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Abstract. We study the evolution of diblock copolymer melts in which one
component has small volume fraction. In this case one observes phase mor-
phologies which consist of small spheres of the minority component embedded
in the other component. Based on the Ohta-Kawasaki free energy one can set
up an evolution equation which has the interpretation of a gradient flow. We
restrict this gradient flow to morphologies in which the minority phase consists

of spheres and derive monopole approximations for different parameter regimes.
We use these approximations for simulations of large particle systems.

1. Introduction.

1.1. Diblock copolymers. A diblock copolymer molecule is a linear sub-chain
of NA A-monomers grafted covalently to another sub-chain of NB B-monomers.
Because of the repulsion between the unlike monomers, the different type sub-
chains tend to segregate, but as they are chemically bonded in chain molecules,
segregation of sub-chains cannot lead to a macroscopic phase separation. Only a
local micro-phase separation occurs: micro-domains rich in A and B emerge. These
micro-domains form morphology patterns on a larger scale. In this paper we are
mainly interested in the case that the fraction of, say, A-monomers in a chain is
small. Then we observe patterns which consist of many small separated spheres
rich in A-monomers.

1.2. The Ohta-Kawasaki free energy. The Ohta-Kawasaki [11] free energy of
an incompressible diblock copolymer melt is a functional of the A-monomer density
field. Let u(x) be the relative A-monomer number density at a point x in the
sample. When there is high A-monomer concentration at x, u(x) is close to 1; when
there is high concentration of B-monomers at x, u(x) is close to 0. A value of u(x)
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between 0 and 1 means that a mixture of A- and B-monomers occupies x. The free
energy of the system is written as

Iη(u) :=

∫

D

(η

2
|∇u|2 +

1

η
W (u) +

γ

2
|(−∆)−1/2(u− ρ)|2

)

dx,

defined in Xa = {u ∈ W 1,2(D) : 1
|D|

∫

D u = ρ}.

When the free energy Iη is minimized, the three terms of the integrand (the
energy density of the material) have different preferences. The first term likes large
blocks of monomers, thereby reducing the total size of the interface between the
two monomers. The function W in the second term is a double well potential with
two global minima at 0 and 1, reflecting its preference for segregated monomers
over mixtures. The third nonlocal term is minimized if u ≡ ρ. However, this
configuration of u makes the second term large. The second best choice for the third
term is to have u oscillate rapidly around ρ. This way, because of the compact nature
of (−∆)−1/2 (when D is bounded), (−∆)−1/2(u− ρ) becomes close to 0 and hence
the third term becomes small. As these preferences compete and compromise, small
blocks rich in A-monomers and B-monomers appear. This phenomenon is known
as micro-phase separation. For a further analysis of the scaling of the energy we
refer to [4].

1.3. The sharp interface limit. If η is small the interfacial regions become
smaller and one can replace Iη by its sharp interface limit. In [10] the Ohta-
Kawasaki theory is formulated on a bounded domain as a singularly perturbed
variational problem with a nonlocal term and the limiting sharp interface problem
is identified. The latter is rigorously derived in [12] as a Γ-limit of the singularly
perturbed variational problem.

In this paper we consider an idealized situation, in whichD = R
3, so we formulate

the energy directly for this case. The corresponding energy is defined for all Ω ∈ R
3

with |Ω| = ρ and is given by

E(Ω) = H2(∂Ω) +
γ

2

∫

R3

∣

∣(−∆)−1/2χ
∣

∣

2
dx, (1)

where χ is the characteristic function of Ω and
∫

R3

∣

∣(−∆)−1/2χ
∣

∣

2
dx =

∫

R3 |∇µ|
2 dx

with −∆µ = χ in R
3.

1.4. A time dependent model. We are interested in how an initial configura-
tion of a diblock copolymer melt evolves towards a state of minimal energy. An
appropriate evolutionary model set in whole space which reduces E and keeps the
volume fraction of both phases conserved is the following Mullins-Sekerka type free
boundary problem. In this model the normal velocity v of the interface ∂Ω = ∂Ω(t)
is given by

v = [∇u · ~n] on ∂Ω, (2)

where [∇u · ~n] denotes the jump of the normal component of the gradient across
the interface. (Here ~n denotes the outer normal to Ω and [f ] = limx/∈Ω,x→∂Ω f(x)−
limx∈Ω,x→∂Ω f(x).) The potential u is for each time determined via

−∆u = 0 in R
3\∂Ω, (3)

u = κ+ γ(−∆)−1χ on ∂Ω (4)
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with no-flux boundary conditions for u at infinity. Aspects of a local well-posedness
theory for the Mullins-Sekerka model (that is the case γ = 0) can be found for
example in [2], [3] and [6].

1.5. The gradient flow structure of the evolutionary model. The evolution
defined by (2)-(4) has an interpretation as a gradient flow on a Riemannian manifold,
more precisely it is the gradient flow of the energy (1) with respect to the H−1 norm
in the bulk. To reveal this structure consider the manifold M := {Ω ⊂ R

3 | |Ω| = ρ}
of all subsets of R

3 with fixed volume. The tangent space TΩM at an element Ω ∈ M
is described by all kinematically admissible normal velocities of ∂Ω, that is,

TΩM =

{

v : ∂Ω → R

∣

∣

∣

∫

∂Ω

v dS = 0

}

.

The metric tensor on the tangent space is given by

gΩ(v1, v2) =

∫

R3

∇u1 · ∇u2 dx,

where uα solves

−∆uα = 0 in R
3\∂Ω,

[∇uα · ~n] = vα on ∂Ω.

