξ(a)

)(
Σ2 0
0 −Σ2

)(
DT

ξ (L) 0
0 DT

ξ (0)

)
.(43)

According to the port boundary variables may then be defined by:

(
f∂

e∂

)
= Rext


e1(0)
e1(L)
e2(0)
e2(L)

 (44)

This definition of the boundary port variables follows strictly the construction
suggested in [15]. Now the differential operator B∂x + C completed with the defi-
nition defines the following vector space:

D̃ =


 f1

f2

f∂

 ,

 e1

e2

e∂

 ∈ F × E /

(
f1

f2

)
= (B∂x + C)

(
e1

e2

)
(

f∂

e∂

)
= Rext


e1(0)
e1(L)
e2(0)
e2(L)




(45)

Adapting the proofs in [15], one may prove that the vector space D̃ is a Dirac
structure with respect to the pairing defined on

(
C∞[0, L]× C∞[0, L]× IR2

)
×(

C∞[0, L]× C∞[0, L]× IR2
)
3 ((f, f∂) , (e, e∂)):

〈(f, w1) , (e, w2)〉 =
∫ L

0

eT f dx− eT
∂ diag (1, 1 − 1, 1) f∂

which is canonical in the sense that it does not depend on the differential operator
anymore.
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3.3. Application to the shallow water equations. We consider the special case
of a reach of an open channel delimited by two underflow gates as represented in
Figure 1.

Figure 1. A reach of an open channel delimited by two adjustable
underflow gates

We assume that the channel is horizontal, prismatic with a constant rectangular
section and a width, and that the friction effects are neglected.

The flow is the canal may be described by the so-called shallow water equations or
Saint-Venant equations which constitute a system of two conservation laws, actually
the mass balance and the momentum balance equations:

∂th + ∂x(hv) = 0, (46)

∂tv + ∂x(
1
2
v2 + gh) = 0, (47)

with v denotes the velocity of the water flow and the water level h. Each underflow
gates imposes a boundary condition of the form:

Wh(0, t)v(0, t) = U0(t)Ψ1(h(0, t)), (48)
Wh(L, t)v(L, t) = UL(t)Ψ2(h(L, t)), (49)

where W the channel width and
Ψ1(h(x, t)) = α0

√
2g(hup − h(x, t)), and Ψ2(h(x, t)) = αL

√
2g(h(x, t)− hdo),

hdo < h(L) and h(0) < hup where hup is the water level before the upstream gate,
hdo is the water level after the downstream gate. α0 and αL are the product of the
gate (or overflow) width and water-flow coefficient of the corresponding gate. U0

and UL are the control functions.

3.3.1. Hamiltonian formulation of the shallow water equations. In this section we
shall present briefly the Hamiltonian formulation which is described in detail in the
general case (with slope and friction) in [13], see also [23]. We shall consider the
model of the channel on the spatial domain [0, L]. The energy of the water flow in
the channel is defined in terms of two state variables:
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• the momentum p(x, t) = ρv(x, t) where ρ the mass density of the water (con-
stant as the water is assumed to be incompressible),

• the section area of the water q(x, t) = W h(x, t) where W denotes the width
of the channel.

In the sequel we use the state vector defined by Y =
(
q p

)T . The total energy of
the systems consists in the sum of the kinetic and potential energy of the water and
is given by:

H(Y ) =
1
2

∫ L

0

ρg

W
q2 +

1
ρ
qp2dx, (50)

where g denotes the constant of gravity. The variational derivatives of the Hamil-
tonian functional define the two co-energy variables: ep the volumic flow and eq the
hydrodynamic pressure as follows:

eq = δqH(Y ) =
p2

2ρ
+

ρg

W
q

(
=

1
2
ρv2 + ρgh

)
, (51)

ep = δpH(Y ) =
qp

ρ
(= Whv) . (52)

It may be shown [13] [23] that the shallow water equations may be expressed
as a system of two conservation laws (1) in canonical interaction and admits a
Hamiltonian formulation (34) by writing the flux vector:

f(Y ) =
(

0 1
1 0

)(
δqH
δpH

)
=

(
pq
ρ

ρg
W q + p2

2ρ

)
. (53)

