NETWORKS AND HETEROGENEOUS MEDIA d0i:10.3934/nhm.2008.3.723
©American Institute of Mathematical Sciences
Volume 3, Number 4, December 2008 pp. 723-747

STABILITY AND RIESZ BASIS PROPERTY OF A
STAR-SHAPED NETWORK OF EULER-BERNOULLI BEAMS
WITH JOINT DAMPING

GEN QI XU

Department of Mathematics, Tianjin University
Tianjin, 300072, China

S1u PANG YUNG

Department of Mathematics, The University of Hong Kong
Hong Kong, China

(Communicated by Benedetto Piccoli)

ABSTRACT. In this paper we study a star-shaped network of Euler-Bernoulli
beams, in which a new geometric condition at the common node is imposed.
For the network, we give a method to assert whether or not the system is
asymptotically stable. In addition, by spectral analysis of the system operator,
we prove that there exists a sequence of its root vectors that forms a Riesz
basis with parentheses for the Hilbert state space.

1. Introduction. In the past decades, many authors have studied the controllabil-
ity and observability as well as stabilization of networks of the elastic structures. For
example, Ali Mehmeti in [1] and Below in [5] [6] studied regularity of solutions and
eigenvalue problems of the wave equation on networks, respectively; Rolewicz [26]
and Schmidt [27] studied controllability of networks of vibrating strings; Schmidt,
Leugering and Lagnese (see [16] [17] [18]) studied multi-link elastic structure and de-
rived nonlinear and linearized equations (the detail see [17]); Leugering and Zuazua
in [19] studied the exact controllability of generic trees; Deckoninck and Nicaise
in [13] [12] studied control and eigenvalue problems of networks of Euler-Bernoulli
beams; Dager and Zuazua in [8] [9] [10] studied controllability and observability of
tree-shaped and star-shaped networks of strings (a complete result can be found in
[11]); Ammari and Jellouli in [2] [3] studied the stabilization problem of tree-shaped
networks of strings; Nicaise and Zair in [22] studied the identification problem for
heterogeneous trees; Nicaise and Valein in [23] studied stabilization of the wave
equation on 1-d networks with a delay term in the nodal feedbacks. Beside these
concrete models, Pokornyi and Borovskikh studied more general differential equa-
tions on graphs (see, [24],[7] and references therein). Xu et al in [32] studied an
abstract second order hyperbolic system and applied the result to controlled net-
works of strings.
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Although there are a lot of papers on networks, we observe that in these pa-
pers, the equations do not include the structure and topology of the network. As
suggested by Borovshikh and Lazarew in [7], we must take the structure and topol-
ogy of networks into account when we study it. Generally speaking, a network is
essentially differential equations on a graph, which consist of the following three
parts:

1) a geometric graph G (also called network): it has a vertex set V' and an edge
set I,

2) a group of partial differential equations defined on E: they describe the dy-
namical behavior of the network on E (deformation of the structure);

3) the junction region conditions: they describe the geometric and dynamic mul-
tiple node condition of the network which provide highly coupled information on
the network.

Note that, for a network, the joint conditions at interior vertices play an essential
role, in that the geometrical multiplicity of node conditions restricts deformation
and rotation of the structure at the junction and that the dynamical multiplicity
of node conditions represents the balance of forces and moments. Given a graph,
there are two tasks to do: i) to model the junction region between two or more
elements; ii) to solve the highly coupled partial differential equations including the
control theoretic properties (see, [20]).

For the elastic network, some nice results have been obtained under the rigid
joints at all interior nodes and some geometric conditions at the exterior vertices,
for instance, the observability and controllability for tree-shaped and star-shaped
networks of strings (see, [11]) and hybrid networks of strings and beams (see, [28]),
and stabilization of star-shaped tree networks of strings (see, [2] [3]). Note that the
rigid connections at the junction imply the displacement and rotation of beams are
continuous. In the present paper, we shall consider a star-shaped network of Euler-
Bernoulli beams, in which the displacement of the network at the interior node is
continuous but the rotation is not, however, there is a geometrical constraint set
for the rotation angles of the network. Obviously, this model is different from those
discussed in [14] [15] and [13].

To precisely describe the network under consideration, let us recall some no-
tations. Let G = (V,E) be a planar graph of star shape with vertices V =
{a,a1,a2,as,---a,} and edges E' = {v1,72, -+ ,¥n}, where edge 7, joins the vertices
a and aj, and a is a common node. Suppose that every edge v; is straight and has
length ¢;,5 = 1,2,--- ,n. We define the parameterized map =; : [0,¢;] — =, such
that 7;(0) = a, 7;(¢;) = a;. Then G is a metric graph induced by the parameterized
map.

Suppose that there is an elastic structure whose equilibrium position coincides
with G. The elastic structure is hinged at the exterior vertices a;,j7 =1,2--- ,n and
is pin-jointed with rotation angle constraint set {s1,s2,--- , s, }, where s; # 0,5 =
1,2,--- ,n are real numbers at the common vertex a on which there are viscous and
rotation viscous damping.

Let w(x,t) denote deflection of the elastic structure at position x € G at time t.
Let

w’ (s,t) = w(m;(s), )] s €(0,45), m;(s) €.

Vi’

The motion of the elastic structure on each edge 7y; is governed by the Euler-
Bernoulli beam equation
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piwi(s,t) + Eljwl (s,t) =0, s €(0,4) (1)
where p; is the mass density and FI; the flexural rigidity of the beam on ;. Since
all elements of the elastic structure are hinged at exterior vertices, so we have the

boundary conditions

w (0, t) = wly(4,1) =0, j=1,2,-,n. (2)
At the common vertex a, the elements are pint-jointed, which implies w(a,t) =
w?(0,t) = w'(0,t),4,7 = 1,2,--- ,n; the rotation angle constraint set {s1, 52, -+ , 8, }

means that s;w?(0,¢) coincide for all j. Therefore the beams satisfy the joint-
conditions at a:

w(a,t) = w(0,t) = w'(0,t), "
siw (0,1) = s;wl (0,8), Vi, j=1,2,---,n.