Note that uα is well-defined up to an additive constant (see [5] for a rigorous set-up).
The gradient flow of the energy (1) is now the dynamical system where at each

time the velocity is the element of the tangent space which points in the direction
of steepest descent of the energy. In other words, v is such that

gΩ(t)(v, ṽ) = −〈DE(Ω(t)), ṽ〉 (5)

for all ṽ ∈ TΩ(t)M. Choosing ṽ = v we immediately obtain the energy estimate
associated with each gradient flow, which is

∫ T

0

gΩ(t)(v, v) dt+ E(Ω(T )) = E(Ω(0))

for all T > 0.
It is well known that the first variation of the surface energy, the first summand

of E, is the mean curvature. The second nonlocal part is given by 1
2

∫

R3 |∇µ|
2 dx,

where µ solves −∆µ = χ. Hence
∫

R3 |∇µ|
2 dx =

∫

R3 µχdx =
∫

Ω µdx and the first

variation in direction ṽ ∈ TΩM is given by
∫

∂Ω
µṽ dS. Thus (5) reads after an

integration by parts in the metric tensor

∫

∂Ω

uṽ dS =

∫

∂Ω

(κ+ γµ)ṽ dS

for all ṽ ∈ TΩ(t)M. This is up to an irrelevant constant just (4).
The advantage of the gradient flow perspective is that it can be restricted in a

natural way to a lower dimensional submanifold. We will make use of this idea in
the next section.
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2. Reduced models.

2.1. Off-critical mixtures and restriction to spherical particles. In the fol-
lowing we are interested in the regime where the fraction of A-monomers is much
smaller than the one of B-monomers. In this case the A-phase consists of a set of
many small disconnected approximately spherical particles. In view of this fact it
seems natural to restrict the evolution (2)-(4) to spherical particles by restricting
the gradient flow to such morphologies. For the case γ = 0 it has been shown
rigorously in [1] that such an approximation is valid. We also refer to [13], in which
stable states of the energy are established which consist of a collection of spheres.

We define the submanifold N ⊂ M consisting of all sets Ω which are the union
of disjoint balls

Ω = ∪iBRi(Xi),

where the centers {Xi}i and the radii {Ri}i are variable. Hence N can be identified
with an open subspace of the hypersurface {Y = {Ri, Xi}i ∈ R+ × R

3|4π
3

∑

iR
3
i =

ρ} in R
4N , where N is the number and i = 1, · · · , N an enumeration of the particles.

The tangent space can be identified with the hyperplane

TYN =
{

Z =
{

Vi, ξi
}

i
∈ R × R

3|
∑

i

R2
i Vi = 0

}

⊂ R
4N ,

such that Vi describes the rate of change of the radius of particle i and ξi the rate
of change of its center.

The restriction of the metric tensor can be expressed as

gY(Z1,Z2) =

∫

R3

∇w1 · ∇w2 dx,

where the function wα solves

−∆wα = 0 in R
3\ ∪i ∂BRi(Xi),

[∇wα · ~n] = V α
i + ξα

i · ~n on ∂BRi(Xi).

For the following it will be convenient to split the metric tensor into the radial and
shift part respectively. We write

w = u+ φ

where u and φ are harmonic in- and outside the particles and where

[∇u · ~n] = Vi on ∂BRi(Xi),

[∇φ · ~n] = ξi · ~n on ∂BRi(Xi).
(6)

It turns out to be notationally convenient to consider the normalized energy
E = Esurf + γEnl, where

Esurf =
1

2
H2(∂Ω) = 4π

∑

i

R2
i

2

and

Enl =
3

2

∫

R3

|∇µ|2 dx =
3

2

∑

i

∫

BRi
(Xi)

µdx

with µ = (−∆)−1χ∪BRi
. We obtain the differentials of the energies in the direction

of a tangent vector Z̃ = {Ṽi, ξ̃i}i as

〈DEsurf , Z̃〉 = 4π
∑

i

Ri Ṽi and 〈DEnl, Z̃〉 =
3

2

∑

i

∫

∂BRi
(Xi)

µ
(

Ṽi + ξ̃i · ~n
)

dS.
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We will see in Section 2.2 that both, gY(Z, Z̃) and 〈DEnl, Z̃〉, can be expressed
explicitly in terms of {Ri, Xi}i. For the moment we just state once more the gradient
flow equation. For any t ≥ 0 we chose Z(t) such that

gY(Z, Z̃) = −〈DE, Z̃〉 = −4π
∑

i

RiṼi − γ
3

2

∑

i

∫

∂BRi
(Xi)

µ
(

Ṽi + ξ̃i · ~n
)

dS (7)

for all Z̃ ∈ TYN . We can expect that if initial data {Ri(0), Xi(0)} are given such
that particles do not overlap, a smooth solution to (7) exists at least for short
times. If a particle disappears the evolution is not smooth; we can, however, extend
the solution continuously by just starting again with the new configuration. Our
evolution cannot be further extended when two or more particles collide. We cannot
completely exclude such an event a priori. However, as we will see below, one part

of the nonlocal energy is given by
∑

i

∑

j 6=i

R3
i R3

j

|Xi−Xj |
, which again shows that this

part of the energy prefers uniformly distributed particles. If the energy is initially
bounded, it remains bounded for all times as long as a solution exists. Hence,
centers Xi and Xj cannot come arbitrarily close unless the particles become very
small at the same time.