Finally the Hamiltonian system may be completed with port boundary variables
according to the section 3.2.2:

e0
∂(t)

eL
∂ (t)

f0
∂ (t)

fL
∂ (t)

 =


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1




δqH|x=0

δqH|x=L

δpH|x=0

δpH|x=L

 =


gρ
W q(0) + p2(0)

2ρ

− gρ
W q(L)− p2(L)

2ρ
p(0)q(0)

ρ
p(L)q(L)

ρ


The energy balance is then expressed by:

dH

dt
= eT

∂ f∂

= −eq(L)ep(L) + eq(0)ep(0)

= −
[

ρg

W
q(L) +

1
2ρ

p2(L)
] [

q(L)p(L)
ρ

]
+
[

ρg

W
q(0) +

1
2ρ

p2(0)
] [

q(0)p(0)
ρ

]
3.3.2. Expression in Riemann coordinates. Using the Jacobian of the vector of flux
variables

∇f(Y ) = F (Y ) =
( p

ρ
q
ρ

gρ
W

p
ρ

)
one obtains the following Riemann invariants:

ξ = ξ(Y ) =

(
p
ρ + 2

√
gq
W

p
ρ − 2

√
gq
W

)
(54)
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The Jacobian of this change of coordinates is:

D(Y ) =

 √
g

Wq
1
ρ

−
√

g
Wq

1
ρ

 (55)

and the celerities of the system are:

Λ(ξ) =
(

λ1 0
0 λ2

)
=

(
p
q +

√
gq
W 0

0 p
q −

√
gq
W

)
According to the section 3.2.1, the Hamiltonian system is expressed in the Rie-

mann invariants as the system (35) with matrices

B = D

(
0 1
1 0

)
DT

=

 √
g

Wq
1
ρ

−
√

g
Wq

1
ρ

(0 1
1 0

)(√ g
Wq −

√
g

Wq
1
ρ

1
ρ

)

=

 √
g

Wq
1
ρ

−
√

g
Wq

1
ρ

( 1
ρ

1
ρ√

g
Wq −

√
g

Wq

)
=

 2
ρ

√
g

Wq 0

0 − 2
ρ

√
g

Wq



C =

( 1
g

4W (ξ1−ξ2)+
W q̄

g

1
ρ

− 1
g

4W (ξ1−ξ2)+
W q̄

g

1
ρ

)(
0 1
1 0

)(
− 1

2

√
g

Wq
q′

q
1
2

√
g

Wq
q′

q

0 0

)
=
(
−α α
−α α

)

with α = 1
2ρ

√
g

Wq
q′

q .

4. Stability and dissipation. In this section we shall elaborate on the question
posed by Greenberg and Li [12] about the interpretation of the inequality conditions
in (6) given in their stabilization theorem 2.1 in terms of dissipation of energy at the
boundary. In a first section, we shall consider the port boundary variables associated
with a Hamiltonian system and give some condition where the dissipation relations
on these port boundary variables may be related to the inequality conditions (6).
In a second part we shall treat the shallow water equations for which the conditions
do not hold and still interpret the stabilizing boundary relations in terms of energy
dissipation.

4.1. Port boundary variables, Riemann coordinates and stabilizing bound-
ary relations.

4.1.1. Stabilizing boundary relations with respect Riemann invariants and boundary
port variables. Consider a hyperbolic system of two conservation laws (1) which
admits a Hamiltonian representation (34) with port variables (29). And let us
assume the following.
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Assumption 1. There exist two C1 real functions L1, L2 admitting an inverse and
defining the following relation between the variational derivative of the Hamiltonian
functional of system (1) and the Riemannian coordinates:

δy1H(x) = L1(ξ1 − ξ2)(x)
δy2H(x) = L2(ξ1 + ξ2)(x) (56)

and these functions satisfy:

L′1 < 0, and L′2 > 0. (57)

Remark 3.
These conditions on Li are physical conditions as on can note that the sign of L′i is
linked with the sign of the eigenvalues λi.

