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Abstract. In this paper we study a star-shaped network of Euler-Bernoulli
beams, in which a new geometric condition at the common node is imposed.
For the network, we give a method to assert whether or not the system is
asymptotically stable. In addition, by spectral analysis of the system operator,
we prove that there exists a sequence of its root vectors that forms a Riesz
basis with parentheses for the Hilbert state space.

1. Introduction. In the past decades, many authors have studied the controllabil-
ity and observability as well as stabilization of networks of the elastic structures. For
example, Ali Mehmeti in [1] and Below in [5] [6] studied regularity of solutions and
eigenvalue problems of the wave equation on networks, respectively; Rolewicz [26]
and Schmidt [27] studied controllability of networks of vibrating strings; Schmidt,
Leugering and Lagnese (see [16] [17] [18]) studied multi-link elastic structure and de-
rived nonlinear and linearized equations (the detail see [17]); Leugering and Zuazua
in [19] studied the exact controllability of generic trees; Deckoninck and Nicaise
in [13] [12] studied control and eigenvalue problems of networks of Euler-Bernoulli
beams; Dager and Zuazua in [8] [9] [10] studied controllability and observability of
tree-shaped and star-shaped networks of strings (a complete result can be found in
[11]); Ammari and Jellouli in [2] [3] studied the stabilization problem of tree-shaped
networks of strings; Nicaise and Zair in [22] studied the identification problem for
heterogeneous trees; Nicaise and Valein in [23] studied stabilization of the wave
equation on 1-d networks with a delay term in the nodal feedbacks. Beside these
concrete models, Pokornyi and Borovskikh studied more general differential equa-
tions on graphs (see, [24],[7] and references therein). Xu et al in [32] studied an
abstract second order hyperbolic system and applied the result to controlled net-
works of strings.
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Although there are a lot of papers on networks, we observe that in these pa-
pers, the equations do not include the structure and topology of the network. As
suggested by Borovshikh and Lazarew in [7], we must take the structure and topol-
ogy of networks into account when we study it. Generally speaking, a network is
essentially differential equations on a graph, which consist of the following three
parts:

1) a geometric graph G (also called network): it has a vertex set V and an edge
set E;

2) a group of partial differential equations defined on E: they describe the dy-
namical behavior of the network on E (deformation of the structure);

3) the junction region conditions: they describe the geometric and dynamic mul-
tiple node condition of the network which provide highly coupled information on
the network.

Note that, for a network, the joint conditions at interior vertices play an essential
role, in that the geometrical multiplicity of node conditions restricts deformation
and rotation of the structure at the junction and that the dynamical multiplicity
of node conditions represents the balance of forces and moments. Given a graph,
there are two tasks to do: i) to model the junction region between two or more
elements; ii) to solve the highly coupled partial differential equations including the
control theoretic properties (see, [20]).

For the elastic network, some nice results have been obtained under the rigid
joints at all interior nodes and some geometric conditions at the exterior vertices,
for instance, the observability and controllability for tree-shaped and star-shaped
networks of strings (see, [11]) and hybrid networks of strings and beams (see, [28]),
and stabilization of star-shaped tree networks of strings (see, [2] [3]). Note that the
rigid connections at the junction imply the displacement and rotation of beams are
continuous. In the present paper, we shall consider a star-shaped network of Euler-
Bernoulli beams, in which the displacement of the network at the interior node is
continuous but the rotation is not, however, there is a geometrical constraint set
for the rotation angles of the network. Obviously, this model is different from those
discussed in [14] [15] and [13].

To precisely describe the network under consideration, let us recall some no-
tations. Let G = (V, E) be a planar graph of star shape with vertices V =
{a, a1, a2, a3, · · · an} and edges E = {γ1, γ2, · · · , γn}, where edge γj joins the vertices
a and aj , and a is a common node. Suppose that every edge γj is straight and has
length ℓj,j = 1, 2, · · · , n. We define the parameterized map πj : [0, ℓj] → γj such
that πj(0) = a, πj(ℓj) = aj. Then G is a metric graph induced by the parameterized
map.

Suppose that there is an elastic structure whose equilibrium position coincides
with G. The elastic structure is hinged at the exterior vertices aj , j = 1, 2 · · · , n and
is pin-jointed with rotation angle constraint set {s1, s2, · · · , sn}, where sj 6= 0, j =
1, 2, · · · , n are real numbers at the common vertex a on which there are viscous and
rotation viscous damping.

Let w(x, t) denote deflection of the elastic structure at position x ∈ G at time t.
Let

wj(s, t) = w(πj(s), t)
∣∣
γj

, s ∈ (0, ℓj), πj(s) ∈ γj .

The motion of the elastic structure on each edge γj is governed by the Euler-
Bernoulli beam equation
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ρjw
j
tt(s, t) + EIjw

j
ssss(s, t) = 0, s ∈ (0, ℓj) (1)

where ρj is the mass density and EIj the flexural rigidity of the beam on γj . Since
all elements of the elastic structure are hinged at exterior vertices, so we have the
boundary conditions

wj(ℓj , t) = wj
ss(ℓj , t) = 0, j = 1, 2, · · · , n. (2)

At the common vertex a, the elements are pint-jointed, which implies w(a, t) =
wj(0, t) = wi(0, t), i, j = 1, 2, · · · , n; the rotation angle constraint set {s1, s2, · · · , sn}
means that sjw

j
s(0, t) coincide for all j. Therefore the beams satisfy the joint-

conditions at a: {
w(a, t) = wj(0, t) = wi(0, t),
siw

i
s(0, t) = sjw

j
s(0, t), ∀i, j = 1, 2, · · · , n.

(3)

For convenience, we denote R(w)(a, t) = sjw
j
s(0, t) = siw

i
s(0, t).

Due to the viscousness and rotation viscousness of the elastic structure at a,
wj(s, t), j = 1, 2, · · · , n satisfy the dynamic conditions:






−
n∑

j=1

EIj

sj
wj

ss(0, t) + R(w)(a, t) = −βR(w)t(a, t),

n∑
j=1

EIjw
j
sss(0, t) + w(a, t) = −αwt(a, t)

(4)

where α and β are viscous damping coefficients. In addition, we assume that the
initial condition of the system is given by

{
w(x, 0) = w0(x), x ∈ G
wt(x, 0) = w1(x), x ∈ G.

(5)

Thus a whole description of dynamic behavior of a star-shaped network of the
Euler-Bernoulli beams is





ρjw
j
tt(s, t) + EIjw

j
ssss(s, t) = 0, s ∈ (0, ℓj), t > 0

wj(ℓj , t) = wj
ss(ℓj , t) = 0, j = 1, 2, · · · , n,

w(a, t) = wj(0, t), R(w)(a, t) = sjw
j
s(0, t), j = 1, 2, · · · , n

−
n∑

j=1

EIj

sj
wj

ss(0, t) + R(w)(a, t) = −βR(w)t(a, t),

n∑
j=1

EIjw
j
sss(0, t) + w(a, t) = −αwt(a, t)

w(x, 0) = w0(x), wt(x, 0) = w1(x), x ∈ G.

(6)

We remark that the pinned connection of the structure at the junction leads to
rotation angles relaxed, whereas the rigid connection has the continuity of rotation
angles. In our model, the junction is neither rigid-joint nor pin-joint. Although
our model is simple, some surprising things occur for this multi-link structure.
We shall see that the stability of the system is improved due to the existence of
the geometrical constraints {s1, s2, · · · , sn} and viscous damping. In addition, the
approach we used in the present paper is also different from the ones used in [11] and
[13]. Herein we mainly apply the frequency method to giving a complete analysis
for the system. In particular, we obtain the expansion property of the solution of
the system according to its root vectors.

The rest is as follows. In section 2, we formulate (6) in a Hilbert state space
and then investigate the wellposedness of the system. We show that the operator A
determined by system (6) is dissipative and generates a C0 semigroup on the Hilbert
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state space. In particular, A−1 is a compact operator. In section 3, we carry out a
complete spectral analysis of A. By employing the asymptotic analysis technique,
we prove that the spectrum of A distributes in a strip parallel to the imaginary
axis. Further, we discuss the condition that there is no eigenvalue on the imaginary
axis, from which we can assert asymptotic stability of the system. In section 4,
we discuss the completeness and basis property of root vectors (eigenvectors and
generalized eigenvectors) of A. We show that the system of root vectors of A is
complete in the Hilbert state space and that there is a sequence of root vectors that
forms a Riesz basis with parentheses for the Hilbert state space. Hence the solution
of the system can be expanded according to its root vectors.

2. Well-posed-ness of the network. In this section we shall discuss the well-
posedness of system (6). At first we formulate problem (6) in a Hilbert state space.