In the next Section 2.2 we solve the gradient flow equation. The main idea is that
we can solve the equations for the potentials by superposition of suitable monopoles.
We will see that the leading order terms in the equations differ, depending on
whether the domain covered by the particles is larger or smaller than the well-known
screening length that describes the effective interaction range of particles. In Section
2.3 we state the approximate equations for the gradient flow, first in the simplest
case where the screening length is much larger than the system size, and second
in the case in which the system size is of the order of the screening length. Those
equations are the starting point for our numerical simulations. In Section 2.4 we
derive the corresponding mean-field models which arise if one passes to a description
with densities and in Section 3 we identify stationary states. Finally, in Section 4
we present results of numerical simulations of the monopole approximation.

2.2. Solution by monopoles. In this section we explicitly give the solution of the
gradient flow equation based on the fact that we can solve the equations for the
respective potentials in the metric tensor and for the nonlocal part of the energy
explicitly by the superposition of monopoles.

The relevant length scales and parameters in our system are the following. We
assume that initially we have a uniform distribution of particles contained in the
box (0, L)3. This property will not be conserved by the evolution but within the
typical time scale particles remain in a box of order of size L.

We denote by 1
d3 the number density of particles, such that d is the typical

distance of one particle to its nearest neighbor, and we call R the typical size of
the radii of the particles. We are interested in the case that the A-phase has small
volume fraction and hence we always assume that

ε :=
R3

d3
≪ 1. (8)

It is well-known and it will also become apparent in the computations below that
the crucial intrinsic length scale in diffusional interactions is the so-called screening
length

Lsc =
(d3

R

)1/2

, (9)
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which describes the effective range of particle interactions. The following heuristic
analysis shows that the leading order dynamics significantly differ, depending on
whether L≪ Lsc or whether L ∼ Lsc.

2.2.1. The energy. In a first step we express the energy in terms of {Ri, Xi}i, which
is trivial for the surface energy but also simple for the nonlocal energy.

Indeed, the solution of −∆µ = χ is given by µ =
∑

i µi, where

µi(x) =

{

− |x−Xi|
2

6 +
R2

i

2 : in BRi(Xi)
R3

i

3|x−Xi|
: outside BRi(Xi)

.

Thus we find, using the mean-value theorem for µj in BRi for j 6= i,

Enl(Y) =
3

2

∫

R3

|∇µ|2 dx

=
3

2

∑

i

∫

BRi(Xi)

µdx

=
3

2

(

∑

i

∫

BRi(Xi)

µi dx+
∑

i

∫

BRi(Xi)

∑

j 6=i

µj dx
)

=
3

2

(

∑

i

∫

BRi(Xi)

µi dx+
∑

i

∑

j 6=i

4π

3
R3

iµj(Xi)
)

=
3

2

(8π

15

∑

i

R5
i +

4π

9

∑

i

∑

j 6=i

R3
iR

3
j

|Xi −Xj |

)

= 4π
(

∑

i

R5
i

5
+

1

6

∑

i

∑

j 6=i

R3
iR

3
j

|Xi −Xj |

)

.

(10)

Hence, the differential of the energy E = 4π
∑

i
R2

i

2 + γEnl is given by

1

4π
〈DE(Y), Z̃〉 =

∑

i

RiṼi + γ
∑

i

R4
i Ṽi + γ

∑

i

∑

j 6=i

R2
iR

3
j

|Xi −Xj |
Ṽi

−
γ

3

∑

i

∑

j 6=i

R3
iR

3
j

|Xi −Xj |2
(Xi −Xj)

|Xi −Xj |
· ξ̃i.

(11)

We can now compare the order of size of the different terms. First notice that in
order that surface and nonlocal energy balance, the parameter γ has to be of size
of order R−3 which we assume from now on.

Furthermore, in what follows, we approximate sums by the corresponding inte-

gral, i. e.
∑

i
1

|x−Xi|
∼ 1

d3

∫

BL(0)
1
|x| ∼

L2

d3 , and we find that
∑

j 6=i

R3
i R3

j

|Xi−Xj |
has size

of order R6 L2

d3 . This is smaller than R5, the order of size of R5
i , if R

d3L
2 ≪ 1 or, in

view of (9), if L≪ Lsc.
Equivalently, we can neglect the last two terms on the right hand side of (11)

compared to the first two if L ≪ Lsc. If, however, L ∼ Lsc, all terms are of the
same order of size.

2.2.2. The metric tensor. In this section we compute the metric tensor for given
Z = {Vi, ξi}i solving the equations for the potential w = u + φ respectively by
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superposition of single particle solutions. Recall that gY(Z,Z) =
∫

R3 |∇u|
2 dx +

2
∫

R3 ∇u · ∇φdx +
∫

R3 |∇φ|
2 dx, where u and φ are given by (6).

One easily verifies that in case of a single particle BRi(Xi) the solutions of prob-
lem (6) are given by

ui(x) =

{

− R2
i Vi

|x−Xi|
: |x−Xi| ≥ Ri

−RiVi : |x−Xi| ≤ Ri

,

φi(x) =

{

− R3
i

3|x−Xi|3
(x −Xi) · ξi : |x−Xi| ≥ Ri

− 1
3 (x −Xi) · ξi : |x−Xi| ≤ Ri

.

Hence, for a system with N particles the potentials are given by

u(x) :=
∑

i

ui(x) and φ(x) :=
∑

i

φi(x).

