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Abstract. In this paper, the driving idea is to use a possible approximation

of partial differential equations with boundary control by ordinary differential
equations with time-varying delayed input, for a control purpose. This results

in the development of a specific nonlinear control methodology for such delayed-

input systems. The case of water flow control in open channel systems is used
as a motivating and illustrative example, with corresponding simulation results.

1. Introduction. Control purposes for systems governed by partial differential
equations, or distributed systems, often need that the model be reduced to a finite
dimension. Typically finite-difference or finite-element methods can be used, allow-
ing to apply control techniques available for finite-dimension systems, including non
linear ones [8, 9, ...].

Noting however that in systems with transport phenomena there naturally exists
some delay in the dynamics, one can also think of using control methodologies for
time-delay systems [12, 17, ...]. For a simple convection, this delay is a constant
one, but for more complex phenomena, this delay can be varying, even depending
on the system state itself. Such a model has for instance been emphasized in [11]
in the case of river dynamics modelling. A control design then requires to face
systems with delayed input, possibly nonlinear dynamics, and with a delay varying
(in particular according to the system state). A methodology is thus here proposed
in that respect, in the continuation of [5, 2].

A motivation for this approach is more particularly underlined in section 2, via
the example of open channel water flow dynamics [3].

The proposed control principle for systems with delayed input is then presented
in section 3. The corresponding results are subsequently illustrated in simulation
with an example of irrigation-like canal in section 4.

Some conclusions and lines for future works are finally drawn in section 5.

2. Motivation and case study. One-dimensional water flow dynamics in open
channel systems with a rectangular section can classically be described by so-called
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Saint-Venant equations as follows [3]:
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(1)

where h = h(t,X) and Q = Q(t, X) are the water levels and flow rates at each time
t and each X ∈ [0, L] (for a channel length equal to L), J stands for the friction
along the channel (generally depending on h, Q and a friction coefficient fc), while
W and I respectively denote the flow width and the channel slope, as summarized
on figure 1 below.

Typically, the control is achieved at one (or both) extremity, reacting to initial
conditions on h and Q, as well as possible disturbances such as withdrawals or
water additions. A simplified version of the above equations (1) under sub-critical
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Figure 1. Water flow in some open channel reach.

flow assumption, and allowing to focus on the flow rate control, can be given by a
diffusive wave model as follows (see e.g. [10] for details):

∂Q

∂t
+ ν(Q)

∂Q

∂X
−∆(Q)

∂2Q

∂X2
= 0 (2)

where ν and ∆ are appropriate functions resulting from (1) (by neglecting inertia
terms ∂Q/∂t + ∂[Q2/(Wh)]/∂X w.r.t. gWh∂h/∂X).

In this model, the control input becomes u(t) = Q(t, 0) and the to-be-controlled
output y(t) = Q(t, L). It is clear that u will have a delayed effect on y, and in [11],
the authors have shown how this effect can be represented by a simple second order
model, nonlinear, with a delayed output and a delay nonlinearly varying according
to the flow rate. In short, this is done by approximating the linearized transfer (the
so-called Hayami transfer) by a delayed second order model, parameterized by the
linearization point, and from this finally recovering a nonlinear model.

With the same arguments, but with a time shift, one can get a similar model but
with a delayed input of the following form:

ẋ(t) = A(x2(t))x(t) + B(x2(t))u(t− τ(x2(t)))
y(t) = x2(t)

(3)
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where A,B are in a controllable form, with coefficients depending on ν and ∆, and
the state vector x reduces to a couple of variables: Q(t, L) and its time derivative
(the full details on A,B and τ are given in the appendix).

The control of output y from input u thus raises the challenging problem of
controlling a nonlinear delayed-input system, with a delay nonlinearly depending
on the state. This is the problem which is addressed in next section.

Notice that such a problem has been very widely considered for linear systems
with a constant delay, that the case of nonlinear systems with a delayed input has
been only very scarcely addressed (see [15, 14] for few recent contributions), and
that the here considered case of state-dependent delay goes even beyond this.

3. Proposed control method for delayed-input systems. Let us now consider
systems described by a state equation of the following form:

ẋ(t) = F (x(t), u(t− τ(t, x(t)))) (4)

where x(t) ∈ IRn denotes the state vector, u(t) ∈ IRm the control input, F is smooth
w.r.t. x, u, and τ(t, x(t)) is a known (positive) delay, also smoothly depending on
its arguments.