Let L2(G) and C(G) be the linear spaces defined as usual. Denote by Hk(E), k ≥
1, the set

Hk(E) =
{
f ∈ L2(G)

∣∣ f |γj
= f j ∈ Hk(0, ℓj)

}

where Hk(0, ℓj) is the usual Sobolev space. We define the linear space Hk(G), k ∈ N,
by

Hk(G) = C(G) ∩ Hk(E) =
{
f ∈ C(G)

∣∣ f |γj
= f j ∈ Hk(0, ℓj), j = 1, 2, · · · , n

}
.

We observe that, for a function defined on a graph G, there only exist derivatives
along edges at the interior vertex. A function w(x, t) is said to be a solution to (6),
if for each t > 0, w(x, t) ∈ H4(G) and w(x, t) is continuously differentiable with
respect to t, and wtt(x, t) exists and belongs to L2(G) such that the conditions in
equations (6) are verified.

Denote Hk
E(0, ℓj) = {f ∈ Hk(0, ℓj)

∣∣ f(ℓj) = 0} and let the state space be

H =





(f, g) ∈ H2(G) × L2(G)

∣∣∣

(f j , gj) ∈ H2
E(0, ℓj) × L2[0, ℓj],

f(a) := f j(0) = f i(0),
R(f)(a) := sjf

j
s (0) = sif

i
s(0),

i, j = 1, 2, . . . , n






equipped with the inner product

((f, g), (u, v))H : =

n∑

j=1

∫ ℓj

0

[EIjf
j
ss(s)u

j
ss(x) + ρjg

j(s)vj(s)]ds

+f(a)u(a) + R(f)(a)R(u)(a).

Clearly, H is a Hilbert space.
Define the operator A in H by

D(A) =






(w, z) ∈ H
∣∣∣∣∣

(wj , zj) ∈ H4
E(0, ℓj) × H2

E(0, ℓj), w
j
ss(ℓj) = 0,

−
n∑

j=1

EIj

sj
wj

ss(0) + R(w)(a) = −βR(z)(a),

n∑
j=1

EIjw
j
sss(0) + w(a) = −αz(a)






(7)

A(w, z) =

{(
zj ,−EIj

ρj

wj
ssss

)}
∈ H, ∀(w, z) ∈ D(A). (8)



STABILITY AND RIESZ BASIS PROPERTY OF A NETWORK 727

With the help of these notations we can rewrite (6) into an evolutionary equation
in H {

dW (t)
dt

= AW (t), t > 0
W (0) = W0,

(9)

where W (t) = (w(x, t), wt(x, t)) and W (0) = (w0(x), w1(x)) ∈ H.

Theorem 2.1. Let A be defined by (7–8). Then A is dissipative, 0 ∈ ρ(A) and
A−1 is compact. Hence the spectrum of A consists of all isolated eigenvalues of
finite multiplicity.

Proof. It is easy to check that A is a closed and densely defined linear operator,
here we omit the detail.

For any (w, z) ∈ D(A), we have

ℜ (A(w, z), (w, z))H = ℜ
n∑

j=1

∫ ℓj

0

[EIjz
j
ss(s)w

j
ss(s) − EIjw

j
ssss(s)z

j(s)]ds

+ℜ
{
z(a)w(a) + R(z)(a)R(w)(a)

}

= ℜ





n∑

j=1

EIjw
j
sss(0)zj(0) −

n∑

j=1

EIjw
j
ss(0)zj

s(0)





+ℜz(a)w(a) + ℜR(z)(a)R(w)(a)

= z(a)




n∑

j=1

EIjw
j
sss(0) + w(a)





+R(z)(a)


−

n∑

j=1

EIj

sj

wj
ss(0) + R(w)(a)




= −α|z(a)|2 − β|R(z)(a)|2.
So A is dissipative.

For any fixed (f, g) ∈ H, we consider the resolvent equation A(w, z) = (f, g), i.e.,





z(x) = f(x), x ∈ G
−EIjw

j
ssss(s) = ρjg

j(s), s ∈ (0, ℓj),
wj(ℓj) = wj

ss(ℓj) = 0, j = 1, 2, · · · , n,
w(a) = wj(0), R(w)(a) = sjw

j
s(0), j = 1, 2, · · · , n,

−
n∑

j=1

EIj

sj
wj

ss(0) + R(w)(a) = −βR(z)(a),

n∑
j=1

EIjw
j
sss(0) + w(a) = −αz(a).

(10)

In what follows, we shall find a solution to equation (10). Firstly, solving the
differential equation in (10) yields

wj(s) = wj(0) + swj
s(0) +

s2

2
wj

ss(0) +
s3

3!
wj

sss(0) −
∫ s

0

(s − r)3

3!

ρj

EIj

gj(r)dr (11)

and

wj
ss(s) = wj

ss(0) + swj
sss(0) −

∫ s

0

ρj(s − r)

EIj

gj(r)dr. (12)
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From the boundary conditions wj(ℓj) = wj
ss(ℓj) = 0, we get





wj(0) + ℓjw

j
s(0) +

ℓ2j
2 wj

ss(0) +
ℓ3j
3! w

j
sss(0) −

∫ ℓj

0
(ℓj−r)3

3!
ρj

EIj
gj(r)dr = 0,

wj
ss(0) + ℓjw

j
sss(0) −

∫ ℓj

0
ρj(ℓj−r)

EIj
gj(r)dr = 0.

Using the conditions w(a) = wj(0), R(w)(a) = sjw
j
s(0), the above algebraic equa-

tions become




ℓ2j
2 wj

ss(0) +
ℓ3j
3! w

j
sss(0) =

∫ ℓj

0
(ℓj−r)3

3!
ρj

EIj
gj(r)dr − [w(a) +

ℓj

sj
R(w)(a)],

wj
ss(0) + ℓjw

j
sss(0) =

∫ ℓj

0
ρj(ℓj−r)

EIj
gj(r)dr.

Solving these algebraic equations yield

wj
ss(0) =

3

ℓ2
j

[∫ ℓj

0

(ℓj − r)3

3!

ρj

EIj

gj(r)dr − [w(a) +
ℓj

sj

R(w)(a)]

]

− 3

ℓ2
j

ℓ2
j

3!

∫ ℓj

0

ρj(ℓj − r)

EIj

gj(r)dr (13)

and

wj
sss(0) = − 3

ℓ3
j

[∫ ℓj

0

(ℓj − r)3

3!

ρj

EIj

gj(r)dr − [w(a) +
ℓj

sj

R(w)(a)]

]

+
3

ℓ3
j

ℓ2
j

2

∫ ℓj

0

ρj(ℓj − r)

EIj

gj(r)dr. (14)

Thus we have

n∑

j=1

EIjw
j
sss(0) = −

n∑

j=1

ρj

ℓ3
j

∫ ℓj

0

(ℓj − r)3

2
gj(r)dr + w(a)

n∑

j=1

3EIj

ℓ3
j

+R(w)(a)
n∑

j=1

3EIj

sjℓ2
j

+
n∑

j=1

3ρj

2ℓj

∫ ℓj

0

(ℓj − r)gj(r)dr

and

n∑

j=1

EIj

sj

wj
ss(0) =

n∑

j=1

ρj

sjℓ2
j

∫ ℓj

0

(ℓj − r)3

2
gj(r)dr − w(a)

n∑

j=1

3EIj

sjℓ2
j

−R(w)(a)

n∑

j=1

3EIj

s2
jℓj

−
n∑

j=1

ρj

2sj

∫ ℓj

0

(ℓj − r)gj(r)dr.

Set

G1(g) = −
n∑

j=1

ρj

ℓ3
j

∫ ℓj

0

(ℓj − r)3

2
gj(r)dr +

n∑

j=1

3ρj

2ℓj

∫ ℓj

0

(ℓj − r)gj(r)dr,

G2(g) =
n∑

ν=1

ρj

sjℓ2
j

∫ ℓj

0

(ℓj − r)3

2
gj(r)dr −

n∑

j=1

ρj

2sj

∫ ℓj

0

(ℓj − r)gj(r)dr.
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Substituting them into the last two conditions in (10) leads to





w(a)

[
1 +

n∑
j=1

3EIj

ℓ3
j

]
+ R(w)(a)

n∑
j=1

3EIj

sjℓ2
j

= −αf(a) − G1(g),

w(a)
n∑

j=1

3EIj

sjℓ2
j

+ R(w)(a)

[
1 +

n∑
j=1

3EIj

s2
j
ℓj

]
= −βR(z)(a) + G2(g),

where we have used the conditions:

z(a) = f(a) = f j(0), and R(z)(a) = R(f)(a) = sjf
j
s (0), j = 1, 2, · · · , n.