We first observe that

∫

R3

|∇u|2 dx =
∑

i

∫

R3

|∇ui|
2 dx+

∑

i

∑

j 6=i

∫

R3

∇ui · ∇uj dx

= −
∑

i

∫

∂BRi
(Xi)

[∇ui · ~n]ui dS

−
∑

i

∫

∂BRi
(Xi)

[∇ui · ~n]
∑

j 6=i

uj dS.

(12)

Now [∇ui ·~n] = Vi is constant on ∂BRi(Xi) and uj is harmonic in BRi(Xi). Hence,
the mean value theorem for harmonic functions implies

∫

∂BRi
(Xi)

[∇ui ·~n]
∑

j 6=i uj dS

=
∑

j 6=i Vi4πR
2
i uj(Xi), and we arrive at

∫

R3

|∇u|2 dx = 4π
∑

i

R3
i V

2
i + 4π

∑

i

∑

j 6=i

ViVj

R2
iR

2
j

|Xi −Xj |
. (13)

We compare the order of the first and second term in (13) respectively, as we did for
the energy in Section 2.2.1. Keeping in mind that the number of particles is of order
L3

d3 , we find that the first term is of size of order L3

d3 R3V2
R, where VR denotes the

order of size of the velocities of the radii. Again approximating sums by integrals,

the order of size of the second term is L3

d3 VR
2R4 L2

d3 . Hence, the first term dominates

if and only if L2 ≪ d3

R , that is, again, if the box size is much smaller than the
screening length.
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Similarly as in (12) we compute
∫

R3

|∇φ|2 dx =
∑

i

∫

R3

|∇φi|
2 dx+

∑

i

∑

j 6=i

∫

R3

∇φi · ∇φj dx

= −
∑

i

∫

∂BRi
(Xi)

[∇φi · ~n]φi dS

−
∑

i

∫

∂BRi
(Xi)

[∇φi · ~n]
∑

j 6=i

φj dS

=
∑

i

4
3πR

3
i −

∫

∂BRi
(Xi)

|ξi · ~n|
2 dS

−
∑

i

∫

∂BRi
(Xi)

ξi · ~n
∑

j 6=i

φj dS.

Here and in the following we use the notation −
∫

∂BRi
:= 1

4πR2
i

∫

∂BRi
for mean values.

It is easily calculated, for instance by using polar coordinates, that

−

∫

∂BRi
(Xi)

|ξi · ~n|
2 dS = −

∫

S2

|ξi · ~n|
2 dS =

1

3
|ξi|

2

and thus
∫

R3

|∇φ|2 ds =
4π

9

∑

i

R3
i |ξi|

2 −
∑

i

∫

∂BRi
(Xi)

ξi · ~n
∑

j 6=i

φj dS. (14)

The second term is computed with the help of Gauss’ theorem and again the mean
value theorem,

∑

i

∑

j 6=i

∫

∂BRi
(Xi)

ξi · ~nφj dS =
∑

i

∑

j 6=i

∫

BRi
(Xi)

ξi · ∇φj dx

=
4π

9

∑

i

∑

j 6=i

(

3R3
iR

3
j

|Xi −Xj |5
(Xi −Xj) · ξi(Xi −Xj) · ξj −

R3
iR

3
j

|Xi −Xj |3
ξi · ξj

)

.

It turns out to be of higher order than the diagonal term. Indeed, the latter is

of order L3

d3 R3V2
X , where VX is the order of size of the midpoint velocities, and

the order of the ratio of the former and this term can be estimated as before by
R3

d3

∑

j 6=i
1

|Xi−Xj |
∼ ε ln(1/ε).

Finally, for the mixed term of the metric tensor we find
∫

R3

∇u · ∇φdx =
∑

i

∫

R3

∇ui · ∇φdx

= −
∑

i

∫

∂BRi
(Xi)

ViφdS

= −
∑

i

Vi

∫

∂BRi
(Xi)

∑

j 6=i

φj dS

= 4π
∑

i

∑

j 6=i

R3
jR

2
i

3|Xi −Xj|3
Vi(Xi −Xj) · ξj .
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In the last equalities we used that
∫

∂BRi
(Xi)

φi dS = −Ri

3

∫

∂BRi
(Xi)

ξi · ~n dS = 0

and, as in the derivation of (13), that φj is harmonic in BRi(xi) for j 6= i.
To summarize we obtain

gY(Z,Z) = 4π
∑

i

R3
i V

2
i + 4π

∑

i

R3
i

1

9
|ξi|

2

(

1 + O
(

ε ln
1

ε

)

)

+ 4π
∑

i

∑

j 6=i

R2
iR

2
j

|Xi −Xj |
ViVj

+ 8π
∑

i

∑

j 6=i

R3
jR

2
i

3|Xi −Xj|3
Vi(Xi −Xj) · ξj ,

(15)

and the diagonal terms dominate if L≪ Lsc.

2.3. Leading order approximations. We now set up an approximation of the
gradient flow, keeping only the leading order terms in the energy and the metric
tensor respectively. This will be the starting point for numerical simulations whose
results we present in Section 4 below. As we have seen, there are two regimes of
interest. The first one is the dilute case, where the system size is much smaller than
the screening length.

2.3.1. Case I: L ≪ Lsc. In case L ≪ Lsc we obtain, in view of (10) and the
subsequent discussion, that

E(Y) ∼ 4π
(

∑

i

R2
i

2
+ γ

∑

i

R5
i

5

)

, (16)

whereas the metric tensor can be approximated due to (15) by

gY(Z,Z) ∼ 4π
∑

i

R3
i

(

V 2
i +

1

9
|ξi|

2
)

.