For convenience, we denote R(w)(a,t) = s;wl(0,t) = s;wi(0,1).
Due to the viscousness and rotation viscousness of the elastic structure at a,
wl(s,t),7 =1,2,--- ,n satisfy the dynamic conditions:
n .
- Z %wgs (07 t) + R(w)(a7 t) = _ﬁR(w)t(av t)v
o @)
n .
> ELw!, (0,t) +w(a,t) = —aw(a,t)

S88

Jj=1
where o and 3 are viscous damping coefficients. In addition, we assume that the
initial condition of the system is given by
w(z,0) = wo(x), z€G (5)
wi(x,0) =wi(z), =z €dq.
Thus a whole description of dynamic behavior of a star-shaped network of the
Euler-Bernoulli beams is

pjw{t(s,t) + Eijj (s,t) =0, s€(0,¢;),t>0

S888S8

wi(lj,t) =wl (¢;,t) =0,j=1,2,--- ,n,

w(a,t) = wl(0,t), R(w)(a,t)=s;wi(0,t),j=1,2, N

— 3 SPwl(0,1) + R(w)(a, 1) = —BR(w):(a, 1), (6)
j=1

888

3 ELwl  (0,t) +w(a, t) = —aw(a,t)
j=1

w(z,0) = wo(x), wi(z,0)=wi(zx), z=€qG.

We remark that the pinned connection of the structure at the junction leads to
rotation angles relaxed, whereas the rigid connection has the continuity of rotation
angles. In our model, the junction is neither rigid-joint nor pin-joint. Although
our model is simple, some surprising things occur for this multi-link structure.
We shall see that the stability of the system is improved due to the existence of
the geometrical constraints {s1, 2, -, $»} and viscous damping. In addition, the
approach we used in the present paper is also different from the ones used in [11] and
[13]. Herein we mainly apply the frequency method to giving a complete analysis
for the system. In particular, we obtain the expansion property of the solution of
the system according to its root vectors.

The rest is as follows. In section 2, we formulate (6) in a Hilbert state space
and then investigate the wellposedness of the system. We show that the operator A
determined by system (6) is dissipative and generates a Cj semigroup on the Hilbert
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state space. In particular, A~! is a compact operator. In section 3, we carry out a
complete spectral analysis of A. By employing the asymptotic analysis technique,
we prove that the spectrum of A distributes in a strip parallel to the imaginary
axis. Further, we discuss the condition that there is no eigenvalue on the imaginary
axis, from which we can assert asymptotic stability of the system. In section 4,
we discuss the completeness and basis property of root vectors (eigenvectors and
generalized eigenvectors) of A. We show that the system of root vectors of A is
complete in the Hilbert state space and that there is a sequence of root vectors that
forms a Riesz basis with parentheses for the Hilbert state space. Hence the solution
of the system can be expanded according to its root vectors.

2. Well-posed-ness of the network. In this section we shall discuss the well-
posedness of system (6). At first we formulate problem (6) in a Hilbert state space.

Let L?(G) and C(G) be the linear spaces defined as usual. Denote by H*(E), k >
1, the set

“B) = {f € L(G) | fly, = F1 € HY0,4))}
where H"(0,¢;) is the usual Sobolev space. We define the linear space H*(G), k € N,
by
HY(G) = C(G)NH(B) = {f € C(G) | fl; = F € HY0,45),5 = 1,2, ,n}.

We observe that, for a function defined on a graph G, there only exist derivatives
along edges at the interior vertex. A function w(z,t) is said to be a solution to (6),
if for each t > 0, w(z,t) € H*(G) and w(x,t) is continuously differentiable with
respect to ¢, and wy(z,t) exists and belongs to L?(G) such that the conditions in
equations (6) are verified.

Denote HE(0,¢;) = {f € H*(0,¢;) | f(¢;) = 0} and let the state space be

(f]agj) GH%‘(Ovéj) X L2[O’€j]v
n=taene 2@y R0 )
,7=12,...,n

equipped with the inner product

((F,) (w0 Z / [BL, ()t (2) + i ()07 (3]s

+f( u(a) + R(f)(a)R(u)(a).

Clearly, ‘H is a Hilbert space.
Define the operator A in H by

(wjvzj) € Hé(ovéj) X H?E(ngj)vwgs(gj) =0,

D(A) =< (w,2) e H ‘ = (7)
; Eljwl(0) + w(a) = —az(a)

At = { (- Ehud, ) f e (w) € DA (5)

J
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With the help of these notations we can rewrite (6) into an evolutionary equation
inH

W) _ AW (), t>0
{W() A ©)

where W (t) = (w(z,t), w,(z,t)) and W(0) = (wo(x), w1 (x)) € H.
Theorem 2.1. Let A be defined by (7-8). Then A is dissipative, 0 € p(A) and

A=Y is compact. Hence the spectrum of A consists of all isolated eigenvalues of
finite multiplicity.

Proof. 1t is easy to check that A is a closed and densely defined linear operator,
here we omit the detail.

For any (w, z) € D(A), we have

R(A(w,2), (1,2) Z / (EL 2, (0l (5) = Bty ()7 )] ds
+#{ <z><a>m}
= ZEI wlss (0 ZEI wl,(0)24(0)
+Rz(a)w(a) + RR(2)(a )W

n

= 2(0) | BLuwl,(0) + w(a)
j=1

n

SREIE [~ Twd, (0) + Raw)(a)

j=1 "
= —alz(a)]? - BIR(z)(a)[*.

So A is dissipative.
For any fixed (f, g) € H, we consider the resolvent equation A(w, z) = (f, g), i.e

z(x) = f(z), ze€qG
—EI; wssss( ) - pJgJ( ) s € (O’Kj)a
wj(éj)—wj (¢;)=0, j=1,2,---,n,

w(a) = w’ (O) R(w)(a) = s;wi(0), j=1,2,---,n, (10)

E ELiw!, (0) +w(a) = —az(a).

=1

In what follows, we shall find a solution to equation (10). Firstly, solving the
differential equation in (10) yields

2 3 S(s—1)3 o
w(s) = w(0) + 500) + Sl 0+ Fud 0 - [ ESE g war o

and
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From the boundary conditions w’(¢;) = wl (¢;) = 0, we get

j j G G 4 (=r)® pj j _
w (O) + gjws (O) + 7wss (O) + ﬁwsss (O) —Jo 3T E_Ijg (T)d?" - Oa
wi, (0) + £ywl, (0) — [i7 % ¢ (r)dr = 0.

Using the conditions w(a) = w?(0), R(w)(a) = s;wi(0), the above algebraic equa-
tions become

2

02 . 3. 0. Y p
Fwl, (0) + 5wl (0) = Ji7 Cigr- g7 (r)dr — [w(a) + £ R(w)(a)],

wl (0) + Ll (0) = [ 25— g (r)dr.