Solving the algebraic equations above we get

w(a) =
−1

∆




1+

n∑

j=1

3EIj

s2
jℓj


 (αf(a)+G1(g))−

n∑

j=1

3EIj

sjℓ2
j

(βR(f)(a)+G2(g)


 , (15)

R(w)(a)=
−1

∆







1+

n∑

j=1

3EIj

ℓ3
j



 (βR(z)(a)−G2(g))−
n∑

j=1

3EIj

sjℓ2
j

(αf(a)−G1(g))



 , (16)

where

∆ =


1 +

n∑

j=1

3EIj

ℓ3
j




1 +

n∑

j=1

3EIj

s2
jℓj


−




n∑

j=1

3EIj

sjℓ2
j




2

6= 0.

Plugging (15) and (16) into (13) and (14), we can determine wj
ss(0) and wj

sss(0) of
the form {

wj
ss(0) = K1

j(g) + aj
11βR(f)(a) + aj

12αf(a)

wj
sss(0) = K2

j(g) + aj
21βR(f)(a) + aj

22αf(a)
(17)

where Kk
j , k = 1, 2, j = 1, 2, · · · , n, denote the integral operators. The coefficients

aj
ik depend only on the physical and geometrical parameters of beams and the graph,

and R(f)(a) = sjf
j
s (0), f(a) = f j(0), j = 1, 2, · · · , n. Moreover, we have

wj(0) = w(a), wj
s(0) =

R(w)(a)

sj

, j = 1, 2, · · · , n. (18)

Inserting (17) and (18) into (11), we can determine uniquely the functions wj(s),j =
1, 2, · · · , n.

Now we define a function on G by

w(x) =

{
wj(π−1

j (x)), x = πj(s) ∈ γj , s ∈ (0, ℓj],

w(a), x = a.

Clearly, w(x) ∈ C(G) and w(x)
∣∣
γj

= wj(s) ∈ H4(0, ℓj). Also we have z = f ∈
H2(G). So (w, z) = (w, f) ∈ D(A) and A(w, z) = (f, g). So the Closed Graph
Theorem asserts that A−1 is bounded and hence 0 ∈ ρ(A). From the expressions
in (11), (17) and (18) as well as fj ∈ H2(0, ℓj), we deduce from the Sobolev’s
Embedding Theorem that A−1 is compact on H.

As a direct consequence of Theorem 2.1 and the Lumer-Phillips Theorem (e.g.
see, [25]), we have the following result.

Corollary 1. Let A be defined by (7)–(8). Then A generates a C0 semigroup of
contraction on H. Hence the system (9) is well-posed on H.
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3. Eigenvalue problem. In this section we shall discuss the eigenvalue problem.
We shall investigate the distribution of eigenvalues of A and the existence of eigen-
values on the imaginary axis.

For λ ∈ C, we seek the necessary condition for λ to be an eigenvalue of A. We
consider the eigenvalue problem A(w, z) = λ(w, z) in H. From the representation
of A, we know that A(w, z) = λ(w, z) implies that z = λw and w(x) satisfies the
differential equations






EIjw
j
ssss(s) = −ρjλ

2wj(s), s ∈ (0, ℓj)
wj(ℓj) = wj

ss(ℓj) = 0, j = 1, 2, · · · , n,
w(a) = wj(0), R(w)(a) = sjw

j
s(0), j = 1, 2, · · · , n,

−
n∑

j=1

EIj

sj
wj

ss(0) + R(w)(a) = −βλR(w)(a),

n∑
j=1

EIjw
j
sss(0) + w(a) = −αλw(a).

(19)

Set ωj = 4

√
ρj

EIj
. The general solution of the differential equation

wj
ssss(s) = (iλ)2ω4

j wj(s), s ∈ (0, ℓj), wj(ℓj) = wj
ss(ℓj) = 0

is of the form

wj(s) = bj
1 sinh

√
iλωj(ℓj − s) + bj

2 sin
√

iλωj(ℓj − s), s ∈ (0, ℓj).

Thus we have
{

w(a) = bj
1 sinh

√
iλωjℓj + bj

2 sin
√

iλωjℓj,

R(w)(a) = −sj

√
iλωj[b

j
1 cosh

√
iλωjℓj + bj

2 cos
√

iλωjℓj],
(20)

wj
ss(0) = (

√
iλωj)

2[bj
1 sinh

√
iλωjℓj − bj

2 sin
√

iλωjℓj] (21)

and

wj
sss(0) = −(

√
iλωj)

3[bj
1 cosh

√
iλωjℓj − bj

2 cos
√

iλωjℓj ]. (22)

Substituting (21) and (22) into the last two equalities of (19) leads to

−
n∑

j=1

EIj

sj

(
√

iλωj)
2[bj

1 sinh
√

iλωjℓj − bj
2 sin

√
iλωjℓj ] = −(1 + βλ)R(w)(a),

−
n∑

j=1

EIj(
√

iλωj)
3[bj

1 cosh
√

iλωjℓj − bj
2 cos

√
iλωjℓj ] = −(1 + αλ)w(a),

or equivalently

n∑
j=1

(
EIj(

√
iλωj)

3 0

0
EIj

sj
(
√

iλωj)
2

)(
cosh

√
iλωjℓj −cos

√
iλωjℓj

sinh
√

iλωjℓj −sin
√

iλωjℓj

)(
bj
1

bj
2

)

=

(
(1 + αλ) 0

0 (1 + βλ)

)(
w(a)

R(w)(a)

)
.

We rewrite (20) into the matrix form
(

1 0

0 −sj

√
iλωj

)(
sinh

√
iλωjℓj sin

√
iλωjℓj

cosh
√

iλωjℓj cos
√

iλωjℓj

)(
bj
1

bj
2

)
=

(
w(a)

R(w)(a)

)
.

Set

Mj(λ) =

(
1 0

0 −sj

√
iλωj

)(
sinh

√
iλωjℓj sin

√
iλωjℓj

cosh
√

iλωjℓj cos
√

iλωjℓj

)
,
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Nj(λ)=

(
EIj(

√
iλωj)

3 0

0
EIj

sj
(
√

iλωj)
2

)(
cosh

√
iλωjℓj −cos

√
iλωjℓj

sinh
√

iλωjℓj − sin
√

iλωjℓj

)
,

and

Q(λ) =

(
(1 + αλ) 0

0 (1 + βλ)

)
, ~Bj =

(
bj
1

bj
2

)
, ~W =

(
w(a)

R(w)(a)

)
.

Thus we have




Mj(λ) ~Bj = ~W, j = 1, 2, · · · , n;

n∑
j=1

Nj(λ) ~Bj = Q(λ) ~W.
(23)

The algebraic equation (23) has a nonzero solution ( ~B1, ~B2, · · · , ~Bn, ~W )τ if, and
only if,

∆(λ) = det

∣∣∣∣∣∣∣∣∣∣∣∣∣

M1(λ) 0 0 · · · 0 −I
0 M2(λ) 0 · · · 0 −I
0 0 M3(λ) · · · 0 −I
...

... · · · . . .
...

...
0 0 · · · · · · Mn(λ) −I

N1(λ) N2(λ) N3(λ) · · · Nn(λ) −Q(λ)

∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0

where I denotes the identity matrix. Therefore we can prove the following result.

Theorem 3.1. Let A be defined as before, then the spectrum, σ(A), of A distributes
symmetrically with respect to the real axis. In particular, we have

σ(A) = {λ ∈ C
∣∣ ∆(λ) = 0}.

Proof. From Theorem 2.1 we know that σ(A) = σp(A). Let λ ∈ C be an eigenvalue

of A and (w, z) ∈ D(A) be a corresponding eigenvector. From (19) we see that λ
is also an eigenvalue of A, a corresponding eigenvector is (w, z). Therefore, σ(A)
distributes symmetrically with respect to the real axis.

If λ ∈ σ(A), the previous discussion has shown that ∆(λ) = 0. We shall prove
below that λ ∈ C such that ∆(λ) = 0 also implies that λ is an eigenvalue of A.

Suppose that λ ∈ C such that ∆(λ) = 0. Then the algebraic equation (23) has a

nonzero solution ( ~B1, ~B2, · · · , ~Bn, ~W )τ . We set

wj(s) = [sinh
√

iλωj(ℓj − s), sin
√

iλωj(ℓj − s)] ~Bj , j = 1, 2, · · · , n.

Clearly, wj(s), j = 1, 2, · · · , n, satisfy the equation

wj
ssss(s) = −λ2ω4

j wj(s), wj(ℓj) = wj
ss(ℓj) = 0, j = 1, 2, · · · , n.