The gradient flow equation gY(Z, Z̃) + 〈DE(Y), Z̃〉 = 0 reads

∑

i

R3
i

(

ViṼi +
1

9
ξi · ξ̃i

)

+
∑

i

RiṼi + γ
∑

i

R4
i Ṽi = 0

for all {Ṽi, ξ̃i} in the tangent space. This is equivalent to

∑

i

R3
i

(

ViṼi +
1

9
ξi · ξ̃i

)

+
∑

i

RiṼi + γ
∑

i

R4
i Ṽi = λ

∑

i

R2
i Ṽi

for all {Ṽi, ξ̃i} ∈ R
4N , where λ is a Lagrange multiplier to ensure

∑

iR
2
i Vi = 0.

Consequently, we obtain for the direction of steepest descent that

Vi =
1

R2
i

(

λRi − 1 − γR3
i

)

and ξi = 0, (17)

where

λ =

∑

i:Ri>0 1 + γ 3ρ
4π

∑

i Ri
. (18)
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2.3.2. Case II: L ∼ Lsc. With the same procedure as above we infer from (11) and
(15) that Vi solves the linear system of equations

R2
i Vi +Ri

∑

j 6=i

R2
j

|Xi −Xj |
Vj + 1 + γR3

i + γRi

∑

j 6=i

R3
j

|Xi −Xj |

= λRi −
∑

j 6=i

R3
jRi

3|Xi −Xj |3
(Xi −Xj) · ξj ,

(19)

where λ is such that
∑

i R
2
iVi = 0, and we get the nontrivial evolution equation

ξi =
∑

j 6=i

3γR3
j +R2

jVj

|Xi −Xj |3
(Xi −Xj) (20)

for the centers. Notice that (20) implies that VX is of order L/d3. Using this in (19),
we see that the last term on the right hand side is of order R4L2/d6 = ε(L/Lsc)

2

and can be neglected compared to the other terms, which are of order 1. We finally
obtain that the evolution of the radii is to leading order governed by

R2
i Vi +Ri

∑

j 6=i

R2
j

|Xi −Xj |
Vj + 1 + γR3

i + γRi

∑

j 6=i

R3
j

|Xi −Xj |
= λRi. (21)

2.4. Mean-field models. In this section we derive mean-field models which arise
if one passes from the discrete setting of finitely many particles to a description
with densities. Our derivation is purely formal and starts from (17) and (20)–(21)
respectively. A rigorous derivation from the full model in the spirit of [9] seems
feasible under some assumptions on the distribution of particles. This is, however,
not within the scope of this paper.

For the derivation of mean-field models we need to go over to suitably rescaled
variables. First we recall the relevant parameters and length scales in our system.
We denote by N the total number of particles, by 1

d3 the number density, and
by R the typical particle radius. Our system size, that is the area covered with
particles, is then L3 ∼ N d3. The crucial intrinsic length scale is the screening
length Lsc ∼ (d3/R)1/2. Note that these quantities are in general time dependent.
As introduced here they refer to the initial configuration and we derive the mean-
field models for finite times in which these length scales remain of the same order.

Recall also that in order to balance surface and nonlocal energy our parameter
γ must be of order R−3. Hence, we set from now on

γ̃ := γR3.

2.4.1. Case I: L ≪ Lsc. We start with the simple case L ≪ Lsc. In view of (17)
we measure the time in which radii change in units of R3, that is, we introduce the
new time scale τ = t/R3. Since ξi = 0 in the dilute regime, it suffices to consider
the distribution of particle radii. Let

ri(τ) =
Ri(t)

R
, vi := R2Vi, (22)

and define
∫

ζ ντ (dr) :=
1

N

∑

i

ζ(ri),
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where ζ ∈ C∞
0 ((0,∞)). Then, using (17), we find

d

dτ

∫

ζ νt(dr) =
1

N

∑

i

∂rζ vi

=
1

N

∑

i

∂rζ
1

r2i

(

λ̃ri − 1 − γ̃r3i )

=

∫

∂rζ
1

r2
(

λ̃r − 1 − γ̃r3
)

ντ (dr),

(23)

where λ̃ = λR is such that
∫

r3 νt(dr) ≡
3ρ

4πN =: ρ̃. Equation (23) just means that
νt satisfies

∂τντ + ∂r

( 1

r2
(

λ̃r − 1 − γ̃r3
)

ντ

)

= 0 (24)

with

λ̃(τ) =

∫

ντ (dr) + γ̃ρ̃
∫

rντ (dr)

in the sense of distributions.
For γ̃ = 0 we recover the LSW-theory for coarsening of particles. For γ̃ > 0 the

additional term γ̃
∑

i
R5

i

5 in the energy prevents coarsening and hence the long-time
behavior of (24) is different from the one for γ̃ = 0. Indeed, while the energy (16)
together with the volume constraint has no stationary point for γ̃ = 0, we will see
in Section 3 below, that (16) has a unique global minimizer for γ̃ > 0 which is also
the only stationary point with respect to an appropriate topology.

