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Abstract. The paper considers the conjugate of periodic functions which are
piecewise harmonic. In particular, we consider the harmonic conjugate of the
solution of the problem of stationary heat conduction through a periodic net-
work of fibres and matrix of arbitrary shape. A numerical example is also
presented.

1. Introduction. Many physical problems like heat conduction, electrical fields,
stress distribution and fluid flow in composite materials and porous media involve
the determination of periodic piecewise harmonic functions (see e.g. the books [5],
[7] and [17]). In two dimensional problems much of the analysis of such problems
is often significantly simplified by using analytic functions whose real parts are
the sought harmonic functions. Examples of the use of such techniques related
to heat conduction or electrical fields can be found e.g. in [3], [12], [15] and
[16]. Similarly, in periodic elasticity problems the so-called Kolosov-Muskhelishvili
analytic potentials ϕ(z) and ψ(z) can be used to determine the local stress tensor
σ(z) from the equations

σxx(z) + σyy(z) = 4Reϕ
′

(z),

σyy(z) − σxx(z) = 2Re [zϕ
′′

(z) + ψ
′

(z)],

σxy(z) = Im [zϕ
′′

(z) + ψ
′

(z)].

For more information on the Kolosov-Muskhelishvili potentials, see e.g. [10], [19]
and [20] and the references given therein. In all these problems it is helpful and
sometime necessary to characterize the analytic functions involved in order to find
the solutions to our problems. For example, if the real part is periodic we like to
know whether the harmonic conjugate (i.e. the imaginary part) inherits this prop-
erty. Moreover, from elementary courses in engineering mathematics it is known
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that in many cases the harmonic conjungate in itself provides important physical
information.

The complex-variable technique, which is particularly popular in mathematical
physics, is mostly based on standard results from Complex Analysis which where
known before 1900, and much of the literature in this area never utilizes Hilbert
Space techniques or Distribution Theory. This often makes it necessary to put
strong smoothness requirements on the outer boundary and boundaries which sep-
arate the materials involved in the problems. In cases where the smoothness re-
quirements are relaxed, the discussion concerning existence of solutions or regularity
of solutions usually becomes more vague, or at least not related to the powerful tool
of regularity theory developed in the 20th century. On the other hand, and maybe
because of this, mathematicians working with composite materials and porous me-
dia from a more Functional Analysis point of view, seem to be unfamiliar with the
potential of the complex-variable technique. Hence, there are reasons to believe
that it could be fruitful to have a closer connection between these communities.

This paper is intended to be one step further in this direction. Therefore, in
order to make the presentation readable to a broader audience we have made an
effort to make the paper as self-contained as possible. Moreover, some of the results
are even proved in two different ways by presenting proofs based on elements from
duality theory and other proofs which are more based on standard complex analysis
(see in particular Theorem 4.1 and Theorem 5.3). In order to focus on the main
ideas we only consider the simplest possible case, namely the problem of stationary
heat conduction through a periodic network of fibres and matrix of arbitrary shape.
In particular, we present a link between the harmonic conjugate of the temperature,
which is piecewise harmonic, and the solution of the corresponding dual problem.
Since we aim to keep an interdisciplinary character of this paper we also present
a computational example based on the finite element method which illustrates our
theoretical results.

The paper is organized as follows. In Section 2 we prove a representation result for
the harmonic conjugate. Section 3 is devoted to a discussion of the model problem.
In Section 4 and 5 we prove some results on the harmonic conjugate of the solution
of the model problem. Finally, in Section 6 we consider a computational example.

2. Representation of the harmonic conjugate. Let Y denote a rectangle Y =
〈0, t1〉× 〈0, t2〉 , and let S2 denote an Y -periodic open subset of R2 surrounding one
single hole (a simply connected open set) in each period which is strictly contained
within the period.

Figure 1. The set S1 (the union of holes) and the set S2 (the
remaining connected set).
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The union of all holes is denoted S1 (see Figure 1).

Theorem 2.1. Let ϕ(z) = u(x, y) + iv(x, y) be an analytic function in S2 and
assume that u = Reϕ is Y -periodic. Then v is of the form v(x, y) = xr+ys+h(x, y),
where r and s are constants and h(x, y) is a Y -periodic function.