Then consider relations on the boundary port variables defined by two C1 func-
tions G0, GL as follows: {

e0
∂ = G0(f0

∂ )
fL

∂ = GL(eL
∂ )

As a consequence the energy balance equation depends on G0, GL and becomes:
dH

dt
= eL

∂ GL(eL
∂ )− f0

∂G0(f0
∂ ) (58)

Using the implicit function theorem, the relations (58) on the port boundary vari-
ables, may be expressed in terms of relations (5) on the boundary values of the
Riemann coordinates. Finally let us note that, using the derivative of the functions
Ki of the boundary conditions (5) can be expressed in function of L1, L2, G0, GL:

K ′
1 =

L′1 + G′
0(L2)L′2

L′1 −G′
0(L2)L′2

and K ′
2 =

G′
L(L1)L′1 − L′2

G′
L(L1)L′1 + L′2

.

Proposition 1. Consider that the assumption 1 is satisfied. If the functions G0, GL

are chosen such that the energy of the system is dissipated according to (58):

G′
L < 0, GL(0) = 0 and G′

0 > 0, G0(0) = 0

then the functions K1 and K2 in (5) satisfy the inequalities:

|K1
′(0)| < 1 and |K2

′(0)| < 1 (59)
⇒ |K1

′(0)K2
′(0)| < 1. (60)

If furthermore the compatibility conditions (10)-(11) are satisfied, the conditions of
theorem 2.1 are satisfied and the system is exponentially stable.

Remark 4.
Let consider again the example of the p-system treated in the section 2.3. Using
the change of coordinates (21), the assumption 1 is indeed satisfied as one may the
port boundary variables:

δuH(x) = σ ◦ ū(ξ2 − ξ1)(x)
δvH(x) = v = L2(ξ1 + ξ2)(x) (61)

Hence one may apply the results of the proposition 1: assuming the boundary
relation to be dissipative, the system is exponentially stable using Greenberg and
Li theorem 2.1.
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4.2. Shallow water equations, dissipativity and stabilization. The shallow
water equations (described in section 3.3) constitute a counterexample to the pre-
ceding section. The main reason is that, contrary to the p-system, their Hamilton-
ian is not separated in the conserved quantities p and q and that the variational
derivatives of the Hamiltonian are not expressed as functions of the sum and dif-
ference of the Riemann invariants and do not satisfy the assumption 1. However,
we shall prove below that some similar results holds but using other variables than
the port boundary variables in order to define boundary relations leading to energy
dissipation.

Recall the energy balance equation (54):

dtH = eT
∂ f∂

= −eq(L)ep(L) + eq(0)ep(0)

= −
[

ρg

W
q(L) +

1
2ρ

p2(L)
] [

q(L)p(L)
ρ

]
+
[

ρg

W
q(0) +

1
2ρ

p2(0)
] [

q(0)p(0)
ρ

]
.

A particular property of this balance equation is that the section area q remains
positive as well as the hydrodynamic pressure eq =

(
ρg
W q + 1

2ρp2
)
. Furthermore

considering the expression of the Riemann coordinates (54), one may notice that
the state variables satisfy the first assumption 1:

p = L1(ξ1 + ξ2) =
ρ

2
(ξ1 + ξ2) q = L2(ξ1 − ξ2) =

[
1
4

√
B

g
(ξ1 − ξ2)

]2

.

The second assumption of assumption 1 which is expressed as L′1 = ρ
2 > 0, L′2 =

A > 0. L matrix is linked with the state variables by the following relation:

(
L′2 0
0 L′1

)(
1 −1
1 1

)(
λ2 0
0 λ1

)−1

DY

(
0 1
1 0

)
d(e) = d(Y ) (62)(

L′2 0
0 L′1

)(
1 −1
1 1

)(
λ2 0
0 λ1

)−1

DY

(
0 1
1 0

)
d(e) = F−1(Y )

(
0 1
1 0

)
d(e)

⇒
(

L′2 0
0 L′1

)(
1 −1
1 1

)(
λ1 0
0 λ2

)−1

DY = F−1(Y )