Let us further assume that the origin is an equilibrium for this system (F (0, 0) =
0), and consider the problem of control design so as to make this equilibrium asymp-
totically stable.

To that end, the idea here will be that of using some ’predictor’, extending
the finite spectrum assignment approach already inspected for linear delay systems
[13, 16]: in short, it consists in relying on a stabilizing control law for the non-
delayed system, and combine it with some appropriate predictor for the delayed
system.

In the case of a constant delay τ , one classically needs a prediction at time t + τ
for a current time t .

In a case of a time-varying delay the required prediction time is a bit different,
as originally noted in [19], and in the case of varying delay here considered which
generalizes this previous one, one can check that this prediction time takes the form
of δ(t) defined by:

δ(t) = τ(t + δ(t), x(t + δ(t))). (5)
One can indeed show that if an exact prediction is available at that time, then the
control based on this prediction achieves the desired purpose, as stated below:

Proposition 1. If ∃Φ : IRn → IRm, ∃D ⊂ IRn containing 0, and V : D → IR C1

positive definite ∀x ∈ D such that:
(i) c1‖x‖2 ≤ V (x) ≤ c2‖x‖2

(ii)
∂V (x)

∂x
F (x,Φ(x)) ≤ −c3‖x‖2

then the following control law makes the origin locally asymptotically stable for the
closed-loop system:

xp(t, t + δ(t)) = x(t) +
∫ t+δ(t)

t

F (xp(t, θ),u(θ − τ(xp(t, θ))))dθ

u(t) = Φ(xp(t + δ(t)))
(6)

This result can be established by setting:

z(t) := x(t + δ(t)) (7)
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and considering V (z) as a Lyapunov function for the resulting dynamics:

ż(t) = f(z(t)) (8)

where f defines the closed loop dynamics (see appendix B for full details).

Remark 1. Notice that for a system without any finite escape time, if conditions
of proposition 1 hold on D = IRn with V being radially unbounded, and if for any
x the following conditions hold:

∂τ

∂x
(x)F (x,Φ(x)) < 1 (9)

τ(x) ≥ 0 (10)

then one further gets a global convergence result.
Obviously conditions on τ are here rather strong, but they are necessary for some

well-posedness of the model (since (9) is necessary for t > τ(x(t)) to be satisfied at
any time in closed loop, while (10) simply means causality). �

In practise, the problem for some actual implementation of control (6) is to
compute the predicted state xp.

A simple method to do so can be to approximate it by some first order Euler
approximation scheme. In that case however, the achieved closed loop dynamics,
even considered in the shifted time variable z (as in (7)), will not only depend on
the current time, via z(t), but also on z(t− δ(t)).

The stability of the origin for this system can nevertheless still be ensured, pro-
vided that some additional condition is required: roughly the fact that the approx-
imation error introduced in those dynamics be ’small enough’ w.r.t. the control
performances, or conversely the control law ’can be tuned’ appropriately w.r.t. it.

Denoting by Γ(z(t), z(t− δ(t))) this approximation error, in the sense that with
the approximate computation of xp:

ż(t) = f(z(t)) + Γ(z(t), z(t− δ(t))), (11)

this can more formally be stated as follows:

Proposition 2. If ∃Φ : IRn → IRm s.t. x̂p can be computed by:

x̂p(t, t + δ) = x(t) + τ(x̂p(t, t + δ))× F (x̂p(t, t + δ),Φ(x̂p(t, t + δ)))
u(t) = Φ(x̂p(t, t + δ)) (12)

and ∃D ⊂ IRn containing 0 with V : D → IR C1 positive definite ∀x ∈ D s.t.:

(i) c1‖x‖2 ≤ V (x) ≤ c2‖x‖2

(ii)
∂V (x)

∂x
F (x,Φ(x)) ≤ −c3‖x‖2

(iii) ‖∂V (x)
∂x

‖ ≤ c4‖x‖

(iv) γ ≤ c3

4c4
with ‖Γ(x, xd)‖ ≤ γ‖xd‖ for xd ∈ D

then the above control law (12) makes the origin locally asymptotically stable for the
closed-loop system.
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This result can be established by considering W (zt) := V (z) + µ

∫ t

t−δ

‖z(θ)‖2dθ,

as a Lyapunov-Krasovskii functional (see appendix C).
Notice that conditions (i) to (iii) are quite standard in Lyapunov theory for

nonlinear systems [9], and that (iv) just expresses the required relationship between
the ’approximation error’ and the ’control performances’.