Proof. Due to the periodicity of ∂u/∂x and ∂u/∂y in the x-direction and y-direction,
respectively, we obtain from the Cauchy-Riemann equations

∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −

∂v

∂x
,

that

∂

∂x
v(x, y) −

∂

∂x
v(x+ t1, y) = 0, (1)

∂

∂y
v(x, y) −

∂

∂y
v(x+ t1, y) = 0, (2)

and

∂

∂x
v(x, y) −

∂

∂x
v(x, y + t2) = 0, (3)

∂

∂y
v(x, y) −

∂

∂y
v(x, y + t2) = 0. (4)

In other words, grad f = gradg = 0, where f(x, y) = v(x, y) − v(x + t1, y) and
g(x, y) = v(x, y + t2) − v(x, y). Hence, v(x + t1, y) − v(x, y) = t1r and v(x, y +
t2) − v(x, y) = t2s for some constants r and s. These two identities imply that
v(x, y) = xr + ys + h(x, y) for some Y -periodic function h(x, y). In order to see
this, just put h(x, y) = v(x, y)− xr− ys and observe that h(x, y)− h(x+ t1, y) = 0
and h(x, y)− h(x, y+ t2) = 0, i.e. h(x, y) = h(x+ t1, y) = h(x, y+ t2), which shows
that h(x, y) is Y -periodic. This completes the proof. �

It is natural to ask whether the conclusion of the above theorem could be im-
proved. With the theory of elliptic functions in mind (i.e. doubly periodic mero-
morphic functions) one might expect that an analytic function is periodic if its real
part is periodic, in other words that the constants r and s always vanish. However,
the following result shows that this is not the case.

Proposition 1. For any pair of constants r and s there exists a function ϕ(z) =
u(x, y) + iv(x, y) which is analytic in S2, u = Reϕ is Y -periodic and v is of the
form v(x, y) = xr + ys+ h(x, y) where h(x, y) is Y -periodic.

The above result will be proved in Section 4.

3. A periodic boundary value problem. Before we prove Proposition 1 we
will first discuss a periodic boundary value problem associated with a function
λ = λ(x, y) (the conductivity function) defined by

λ(x, y) =

{

λ1 on S1,
λ2 on S2,

for some fixed strictly positive constants λ1 and λ2. Let ∂S1 denote the boundary
separating the sets S1 and S2 and let n denote the outward unit-normal vector
of ∂S1. The following problem admits a weak solution u which is unique within a
positive constant in the space of Y -periodic members of the Sobolev spaceW 1,2

loc (R2)
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(which can be identified with the space Wper(Y ) = the completion of the space of
smooth Y -periodic functions in the Sobolev space W 1,2(Y )):

{

div (λ(x, y)grad (u(x, y) + xξ1 + yξ2)) = 0, (x, y) ∈ S1 ∪ S2,
∂ (u(x, y) + xξ1 + yξ2)

∂n
continuous across ∂S1.

Here, ∂/∂n = n · grad denotes the normal derivative and ξ = (ξ1, ξ2) ∈ R2. It is
not always possible to find solutions which satisfy the above continuity condition on
the normal derivative across ∂S1 in classical sense. In fact, unless ∂S1 is sufficiently
smooth (e.g. Lipschitz continuous) it is not even possible to define the normal
n to this boundary in a reasonable way. Thus we are lead to the study of the
corresponding weak formulation, which takes the following form: Find u ∈ Wper(Y )
such that

∫

Y

λ (gradu+ ξ) · gradϕ dxdy = 0, (5)

for all ϕ ∈ Wper(Y ), where
∫

Y
=
∫ t1

0

∫ t2

0
. The existence and uniqueness of this

problem (up to an arbitrary constant) can be proved by using the Lax-Milgram
Theorem (see e.g. [5]).

4. The direct approach .

Theorem 4.1. The solution u of the problem (5) is harmonic in the regions S1 and
S2 separately. The harmonic conjugate v of u is single-valued in both regions. In
particular, in S2 it is of the form v(x, y) = xr + ys + h(x, y) for some Y -periodic
function h(x, y) and some constants r and s given by

[

s
−r

]

=
1

λ2
(q − λ2I)ξ.