2.4.2. Case II: L ∼ Lsc. We assume now that L ∼ Lsc =
(

d3

R

)1/2
. In addition to

ri and vi as in (22) we also introduce

xi(τ) :=
Xi(t)

Lsc
and ψi :=

d3

Lsc
ξi. (25)

Now we define the joint distribution of particle centers and radii via
∫

ζ ντ (dx dr) :=
1

N

∑

i

ζ(xi, ri)

for ζ ∈ C∞
0 (R3 × (0,∞)). We are going to derive that νt satisfies the following

system of equations in a distributional sense:

∂τντ +∂r

( 1

r2
(

rū−1− γ̃
(

r3 +rK(x)
))

ντ

)

+ ε divx

(

3(∇ū− γ̃∇K(x))ντ

)

= 0, (26)

where ε is the volume fraction (recall (8)),

K(x) =

∫

s3

|x− y|
ντ (dy ds) (27)

(notice that the integral is finite since ντ has finite support in the x-variable) and
ū = ū(x, τ) satisfies

−
1

4π
∆xū+ ū

∫ ∞

0

rντ (dr)−

∫ ∞

0

ντ (dr)− γ̃
(

∫ ∞

0

r3 ντ (dr)+K(x)

∫ ∞

0

rντ (dr)
)

= 0

(28)
in R

3 for each τ .
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Indeed, we first recall (25), to find

d

dτ

∫

ζ ντ (dx dr) =
1

N

∑

i

(

ε∇ζ · ψi + ∂rζvi

)

. (29)

Equation (20) gives

ψi = 3
d3

Lsc

∑

j 6=i

(

γ̃
R3

j

R3
+R2

jVj

) Xi −Xj

|Xi −Xj |3

= 3
d3

L3
sc

∑

j 6=i

(

γ̃r3j + r2j vj

) xi − xj

|xi − xj |3

= 3γ̃
1

N

∑

j 6=i

r3j
xi − xj

|xi − xj |3
+

3

N

∑

j 6=i

r2j vj
xi − xj

|xi − xj |3

= −3γ̃∇K(xi) + 3∇ū(xi).

(30)

where ū(x) (neglecting in the notation the dependence on t) is given by

− ū(x) := R
( 1

Lsc

∑

j 6=i

r2j vj

|x− xj |
− λ
)

=
1

N

∑

j 6=i

r2j vj

|x− xj |
− λR. (31)

Then (21) reads

R2
i Vi =

Riū(xi)

R
− 1 − γ

(

R3
i +Ri

1

Lsc

∑

j 6=i

R3
j

|xi − xj |

)

= riū(xi) − 1 − γ̃
(

r3i + riK(xi)
)

,

(32)

where we used (27) in the last step as well as the fact RN = Lsc, which is due to
L = Lsc. Inserting (32) into (31), we obtain

−ū(x) =
R

Lsc

∑

j 6=i

rj ū(xj) − 1 − γ̃(r3j + rjK(xj))

|x− xj |
− λR

=

∫

rū(y) − 1 − γ̃(r3 + rK(y))

|x− y|
ντ (dy dr) − λR.

If we take the Laplacian in the last equation, we obtain (28). Finally, (26) follows
from (29), (30) and (32).

3. Stationary points of the energy. In this section we investigate the stationary
states of the energies. Since we are interested in configurations with a large number
of particles, we consider the continuous case. As we will argue later, in our setting
stationary points only exist in the dilute case, so we first concentrate on this. For
notational convenience we rename ρ̃ and γ̃ by ρ and γ again. Thus, let ν be a
measure on (0,∞) such that

ρ =
4π

3

∫ ∞

0

r3 ν(dr)

is fixed. The energy of ν is

E(ν) = 4π

∫

(r2

2
+ γ

r5

5

)

ν(dr).
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Lemma 3.1. Among measures ν with the fixed volume ρ the energy E is minimized

at ν = 3ρ
4π r3

∗

δr∗
, where r∗ = ( 5

4γ )1/3.

Proof. Let µ be a measure so that

µ(dr) = r3ν(dr).

Then

E(ν) = 4π

∫

( 1

2r
+ γ

r2

5

)

µ(dr)

Since the integrand is convex, by Jensen’s inequality we have

E(ν) ≥ 3 ρ
( 1

2r̄
+ γ

r̄2

5

)

(33)

where r̄ = 4π
3ρ

∫

r µ(dr) is the average of r under µ. Note that equality in (33) holds

only when µ = 3ρ
4π δr̄. In this case ν = 3ρ

4πr̄3 δr̄. So it suffices to minimize E among
such measures and, since

E
( ρ

r̄3
δr̄

)

= 3
ρ

r̄3

( r̄2

2
+ γ

r̄5

5

)

= 3ρ
( 1

2r̄
+ γ

r̄2

5

)

is convex in r̄, E is minimized at 3ρ
4πr3

∗

δr∗
, with r∗ =

(

5
4γ

)1/3

.

Next we investigate stationary points of E. The notion of stationary points
depends on the variations and hence the topology one uses in the space of mea-
sures. The coarsest topology is the one induced by the Wasserstein distance, which
metrizes the weak topology of measures. In one dimension the Wasserstein distance
is easy to compute. Let

Z1(r) = ν1([r,∞)), Z2(r) = ν2([r,∞))

be the radius distributions of the measures ν1 and ν2 and denote by r1(z), r2(z)
their right-continuous inverses. The Lp-Wasserstein distance between ν1 and ν2 is
given by

ρ(ν1, ν2) := ‖r1 − r2‖p =
(

∫ ∞

0

|r1(z) − r2(z)|
p dz

)1/p

. (34)

In the next lemma we show that the only stationary point of the energy with
respect to the topology induced by the Wasserstein distance is the global minimizer
identified in Lemma 3.1.