In addition, we have

(
wj(0)

sjw
j
s(0)

)
=

(
sinh

√
iλωjℓj sin

√
iλωjℓj

−sj

√
iλωj cosh

√
iλωjℓj −sj

√
iλωj cos

√
iλωjℓj

)
~Bj

= Mj(λ) ~Bj = ~W
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and
n∑

j=1

(
−EIjw

j
sss(0)

EIj

sj
wj

ss(0)

)

=

n∑

j=1

(
EIj(

√
iλωj)

3 0

0
EIj

sj
(
√

iλωj)
2

)(
cosh

√
iλωjℓj − cos

√
iλωjℓj

sinh
√

iλωjℓj − sin
√

iλωjℓj

)
~Bj

= Q(λ) ~W.

So, wj(s), j = 1, 2, · · · , n, satisfy (19). Therefore (w, λw) ∈ D(A) is an eigenvector
corresponding to λ. The desired result follows.

3.1. Distribution of eigenvalues. From Theorem 3.1 we see that the eigenvalues
of A are entirely given by the zeros of the function ∆(λ). In this subsection we
shall discuss the distribution of zeros of ∆(λ). Here we shall employ the asymptotic
analysis technique to get an asymptotic estimate of ∆(λ) in λ with sufficiently large
modulus.

Let us consider the four functions in λ:

sinh
√

iλωjℓj , cosh
√

iλωjℓj, sin
√

iλωjℓj, cos
√

iλωjℓj .

For λ ∈ C with ℜλ > 0,
√

iλ =
√
|λ|ei(π

4
+ θ

2 ), argλ = θ ∈
(
−π

2
,
π

2

)

and

−i
√

iλ = e−
π
2

i
√
|λ|ei(π

4
+ θ

2 ) =
√
|λ|ei(−π

4
+ θ

2 ), θ ∈
(
−π

2
,
π

2

)
.

Hence ℜ
√

iλ > 0 and ℜ(−i
√

iλ) > 0. When ℜλ → +∞, we have

sinh
√

iλωjℓj =
1

2
e
√

iλωjℓj [1]0, cosh
√

iλωjℓj =
1

2
e
√

iλωjℓj [1]0,

sin
√

iλωjℓj =
i

2
e−i

√
iλωjℓj [1]0, cos

√
iλωjℓj =

1

2
e−i

√
iλωjℓj [1]0

where the notation [a]0 denotes the asymptotic expression of the function f(z) =
a + O(z−1) in which a is a constant.

Therefore, we have the following asymptotic expressions:

Mj(λ) =
1

2

(
1 0

0 −sj

√
iλωj

)(
e
√

iλωjℓj [1]0 ie−i
√

iλωjℓj [1]0
e
√

iλωjℓj [1]0 e−i
√

iλωjℓj [1]0

)
,

and

Nj(λ)=
1

2

(
EIj(

√
iλωj)

3 0

0
EIj

sj
(
√

iλωj)
2

)(
e
√

iλωjℓj [1]0 −e−i
√

iλωjℓj [1]0
e
√

iλωjℓj [1]0 −ie−i
√

iλωjℓj [1]0

)

as ℜλ → +∞,
For λ ∈ C with ℜλ < 0,

√
iλ =

√
|λ|ei(π

4
+ θ

2 ), argλ = θ ∈
(

π

2
,
3π

2

)

and

i
√

iλ = e
π
2

i
√
|λ|ei( 3π

4
+ θ

2 ) =
√
|λ|ei(−π

4
+ θ

2 ), θ ∈
(

π

2
,
3π

2

)
,
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we have ℜ(−
√

iλ) > 0 and ℜ(i
√

iλ) > 0. Hence, as ℜλ → −∞, it holds that

sinh
√

iλωjℓj = −1

2
e−

√
iλωjℓj [1]0, cosh

√
iλωjℓj =

1

2
e−

√
iλωjℓj [1]0,

sin
√

iλωjℓj = − i

2
ei

√
iλωjℓj [1]0, cos

√
iλωjℓj =

1

2
ei

√
iλωjℓj [1]0.

Therefore, when ℜλ → −∞, we get the following asymptotical expression:

Mj(λ) =
1

2

(
1 0

0 −sj

√
iλωj

)(
−e−

√
iλωjℓj [1]0 −iei

√
iλωjℓj [1]0

e−
√

iλωjℓj [1]0 ei
√

iλωjℓj [1]0

)
,

and

Nj(λ)=
1

2

(
EIj(

√
iλωj)

3 0

0
EIj

sj
(
√

iλωj)
2

)(
e−

√
iλωjℓj [1]0 −ei

√
iλωjℓj [1]0

−e−
√

iλωjℓj [1]0 iei
√

iλωjℓj [1]0

)
.

At first we estimate ∆(λ) in the right-half plane. When ℜλ → +∞, we get

∆(λ) =
e
(1−i)

√
iλ

n∑
j=1

ωjℓj

22n
det

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

M0
1 (λ) 0 0 · · · 0 −I
0 M0

2 (λ) 0 · · · 0 −I
0 0 M0

3 (λ) · · · 0 −I
...

... · · · . . .
...

...

0 0 · · · . . . M0
n(λ) −I

N0
1 (λ) N0

1 (λ) N0
3 (λ) · · · N0

n(λ) −Q(λ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

where

M0
j (λ) =

(
[1]0 i[1]0

−sj

√
iλωj [1]0 −sj

√
iλωj [1]0

)
, j = 1, 2, · · · , n

and

N0
j (λ) =

(
EIj(

√
iλωj)

3[1]0 −EIj(
√

iλωj)
3[1]0

EIj

sj
(
√

iλωj)
2[1]0 −i

EIj

sj
(
√

iλωj)
2[1]0

)
, j = 1, 2, · · · , n.

Since

det

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

M0
1 (λ) 0 0 · · · 0 −I
0 M0

2 (λ) 0 · · · 0 −I
0 0 M0

3 (λ) · · · 0 −I
...

... · · · . . .
...

...

0 0 · · · . . . M0
n(λ) −I

N0
1 (λ) N0

2 (λ) N0
3 (λ) · · · N0

n(λ) −Q(λ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

n∏

j=1

det |M0
j | det

∣∣∣∣∣∣
Q(λ) −

n∑

j=1

N0
j (λ)(M0

j )−1

∣∣∣∣∣∣

=

n∏

j=1

(−1 + i)sj(
√

iλωj) ×

det

∣∣∣∣∣∣

(
1 + αλ − (1 + i)

n∑
j=1

EIj(
√

iλωj)3

)
[1]0 −(i

n∑
j=1

EIj
sj

(
√

iλωj)2)[1]0

−i
n∑

j=1

EIj
sj

(
√

iλωj)2[1]0

(
(1 + βλ) − (i − 1)

n∑
j=1

EIj

s2
j

(
√

iλωj)

)
[1]0

∣∣∣∣∣∣
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where

det

∣∣∣∣∣∣

(
1 + αλ − (1 + i)

n∑
j=1

EIj(
√

iλωj)3

)
[1]0 −(i

n∑
j=1

EIj
sj

(
√

iλωj)2([1]0

−i
n∑

j=1

EIj
sj

(
√

iλωj)2[1]0

(
(1 + βλ)−(i − 1)

n∑
j=1

EIj

s2
j

(
√

iλωj)

)
[1]0

∣∣∣∣∣∣

= det

∣∣∣∣∣∣

(
1 −iα(

√

iλ)2−(1+i)(
√

iλ)3
n∑

j=1

EIjω3
j

)
[1]0 −i(

√

iλ)2
n∑

j=1

EIjω2
j

sj
[1]0

−i(
√

iλ)2
n∑

j=1

EIjω2
j

sj
[1]0

(
1 −iβ(

√

iλ)2−(i −1)(
√

iλ)
n∑

j=1

EIjωj

s2
j

)
[1]0

∣∣∣∣∣∣

= (
√

iλ)5


(−1 + i)β

n∑

j=1

EIjω
3
j


[1]0,

so, we have

lim
ℜλ→+∞

∆(λ)

(
√

iλ)n+5e
(1−i)

√
iλ

n∑
j=1

ωjℓj

=
(i − 1)n+1

22n
β

n∏

j=1

sjωj

n∑

j=1

EIjω
3
j . (24)

As ℜλ → −∞, we derive

∆(λ) =
e
(−1+i)

√
iλ

n∑
j=1

ωjℓj

22n
det

∣∣∣∣∣∣∣∣∣∣∣∣∣

M1
1 (λ) 0 0 · · · 0 −I
0 M1

2 (λ) 0 · · · 0 −I
0 0 M1

3 (λ) · · · 0 −I
...

... · · · . . .
...