Here, q = {qij} is the matrix given by

qij =
1

|Y |

∫

Y

λ(x, y)

(

∂uj

∂zi

+ δij

)

dxdy, z1 = x, z2 = y, (6)

where u1 and u2 are the solutions of (5) in the special cases ξ1 = 1, ξ2 = 0 and
ξ1 = 0, ξ2 = 1, respectively. Moreover, q − λ2I is non-singular if λ1 6= λ2.

Proof. As indicated above, functions in Wper(Y ) can be extended Y -periodically

to W 1,2
loc (R2) (for the proof, see e.g. [5]). For any point (x0, y0) ∈ Si the restriction

of this extended function to Y ′ = Y + (x0, y0) is then a member of Wper(Y
′) and

this restriction is certainly a solution of (5) with Y replaced by Y ′. In particular
this implies that

∫

D

λi

((

∂u

∂x
+ ξ1

)

∂ϕ

∂x
+

(

∂u

∂y
+ ξ2

)

∂ϕ

∂y

)

dxdy = 0

for all ϕ ∈ W 1,2
0 (D) where D ⊂ Si is a disk with centre at (x0, y0). Noting that

by the generalized Gauss Theorem (valid for functions ϕ ∈ W 1,1(D) and Lipschitz
continuous boundary ∂D, see e.g. [2]),

∫

D

∂ϕ/∂x dx =

∫

∂D

ϕn1 ds = 0,

∫

D

∂ϕ/∂y dx =

∫

∂D

ϕn2 ds = 0, (7)
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(where again n = (n1, n2) denotes the outward unit-normal of the boundary ∂D of
D), we obtain that

∫

D

(

∂u

∂x

∂ϕ

∂x
+
∂u

∂y

∂ϕ

∂y

)

dxdy = 0

for all ϕ ∈ W 1,2
0 (D). Thus, u is a generalized solution of the Laplace equation in D,

and by standard regularity results (see e.g. [6] Theorem 8.8 which states a much
more general result), this gives that u is a solution of the Laplace equation in D in
the classical sense. Hence, since the center (x0, y0) of D was chosen arbitrarily in
Si, we conclude that u is harmonic in the regions S1 and S2 separately.

Now, consider two disjoint intervals I(x1, r1) and I(x2, r2) in 〈0, t1〉 of lengths
2r1 and 2r2 and with centers at some fixed points x1 and x2, respectively.Moreover,
let ϕ = ϕ(x) be a continuous periodic function of x defined in 〈0, t1〉 by

ϕ′(x) =







s1 x ∈ I(x1, r1),
s2 x ∈ I(x2, r2),
0 elsewhere,

where s1 and s2 are constants satisfying the condition

r1s1 + r2s2 = 0 (8)

(by this condition ϕ becomes 〈0, t1〉-periodic). Putting

b2(x) =

∫ t2

0

λ(x, y)

(

∂u

∂x
+ ξ1

)

dy

and inserting ϕ into (5) we obtain that

s1

∫

I(x1,r1)

b2(x)dx + s2

∫

I(x2,r2)

b2(x)dx = 0.

Using (8) we now find that

1

2r1

∫

I(x1,r1)

b2(x)dx =
1

2r2

∫

I(x2,r2)

b2(x)dx,

i.e.
1

|I(x1, r1)|

∫

I(x1,r1)

b2(x)dx =
1

|I(x2, r2)|

∫

I(x2,r2)

b2(x)dx.

Since the intervals were chosen arbitrarily, this shows that the average value of b2(x)
taken over any interval is equal to a constant k2. In particular this gives that

lim
r→0

1

|I(x0, r)|

∫

I(x0,r)

b2(x)dx = k2,

at all points x0 ∈ 〈0, t1〉. According to Lebesgue differentiation theorem, almost all
points in 〈0, t1〉 are Lebesgue-points, i.e. points x0 for which the above limit equals
b2(x0). Hence, b2(x) = k2 a.e., and since λ(0, y) = λ2 (because S1 ∩ Y - is strictly
contained in Y ) this implies that

∫

Y

λ(x, y)

(

∂u

∂x
+ ξ1

)

dxdy = t1b2(0) = t1

∫ t2

0

λ(0, y)