Solving these algebraic equations yield

Gop, — )3 .. )
W (0) = 3[ / M”—Jgf(r)dr—[w<a>+f—?R<w><a>1]

Iz 3 Kl 5;
30 (Y pill;—7)
—£—23—7' ; 7J(Ejlj )gj(r)dr (13)
and
, 3 4 ;=13 p; . 0
J () = —— J LI 03 (rYdr — 2R
w0 = 5 [ | g e~ futa) + () @)
3 6] /ej pilly —1) ;
+=—= =g (r)dr. (14)
Thus we have
n n 0 3 n
- pi [ —r) . 3EI;
Soeul 0 = =% [T BT g s u@ Y
j=1 j=1 "3 70 j=1 J
SO S [ g
R0 Y T+ S [ =g
j=1 7o g=1
and
— EI; j ~ opp [T =) — 3L,
Sl = YL g(r)dr — w(a) 3 T
= Sj 3:2181[5 0 2 ]:Zl SJ[?
"\3El b
“R@)(@) Y St = D5 | (=g’ (r)r
sty —~2s; /o
j=1 " Jj=1
Set
n 14 3 n
pi [V (—r) Pj
Gi(g) = — —/ g’ (r)dr + —= L; —r)g? (r)dr,
n 0. 3 n L.
Il —r) Pj ’
6= L2 [ g yir =3 L [ g ryar
’ ;57@ 0 2 — <55 Jo ’
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Substituting them into the last two conditions in (10) leads to

w(e) [1+ 3 50|+ Rw)(o) & 25 = ~af(a) - Gi(a).
w(e) 3 2 + Rw)(@) 1+ 32 EI] —BR(2)(a) + Ga(9).

where we have used the conditions:

z(a) = f(a) = f7(0), and R(z)(a) = R(f)(a) = 5;f1(0), j =1,2,--- ,n.

Solving the algebraic equations above we get

wle) = 5 ([ 1430 357 | (0f@)+610) =3 SR R0+ | . (19
j=1 J j=1 J ]
Rw)a=g | [ 4325 | (0RE@-G(0) -3 T @l @G| . (1)
j=1 "7 j=1 J ]
where )
DS IR S B DOt
= 4 = s5¢; = s;t3

Plugging (15) and (16) into (13) and (14), we can determine w? (0) and w?,,(0) of
the form

wl,(0) = K!(g) + afy BR(f)(a) + al0f(a) )
wl,,(0) = Kf( ) + a3 BR(f)(a) + agyaf(a)
where K?, k=1,2,7=1,2,--- n, denote the integral operators. The coefficients

a{ « depend only on the physical and geometrical parameters of beams and the graph,
and R(f)(a) = s;f7(0), f(a) = f7(0),j = 1,2, ,n. Moreover, we have
; , R
() =wla), wj©) =D Gy (18)
J
Inserting (17) and (18) into (11), we can determine uniquely the functions w?(s),j =
1,2,---,n
Now we define a function on G by
w(z) = wl(m; (@), x=m(s) €y, s € (0,4,
w(a), == a.
Clearly, w(z) € C(G) and w(:zc)|V = w’(s) € H*0,¢;). Also we have z = f €
J

H?(G). So (w,2) = (w, f) € D(A) and A(w,2) = (f,g). So the Closed Graph
Theorem asserts that A~! is bounded and hence 0 € p(A). From the expressions
n (11), (17) and (18) as well as f; € H?(0,/;), we deduce from the Sobolev’s
Embedding Theorem that A~ is compact on H. O

As a direct consequence of Theorem 2.1 and the Lumer-Phillips Theorem (e.g.
see, [25]), we have the following result.

Corollary 1. Let A be defined by (7)-(8). Then A generates a Cy semigroup of
contraction on H. Hence the system (9) is well-posed on H.



730 GEN QI XU AND SIU PANG YUNG

3. Eigenvalue problem. In this section we shall discuss the eigenvalue problem.
We shall investigate the distribution of eigenvalues of A and the existence of eigen-

values on the imaginary axis.

For A € C, we seek the necessary condition for A to be an eigenvalue of A. We
consider the eigenvalue problem A(w, z) = A(w, z) in H. From the representation
of A, we know that A(w, z) = A(w, z) implies that z = Aw and w(zx) satisfies the

differential equations

EI; wssss( ) = _pJ/\ij (5)5 ERS (0763)
wJ( ) ( ) j:172a_"'7na
w(a ) = wJ(O) R(U))(G) =s;wi(0), j=1,2,---,m,

- Z “Lwl,(0) + R(w)(a) = —BAR(w)(a),

E ELiw!, (0) +w(a) = —alw(a).

7j=1

Set w; = ¢ g—} The general solution of the differential equation

Wass(5) = (N wjw! (s), s €(0,4;), w!((;) =wl,((;) =0
is of the form
w (s) = bl sinh Vidw;(¢; — s) + b} sin Vidw;(€; — s), s € (0,4;).
Thus we have
{ w(a) = bl sinh Vidw;l; + b} sin Vidw,;, ‘
R(w)(a) = —s;Vidw,[b] cosh Vidw;€; + b} cos Vidw;l,],
wl (0) = (Vidw;)?[b] sinh Vidw,l; — b} sin Vidw; (]
and
wl,(0) = —(Vidw;)?[b] cosh Vidw;l; — b cos Vidw;l;].
Substituting (21) and (22) into the last two equalities of (19) leads to

n

Jj=1

— Z EIL (Vidw;)?[b] cosh Vidw;l; — bl cos Vidwilj] = —(1 + aX)w(a),
j=1

or equivalently

ng 0 E;—? (Vidw;)? sinh Vidwjl; —sinVilwil;

=5 05y ) (it )-

We rewrite (20) into the matrix form

1 0 sinh Vidw;€; sinVilw;t, v\ _ [ wla)
0 —s;Viw; coshVidwil; cosVilw,l; v, )]\ R(w)(a)
Set
M) = 1 0 sinh Vidwil;  sin Vilw,l;
TR0 —sVidw; coshVidwil; cosvViwl; )’

_ Z %(\/ﬁw)Q[b{ sinh \/awjfj - b% sin \/awjgj] = —(1+ N R(w)(a),
J

EI;(Vilw;)® 0 )( cosh Vidw;l; —cos Vitw;l; )( v
J
2

(20)
(21)

(22)
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N;(\) = EILi(Vidw;)? 0 coshVidwjl; —cosVilw;l;
s 0 Es—?(\/ﬁwﬁ sinh Vidw;l; —sinVilw;l; )’

and

Q) = ( 5 +oaA) (1 +06/\) > B; = ( Zi > W= ( Rwugs()a) )

Thus we have

M]()\) ]:fou j:1727 s T

a ) (23
3 NB; = QUIT

j=

The algebraic equation (23) has a nonzero solution (él,ég, e ,gn,W)T if, and
only if,

Mi(N) 0 0 - 0 -1
0 M(\) 0 - 0 -1
0 0 Ms(\) - 0 -1
A(N) = det . . ) . . =0
0 0 . o Ma() iy
Ni(A)  N2(A)  N3(A) - Nu(A) —Q(A)

where I denotes the identity matrix. Therefore we can prove the following result.