...
0 0 · · · · · · M1

n(λ) −I
N1

1 (λ) N1
2 (λ) N1

3 (λ) · · · N1
n(λ) −Q(λ)

∣∣∣∣∣∣∣∣∣∣∣∣∣

where

M1
j (λ) =

( −[1]0 −i[1]0
−sj

√
iλωj [1]0 −sj

√
iλωj [1]0

)
, j = 1, 2, · · · , n

and

N1
j (λ) =

(
EIj(

√
iλωj)

3[1]0 −EIj(
√

iλωj)
3[1]0

−EIj

sj
(
√

iλωj)
2[1]0 i

EIj

sj
(
√

iλωj)
2[1]0

)
, j = 1, 2, · · · , n.
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In this case, we have

det

∣∣∣∣∣∣∣∣∣∣∣∣∣

M1
1 (λ) 0 0 · · · 0 −I
0 M1

2 (λ) 0 · · · 0 −I
0 0 M1

3 (λ) · · · 0 −I
...

... · · · . . .
...

...
0 0 · · · · · · M1

n(λ) −I
N1

1 (λ) N1
2 (λ) N1

3 (λ) · · · N1
n(λ) −Q(λ)

∣∣∣∣∣∣∣∣∣∣∣∣∣

=

n∏

j=1

det |M1
j | det

∣∣∣∣∣∣
Q(λ) −

n∑

j=1

N1
j (λ)(M1

j )−1

∣∣∣∣∣∣

=

n∏

j=1

(1 − i)sj(
√

iλωj) ×

det

∣∣∣∣∣∣

(
1 + αλ + (1 + i)

n∑
j=1

Eij(
√

iλωj)3

)
[1]0 −i

n∑
j=1

EIj
sj

(
√

iλωj)2[1]0

−i
n∑

j=1

EIj
sj

(
√

iλωj)2[1]0

(
(1 + βλ) + (1 − i)

n∑
j=1

EIj

s2
j

(
√

iλωj)

)
[1]0

∣∣∣∣∣∣

= (1 − i)n(
√

iλ)n

n∏

j=1

sjωj ×

det

∣∣∣∣∣∣

(
1−iα(

√

iλ)2+(1+i)(
√

iλ)3
n∑

j=1

Eijω3
j

)
[1]0 −i(

√

iλ)2
n∑

j=1

EIjω2
j

sj
[1]0

−i(
√

iλ)2
n∑

j=1

EIjω2
j

sj
[1]0

(
(1−iβ(

√

iλ)2+(1−i)(
√

iλ)
n∑

j=1

EIjωj

s2
j

)
[1]0

∣∣∣∣∣∣

= (
√

iλ)n+5(1 − i)n+1
n∏

j=1

sjωj



β

n∑

j=1

Eijω
3
j



 [1]0.

This yeilds

lim
ℜλ→−∞

∆(λ)

(
√

iλ)n+5e
(−1+i)

√
iλ

n∑
j=1

ωjℓj

=
(1 − i)n+1

22n
β

n∏

j=1

sjωj

n∑

j=1

EIjω
3
j 6= 0. (25)

From (24) and (25) we get that there exist positive constants C1, C2 and h such
that when |ℜλ| ≥ h,

C1

∣∣∣∣∣(
√

iλ)n+5e
sign(ℜλ)(1−i)

√
iλ

n∑
j=1

ωjℓj

∣∣∣∣∣

≤ |∆(λ)| ≤ C2

∣∣∣∣∣(
√

iλ)n+5e
sign(ℜλ)(1−i)

√
iλ

n∑
j=1

ωjℓj

∣∣∣∣∣ .
(26)

The above inequality implies that the zeros of ∆(λ) are in the region −h < ℜλ < h,
if they exist. In order to show that there is at least one zero of ∆(λ), we observe
that ∆(λ) is an entire function and it is of the form

∆(λ) =

n∑

j=1

cje
bj

√
iλpj(

√
iλ) +

n∑

k=1

dke−bk

√
iλqk(

√
iλ)

where pj ,qk, j, k = 1, 2 · · · , n are polynomials, cj, dk, j, k = 1, 2, 3 · · · , n are complex
constants and bj , j = 1, 2, · · · , n are complex numbers with |bj| > |bj+1|. (24) and
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(25) show that the high order terms of ∆(λ) are given by

c1p1(
√

iλ)eb1
√

iλ

=
(i − 1)n+1

22n
β

n∏

j=1

sjωj

n∑

j=1

EIjω
3
j (
√

iλ)n+5e
(1−i)

√
iλ

n∑
j=1

ωjℓj

[1 + O((
√

iλ)−1)]

and

d1q1(
√

iλ)e−b1
√

iλ

=
(1 − i)n+1

22n
β

n∏

j=1

sjωj

n∑

j=1

EIjω
3
j (
√

iλ)n+5e
−(1−i)

√
iλ

n∑
j=1

ωjℓj

[1 + O((
√

iλ)−1)].

The theory of entire function asserts that ∆(λ) has infinitely many zeros in the
complex plane.

To obtain the detailed distribution of zeros of ∆(λ), we need the following notions
(see, [4, Definition II.1.17, II.1.27, pp.52-61]).

Definition 3.2. A set σ ⊂ C is said to be separable if inf
λ,µ∈σ,λ6=µ

|λ − µ| > 0.

Let S ⊂ C be an infinite set. S is said to be a finite union of separable sets if
there exist a sequence, {Op, p ∈ N}, of bounded open sets and an integer N such
that

S ⊂
∞⋃

p=1

Op, inf
p,r∈N,p6=r

dist(Op, Or) > 0, and sup
p∈N

#{Op ∩ S} ≤ N

where #O denotes the number of elements in set O (taking the multiplicity into
account).

Definition 3.3. An entire function f of exponential type is said to be of sine type
if

(a). the zeros of f lie in a strip {z ∈ C
∣∣ |y| ≤ h, z = x + iy} for some h > 0;

(b). there is a y0 ∈ R such that sup
x∈R

|f(x + iy0)| < ∞ holds.

For the sine-type function, the following result holds (see, [4, Proposition 11.1.28,
pp-61]).

Proposition 1. (Levin Theorem) If f is a sine-type function, then the set of its
zeros is a finite union of separable sets.

Based on the previous discussion, we have the following result.

Theorem 3.4. Let A be defined as before, then the spectrum of A distributes in a
strip parallel to the imaginary axis, that is, there is a positive constant h such that

σ(A) ⊂ {λ ∈
∣∣ −h ≤ ℜλ ≤ 0}.

In particular, σ(A) is a finite union of separable sets.

Proof. From inequality (26) we see that there exists a constant h > 0 such that λ
is not a zero of ∆(λ) for |ℜλ| > h. This together with dissipative property of A
asserts that the spectrum of A distributes in a strip parallel to the imaginary axis.
In particular, (26) implies that ∆(λ) is a sine-type function in

√
iλ. The Levin’s

Theorem asserts that the set of zeros of ∆(λ) is a finite union of separable sets.
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3.2. Existence of eigenvalues on the imaginary axis. In the previous subsec-
tion we have shown that the spectrum of A distributes in a strip parallel to the
imaginary axis. In this subsection, we are interested in whether or not there exist
eigenvalues of A on the imaginary axis. For this purpose, we begin with studying
the following eigenvalue problem:






wj
ssss(s) = −λ2ω4

j wj(s), s ∈ (0, ℓj)
wj(ℓj) = wj

ss(ℓj) = 0,
wj(0) = 0, wj

s(0) = 0.
(27)

Set

wj(s) = bj
1 sinh

√
iλωj(ℓj − s) + bj

2 sin
√

iλωj(ℓj − s),

then wj(s) satisfies the equation and the boundary conditions wj(ℓj) = wj
ss(ℓj) = 0.

So the boundary conditions wj(0) = wj
s(0) = 0 read

{
bj
1 sinh

√
iλωjℓj + bj

2 sin
√

iλωjℓj = 0,

bj
1 cosh

√
iλωjℓj + bj

2 cos
√

iλωjℓj = 0.

Note that λ = 0 is not an eigenvalue. Therefore, for λ 6= 0, the equation (27) has a
nonzero solution if, and only if,

∆j(λ) = det

(
sinh

√
iλωjℓj sin

√
iλωjℓj

cosh
√

iλωjℓj cos
√

iλωjℓj

)

= sinh
√

iλωjℓj cos
√

iλωjℓj − cosh
√

iλωjℓj sin
√

iλωjℓj = 0.

Obviously, ∆j(λ) = 0 is equivalent to the function equation

tan
√

iλωjℓj = tanh
√

iλωjℓj

whose zeros are given by

λ = ±i
(kπ + νk)2

ω2
j ℓ

2
j

, ∀k ∈ Z

where νk ∈ (0, π
4 ) satisfy tan(kπ+νk) = tanh(kπ+νk). One can prove that {νk}k∈N

is an increasing sequence and lim
k→∞

νk = π
4 . Let us denote the set of zeros of ∆j(λ)

by

σj =

{
λ = ±i

(kπ + νk)2

ω2
j ℓ2

j

∣∣∣ ∀k ∈ Z

}
.