⇒
(

L′2 0
0 L′1

)(
1 −1
1 1

)(
λ1 0
0 λ2

)−1

DY F (Y ) = Id

⇒
(

L′2 −L′2
L′1 L′1

)(
λ1 0
0 λ2

)−1(
λ1 0
0 λ2

)
DY = Id

⇒
(

L′2 −L′2
L′1 L′1

) √
g

Wq
1
ρ

−
√

g
Wq

1
ρ

 = Id

⇒

(
2L′2

√
g

Wq 0

0 2L′1
1
ρ

)
= Id

⇒ 2L′2 =

√
Wq

g
> 0, L′1 =

ρ

2
> 0
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Using the same notations for the boundary relations applied to the states vari-
ables Y and not to (eq, ep)T , and with A = 1

2

√
Wq
g > 0, one gets

K ′
1 =

ρ
2 + AG′

0

−ρ
2 + AG′

0

=
G′

0(L2)L′2 + L′1
G′

0(L2)L′2 − L′1
,

K ′
2 =

A− ρ
2 (G′

L)
A + ρ

2 (G′
L)

=
L′2 −G′

L(L1)L′1
L′2 + G′

L(L1)L′1
,

and so one can conclude that if the boundary relations dissipate the energy

dtH = < 0
⇒ G′

0 < 0 and G′
L > 0

⇒ |K ′
2(0)| < 1 and |K ′

1(0)| < 1
⇒ |K ′

1(0)K ′
2(0)| < 1

and under the compatibility conditions, then one can conclude on the stability of
the shallow water equations.

Remark 5. A particular case is deal with here as the equilibrium state (q̄, p̄) has
been taken equal to zero to simplify the equations. Just note that all the calculus
have been done with an equilibrium (q̄, p̄) 6= 0 and under the conditions GL(x̄) = 0
and G0(x̄) = 0, where x̄ is the equilibrium of the function x, the results previously
presented are the same.

5. Conclusions. In the first part of this paper we have recalled the expression of
the port Hamiltonian systems of two conservation laws and derived its expression
in terms of Riemann invariant. In these coordinates we have shown that the matrix
differential operator associated with the system is no more canonical and have given
its expression. We have then derived the expression of the Dirac structure associated
with this expression of the matrix differential operator, the Hamiltonian operator.
The expression of the boundary port variables associated with the definition of the
Dirac structure extending the matrix differential operator (the Hamiltonian opera-
tor) of the Hamiltonian formulation has also been derived. This construction has
been detailed for the examples of of the p-system and the shallow water equations.

In the second part of the paper, under the assumption that the port boundary
variables may be expressed as a function of the sum and difference of the Riemann
invariants and one the monotonicity of these functions, we have expressed the sta-
bility conditions on the boundary values of the Riemann invariants with some con-
ditions on the boundary constraints on the port variables. As a consequence we
have given an interpretation of the stabilizing boundary relations in terms of the
dissipation of the Hamiltonian function, in the case of physical systems identical
with the total energy of the system, on the boundary of the system.

The first remark is that the latter are more restrictive that the conditions of
Greenberg and Li as they imply that the energy is dissipated at each time instant
which appears to be a stronger than the requirement on the characteristics. Sec-
ondly the assumptions on the relation between the boundary port variables and the
Riemann invariants are true for the p-system (i.e. for nonlinear wave equations) but
not for the shallow water equations. However in the latter case particular properties
of the Hamiltonian allow to related again the energy dissipation to the conditions
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of Greenberg and Li’s theorem using the remark that the state variables satisfy the
assumption.

This paper aimed to be a first step towards a physically motivated and inter-
pretable construction of stabilizing boundary control. A first extension of this paper
could be to relax the requirement on the instantaneous dissipation of the energy (i.e.
the Hamiltonian function in the physical model) and that eventually techniques on
dissipation on time intervals (see for instance [28]) may lead to weaker conditions.

A second extension could be to use the Riemann coordinate for assigning a closed-
loop Dirac structure and simultaneously the Hamiltonian functional in some analogy
with the finite-dimensional case [19].
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[1] B. d’Andréa-Novel, G. Bastin, J.-M. Coron and J. de Halleux, On boundary control design for

quasilinear hyperbolic systems with entropies as Lyapunov functions, in “Proceedings 41th
IEEE Conference on Decision and Control,” Las Vegas, USA, (2002), 3010–3014.
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