Theorem 3.1. Let A be defined as before, then the spectrum, o(A), of A distributes
symmetrically with respect to the real axis. In particular, we have

a(A) ={reC| AN =0}

Proof. From Theorem 2.1 we know that o(A) = 0,(A). Let A € C be an eigenvalue
of A and (w, z) € D(A) be a corresponding eigenvector. From (19) we see that A
is also an eigenvalue of A, a corresponding eigenvector is (w,z). Therefore, o(.A)
distributes symmetrically with respect to the real axis.

If A € o(A), the previous discussion has shown that A(\) = 0. We shall prove
below that A € C such that A(A\) = 0 also implies that A is an eigenvalue of A.

Suppose that A € C such that A(A) = 0. Then the algebraic equation (23) has a
nonzero solution (El, gg, e ,En, W)T We set

w’ (s) = [sinh Vidw;(¢; — s),sin Vidw;(¢; — 8)|Bj, j=1,2,---,n.
Clearly, w(s),j = 1,2, -+, n, satisfy the equation

Whoas(s) = —Nwwd(s), wi(y) =wl () =0, j=1,2,,m.
In addition, we have

w? (0) B sinh vVidw;(; sin Vidw;l; B
s;wl(0) )\ —s;Vidw; coshVidwil; —s;Vidw; cos Vidwil, ’
= M;(NB; =W
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and

Jj=1
_ i EI;( \/_wg) 0 coshVidwjl; —cosvVilwjl; B
B %(mwjﬁ sinhVidw;l; —sinvidwil; ) 7
Jj=1 J
= QW

So, w’(s),j = 1,2, ,n, satisfy (19). Therefore (w, \w) € D(A) is an eigenvector

corresponding to /\. The desired result follows.

O

3.1. Distribution of eigenvalues. From Theorem 3.1 we see that the eigenvalues
of A are entirely given by the zeros of the function A(M). In this subsection we
shall discuss the distribution of zeros of A(\). Here we shall employ the asymptotic
analysis technique to get an asymptotic estimate of A(\) in A with sufficiently large

modulus.
Let us consider the four functions in A:

sinh Vidw;jlj, coshVidwil;, sinVidwlj, cos Vilw;l;
For A € C with RA > 0,
Vid = /|\e! i(5+ %), arg\ =0 € (—z Z)

and
ViR = e B - e+, ge (5T
iVid = e 30 /|\eilitz [Ae\T1T2) 96( 2,2).
Hence RVi\ > 0 and R(—iv/i\) > 0. When R\ — 400, we have

sinh Vilw;l; = iem“’ﬂj[l]oa cosh Vidw;l; = 56\/5%-4[1]0,

le—i\/ﬁwﬂj 1]o

L o—ivVidw;t; [1]o, cos \/awjfj 9

sin Viw;l; = 5

where the notation [a]y denotes the asymptotic expression of the function f(z) =

a+ O(z71) in which a is a constant.
Therefore, we have the following asymptotic expressions:

Moy=+(t 0 eViNeili[l]y eV [1]
20 —sj\/awj emwjfj[1]0 e—i\/awfj[l]o ’
and

N =L EL;(Vidw;)? . 0 e\/ﬁwﬂj[l]o _e—imwﬂj[l]o
T 0 Vi) J\ eVirestift]y —iemiViXestif],

as RA — +o0,
For A € C with R\ <0,

ViX = |/\|e'(% %), arg\ =0 € (g,%)

and
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we have R(—V/4\) > 0 and §R( Vi) > 0. Hence, as R\ — —oo, it holds that

sinh Vidw;l; = — ﬂﬁ“’ﬂ i[1]o, coshVilwjt; = ge*m‘*’je]’[l]o,

sin \/awjﬁj = —%elmwjéj[l]o, COS \/awjéj = gezmwjéj[l]o.

Therefore, when RA — —o0o, we get the following asymptotical expression:

M()\) _ l 1 0 _e—\/ﬁwﬂj[l]o _ieimwjgj [1]0
J o 2 0 —sj\/awj e*\/awjfj[l]o eimwjgj[l]o )
and

N»(A):l EIL(Vidw;)? . 0 emVRwilil]y  —eVPwilif]
J 2 0 S—jﬂ(\/ﬁwj)Q —emViditi1]y  etVPwili[1),

At first we estimate A(\) in the right-half plane. When RA — +o0, we get

MO 0 0 - 0 )
. 0 MI(N) 0 0 -1
(1—1')\/5]2:31 wjl; 0 0 MY(N) - 0 I
M =—m—det| o )
0 0 ce T MO T
NP(A)  NP() N2 - N2(A) —Q(N)
where
_ (1] i[1] o
M) = < —Sj\/a(;j[l]o —Sjmffj[l]o > A
and
EL(Vidw;)*[lo  —EL(Vidw;)?[1]o o
Nf(k)z(%f(mwmmo —ﬁ—?(mwj)?mo)’ Jo b
Since
MO 0 0 0 )
0 MIN) 0 0 oI
0 0 M) 0 oI
det
0 0 MOON) I
NY(A) NN NZ(N) Ny =Q(\N)
= ﬁdet|M]Q|det QN —anz\f;?(A)(M;?r1
j=1 j=1

= ﬁ(—1 + )55 (Vidw;) X

<1+a)\ S+ f EI,-(\/ﬁij) (1o —@ f ﬂ_j(mwj)?)mo
det
i 8 2 ARy Pl ((Hm%(wn 5y J(ﬁwn) o
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where

<1+a)\ — (49 i Ezv(mwjﬁ) (1o
det
—i Z J (\/7%) [1]o
(1 —ia (VIR — (LIP3 Bl )[ o
= det =

J

n  EIjw?