Then σj is the set of all eigenvalues of (27).
Now we consider the existence of eigenvalues of A on the imaginary axis. If there

is a nonzero (w, z) ∈ D(A) such that A(w, z) = λ(w, z) for λ ∈ iR, then we have

ℜ(A(w, z), (w, z))H = −α|z(a)|2 − β|R(z)(a)|2 = 0,

from which we get that z(a) = R(z)(a) = 0, z(x) = λw(x) and w(x) satisfies the
equations:






wj
ssss(s) = −λ2ω4

j wj(s), s ∈ (0, ℓj) j = 1, 2, · · · , n,
wj(ℓj) = wj

ss(ℓj) = 0, j = 1, 2, · · · , n,
w(a) = wj(0) = 0, R(w)(a) = sjw

j
s(0) = 0, j = 1, 2, · · · , n,

n∑
j=1

EIj

sj
wj

ss(0) = 0,

n∑
j=1

EIjw
j
sss(0) = 0.

(28)
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From (27) we see that if λ 6∈ σj , then (bj
1, b

j
2) = 0; if λ ∈ σj then a corresponding

eigenfunction is given by

wi(s) = bj
1 sinh

√
iλωj(ℓj − s) + bj

2 sin
√

iλωj(ℓj − s)].

So we have

wj
ss(0) = −2bj

2(−
√

iλωj)
2 sin

√
iλωjℓj ,

and

wj
sss(0) = −2bj

2(−
√

iλωj)
3 cos

√
iλωjℓj

inhere we have used the equality

bj
1 = −bj

2

sin
√

iλωjℓj

sinh
√

iλωjℓj

= −bj
2

cos
√

iλωjℓj

cosh
√

iλωjℓj

.

We define an index set J(λ) for λ ∈ iR by

J(λ) =
{
j ∈ {1, 2, · · · , n}

∣∣ λ ∈ σj

}
.

Obviously, if J(λ) = ∅, then ∆j(λ) 6= 0, j = 1, 2, · · · , n, which implies (bj
1, b

j
2) = 0

for any j, so λ ∈ ρ(A).
When J(λ) 6= ∅, we have

0 =

n∑

j=1

EIj

sj

wj
ss(0) =

∑

j∈J(λ)

−2
EIj

sj

(−
√

iλωj)
2bj

2 sin
√

iλωjℓj

= −2(−
√

iλ)2
∑

j∈J(λ)

EIjω
3
j bj

2

sin
√

iλωjℓj

sjωj

,

0 =
n∑

j=1

EIjw
j
sss(0) =

∑

j∈J(λ)

−2EIj(−
√

iλωj)
3bj

2 cos
√

iλωjℓj

= −2(−
√

iλ)3
∑

j∈J(λ)

EIjω
3
j bj

2 cos
√

iλωjℓj .

The above two equalities can be rewritten as

∑

j∈J(λ)

EIjω
3
j bj

2

(
sin

√
iλωjℓj

sjωj

cos
√

iλωjℓj

)
= 0. (29)

Denote by #(J(λ) the number of elements in J(λ). If #J(λ) = 1, then (29) implies

bj
2 = 0 for j ∈ J(λ), and hence for all j. This leads to bj

1 = 0 for all j. So equation
(28) has no nonzero solution. And λ is not an eigenvalue of A.

If #J(λ) = 2, which means that there exist indices j and r such that λ ∈ σj ∩σr ,
we consider the matrix(

1
sjωj

sin
√

iλωjℓj
1

srωr
sin

√
iλωrℓr

cos
√

iλωjℓj cos
√

iλωrℓr

)
.

Since

det

∣∣∣∣∣
1

sjωj
sin

√
iλωjℓj

1
srωr

sin
√

iλωrℓr

cos
√

iλωjℓj cos
√

iλωrℓr

∣∣∣∣∣

= cos
√

iλωjℓj cos
√

iλωrℓr

[
1

sjωj

tan νk − 1

srωr

tan νm

]
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where
√

iλωjℓj = (kπ + νk) and
√

iλωrℓr = (mπ + νm), so when sjωj tan νm 6=
srωr tan νk, the vectors

(
1

sjωj
sin

√
iλωjℓj

cos
√

iλωjℓj

)
,

(
1

srωr
sin

√
iλωrℓr

cos
√

iλωrℓr

)

are linearly independent. Therefore we have bj
2 = br

2 = 0 and hence bj
1 = bj

2 = 0 for
all j. This shows that λ is not an eigenvalue of A. When sjωj tan νm = srωr tan νk,

there exist nonzero numbers bj
2 and br

2 such that (29) holds. This will lead to

bj
1, b

r
1 6= 0. Hence (28) has a nonzero solution, and λ is an eigenvalue of A.

If #J(λ) ≥ 3, then (29) always has a nonzero solution. This is because (29) is
equivalent to the vector equation

∑

j∈J(λ)

˜̃
bj

~Vj = 0

where ~Vj , j ∈ J(λ) are two-dimensional vectors defined by

~Vj =

(
1

sjωj
sin

√
iλωjℓj

cos
√

iλωjℓj

)
.

So (28) has a nonzero solution, and λ is an eigenvalue of A.
Summarizing the above discussion and applying the stability theorem in [21], we

have achieved the following result.

Theorem 3.5. Let σj be the eigenvalue set of (27), then the following statements
hold

1). If σj ∩ σr = ∅ for any j, r = 1, 2, · · · , n, then there is no eigenvalue of A on
the imaginary axis. In this case, system (9) is asymptotically stable;

2). If there exist indices j and r such that σj∩σr 6= ∅, then there is no eigenvalue
of A on the imaginary axis provided sjωj tan νk 6= srωr tan νm. If sjωj tan νk =
srωr tan νm, then λ ∈ σj ∩ σr is an eigenvalue of A. In the first case, the system
(9) is asymptotically stable, in the second case, the system is not stable;

3). If there exist indices i, j, r such that σj ∩ σi ∩ σr 6= ∅, then λ ∈ σj ∩ σi ∩ σr

is an eigenvalue of A. In this case, the system is never asymptotically stable.

Remark 1. Theorem 3.5 is very important in the design of star-shaped networks of
Euler-Bernoulli beams. Usually we know the frequency, σj , of each beam γj . Note
that if λ ∈ σj ∩ σr 6= ∅, then there exist integers k and m such that

(kπ + νk)2

ω2
j ℓ2

j

=
(mπ + νm)2

ω2
rℓ2

r

,

which implies that

ωjℓj

ωrℓr

=
(mπ + νm)

(kπ + νk)
.

This equality is very precise. So we can change the length of beams such that
σj∩σr = ∅ for any r, j = 1, 2, · · · , n. Also we can adjust the rotation angle constraint
set, {s1, s2, · · · , sn}, of the star-shaped networks to strengthen the stability of the
system.
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4. Completeness and basis property of root vectors. In this section we shall
study the completeness and basis property of root vectors (eigenvectors and gener-
alized eigenvectors) of A. To discuss the completeness of root vectors, we consider
the nonhomogeneous node problem of differential equations on network.

Theorem 4.1. Let λ ∈ C such that ∆(λ) 6= 0, and let Mj(λ), Nj(λ) and Q(λ) be
defined as before. Then for ξ, η ∈ C, the equations





EIjw
j
ssss(s) = −ρjλ

2wj(s), s ∈ (0, ℓj)
wj(ℓj) = wj

ss(ℓj) = 0, j = 1, 2, · · · , n,
w(a) = wj(0), R(w)(a) = sjw

j
s(0), j = 1, 2, · · · , n,

−
n∑

j=1

EIj

sj
wj

ss(0) + (1 + βλ)R(w)(a) = η,

n∑
j=1

EIjw
j
sss(0) + (1 + αλ)w(a) = ξ

(30)

have a unique solution

wj(s) = bj
1 sinh

√
iλωj(ℓj − s) + bj

2 sin
√

iλωj(ℓj − s), j = 1, 2, · · · , n, (31)

where
(

bj
1

bj
2

)
= M−1

j (λ)

(
w(a)

R(w)(a)

)
,

(
w(a)

R(w)(a)

)
= D−1(λ)

(
ξ
η

)
(32)

D(λ) =
n∑

j=1

Nj(λ)M−1
j (λ) − Q(λ). (33)

In particular, we have an estimate for D(λ):

||
√

iλD−1(λ)|| ≤ M, |λ| > h, λ ∈ R (34)

where ||D(λ)|| denotes the operator norm in C
2.