(

∂u(0, y)

∂x
+ ξ1

)

dy

= t1λ2

∫ t2

0

(

∂u(0, y)

∂x
+ ξ1

)

dy = t1λ2

∫ t2

0

∂u(0, y)

∂x
dy + t1t2λ2ξ1. (9)
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Similarly, we can prove that b1(y) = k1 for some constant k1, where

b1(y) =

∫ t1

0

λ(x, y)

(

∂u

∂y
+ ξ2

)

dx,

and that
∫

Y

λ(x, y)

(

∂u

∂y
+ ξ2

)

dxdy = t2λ2

∫ t1

0

∂u(x, 0)

∂y
dx+ t1t2λ2ξ2. (10)

Due to linearity it is easy to check that u = ξ1u1+ξ2u2 is the solution of the general
problem. Hence,

1

|Y |

∫

Y

λ (gradu+ ξ) dxdy = qξ. (11)

By formulating the equivalent minimum formulation of (5) it is easy to verify that

ξ · qξ = min
ϕ∈Wper(Y )

1

|Y |

∫

Y

λ |gradϕ+ ξ|2 dxdy. (12)

Moreover, since ϕ is Y -periodic,
∫

Y
gradϕ dx = 0. Accordingly,

|Y | |ξ| =

∣

∣

∣

∣

∫

Y

(gradϕ+ ξ) dxdy

∣

∣

∣

∣

≤

∫

Y

|(gradϕ+ ξ)| dxdy. (13)

In addition, according to the Schwarz inequality,
∫

Y

λ−
1
2λ

1
2 |(gradϕ+ ξ)| dxdy ≤

(
∫

Y

λ−1 dxdy

)
1
2
(
∫

Y

λ |(gradϕ+ ξ)|
2
dxdy

)
1
2

.

Hence, (12) and (13) gives

qh |ξ|
2
≤ ξ · qξ,

where

qh =

(

1

|Y |

∫

Y

λ−1 dxdy

)−1

.

In addition, putting ϕ = 0 into (12) we find that

ξ · qξ ≤ qa |ξ|
2
,

where

qa =
1

|Y |

∫

Y

λ dxdy.

Thus,

qh |ξ|
2
≤ ξ · qξ ≤ qa |ξ|

2
. (14)

By (9), (10) and (11) we find that

ξ1q11 + ξ2q12 = λ2b1 + λ2ξ1,

ξ1q21 + ξ2q22 = λ2b2 + λ2ξ2,

where

b1 =
1

t2

∫ t2

0

∂u(0, y)

∂x
dy, b2 =

1

t1

∫ t1

0

∂u(x, 0)

∂y
dx, (15)

i.e.

(q − λ2I)ξ = λ2b.

It is easy to see that min (λ1, λ2) < qh < qa < max (λ1, λ2) if λ1 6= λ2. Hence, the
inequalities

(qh − λ2) |ξ|
2
≤ ξ · (q − λ2I)ξ ≤ (qa − λ2) |ξ|

2
,
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(deduced from (14), shows that q − λ2I is either positive definite (if λ1 > λ2) or
negative definite (if λ1 < λ2). This implies the non-singularity of the matrix q−λ2I.

Let M0M denote an arbitrary smooth path which does not leave S2 and connects
some fixed point M0 = (x0, y0) with the variable point M = (x, y). Moreover, let
n be the normal towards the right of the path from M0 to M. Then the harmonic
conjugate v of u in S2 is given by

v(x, y) =

∫

M0M

du

dn
ds+ C, (16)

where ds is the arc element of the path of integration and C is some arbitrary
constant (this result can be found in most books on complex analysis, see e.g.
Muskhelishvili [14], Appendix 3). Another well known result is that v is single-
valued in any simply connected domain, hence in S1. In order to show that v is
single-valued in S2, it is obviously enough to verify that

v(x, y) − v(x0, y0) =

∫

M0M

du

dn
ds = 0

for every simple closed contour M0M in S2. Note that the integral
∫

M0M
can be

represented as a sum of integrals
∫

M0M

=
K
∑

k=1

∫

Υk

+
N
∑

k=1

∫

Γk

,

where Υk is a simple closed contour surrounding only points contained in S2 and
Γk is a simple closed contour contained in one period Y + (nt1,mt2) (where n and
m are integers) and surrounding the corresponding hole in that period. Due to the
fact that v is single-valued in any simply connected domain, we easily see that

∫

Υk

du

dn
ds = 0.