At this stage, it can be noticed that such a control law needs to solve at each
time a nonlinear problem for the prediction computation. This can instead be done
dynamically by a technique of dynamic inversion, as expressed below:

Proposition 3. If conditions of proposition 2 are satisfied, then there exists Λ large
enough such that the following control law makes the origin asymptotically stable
for the closed-loop system:

Ẋp = (Id − ∂H
∂Xp

)−1[F (x(t), u(t− τ(x(t))))− Λ(Xp −H(Xp, x(t)))]
u(t) = Φ(Xp(t))

(13)

where H is defined by identity (12) on x̂p, re-written as:

x̂p(t, t + δ(t)) = H(x(t), x̂p(t, t + δ(t))).

This follows from two facts:
• Xp will asymptotically approach x̂p if not initialized on it, with a rate given

by Λ (since equation (13) means that Ġ = −ΛG where G := Xp −H(x, Xp));
• By choosing Λ large enough one can recover the stability result of proposition

2, by applying Tikhonov’s results for instance [9].
Notice that a direct dynamical computation scheme for a more exact prediction
could even be thought of, in the spirit of observers: this has been inspected for spe-
cial classes of delayed-input systems in [1], and will be more completely investigated
in future developments.

4. Simulation results. The proposed methodology is illustrated in simulation
in a case of water flow control in an open channel - or river, as mentioned in
section 2. This provides an alternative approach to the various other studies towards
automatic control of such systems (see e.g. [6] and references therein).
The considered numerical values are taken from [11] as follows:

Length L 10 km
Width W 8m
Slope I 0.04%

Friction fc 0.05

and the considered control purpose is basically that of handling a setpoint change
on the output flow rate: here it is chosen for a nominal change of about a 30%-
variation, from y = 0.93m3/s to y = 1.24m3/s, in about 5h.

The control is designed as in the previously presented methodology, namely on
the basis of some ’nominal’ control law for the non delayed model, combined with
a predictor.

Here the nominal control law is designed according to the so-called exact feedback
linearization method [8], which can be easily used in view of the model structure
of appendix A, and can be easily tuned according to the considered closed loop
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specifications, while the predictor is implemented as in (13) for some Λ chosen from
simulation attempts.

This control law has been tested in simulation on a complete Saint-Venant model
(equations (1)), simulated with the reference Preissmann finite-difference scheme
[18].

The corresponding results are briefly illustrated by figure 2 below, where the
achieved downstream water flow rate is represented (in solid line) versus the de-
sired one (in dashed line), showing how the control purpose is indeed achieved. The
corresponding input control behaviour (the upstream flow rate) is shown on figure
3.
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Figure 2. Step response with a state feedback law.

The control law has further been tested on much larger variations, still giving

0 1 2 3 4 5 6 7 8 9 10

x 104

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

time (sec)

Upstream water flow rate (m3/s)

 

 
Qupstream

Figure 3. Input response to a step change with a state feedback law.
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very admissible results: this is illustrated by figures 4-5 below, corresponding to the
downstream and upstream flow rates for more than 100% change on the set-point.
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Figure 4. Step response under large variation.
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Figure 5. Input response to a large step change.

An additional interest of relying on some ’nominal’ control design is that any pos-
sible tool for the considered nominal system can be used. For instance, in order
to further take into account possible (constant) disturbances on the flow rate, a
modified version of the control - typically including some integral action, has also
been tested: the obtained results simulated in the presence of a lumped withdrawal
on the basis of Saint-Venant equations are given by figure 6 (here the withdrawal is
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simulated as a step disturbance at time t = 31h, located close to the downstream
end, and with a magnitude of about 10% of the nominal water flow rate).
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Fig. 4. Prediction error

In irrigation system, there are various kind of pertur-
bations (leak, withdrawal,...etc). The controller as it is
developed does not allow the perturbation rejection, what
brought us back to add an integrator into the controller.
After 31hours, one applies a withdrawal perturbation (10%
of the downstream water flow). The corresponding simula-
tion results are then presented on figure (5) for the tracking
result, and figure (6) for the prediction error.
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drawal perturbation
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It’s noted that the modified controller reject the perturba-
tion.