—i(Vin? Yy —
j=1

ji=

1o

GEN QI XU AND SIU PANG YUNG

—G i 2 (vixw;)(11lo
((1+5A) (z—l)z J(fwj)> [1]o

EIUJ

—i(Vin)? i — 1),

(1 B = -1 5 >[1]0
J

= (Vi) [(=1+4)8)_ ELw? |[1,
j=1
so, we have
. A(N) (i -1+t &
%’\lin}roo A=)VR S wity 2" 7 H e ZEI “i 24
(ViX)n+se i=1
As R\ — —o0, we derive
M{(\) 0 0 0 ~I
P 0 M3 (N 0 0 —I
e(*lJrl)\/ajzleE] 0 0 Mg}()\) 0 o
A(N) = 53 det : :
0 0 M\ —I
Ni(A) N3(A) N3(\) Ny(A) =Q(N)
where
1y _ —[1]o —i[1]o .
M) (—Sjmwj[] —s;Vidwj[1]o ) J= bz
and
ELi(Vidw)) (o —ELi(Vidw;)*[1]o
NI\ = 7 R =1,2,---
;) < B (Vi) o iZE(Vidw)* 1]y ) T T 0T
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In this case, we have

M) 0 T
0 MM\ 0 . 0 —I
0 0 M 0 -1
det :
0 0 M) -1
N{(A) Ny(A) N3\ N,(A) —Q(N)

=[] det[M]|det |Q(N) = > NF(N)(M])!

j=1 j=1
n
= Ja-i)s;(Vidw)) x
j=1
<1+ax+<1+z‘> b Eij<mwj>3> (1o —i i 2 (Vi) ? 1o
det o m
—i £ ey o <<1+m>+<171> 3 fwz_wn) (1o

= (1-9)" Hs]wj

<1fia(\/a)2+(l+i)(\/_)3 fl Eﬂjw]?’) [1]o —i(Vin)? f E’g]f’? (1o
det I
—ivin? B S ((1 BN+ (1— V) z )[1]0
=
n n
= (Vi@ =) ] sjws |8 Bijwd | [1o.
j=1 j=1
This yeilds
A(N) (11—t & 3
lim = Gl sjw ElLjw; #0. (25
RA— —o00 e 1+1)sz“ 22n H ! JZ (25)
(Vix+
From (24) and (25) we get that there exist positive constants Cq,Cy and h such

that when |RA| > h,

sign(m)u—i)mél Wit

01 (\/ﬁ)n+5e

. (26)
sign(%)\)(l—i)\/ajgl w;l;

< [AM)| < G |(VX)*+e

The above inequality implies that the zeros of A(\) are in the region —h < R\ < h,
if they exist. In order to show that there is at least one zero of A(\), we observe
that A(A) is an entire function and it is of the form

- Z cjebjmpj(\/a) + Z dke*bkmqk(\/E)
=1 k=1

where pj,qx,j,k =1,2--- ,n are polynomials, ¢;,dy, 5,k = 1,2,3--- ,n are complex
constants and b;,j = 1,2,--- ,n are complex numbers with [b;| > |bj41]. (24) and
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(25) show that the high order terms of A()\) are given by

Clpl(\/_)‘) brVix
z _ 1 nt+l M (1—i)Vix fle-ej
=

ﬁH 5w ZEI Wi (ViX)"Pe [1+0((Vin™)]

and
diqi (Vir)e VA

1—Z"+

= lﬂﬁstJZEIw )"

The theory of entire function asserts that A(M) has infinitely many zeros in the
complex plane.

To obtain the detailed distribution of zeros of A(\), we need the following notions
(see, [4, Definition 11.1.17, 11.1.27, pp.52-61]).

A=)V Y wjt;
=TT 14+ O((ViN)TY).

Definition 3.2. A set ¢ C C is said to be separable if mfA A — | >0.
A€o AFEu

Let S C C be an infinite set. S is said to be a finite union of separable sets if
there exist a sequence, {O,,p € N}, of bounded open sets and an integer N such
that

sc o, inf  dist(0,,0,) >0, and sup#{0, NS} <N
=1 p,rEN,pF£r peN

where #0 denotes the number of elements in set O (taking the multiplicity into
account).

Definition 3.3. An entire function f of exponential type is said to be of sine type
if
(a). the zeros of f lie in a strip {z € C | |y| < h,z = z + iy} for some h > 0;
(b). there is a yo € R such that sup |f(x + iyo)| < oo holds.
rzeR

For the sine-type function, the following result holds (see, [4, Proposition 11.1.28,
pp-61]).

Proposition 1. (Levin Theorem) If f is a sine-type function, then the set of its
zeros is a finite union of separable sets.

Based on the previous discussion, we have the following result.

Theorem 3.4. Let A be defined as before, then the spectrum of A distributes in a
strip parallel to the imaginary axis, that is, there is a positive constant h such that

o(A)c{re | -h<RA<O}
In particular, o(A) is a finite union of separable sets.

Proof. From inequality (26) we see that there exists a constant h > 0 such that A
is not a zero of A(X) for |[RA| > h. This together with dissipative property of A
asserts that the spectrum of A distributes in a strip parallel to the imaginary axis.
In particular, (26) implies that A()) is a sine-type function in v/i\. The Levin’s
Theorem asserts that the set of zeros of A()) is a finite union of separable sets. [
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3.2. Existence of eigenvalues on the imaginary axis. In the previous subsec-
tion we have shown that the spectrum of A distributes in a strip parallel to the
imaginary axis. In this subsection, we are interested in whether or not there exist
eigenvalues of A on the imaginary axis. For this purpose, we begin with studying
the following eigenvalue problem:

w';:sss (S) = f)‘2w;¥wj(8)7 s € (Ovéj)

w’ () = wl,(¢;) =0, (27)

(0) =

Set
w? () = b) sinh Vidw; (£; — s) + b} sin Vidw;(£; — s),
then w7 (s) satisfies the equation and the boundary conditions w’ (£;) = wi (¢;) = 0.
So the boundary conditions w’(0) = w’(0) = 0 read
b{ sinh vidw;l; + b;i sin Vidwjl; =0,
b} cosh Vidw;jl; 4 b} cos Vidw;l; = 0.
Note that A = 0 is not an eigenvalue. Therefore, for A # 0, the equation (27) has a
nonzero solution if, and only if,
sinh Viw;f;  sin Vidw;l;
A;j(N) = det 7 7
i) ¢ < coshVidwil; cosVilw,l; )
= sinh Vilw;; cos Vidw;l; — cosh Vidw;l;sin Vidw;l; = 0.
Obviously, A;(X) = 0 is equivalent to the function equation
tan Vidw;{; = tanh Viw;/;
whose zeros are given by

. (kﬂ + Vk)2

)\::tZng, Vk eZ
77

where v, € (0, ) satisfy tan(km+vy) = tanh(km+v). One can prove that {vg }ren
is an increasing sequence and klim v, = §. Let us denote the set of zeros of Aj(\)

by o
k 2
ajz{xzii(”%”’“) ‘VkeZ}.
wjﬁj

Then o, is the set of all eigenvalues of (27).