Proof. Let λ ∈ C. We shall solve the following equations:





EIjw
j
ssss(s) = −ρjλ

2wj(s), s ∈ (0, ℓj)
wj(ℓj) = wj

ss(ℓj) = 0, j = 1, 2, · · · , n,
w(a) = wj(0), R(w)(a) = sjw

j
s(0), j = 1, 2, · · · , n,

−
n∑

j=1

EIj

sj
wj

ss(0) + (1 + βλ)R(w)(a) = η,

n∑
j=1

EIjw
j
sss(0) + (1 + αλ)w(a) = ξ.

(35)

Set ωj = 4

√
ρj

EIj
and

wj(s) = bj
1 sinh

√
iλωj(ℓj − s) + bj

2 sin
√

iλωj(ℓj − s), s ∈ (0, ℓj).

Then wj(s) satisfies the differential equation

wj
ssss(s) = (iλ)2ω4

j wj(s), s ∈ (0, ℓ), wj(ℓj) = wj
ss(ℓj) = 0.

From the connective conditions in (35) we get
(

1 0

0 −sj

√
iλωj

)(
sinh

√
iλωjℓj sin

√
iλωjℓj

cosh
√

iλωjℓj cos
√

iλωjℓj

)(
bj
1

bj
2

)
=

(
w(a)

R(w)(a)

)
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and
n∑

j=1

(
EIj(

√
iλωj)

3 0

0
EIj

sj
(
√

iλωj)
2

)(
cosh

√
iλωjℓj −cos

√
iλωjℓj

sinh
√

iλωjℓj −sin
√

iλωjℓj

)(
bj
1

bj
2

)

−
(

(1 + αλ) 0
0 (1 + βλ)

)(
w(a)

R(w)(a)

)
=

(
ξ
η

)
.

As before, we denote

Mj(λ) =

(
1 0

0 −sj

√
iλωj

)(
sinh

√
iλωjℓj sin

√
iλωjℓj

cosh
√

iλωjℓj cos
√

iλωjℓj

)
,

Nj(λ)=

(
EIj(

√
iλωj)

3 0

0
EIj

sj
(
√

iλωj)
2

)(
cosh

√
iλωjℓj − cos

√
iλωjℓj

sinh
√

iλωjℓj − sin
√

iλωjℓj

)
,

Q(λ) =

(
(1 + αλ) 0

0 (1 + βλ)

)
, ~Bj =

(
bj
1

bj
2

)
,

and

~W =

(
w(a)

R(w)(a)

)
, ~Vj =

(
ξ
η

)
.

Thus we have 




Mj(λ) ~Bj = ~W, j = 1, 2, · · · , n;

n∑
j=1

Nj(λ) ~Bj − Q(λ) ~W = ~V .
(36)

If λ /∈ σj , j = 1, 2, · · · , n, then ~Bj = M−1
j (λ) ~W and ~W satisfies the equation:

D(λ) ~W =

n∑

j=1

Nj(λ)M−1
j (λ) ~W − Q(λ) ~W = ~V .

Hence for λ ∈ C with ∆(λ) 6= 0 and λ 6∈ σj , j = 1, 2, · · · , n, we have

~W = D−1(λ)~V , ~Bj = M−1
j (λ)D−1(λ)~V .

Therefore, we get a unique solution to (30)

wj(s) = [sinh
√

iλωj(ℓj − s), sin
√

iλωj(ℓj − s)] ~Bj , j = 1, 2, · · · , n.

Note that

Nj(λ)M−1
j (λ) =

(
EIj(

√

iλωj)3 0

0
EIj
sj

(
√

iλωj)2

)(
cosh

√

iλωjℓj − cos
√

iλωjℓj

sinh
√

iλωjℓj − sin
√

iλωjℓj

)

× 1

∆j(λ)

(
cos

√

iλωjℓj − sin
√

iλωjℓj

− cosh
√

iλωjℓj sinh
√

iλωjℓj

)(
1 0

0 1

−sj

√

iλωj

)
,

(
cosh

√

iλωjℓj − cos
√

iλωjℓj

sinh
√

iλωjℓj − sin
√

iλωjℓj

)(
cos

√

iλωjℓj − sin
√

iλωjℓj

− cosh
√

iλωjℓj sinh
√

iλωjℓj

)

=
(

[cosh(1 + i)
√

iλωjℓj + cosh(1 − i)
√

iλωjℓj ] −
1−i
2

sinh(1+i)
√

iλωjℓj−
1+i
2

sinh(1−i)
√

iλωjℓj
1−i
2

sinh(1 +i)
√

iλωjℓj+
1+i
2

sinh(1−i)
√

iλωjℓj i[cosh(1 + i)
√

iλωjℓj − cosh(1 − i)
√

iλωjℓj ]

)

and

∆j(λ) =
1 + i

2
sinh(1 + i)

√
iλωjℓj +

1 − i

2
sinh(1 − i)

√
iλωjℓj .

For λ = −τ2, τ ∈ R+,
√

2

2
(1 + i)

√
iλ = τeiπ = −τ,

√
2

2
(1 − i)

√
iλ = τei π

2 = iτ,
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we have the asymptotic estimate
(

cosh
√

iλωjℓj − cos
√

iλωjℓj

sinh
√

iλωjℓj − sin
√

iλωjℓj

)(
cos

√
iλωjℓj − sin

√
iλωjℓj

− cosh
√

iλωjℓj sinh
√

iλωjℓj

)

=

(
[cosh

√
2τωjℓj + cos

√
2τωjℓj ]

1−i
2 sinh

√
2τωjℓj+

1−i
2 sin

√
2τωjℓj

−1−i
2 sinh

√
2τωjℓj− 1−i

2 sin
√

2τωjℓj i[cosh
√

2τωjℓj − cos
√

2τωjℓj ]

)

=

(
1
2e

√
2τωjℓj [1]0

1−i
4 e

√
2τωjℓj [1]0

− 1−i
4 e

√
2τωjℓj [1]0

i
2e

√
2τωjℓj [1]0

)

and

∆j(λ) = −1 + i

2
sinh

√
2τωjℓj +

1 + i

2
sin

√
2τωjℓj = −1 + i

4
e
√

2τωjℓj [1]0

where [1]0 = 1 + o(1). So we derive the asymptotic expression

Nj(λ)M−1
j (λ)

=

(
EIj(

√

iλωj)3 0

0
EIj
sj

(
√

iλωj)2

)(
−(1 − i)[1]0 i[1]0

−i[1]0 (1 + i)[1]0

)(
1 0

0 1

−sj

√

iλωj

)

=

(
p3(

√
iλ) p2(

√
iλ)

p̃2(
√

iλ) p1(
√

iλ)

)

where pk(x) denotes a polynomial of degree k. Since

Q(λ) =

(
(1 + αλ) 0

0 (1 + βλ)

)
=

(
q2(

√
iλ) 0

0 q̃2(
√

iλ)

)
,

we get the asymptotical formula

D(λ) =

(
p̂3(

√
iλ) p̂2(

√
iλ)

˜̂p2(
√

iλ) p̂2(
√

iλ)

)

and det(D(λ)) = P5(
√

iλ). Hence we have

|| det(D(λ))D−1(λ)|| ≤ 4 max
{
|p̂2(

√
iλ)|, |p̂3(

√
iλ)|, |p̂1(

√
iλ)|, |˜̂p2(

√
iλ)|

}
.

For λ = τ2, τ ∈ R+ we can get a similar estimate. The inequality (34) follows.

To obtain the completeness of root vectors of A, we need the following result (see
[29, Theorem 4, pp.970]).

Lemma 4.2. Let A be the generator of a C0-semigroup in a Hilbert space H.
Assume that A is discrete and for λ ∈ ρ(A∗), R(λ,A∗) is of the form

R(λ,A∗)x =
G(λ)x

F (λ)
, ∀x ∈ H

where G(λ)x is an H-valued entire function for each x ∈ H with order less than or
equal to ρ1 and F (λ) is a scalar entire function of order ρ2. Let ρ = max{ρ1, ρ2} <
∞ and m be an integer such that m − 1 ≤ ρ < m. If there are m + 1 rays Γj , j =
0, 1, · · · , m, in the complex plane

argΓ0 =
π

2
< arg Γ1 ≤ argΓ2 ≤ · · · ≤ arg Γm =

3π

2

with

argΓj+1 − argΓj ≤ π

m
, 0 ≤ j ≤ m − 1
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such that R(λ,A∗)x is uniformly bounded for every x ∈ H and any λ ∈ Γj , 0 ≤
j ≤ m, then Sp(A) = Sp(A∗) = H where Sp(A) is the subspace spanned by all root
vectors of A.

In what follows, we shall use Lemma 4.2 to prove the completeness of root vectors
of A.

Theorem 4.3. Let A be defined by (7–8). Then the system of root vectors of A is

complete in H, i.e, Sp(A) = H.