Lemma 3.2. Let ν be a stationary point of E with respect to the topology induced

by (34). Then ν = 3ρ
4π r3

∗

δr∗
and r∗ =

(

5
4γ

)1/3
.

Proof. Let ν be a stationary point of E and r = r(z) the right-continuous inverse
of its distribution function as described above. We do not assume that ν is a finite
measure, hence r might not have finite support. In terms of r the energy is given
by

E(ν) = 4π

∫ ∞

0

r2(z)

2
+ γ

r5(z)

5
dz =: Ê(r).

The constraint 4π
3

∫

r3 ν(dr) = ρ corresponds to 4π
3

∫

r3(z) dz = ρ. We consider
now so called inner variations, that is, we consider rε(z) := r(z + εη(z)), where
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η ∈ C∞
0 ((0,∞)) is such that 4π

3

∫∞

0 rε(z) dz = ρ. We find

d

dε
Ê(rε)|ε=0 =

d

dε |ε=0

∫ ∞

0

(rε2

2
+ γ

rε5

5

)

dz

= −

∫ ∞

0

(r2

2
+ γ

r5

5

)

η′(z) dz.

Furthermore, the volume constraint 4π
3

∫∞

0
rε3(z) dz = ρ implies similarly that

∫∞

0
r3η′(z) dz = 0. Thus, in summary we find that

∫ ∞

0

(r2

2
+ γ

r5

5
− λr3

)

ψ′(z) dz = 0 (35)

for all ψ ∈ C∞
0 ((0,∞)) and for some λ ∈ R. Let {zi}, i ∈ I ⊂ N, be the set of

discontinuity points of r (which is an at most countable set, since r is decreasing).
With this notation we deduce from (35) after an integration by parts that

∫ ∞

0

(

r + γr4 − 3λr2
)

ψ(z) dz

+
∑

i∈I

[(r2

2
+γ

r5

5
− λr3

)

(zi) − lim
z→zi,z<zi

(r2

2
+ γ

r5

5
− λr3

)

(z)
]

ψ(zi) = 0

for all ψ ∈ C∞
0 ((0,∞)). It follows that r has to be piecewise constant, say r(z) ≡

ri ∈ [zi−1, zi) (with the convention that z0 = 0), and ri must be a zero of f(r) :=
r + γr4 − 3λr2 for some λ ∈ R. Furthermore, we find

r2i
2

+ γ
r5i
5

− λr3i =
r2i−1

2
+ γ

r5i−1

5
− λr3i−1

for all i ∈ I. A simple calculation shows that this can only be true if I = {1} and

r1 = r∗ =
(

5
4γ

)1/3

and r2 = 0. The point z1, where r jumps, is determined by the

volume constraint and hence given by z1 = 3ρ
4π r3

∗

.

Remark 3.3. (The inhomogeneous case) It is in principle a very interesting ques-
tion, how in the case L ∼ Lsc the additional inhomogeneous term in the energy,

1

N2

∑

i

r3i
∑

j 6=i

r3j
|xi − xj |

=

∫

r3K(x) ν(dx dr),

changes the configuration of stationary points. However, in our case there are no
stationary states. This is due to the somewhat artificial setting, where we set parti-
cles in a bounded domain but solve the equations for the corresponding potentials
in full space. From equation (20) for the evolution of particle centers we easily see
that particles located at the boundary of our “cloud” of particles will be driven
further outwards.

If instead we would confine particles and their corresponding potentials to a finite
domain and impose periodic or Neumann boundary conditions we would obtain
similar formulas for our approximate gradient flow equations and the mean-field
models, but 1

|x| would be replaced by the corresponding Green’s function. Then

stationary states would be characterized by K ≡ const, which would imply a regular
spacing of the particles. OnceK is constant, the term

∫

r3Kν(dx dr) is also constant
due to the volume constraint. The remaining discussion of stationary points is then
analogous to the dilute case.
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From the discussion in the mean-field theory, Section 2.4.2, we know that the
particle centers move on a slower time scale d3 than the particle radii, which change
on a time scale of order R3. Consequently, in our simulations the movement of
particles is almost negligible compared to the evolution of the radii.

Remark 3.4. (The discrete setting) Naturally, the discrete case is somewhat differ-
ent from the continuous one, since the number of particles is integer and we cannot
reach any arbitrary fraction of particles. As argued in Remark 3.3 above, we can
concentrate on the dilute case (17).

Let us first consider the situation from the point of view of the evolution. Our
initial configuration consists of N particles with total volume ρ =

∑

i
4π
3 R

3
i ∼

N 4πR3

3 . Since during our evolution particles can only vanish, we consider stationary
states withN1 ≤ N particles. For any givenN1 there is a family of stationary states.
First there is the trivial one, that is Ri ≡ r̂ for all i and r̂ = 3ρ

4πN1
. However, due

to the discreteness of the problem there are now also stationary states with two
different sizes of particles. For that let σ := N2