Now we consider the existence of eigenvalues of A on the imaginary axis. If there
is a nonzero (w, z) € D(A) such that A(w, z) = A(w, z) for A € iR, then we have

R(A(w, 2), (w, 2))n = —alz(a)|* = B|R(2)(a)|* = 0,

from which we get that z(a) = R(z)(a) = 0, z(z) = Mw(x) and w(z) satisfies the
equations:
wgsss(s) = —)\2w;-le(s), ERS (Ovéj) .] = 15 27 N
wl(l;) =wi (6;)=0, j=1,2,---,n,
w(a) =wl(0) =0, R(w)(a)=s;wl(0)=0, j=1,2,---,n,
> Hug,(0) =0, =9

<
j=1 "’

> Eljwl,(0) =0.
j=1

)
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From (27) we see that if A\ ¢ o, then (b),b}) = 0; if A\ € 0 then a corresponding
eigenfunction is given by
w'(s) = bl sinh Vidw;(€; — s) + b} sin Vidw;(£; — s)].
So we have ‘
wl (0) = =263 (—Vidw;)? sin Vidw,;,
and _
wl, (0) = =26 (—Vidw;)? cos Vidw,¢,

inhere we have used the equality

p oo g SVl cosVidwly
! ®sinh Vidw;l, ? cosh Vidw;l
We define an index set J(A) for A € iR by
J()‘) = {.7 € {1727 ,TL} ’ )\EO’j}.

Obviously, if J(\) = 0, then A;(\) # 0,5 = 1,2,--- ,n, which implies (b7,53) = 0
for any j, so A € p(A).
When J(\) # 0, we have

“~EI;

0 = Z—?wgs(O): Z —2—( Vidw;)2b) sin Vidw;l;
=1 % jerny %I

B Z Al 3b%sin\/awj€j

= swiby T

SiWs
JEJ(N) I

0 = D ELwl (0)= Y —2EL(—Vilw;)*) cos Vilw,l,
J=1 JET(N)
= —2(—ViN)? Z EijJB»b%COS\/awjﬁj.
J€J(N)

The above two equalities can be rewritten as

Z 5 < sin \/'_wj y )
EI jW; bJ SjwWs =0. (29)
eI cos Vidw;il,
Denote by #(J(A) the number of elements in J(A). If #.J(A) = 1, then (29) implies
by =0 for j € J()), and hence for all j. This leads to b = 0 for all j. So equation
(28) has no nonzero solution. And A is not an eigenvalue of A.

If #J(X\) = 2, which means that there exist indices j and r such that A € o; N0y,
we consider the matrix

Py ﬁ sin Viw,. b,
cos Vidw;l, cos Vidw L, '

Since

# sin V iAWTKT

det | sivwi i r i
cos ViAw;l; cos Vidw, L,
1
= cos Vidw;l;cos Viw,l, [— tanv, — tan Vm:|
SjWyj SrWye
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where Vidw;l; = (km + 1) and Vidw,l, = (mm + vp,), so when sjw;tanv, #
Srwy tan v, the vectors

Sjle sin \/awj 45 ﬁ sin Vidw, £,
cos Vidw;l; ’ cos Vilw,L,

are linearly independent. Therefore we have b = b = 0 and hence b = b} = 0 for
all j. This shows that A is not an eigenvalue of A. When s;w; tan v,,, = s,w, tanvy,
there exist nonzero numbers b3 and b4 such that (29) holds. This will lead to

b], b # 0. Hence (28) has a nonzero solution, and \ is an eigenvalue of A.
If #J(\) > 3, then (29) always has a nonzero solution. This is because (29) is
equivalent to the vector equation

> bV, =0

JeJ(N)
where \7}, j € J(A) are two-dimensional vectors defined by

- < L sinvVidw;il; )

V} = SjWj

cos Vidw;l;

So (28) has a nonzero solution, and A is an eigenvalue of A.
Summarizing the above discussion and applying the stability theorem in [21], we
have achieved the following result.

Theorem 3.5. Let o; be the eigenvalue set of (27), then the following statements
hold

1). If o;No, =0 for any j,r =1,2,--- ,n, then there is no eigenvalue of A on
the imaginary azxis. In this case, system (9) is asymptotically stable;

2). If there exist indices j and r such that ojNo, # 0, then there is no eigenvalue
of A on the imaginary axis provided s;w;tanvy # sywytanvy,,. If sjw;tany, =
Spwy tanvy,, then X € o N o, is an eigenvalue of A. In the first case, the system
(9) is asymptotically stable, in the second case, the system is not stable;

3). If there exist indices i,j,r such that o; No; N o, # 0, then \ € o;No;No,
is an eigenvalue of A. In this case, the system is never asymptotically stable.

Remark 1. Theorem 3.5 is very important in the design of star-shaped networks of
Euler-Bernoulli beams. Usually we know the frequency, o;, of each beam «;. Note
that if A € 0, N o, # 0, then there exist integers k and m such that

(b +v)?  (mm+ vpy,)?

22 202
wils w2l?

which implies that

wil;y (M7 + vp,)

wol, (km+vg)

This equality is very precise. So we can change the length of beams such that
ojNo, =D foranyr,j =1,2,--- ,n. Also we can adjust the rotation angle constraint
set, {51, 82, -, 8n}, of the star-shaped networks to strengthen the stability of the
system.
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4. Completeness and basis property of root vectors. In this section we shall
study the completeness and basis property of root vectors (eigenvectors and gener-
alized eigenvectors) of 4. To discuss the completeness of root vectors, we consider
the nonhomogeneous node problem of differential equations on network.

Theorem 4.1. Let A € C such that A(X\) # 0, and let M;(N), N;(X) and Q(X) be
defined as before. Then for £,m € C, the equations

Eijgsss(S) = _pj)‘2wj(8)u s e (Oaég)
wj(ej):wgs(gj)zou j:1727"'7n7
w(a) :wj(()), R(w)(a) :sju)g(())7 j=1,2,---,n,
= % Twl(0) + (L+ A R(w)(a) = 1, (30)
=1 "
2 Bljwi,(0) + (14 adw(a) = ¢
j=1
have a unique solution
w (s) = bl sinh Vidw;(l; — s) + b sinVidw; (6, —s), j=1,2,---,n, (31)
where
b]i > -1 ( w(a) ) ( w(a) ) -1 < 3 >
< b 5 I Rw)a) R(w)(a) A (32)
D) =Y N;(NMH ) = Q). (33)
j=1
In particular, we have an estimate for D(X):
IViADT' W) < M, |\l >h, AeR (34)
where ||D(N\)|| denotes the operator norm in C2.
Proof. Let A € C. We shall solve the following equations:
Eljwl, . (s) = —pNwi(s), s€(0,4)
wj(ej):wgs(gj)zou j:1727"'7n7
w(a) :wj(()), R(w)(a) :sju)g(())7 j=1,2,---,n,
= 3 T, (0) + (1+ BN R(w)(a) =1, (35)
=1 "
> Bljwis,(0) + (14 aXw(a) = &
j=1
Set w; = {/ 4+ and
w (s) = bl sinh Vidw;(¢; — s) + b} sin Vidw;(6; — s), s € (0,4;).