It remains to prove that the integral along Γk also vanishes. For simplicity, let
Γk ⊂ Y and let Γk(w) denote a simple closed contour surrounding Γk at a constant
distance w from Γk. We certainly assume that w is strictly less than the radius
of all circles with centers outside Γk defining the curvature on Γk, otherwise such
contours will be impossible to construct. Let S ⊂ S2 be the strip between Γk and
Γk(w0) for some fixed w0, and let ϕ ∈ Wper(Y ) be given by ϕ = 0 at all points
inside Γk, ϕ = w on Γk(w) for 0 ≤ w ≤ w0 and ϕ = w0 at all points in Y outside
Γk(w0). Obviously, gradϕ = 0 in Y \S. Moreover, gradϕ = n, the outward unit
normal vector on Γk(w), for 0 ≤ w ≤ w0. Inserting ϕ into (5) and making use of
(7) (with D replaced by S), we therefore obtain

∫

S

∂u

∂n
dxdy =

∫

S

(gradu · n) dxdy =

∫

S

(gradu · gradϕ) dxdy = 0. (17)

The curve Γk −Γk(w) may be written as a sum of two closed contours surrounding
only points contained in S2. Similarly as above we therefore find that (integrating
in counter-clockwise direction)

∫

Γk

du

dn
ds−

∫

Γk(w)

du

dn
ds =

∫

Γk−Γk(w)

du

dn
ds = 0,

i.e.
∫

Γk

du

dn
ds =

∫

Γk(w)

du

dn
ds
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for all 0 ≤ w ≤ w0. Thus,

∫

S

∂u

∂n
dxdy =

∫ w0

0

(

∫

Γk(w)

du

dn
ds

)

dw = w0

∫

Γk

du

dn
ds,

Hence, we obtain from (17) that

∫

Γk

du

dn
ds = w−1

0

∫

S

∂u

∂n
dxdy = 0.

This proves that v is single-valued.
Since S1∩Y is strictly contained in Y, the vertical line between (0, 0) and (0, t2)

and the horizontal line between (0, 0) and (t1, 0) lays in S2. Hence, by (16) and (15)

v(0, t2) − v(0, 0) =

∫ (0,t2)

(0,0)

du

dn
ds =

∫ t2

0

∂u(0, y)

∂x
dy = t2b1,

v(t1, 0) − v(0, 0) =

∫ (t1,0)

(0,0)

du

dn
ds = −

∫ t1

0

∂u(x, 0)

∂y
dx = −t1b2.

Moreover, Theorem 2.1 gives that v is of the form v(x, y) = xr + ys + h(x, y), for
some constants r and s, where h(x, y) is a Y -periodic function. Accordingly,

v(0, t2) − v(0, 0) = t2s,

v(t1, 0) − v(0, 0) = t1r.

Thus, choosing, r = −b2 and s = b1, we obtain the desired result. The proof is
complete. �

Remark 1. The upper and lower estimates of (14) in above proof is known as the
Reuss-Voigt-Wiener bounds, which short proof is included here for completion. It
should be noted that the proof of the lower bound is more direct and completely
different from that normally used in the literature, which makes use of the dual
problem (see e.g. [7]).

Remark 2. The problem (5) is usually referred to as the cell problem in the ho-
mogenization theory, a theory which was initiated by De Giorgi and Spagnolo in
the late 60’s and further developed in the 70’s by Murat, Tartar, Bakhvalov, Ben-
soussan, Lions and Papanicolaou (concerning this, see the books [7] and [5], and the
references given there). In the late 80’s a new successful approach to this theory
was initiated by Nguetseng and further developed by Allaire and others under the
name of two-scale convergence (concerning this we refer to the article [11], which
contains more than 80 references to this theory).