Proof. We prove the assertion of Theorem 4.3 by the following four steps:
Step 1. The adjoint operator A∗ has the form

D(A∗)=





(w, z) ∈
n∏

j=1

H4
E(0, ℓj)×H2

E(0, ℓj)

∣∣∣∣∣

−
n∑

j=1

EIj

sj
wj

ss(0)+R(w)(a)=βzx(a)

wj
ss(ℓj) = 0

n∑
j=1

EIjw
j
sss(0)+w(a) = αz(a)





,

(37)

A∗(w, z) = −
{(

zj,−EIj

ρj

wj
ssss

)}
∈ H, ∀(w, z) ∈ D(A∗). (38)

Since this is a direct verification, we omit the detail. Note that σ(A∗) = σ(A)
always holds, we have σ(A∗) = σ(A) due to Theorem 3.1.

Step 2. Let A0 denote the operator A under the restriction α = β = 0. Then
A0 is a skew adjoint operator, i.e., A∗

0 = −A0. This assertion follows directly from
(7–8) and (37–38).

Step 3. Let ∆(λ), λ ∈ C, be defined as before, then ∆(λ) is an entire function
of order ρ2 ≤ 1. For any F ∈ H, the H-valued functions ∆(λ)R(λ,A)F and
∆(λ)R(λ,A∗)F can be extended to entire functions of order at most 1, i.e., ρ1 ≤ 1.

Since R(λ,A∗)F , R(λ,A)F and ∆(λ) consist of functions of type

sinh
√

iλωj(ℓj − s), cosh
√

iλωj(ℓj − s), sin
√

iλωj(ℓj − s), cos
√

iλωj(ℓj − s)

multiplying
√

iλ,(
√

iλ)2 and (
√

iλ)3 as well as their integral, we get that ∆(λ),
∆(λ)R(λ,A)F and ∆(λ)R(λ,A∗)F are entire functions of finite exponential type.

Step 4. The root vectors of A are complete in H.
To prove this, we can assume without loss of generality that R− ⊂ ρ(A). For

λ ∈ R−, F ∈ H, set Y1 = R(λ,A∗)F , Y2 = R(λ,A∗
0)F and Φ = Y1 − Y2. Writing

Φ =

(
w
z

)
, Y2 =

(
u
v

)
,

we have that z = −λw and w satisfies the equations:




EIjw
j
ssss(s) = −ρjλ

2wj(s), s ∈ (0, ℓj)
wj(ℓj) = wj

ss(ℓj) = 0, j = 1, 2, · · · , n,
w(a) = wj(0), R(w)(a) = sjw

j
s(0), j = 1, 2, · · · , n,

−
n∑

j=1

EIj

sj
wj

ss(0) + (1 + βλ)R(w)(a) = R(v)(a),

n∑
j=1

EIjw
j
sss(0) + (1 + αλ)w(a) = v(a).

(39)
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Therefore,

||Φ||2

=

n∑

j=1

∫ ℓj

0

(EIj |wj
ss(s)|2 + ρj |λ|2|wj(s)|2)ds + w(a)w(a)+R(w)(a)R(w)(a)

=

n∑

j=1

∫ ℓj

0

(EIjw
j
ssss(s)+ρjλ

2wj(s)2)wj(s)ds+w(a)w(a)+R(w)(a)R(w)(a)

+

n∑

j=1

EIjw
j
sss(0)wj(0) −

n∑

j=1

EIjw
j
ss(0)wj

s(0)

= −αλ|w(a)|2 − βλ|R(w)(a)|2 + v(a)w(a) + R(v)(a)R(w)(a)

≤ max{α, β}
(
|λ||w(a)|2 + |λ||R(w)(a)|2

)
+ v(a)w(a) + R(v)(a)R(w)(a).

According to Theorem 4.1, we have
(

w(a)
R(w)(a)

)
= D−1(λ)

(
v(a)

R(v)(a)

)
,

which means

|w(a)|2 + |R(w)(a)|2 ≤ ||D−1(λ)||2[|v(a)|2 + |R(v)(a)|2].
Therefore, using the estimate (34) in Theorem 4.1, we get

||Φ||2 ≤ max{α, β}(|λ||D−1(λ)||2[|v(a)|2+|R(v)(a)|2])
+||D−1(λ)||[|v(a)|2+|R(v)(a)|2]

≤ max{α, β, 1}(||
√

iλD−1(λ)||2 + ||D−1(λ)||)[|v(a)|2 + |R(v)(a)|2]
≤ (2M)2 max{α, β, 1}[|v(a)|2 + |R(v)(a)|2].

Since the operator V : H → C
2 defined by

V (R(λ,A∗
0)F ) :=

(
v(a)

R(v)(a)

)

is a bounded linear operator on H, there is a positive constant M1 such that

[|v(a)|2 + |R(v)(a)|2] =

∥∥∥∥
(

v(a)
R(v)(a)

)∥∥∥∥
2

≤ M2
1 ||F ||2.

Therefore we derive

||Φ|| ≤ 2M1M
√

max{α, β, 1}||F ||.
Now for λ ∈ R−, we have

||R(λ,A∗)F || = ||Y1|| = ||Y2 + Φ|| ≤ ||Y2|| + ||Φ||
≤ ||R(λ, A∗

0)F || + 2M1M
√

max{α, β, 1}||F ||

≤
(

1

|λ| + 2M1M
√

max{α, β, 1}
)
||F ||, |λ| > h.

This means that ||R(λ,A∗)F || is bounded on the negative real axis. The complete-
ness of root vectors of A follows from Lemma 4.2.

To study the basis property of the root vectors of A, we need the following notion.
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Definition 4.4. Let H be a Hilbert space, and {Hj, j ∈ N} be a subspace sequence
of H. {Hj , j ∈ N} is said to be a subspace Riesz basis for H if for each x ∈ H,
there are unique xj ∈ Hj , j ∈ N, such that x =

∑∞
j=1 xj and there exist constants

C1 and C2 such that

C1

∞∑

j=1

||xj ||2 ≤ ||x||2 ≤ C2

∞∑

j=1

||xj ||2, ∀x ∈ H.

A sequence {ϕn, n ∈ N} ⊂ H is said to be a Riesz basis with parentheses if there
is an increasing subsequence in N, {nk, k ∈ N}, limk→∞ nk = ∞, such that the
subspace sequence

Hk = span{ϕj , nk ≤ j ≤ nk+1 − 1}, k ∈ N

forms a subspace Riesz basis for H.

For a linear operator A with discrete spectrum, it is very difficult to verify its
root subspaces forming a subspace Riesz basis for H. If an operator A generates a
C0 semigroup and its spectrum satisfies certain conditions, we can assert the Riesz
basis property of the root subspaces (see,[29],[30]). The following lemma that comes
from [31] is a more general result.

Lemma 4.5. Let A be the generator of a C0-semigroup on a separable Hilbert space
H. Suppose that the following conditions are satisfied:

1). The spectrum of A has the decomposition

σ(A) = σ1(A)
⋃

σ2(A);

2). There exists a real number α ∈ R such that

sup{ℜλ : λ ∈ σ1(A)} ≤ α ≤ inf{ℜλ : λ ∈ σ2(A)};
3). The set σ2(A) = {λk}k∈N consists of eigenvalues of A and is a finite union

of separable sets.
Then there exist two T (t)-invariant closed subspaces H1 and H2:

H1 = {f ∈ H : E(λ,A)f = 0, ∀λ ∈ σ2(A)},

H2 = span

{
m∑

k=1

E(λk,A)f : ∀f ∈ H, ∀m ∈ N

}
,

and H1

⋂H2 = {0} with the property that σ(A|H1
) = σ1(A) and σ(A|H2

) = σ2(A).
Moreover, there exists a sequence {Ωk, k ∈ N} such that {E(Ωk,A)H2}k∈N forms
a subspace Riesz basis for H2, where

⋃∞
k=1 Ωk = σ2(A) and each Ωk includes only

finitely many elements of σ2(A).

Applying Lemma 4.5 to our problem, we can achieve the following result.

Theorem 4.6. Let A be defined by (7–8). Then there exists a sequence of root
vectors of A that forms a Riesz basis with parentheses for H.

Proof. Setting σ2(A) = σ(A) and σ1(A) = {∞}, Theorem 3.1 and Theorem 3.4
ensure that all conditions in Lemma 4.5 are satisfied. By Lemma 4.5, there is a
subset sequence {Ωk, k ∈ N} of σ(A) such that {E(Ωk,A)H2}k∈N forms a sub-
space Riesz basis for H2. The completeness in Theorem 4.3 implies H = H2. So
{E(Ωk,A)H}k∈N is also a subspace Riesz basis for H. Note that there are only
finitely many elements in each Ωk. Therefore there is a sequence of root vectors of
A that forms a Riesz basis with parentheses according to {Ωk, k ∈ N} for H.
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