N1
∈ (0, 1], where N2 will be the

number of particles with one radius r1, whereas N1 − N2 will be the number of
particles with another radius r2. In view of (17) stationary states of the desired
form are given by radii which are zeros of the function f(r) := 1 + γr3 − λr for
some λ ∈ R. There can be at most two different radii for which this is satisfied.
We denote them by r1 and r2. To say that r1 and r2 are zeros of the function f for
some λ is equivalent to requiring that 1

r1
+ γr21 = 1

r2
+ γr22 holds true. In order to

satisfy the volume constraint, we must have σr31 +(1−σ)r32 = 3ρ
4πN1

=: β. Using the

last equation to express r2 by r1 we find that r32 =
β−σr3

1

1−σ . Now the corresponding

r1 is determined as a zero of g(r) := 1
r + γr2 −

(

1−σ
β−σr3

)1/3
− γ

(

β−σr3

1−σ

)2/3
. Since

limr→0 g(r) = +∞ and limr→σ−1/3 g(r) = −∞ there is at least one solution. Thus
we have a whole set of stationary states for given N1 ≤ N which consist of two
different sizes of particles. Due to the convexity of the energy they have higher
energy than the stationary state where only one size is present and the size is given
by r̂ = 3ρ

4πN1
. This is true for fixed N1. Of course, depending on the choice of

parameters, it might be that a stationary state with two different sizes for one N1

has lower energy than the trivial stationary state for a different given number of
particles.

4. Simulations. For numerical simulation it is convenient to re-formulate (17) and
(20)–(21) in terms of particle volumes and their velocities instead of radii. This has
the advantage that the constraint of volume conservation becomes linear. For that
let Wi := R3

i and ωi := d
dtWi. The equations then read

ωi = 3(λRi − 1 − γR3
i ) and ξi = 0 (36)

with λ as in (18) in the dilute case, and

ωi +Ri

∑

j 6=i

ωj

|Xi −Xj |
+ λ = −3 − 3γR3

i − 3γRi

∑

j 6=i

R3
j

|Xi −Xj |
,

ξi =
∑

j 6=i

3γR3
j + ωj

|Xi −Xj |3
(Xi −Xj)

(37)

in case L ∼ Lsc.
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Figure 1. Example for an evolution of mean radius and all particle
radii in the dilute case.

Initial N Initial radii distribution (5/4γ)1/3 Final radius Final N
1000 uniformly in (0, 2) 1.365 1.434 690
1000 uniformly in (0.5, 1.5) 1.365 1.202 742
1000 normally in (0, 2) 1.365 1.197 768
1000 normally in (0.5, 1.5) 1.365 1.115 846
2197 uniformly in (0, 0.88) 0.599 0.628 1529
4096 uniformly in (0, 0.432) 0.202 0.305 2886
Table 1. Results of simulated particle systems all within the same
parameter region, but different radii distribution.

To simulate the behavior of our gradient flow model with these equations we set
up a simple numerical scheme consisting of an Euler predictor and a trapezoidal rule
corrector step. The latter is also used as error indicator and to determine – beside
the influence of vanishing particles – a suitable step size. Particles are removed
when they become too small, i.e. if Wi < δ

∑

Wi/N where N denotes the current
number of particles and δ is a user-defined tolerance. Under no circumstances we
allow particle volumes to become negative.

At each time step the velocities of particle midpoints and volumes are computed
via (36) and (37), respectively. While this is not much work in the first case, we have
to solve a symmetric, indefinite, and dense linear system of size N +1 in the second
case. Due to its potential structure, however, the product of the system matrix
with an arbitrary vector can be computed in almost linear time by means of the
Fast Multipole Method [7, 8]. This and the approximate weak diagonal dominance
of the matrix enable us to efficiently apply a Krylov subspace method to solve (37)
for large systems.

We start our simulations with a number of particles distributed regularly on a
mesh in some box (0, L)3. From the mesh size and (9) we obtain the value of the
initial mean or typical radius in order that L = Lsc is approximately fulfilled. We
simulate the dilute and the full problem with the same radius distribution to be
able to compare the results.

4.1. Case I: L ≪ Lsc. For any distribution of radii which we consider in our
simulations, uniformly or normally distributed in some interval about the initial
mean radius or special as stated below, the system reaches a stationary state. As
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Figure 2. Evolution of mean radius, particle radii and energy in
the full problem; compare with Figure 1 where the same system in
the dilute case is shown.

expected from Remark 3.4 this final state is characterized by either all particles
having (almost) the same size or one of two radii with the condition stated there.
The latter case, however, only appears when we already start the simulation with
such a particle configuration; in general we arrive at a stationary state concentrated
in one size.

However, the computed stationary state is not the global minimizer derived in
Section 3, which, of course, might be infeasible due to the volume constraint and
integer number of particles. In general one cannot even say that it is close to or
approaches it when the number of particles grows. In fact, the computed state and
its difference from the predicted minimizer of the continuous case in terms of the
final radius depend on the actual distribution of the radii, as can be seen in Figure
1 and Table 1.

4.2. Case II: L ∼ Lsc. As expected, the evolution of the full problem does not
reach a stationary state, i. e. a state in which all velocities are identically zero, since
particles drift out of the box. But the following two observations can be made, as
can be seen for instance in Figure 2. First of all, even though drifting can occur,
its influence on energy minimizing is distinguishable from that of radii evolution
and – as already stated in Remark 3.3 – can be neglected in case the value of Lsc

is not much smaller than the box size. Secondly and more important, one observes
that the total energy in principle tends towards a stationary value, as does the
mean particle radius. However, the final mean radius is in general not equal to that
from the same initial configuration evolving under the dilute equations. Another
difference is that in the full problem the particles do not tend to have equal size.
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Instead, after a phase of vanishing and approaching it, all remaining particles have
a radius in some interval about the final mean radius which is smaller than the
initial radii interval, but whose size again seems to depend on the actual initial
distribution.
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