Proof of Proposition 1. The proof follows directly from Theorem 4.1 by choosing
λ1 6= λ2, then letting

[

ξ1
ξ2

]

= λ2(q − λ2I)
−1

[

s
−r

]

,

and considering the harmonic conjugate of the solution of the problem (5) in region
S2. �
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5. The dual approach. We first observe that the space

V 2
pot(Y ) = {gradu : u ∈Wper(Y )}

is closed in L2(Y ). Indeed, if {graduh} is a Cauchy sequence in L2(Y ), so is
{grad vh}, where vh = uh − 〈uh〉 , (〈uh〉 denotes as usual the average value of uh).
By the Poincare inequality,

∫

Y

|vh − vk|
2
dm ≤ C

(

(
∫

Y

(vh − vk) dm

)2

+

∫

Y

|grad (vh − vk)|
2
dm

)

,

in which
∫

Y
(vh − vk) dm = 0, we obtain that {vh} is a Cauchy sequence in L2(Y ).

Here, m denotes the Lebesgue measure in Rn (temporarily we do not restrict our
discussion to the case n = 2). Combined with the fact that {graduh} is a Cauchy
sequence in L2(Y ), we obtain that {vh} is a Cauchy sequence in Wper(Y ). Hence, by
the completeness of Wper(Y ) we get that vh → v in Wper(Y ) for some v ∈ Wper(Y ),
which in particular implies that graduh = gradvh → gradv.

Let L2
sol(Y ) denote the orthogonal complement of V 2

pot(Y ) in L2(Y ), i.e.

L2
sol(Y ) =

{

p ∈ L2(Y ) :

∫

Y

p · gradϕ dm = 0 ∀ϕ ∈ C∞
per(Y )

}

. (18)

The reason why we can replace Wper(Y ) by C∞
per(Y ) in the definition of L2

sol(Y ) is
that C∞

per(Y ) is dense in Wper(Y ) (by definition) and the fact that the functional

F (ϕ) =
∫

Y
p(z) · gradϕ(z) dz is continuous in Wper(Y ), which is easily seen by the

Schwarz inequality.

Lemma 5.1. The Y -periodic extension of L2
sol(Y ) coincides with the space of

solenoidal Y -periodic vector-fields in L2
loc(R

n), i.e. the space

L2
Y -per,sol(R

n) ≡

{

p ∈ L2
Y -per(R

n) :

∫

Rn

p · gradϕ dm = 0 ∀ϕ ∈ C∞
0 (Rn)

}

, (19)

where L2
Y -per(R

n) denotes the space of all Y -periodic extension to Rn of functions

in L2(Y ).

The proof of Lemma 5.1 is briefly sketched in [7, p. 6], but we also present the
proof here, which we believe is of independent interest since it is more detailed.

Proof. Let {Ok}
∞
k=1 be a collection of open disks covering Rn with centers at

equidistant points zk with diameter less than the diameter of Y. Then, due to
the theorem of infinitely differentiable partitions of unity (see e.g. [1, Theorem
3.14]), we can construct functions ψk ∈ C∞

0 (Rn), with support in Ok, such that
ψ(z) :=

∑∞
k=1 ψk(z) = 1 for all z ∈ Rn. For any ϕ ∈ C∞

0 (Rn) we can find an

integer N < ∞ such that
∑N

k=1 ψk(z) = 1 for all z ∈ suppϕ. Let ϕψk be the
Y -periodic extension to Rn of ϕψk|Ok

(note that such an extension exists thanks

to the fact that suppψk ⊂ Ok ⊂ Y + zk). Due to periodicity, we can translate the
domain of integration in the following way:
∫

Y +zk

p · gradϕψk dm =

∫

Y +zk

p · gradϕψk dm =

∫

Y

p · gradϕψk dm = 0, (20)

for all p ∈ L2
Y -per(R

n). Assume that (18) holds. Then,

∫

Rn

p · gradϕ dm =

∫

Rn

p · grad

(

N
∑

k=1

ψkϕ

)

dm =

N
∑

k=1

∫

Y +zk

p · gradϕψk dm = 0.
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Hence, (18) implies (19). Now , let ϕ ∈ C∞
per(Y ), let ϕ denote its Y -periodic

extension to Rn and assume (19) holds. For simplicity we let Y be centered at 0.
Let N be a positive integer and let ψN ∈ C∞