Then w’ (s) satisfies the differential equation

w?

s €(0,0),

From the connective conditions in (35) we get

1 0
0 —sjmwj

)

sinh Vidw;l;  sinViw,¢;
coshVidwjl; cosVilw,l;

w’ (£;) = wl (¢;) = 0.

> < ll;i > ( Rl(uuga()a) )



STABILITY AND RIESZ BASIS PROPERTY OF A NETWORK

741
and
- EIj(mwj)s 0 cosh\/awjﬁj —cosmwjéj b{
= 0 S (Vido;)? J\ sinhVidwil;  —sinvidwil; )\ b

0 ) Catoit )= ()

As before, we denote

M()\) _ 1 0 sinh \/awjéj sin \/au)jéj
T 0 —sVidw; coshVidw;l; cosVidwl; )’

N(}\)— EIj(mwj)s 0 cosh \/ﬁu)jfj — COs \/awjfj
e 0 %(mwy sinh Vidw;l; —sinvVidwl; )’

Q) = ( ! +oaA) (1 +06)\) ) Bi= ( 22; )

and

Thus we have

"o o (36)
> N;i(N)B; = QW =V.

i Mjfl(/\)VT/ and W satisfies the equation:
DINW =Y N;(NM; MWW — QW =V.

Hence for A € C with A(X\) #0and A € 0,5 =1,2,--- ,n, we have

W =D"'NV, Bj=M"\ND\V.
Therefore, we get a unique solution to (30)

w’ (s) = [sinh Vidw;(€; — s),sin Vidw;(€; — 8)]Bj, j=1,2,--- n.

Note that
EIL; (Vidw,;)3 0 - _
. —1 o J J . cosh Vidw, ¢; —cos Vidw; L,
N; ()‘)Mj (A = ( 0 I’;I_J (Vixw;)? ( sinh Vidw;l;  —sin Vixw;{;
J
% 1 cos Vidw,l; —sin Vidw; £, 1 (1)
AJ ()\) — cosh Vidw; £, sinh Vidw, £; 0 55 Virw )
cosh Vidw; £; —cos Vidw; L, cos Vidw,l; —sin Vidw; £,
sinh Vidw; £; —sin Vidw; £, — cosh Vidw; £, sinh Vidw, £;
[(.:osh(l +1)Vidw;l; + cosh(l — ) Vidw;l;] 7% sinh(1+i)\/i)\mj2jf% sinh(1—i)Vilw;£l;
- L sinh(t +4) Vidw; £+5 sinh(1—i)Vidw; £ i[cosh(1 + 4)Vixw; £; — cosh(1 — i)Vixw, L]
and L L
+1 . N -1 . N
A;(N) = sinh(1 4 i)Vidw;jl; + —— sinh(1 — i) Vidw;{;.
2 2

For A = —72,7 € R,

?(1 +iVik=7e™ = -7, \/5(1 —i)WViX = e

2

s
2

=T,



742 GEN QI XU AND SIU PANG YUNG

we have the asymptotic estimate
coshVidwil; —cosvidwjl; cosVidwil; — —sinvVilw,l;
sinh mwjéj — sin \/ﬁ(.«)jgj — COSh mwjéj sinh mwjéj
[cosh \/§ijﬁj + cos \/§ijéj] 174‘ sinh \/ﬁrwjéj—k% sinﬁijéj
—% sinh ﬁijéj - % sin \/§ij6j t[cosh \/§ij£j — cos \/§ijéj]

%e\/ﬁrwﬂj 1o %e\/ﬁruﬂj 1o
_%e\/ﬁ'rwjéj[l]o %e\/irwjéj[l]o

and
A;(N) = - 1;_ sinh v27w;(; —i— s1n\/_TwJ = %eﬂmﬂf[l]o
where [1]o = 1 4 o(1). So we derive the asymptotic expression
N;(NM;H(N)
_ ( B <W“ﬂ 0 ) ( -9l il ) ( ! 0 )
J<mwj>2 —iltlo 1+ Do R > Ve

_ p3 (\/5) )

where py, (x) denotes a polynomlal of degree k. Since

QM) = ( ! +0M) (1 +06)\) ) B ( qQ(\O/m 2]2(35) )

we get the asymptotical formula

B B
D“)‘(mm) @(M)

and det(D(\)) = Ps(V/i)\). Hence we have
det(DO) D W] < 4max { Bo(VEVL 15 (ViN), B (VIR (VR }.
For A = 72,7 € R, we can get a similar estimate. The inequality (34) follows. [

To obtain the completeness of root vectors of A, we need the following result (see
[29, Theorem 4, pp.970]).

Lemma 4.2. Let A be the generator of a Cy-semigroup in a Hilbert space H.
Assume that A is discrete and for A € p(A*), R(\, A*) is of the form

G(N)x
FA)
where G(AN)z is an H-valued entire function for each v € H with order less than or
equal to p1 and F(X) is a scalar entire function of order py. Let p = max{pi, pa} <

oo and m be an integer such that m —1 < p < m. If there are m + 1 rays I'j,j =
0,1,---,m, in the complex plane

RN\ A"z = Ve e H

3
argly = g <argly <argl'y <---<argl,, = ;
with -

argl'jyg —argl;, < —, 0<j<m—1
m
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such that R(\, A*)x is uniformly bounded for every x € H and any X\ € T';,0 <

j < m, then Sp(A) = Sp(A*) = H where Sp(A) is the subspace spanned by all root
vectors of A.

In what follows, we shall use Lemma 4.2 to prove the completeness of root vectors

of A.

Theorem 4.3. Let A be defined by (7-8). Then the system of root vectors of A is
complete in 'H, i.e, Sp(A) =H.

Proof. We prove the assertion of Theorem 4.3 by the following four steps:
Step 1. The adjoint operator A* has the form

32 (0} R(w)(a) = B a)

D(A") =1 (w,z) € ﬁH%(Ovéj)XH%(O’gj) wngj) =0 :
= 3. Bl (0)+w(a) = az(a)
(37)
A (w, 2) = — { (zj, —E—?uﬂ)} EH, Y(w,z) € DA). (38)

Since this is a direct verification, we omit the detail. Note that o(A*) = o(A)
always holds, we have o(A*) = o(A) due to Theorem 3.1.