Noting however that x1, the downstream flow derivative
which is to be used in the control, is not measured, the
implementation of an observer to estimate it becomes
judicious. In view of the model structure (6), one can think
of a high gain observer in the spirit of Gauthier et al [1992]:(

˙̂
ξ1
˙̂
ξ2

)
=
(

0 0
1 0

)(
ξ̂1
ξ̂2

)
+
(
φ(ξ̂, u(t− τ(ξ̂2)))

0

)
−

S−1
θ CT (y − ŷ)

(21)

where φ follows from the expressions of A,B, and S is
given by:

θSθ = ATSθ + SθA− CTC

for θ large enough.

Notice that the ’non-standard’ nonlinearity u(t − τ(ξ̂2))
in (21) could be removed from the observation error equa-
tions by injecting the measured value of ξ2 in u instead of
its estimate.

Notice also that the stability of the resulting observer-
based control law is not here completely analyzed and
just checked in simulation. The corresponding results
when performing simulations on the basis of a Preissmann
scheme are shown in figures 3 (for the step response) and
4 for the observation error.
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Fig. 7. Downstream water flow step response under
observer-based control with a full Saint-Venant model
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Clearly the observer-based control law still fairly achieves
the expected performances.

5. CONCLUSION

In this paper, a new nonlinear control methodology for
irrigation canals has been proposed, taking into account
the diffusive nature of the canal dynamics and the presence
of a state-dependent delay. This control scheme is based
on some state prediction and exactly linearizing design,
relying on an appropriate nonlinear model. The approach
has been validated by successful simulations both on the
control model and on a ’more accurate’ Saint-Venant
model. Further validation studies, hopefully including ex-
perimentations, will be part of future developments.

Figure 6. Step response with a disturbance and integral action.

Finally, noting that the implementation of the proposed control so far relies on
a full state measurement, namely here Q(t, L) and Q̇(t, L), while in practise only
Q(t, L) is likely to be measured, a problem of state observer arises. Once again here,
it can be noticed that the system structure of appendix A allows to make use of
available results in that respect: injecting indeed the measured output in the input
delay function brings the system into a form appropriate for some so-called high
gain design [4].

Although in general the introduction of an observer in a control loop for a non-
linear system may affect the closed-loop overall stability, it has been shown how the
use of appropriate high gains can yield stabilization w.r.t. a priori given operation
regions, in a sense of semi-global stabilization (see e.g. again [8]).

Figure 7 illustrates how here the introduction of an observer in the previously
discussed control law allows to fairly recover the transient behaviour obtained with-
out it.

5. Conclusions and future works. In this paper, a control methodology for
nonlinear systems with a varying delay in the control input has been proposed, and
it has been emphasized how such a method can be useful for the control of some
distributed systems. In particular its performances have been illustrated in the
case of some open channel water flow control. The extension of such an approach
to more general infinite dimensional systems will be part of future works.
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developed does not allow the perturbation rejection, what
brought us back to add an integrator into the controller.
After 31hours, one applies a withdrawal perturbation (10%
of the downstream water flow). The corresponding simula-
tion results are then presented on figure (5) for the tracking
result, and figure (6) for the prediction error.
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the diffusive nature of the canal dynamics and the presence
of a state-dependent delay. This control scheme is based
on some state prediction and exactly linearizing design,
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Figure 7. Step response with state feedback law and observer.

Appendix A. Delayed model for water flow dynamics. The full data for
approximate model (3) of the full wave representation (2) is summarized as follows:

A(x2) =
(
−α(x2)β(x2) −β(x2)

1 0

)
; B(x2) =

(
β(x2)

0

)
;

where:

α(x2) = 2

√
2L∆(x2)
ν(x2)3

cos

(
π

6
+

1
3
arctan

√
9∆(x2)

2Lν(x2)− 9∆(x2)

)
;

β(x2) =
ν(x2)3

2L∆(x2)
α(x2)ν(x2)2

α(x2)ν(x2)2 − 3∆(x2)
;

τ(x2) =
L− α(x2)ν(x2)

ν(x2)
;

with:

ν(x2) =
5
3

(x2

W

)0.4
(

I

f2
c

)0.3

;

∆(x2) =
x2

2WI
;

and L, W, I, fc respectively the channel length, width, slope and friction coefficients.