0 ((N + 1)Y ), 0 ≤ ψN ≤ 1 such that
ψN = 1 on NY and |gradψN | < C <∞ for some constant C which is independent
of N (the latter is possible since the smallest distance between the sets (N + 1)Y
and NY is independent of N) . Since ψNϕ ∈ C∞

0 (Rn) (19) gives that

0 =

∫

Rn

p · gradψNϕ dm =

∫

NY

p · gradϕ dm+

∫

((N+1)Y )\(NY )

p · grad (ψNϕ) dm

(21)
Clearly, |grad (ψNϕ)| < C′ < ∞ for some constant C′, which is independent of N,
so by the periodicity of p we obtain the estimate

∣

∣

∣

∣

∣

∫

((N+1)Y )\(NY )

p · grad (ψNϕ) dm

∣

∣

∣

∣

∣

≤ C′

∫

((N+1)Y )\(NY )

|p| dm =

C′ ((N + 1)n −Nn)

∫

Y

|p| dm. (22)

Moreover, using the periodicity of p · gradϕ we obtain that
∫

NY

p · gradϕ dm = Nn

∫

Y

p · gradϕ dm. (23)

Hence, by (21), (22), (23) and the fact that

(N + 1)n −Nn =

n
∑

k=0

(

n

k

)

Nn−k −Nn =

n
∑

k=1

(

n

k

)

Nn−k,

we obtain the estimate
∣

∣

∣

∣

∫

Y

p · gradϕ dm

∣

∣

∣

∣

≤ C′

(

n
∑

k=1

(

n

k

)(

1

Nk

)

)

∫

Y

|p| dm,

which goes to 0 as N → ∞. Thus,
∫

Y
p · gradϕ dm = 0. This completes the

proof. �

If ϕ ∈ W 1,2(R2) it is usual to define curlϕ as the vector-function curlϕ =
(−∂ϕ/∂y, ∂ϕ/∂x).

Lemma 5.2. It holds that

L2
sol(Y ) = R2 ⊕ curl (W 1

per(Y ))

where curl (W 1
per(Y )) =

{

curlϕ : ϕ ∈W 1
per(Y )

}

.

Proof. By Lemma 5.1 any function in L2
sol(Y ) can be extended to some p ∈

L2
Y -per,sol(R

2). Clearly

p|Ω ∈ H ≡

{

q ∈ L2(Y ) :

∫

Ω

q · gradϕ dm = 0 ∀ϕ ∈ C∞
0 (Ω)

}

for any bounded and simply connected domain Ω. Since

H =
{

curlϕ : ϕ ∈W 1,2(Ω)
}

(24)

(see e.g. [18, p. 467]), p = curlϕ for some ϕ ∈ W 1,2(Ω). Hence, ϕ(x, y) =
xr + ys+ h(x, y), where r and s are constants and h ∈ Wper(Y ). The proof of this
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fact is identical with that of Theorem 2.1 starting from eq. (1). Hence, p is of the
form

p = (−s, r) + curlh. (25)

Moreover, (24) gives that any p of the form (25) is a member of H. Thus, L2
sol(Y ) =

R2 ⊕ curl (Wper(Y )), and the Lemma follows. �

Remark 3. Since L2
sol(Y ) is the orthogonal complement of V 2

pot(Y ) in L2(Y ),

Lemma 5.2 implies the following orthogonal decomposition of L2(Y )

L2(Y ) = curl (Wper(Y )) ⊕ V 2
pot(Y ) ⊕R2. (26)

By considering the dual problem to (5) we are able to present an independent
proof of the fact that the harmonic conjugate is of the form v(x, y) = xr+ys+h(x, y)
in a more general situation.Moreover, we are going to show that h(x, y) can be found
by solving a weak problem of the same type as (5).

Theorem 5.3. Let λ be of the form λ =
∑

λiχSi
, where {Si} is a disjoint open

periodic cover of R2, and let u be the solution of (5). Then u is harmonic in each
of the regions Si separately. Moreover, the harmonic conjugate v of u in the region
Si is single-valued and given by v = −λ−1

i ψ + (xr + ys), where the constants r and
s are given by

[

s
−r

]

=
1

λi

(q − λiI)ξ,

and ψ is the solution of the problem
∫

Y

1

λ
(gradψ + σqξ) · gradϕ dxdy = 0, (27)

where

σ =

[

0 1
−1 0

]

(i.e. a rotation of angle π/2). The matrix q is given by (6).