Step 2. Let Ay denote the operator A under the restriction & = § = 0. Then
Ao is a skew adjoint operator, i.e., Aj = —Ap. This assertion follows directly from
(7-8) and (37-38).

Step 3. Let A(X), A € C, be defined as before, then A()) is an entire function
of order po < 1. For any F € H, the H-valued functions A(A)R(N, A)F and
A(N)R(N, A*)F can be extended to entire functions of order at most 1, i.e., p; < 1.

Since R(A\, A*)F, R(A, A)F and A()) consist of functions of type

sinh Vidw;(£; —s), coshVidwj(l; —s), sinVilw;({; —s), cosVilwj(l; —s)

multiplying viX,(vViX)? and (Vi))? as well as their integral, we get that A()),
AN)R\, A)F and A(XN)R(A\, A*)F are entire functions of finite exponential type.
Step 4. The root vectors of A are complete in H.
To prove this, we can assume without loss of generality that R_ C p(A). For
AeR_, FeH,set Y =RNAF, Yo = R\ AL F and © =Y; — Y,. Writing

(1) #=(3)

we have that z = —Aw and w satisfies the equations:

Eljwl . (s) = —pi\2wi(s), s € (0,4;)
wi(l;) =wi (6,)=0, j=1,2,---,n,
w(a) = w(0), R(w)(a) = s;wi(0), j=1,2,--

= 3 Zwl, (0) + (1+ A R(w)(a) = R(v)(a), (59)

ﬁ: ELiw!, (0) + (1 + aXNw(a) = v(a).

7j=1
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Therefore,

2]

= Z/ (EL; [wl, ()1 + p;|A*[w? (5)]%)ds + w(a)w(a) + R(w)(a) R(w)(a)

—= Z /O (ELjwl o (s)+pid2w? (s)2)wd (s)ds+w(a)w(a)+ R(w)(a)R(w)(a)

+ Z EI; wsss J(O) - i Eijgs (O)M
= —04)\|w(a)|2 — BAIR(w)(a )|2 +v(a)w(a) + R(v)(a) R(w)(a)
max{a, 5} (|Allw(a)]? + [A||R(w)(a)|?) + v(a)w(a) + R(v)(a)R(w)(a).

According to Theorem 4.1, we have
w(a) 1 ( v(a )
=D (A ,
(i ) =27 ( it
which means

w(@)* + [R(w)(@)]* < [[DTN)|P[lv(@)* + [R(v)(a)]*].
Therefore, using the estimate (34) in Theorem 4.1, we get
12|/* max{a, BH(IAD™ V)| P[lv(@)* +|R(v)(a)?])
HIDT W[[[v(@)+[R(v)(a)]?]
max{a, 8, L} (|[ViADT N)II? + 1D (NI e(a)]® + [R(v)(a)[]
(2M)* max{a, 3, 1}{Jv(a)* + [R(v)(a)|*].
Since the operator V : H — C? defined by

V(R(\,AHF) = < Rz()zg()l()a) )

is a bounded linear operator on H, there is a positive constant M; such that

lo@P + 1R = (pitsisy ) 2

Therefore we derive
[|@] < 2M1 M+/max{a, B, 1}|F]|.

Now for A € R_, we have

IN

IN

VANVAN

< M||F||*.

IR AN = [N = [[Ya + @[] < [[Yal + [|]]
< R AQ)F| + 2My M y/max{a, B, 1}| ||

IN

1
<|)\| + 2M1 M y/max{a, 3, 1}> [|F|l, |\ > h.

This means that ||R()\, A*)F|| is bounded on the negative real axis. The complete-
ness of root vectors of A follows from Lemma 4.2. O

To study the basis property of the root vectors of A, we need the following notion.
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Definition 4.4. Let H be a Hilbert space, and {H,;, j € N} be a subspace sequence
of H. {H;,j € N} is said to be a subspace Riesz basis for H if for each x € H,
there are unique z; € H;, j € N, such that x = Z;’;l x; and there exist constants
Cq and Cy such that

o0 o0
OV Y sl < lall> < Co Y llayl?, Vo e M.

j=1 j=1
A sequence {¢,,n € N} C H is said to be a Riesz basis with parentheses if there
is an increasing subsequence in N, {ng, k € N}, limy_,o, ny = 00, such that the
subspace sequence

Hi =span{pj,nr <j <npy1—1}, keN
forms a subspace Riesz basis for H.
For a linear operator A with discrete spectrum, it is very difficult to verify its

root subspaces forming a subspace Riesz basis for H. If an operator A generates a
Cy semigroup and its spectrum satisfies certain conditions, we can assert the Riesz

basis property of the root subspaces (see,[29],[30]). The following lemma that comes
from [31] is a more general result.

Lemma 4.5. Let A be the generator of a Cy-semigroup on a separable Hilbert space
‘H. Suppose that the following conditions are satisfied:
1). The spectrum of A has the decomposition

a(A) = o1(A) | J o2(A);
2). There exists a real number o € R such that
sup{RA: A €01(A)} <a<inf{RA: N € or(A)};

3). The set o2(A) = { g }ren consists of eigenvalues of A and is a finite union
of separable sets.
Then there exist two T'(t)-invariant closed subspaces Hi and Ha:

Hi={feH:ENAf =0,V oa(A)},

Hy = span{ZE(/\k,A)f Vf eH,Vm € N},
k=1

and Hi (VHz = {0} with the property that o(Alw,) = 01(A) and o(Aly,) = 02(A).

Moreover, there exists a sequence {Qy, k € N} such that {E(Qg, AYHa}ren forms

a subspace Riesz basis for Hs, where Uzozl Qi = 02(A) and each Qy, includes only

finitely many elements of o3(A).

Applying Lemma 4.5 to our problem, we can achieve the following result.

Theorem 4.6. Let A be defined by (7-8). Then there exists a sequence of root
vectors of A that forms a Riesz basis with parentheses for H.

Proof. Setting o2(A) = o(A) and o1(A) = {oo}, Theorem 3.1 and Theorem 3.4
ensure that all conditions in Lemma 4.5 are satisfied. By Lemma 4.5, there is a
subset sequence {Q,k € N} of o(A) such that {E(Q, A)Ha}ren forms a sub-
space Riesz basis for Hy. The completeness in Theorem 4.3 implies H = Hsy. So
{E(Qk, A)H}ken is also a subspace Riesz basis for H. Note that there are only
finitely many elements in each €. Therefore there is a sequence of root vectors of
A that forms a Riesz basis with parentheses according to {Qx,k € N} for H. O
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