Appendix B. Proof of proposition 1. First of all, define f(x) := F (x,Φ(x))
and z(t) := x(t+ δ(t)). Then the closed-loop system (4)-(6) can be re-written w.r.t.
z and f as:

ż(t) = (1 + δ̇(t))f(z(t)). (14)

where δ̇ can be computed from (5).
Let us then consider V (z) as a candidate Lyapunov function for this system.

Clearly:

V̇ = (1 + δ̇(t))
∂V

∂x
f(z(t)).
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Now notice that from the definition of δ we have:

[1− ∂τ

∂x
(z)f(z)]δ̇ =

∂τ

∂x
(z)f(z) (15)

where ∂τ
∂x (z)f(z) vanishes when z goes to zero.

Hence there exists a domain D̄ ⊂ IRn of states z of D and containing the origin,
such that 1 − ∂τ

∂x (z)f(z) > 0, and consequently such that δ̇ > −1. Then using
condition (ii), we get on D̄:

V̇ ≤ −(1 + δ̇)c3‖z‖2.
Now using assumption (i) and integrating the above inequality from 0 to t, we
obtain:

V (t) ≤ V (0)e−φ(t),

where

φ(t) =
c3

c1

∫ t

0

(1 + δ̇(θ))dθ =
c3

c1
(t + δ(t)− δ(0))

Again using assumption (i), the following inequality holds:

‖z(t)‖2 ≤ c2

c1
‖z(0)‖2e−φ(t).

Clearly δ ≥ 0 since τ ≥ 0 (at least locally), and thus φ(t) → +∞. This yields that
for any initial condition in some neighborhood of 0,

lim
t−→∞

‖x(t + δ(t))‖ = 0

and finally limt−→∞ ‖x(t)‖ = 0.

Appendix C. Proof of proposition 2. Let us consider the candidate Lyapunov-

Krasovskii functional W (zt) = V (z) + µ

∫ t

t−δ

‖z(θ)‖2dθ, where zt = z(t + θ), θ ∈

[−δ, 0] as usual in Lyapunov-Krasovskii formalism (see e.g. [7]), and µ > 0 is to be
specified later on.

Considering the closed-loop dynamics (11), the time derivative of W is given by:

Ẇ = (1 + δ̇)
∂V (z)

∂z
F (z,Φ(z)) (16)

+ (1 + δ̇)
∂V (z)

∂z
Γ(z(t), z(t− δ(t)))

+ µ[‖z(t)‖2 − (1− δ̇(t))‖z(t− δ(t))‖2]. (17)

Using again expression (15), we have that: 1− δ̇ ≥ ε whenever
∣∣∂τ
∂xF (z, Φ(z))

∣∣ ≤ 1−ε
2−ε

for any 0 < ε < 1. Moreover, this also guarantees that 1+ δ̇ > ε̃ with ε̃ = 2−ε
3−2ε > 0.

Finally, it is also clear that in this case, 1 + δ̇ < 2.
Hence, given such an ε, and using conditions (ii) and (iii) of the theorem, we

can obtain on some small enough neighborhood of the origin:

Ẇ ≤ −c3ε̃‖z(t)‖2 + 2c4γ‖z(t)‖‖z(t− δ)‖+ µ[‖z(t)‖2 − ε‖z(t− δ)‖2](18)

i.e. Ẇ ≤ −
(
‖z(t)‖‖z(t− δ)‖

)( c3ε̃− µ −c4γ
−c4γ εµ

)(
‖z(t)‖

‖z(t− δ)‖

)
. (19)

Hence choosing µ < c3ε̃, we get that for:

γ <

√
(c3ε̃− µ)εµ

c4
(20)
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the right-hand side of the above inequality is negative definite, and thus Ẇ ≤
−ρ‖z(t)‖ for some ρ > 0 which gives the local asymptotical stability of z = 0 by
the Lyapunov-Krasovskii stability result, and finally that of x = 0 for the system
in time t.

Notice that choosing e.g. µ = c3ε̃
2 , condition (20) becomes γ < c3ε̃

√
ε

2c4 . Since the
right-hand side can be made arbitrarily close to c3

2c4
by choosing ε close enough to

1 (by lower values), this can in turn make (20) to be satisfied whenever γ ≤ c3
4c4

,
which ends the proof.
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