Proof. The fact that u is harmonic in each of the regions Si separately is contained
in the proof of Theorem 4.1. From the weak formulation (5) we see that

p = λ (gradu+ ξ) ∈ L2
sol(Y ).

By Lemma 5.2, p = curlψ + η for some function ψ ∈ W 1
per(Y ) and some constant

vector η ∈ R2. Thus

1

λ
(curlψ + η) =

1

λ
p = gradu+ ξ ∈ V 2

pot(Y ) ⊕R2. (28)

Therefore, by Remark 3
∫

Y

1

λ
(curlψ + η) · curlϕ dxdy = 0,

which easily can be rewritten in the form
∫

Y

1

λ
(gradψ + ση) · gradϕ dxdy = 0.

Moreover, since

〈curlψ + η〉 = 〈p〉 =
1

|Y |

∫

Y

λ (gradu+ ξ) dxdy = qξ
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by (11) and 〈curlψ〉 = 0 by periodicity, we find that η = qξ. Thus, by (28) we
obtain that

curl
1

λi

ψ +
1

λi

qξ − ξ = gradu

on the set Si. Letting r and s be given by
[

−s
r

]

=
1

λi

(q − λiI)ξ,

we find that

− curl v = gradu, (29)

where

v = −
1

λi

ψ + (xr + ys),

which shows that v is the harmonic conjugate of u since (29) is nothing but the
Cauchy-Riemann equations. �

6. A numerical example. In many physical problems the quantity U = u+xξ1+
yξ2 turns out to be more interesting than the solution u of (5). As a matter of fact,
in a periodic composite material with average heat flux equal to (ξ1, ξ2), it turns
the temperature actually equals U . In this case the function u is just an auxiliary
function.

Figure 2. Plot of the computed temperature U in Y.

Since the harmonic conjugate of xξ1 + yξ2 is yξ1 − xξ2 we obtain from Theorem
5.3 that in a subdomain Si the harmonic conjugate V of U is given by V = −λ−1

i ψ+
(x (r − ξ2) + y (s+ ξ1)), where

[

s+ ξ1
− (r − ξ2)

]

=
1

λi

qξ.

In other words,

V = −λ−1
i ψ + (xr′ + ys′), (30)
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where
[

s′

−r′

]

=
1

λi

qξ.

For the interpretation of the harmonic conjugate V for various physical problems,
see e.g. [13].

As an example we consider a stationary conduction problem consisting of two
subdomains S1, S2, where ξ1 = 1, ξ2 = 0, λ1 = 0.5, λ2 = 1, Y = (0, 1)2 and
Y ∩S1 is a disk of radius = 0.2 centered at (0.5, 0.5). This corresponds to a doubly
periodic composite material of two materials consisting of fibres with conductivity
λ1 embedded in a connected material with conductivity λ2. The information that
ξ1 = 1 and ξ2 = 0 merely tells that the average temperature gradient 〈gradU〉
taken over each period is equal to (1, 0)T . Due to symmetry it is possible to show
that the off-diagonal elements of the effective conductivity matrix q vanish and that
q11 = q22. We first find the temperature U approximately by solving (5) numerically
(see Figure 2). This is done by using the FE-program Ansys. The elementtype which
is used is a 8-node thermal element called plane77. The number of nodes is 15653
and the number of elements is 5072. After computing the FE-solution UFE ≈ U we
find that q11 = q22 ≈ 0.9196 by calculating the following integral numerically

1

|Y |

∫

Y

λ(x, y)
∂UFE

∂x
dxdy ≈ q11.

Next, we find ψ by solving (27) numerically (see the plot of ψ in Figure 3), and
finally we find the harmonic conjugate V directly from (30).

Figure 3. Plot of the computed function ψ of the dual problem in Y.

For details concerning the method of computing effective moduli in general, in-
cluding more information on numerical and engineering aspects, see e.g. [4], [8], [9],
[17] and [10].

Acknowledgement. We are grateful to the anonymous reviewer for helping us
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