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Abstract. In this paper, we study a direct integral decomposition for the
spaces L2(O) and H1(O) based on (ξ, Y ∗)−periodic functions. Using this
decomposition we can write the Green’s operator (associated to the classical
Stokes system in fluid mechanics) in terms of a family of self-adjoint compact
operators which depend on the parameter ξ. As a consequence, we obtain the
so-called Bloch waves associated to the Stokes system in the case of a periodic
perforated domain.

1. Introduction. In this paper, we rigorously study a direct integral decomposi-
tion for the spaces L2(O) and H1(O) in (ξ, Y ∗)−periodic function spaces, where
the sets O and Y ∗ are defined in (3) and (2) respectively, in the sense given by J.
Dixmier [8] (see also the book of G. W. Mackey [12]), and thus, a decomposition
based on (ξ, Y ∗)−periodic functions of the Green’s operator for the Stokes system
is obtained. As a consequence, we derive the so-called Bloch waves associated with
this system.

The starting point of our study consists in introducing two basic reference cells
denoted Y =]0, 2π[N and Y ∗ = Y \T , where T is a given star-shaped region included
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in Y . In this way, by means of Y and Y ∗, we define the periodic perforated domain
O = R

N \ ∪j∈ZN {T + 2πj}.
We are interested in the following spectral problem for the Stokes system:







−∆u + ∇p = λu in O
∇ · u = 0 in O

u = 0 on ∂Tj, j ∈ ZN ,
(1)

which is a spectral boundary value problem in the unbounded domain O. The
Green’s function associated to (1), which is a bounded self-adjoint operator, is not
necessarily compact. In order to obtain the spectral decomposition of system (1), we
first need to decompose the corresponding Green’s operator into a family of bounded
compact self-adjoint operators. To this end, a direct integral decomposition will be
used.

The method of Bloch wave decomposition (or Floquet decomposition) is well
known for reducing the problem of solving the Schrödinger equation in an infinite
periodic medium to a family of simpler Schrödinger equations posed in a single
periodicity cell and parametrized by the so-called Bloch frequency (see [6] and the
references therein). Originally, Bloch waves were introduced by F. Bloch [3] in 1928
in the context of solid state physics for the study of propagation of electrons in a
crystal. More recently, Bloch waves have been used in the study of several issues
in partial differential equations modeling heterogeneous media. Particularly, we
refer to C. Conca and M. Vanninathan [7] (see also [5]) for the study of periodic
homogenization, where the authors recover the classical results of convergence in
the homogenization process, which were first obtained by F Murat and L. Tartar
(see [13] and [20]), by using Bloch waves method. Bloch waves are also a useful
tool in the study of asymptotic behavior of solutions to partial differential equations
as times goes to infinity; in particular we refer to J.H. Ortega and E. Zuazua [15]
for the study of a complete asymptotic expansion in time t > 0 of solutions for
parabolic equations with periodic coefficients as time t goes to infinity.

In the case of the Stokes system, Bloch waves are obtained by solving the following
spectral problem















−∆u + ∇p = λu in Y ∗

∇ · u = 0 in Y ∗

u = 0 on ∂T
u, p are (ξ, Y ∗) − periodic functions.

where (ξ, Y ∗)−periodic functions are characterized by the following generalized pe-
riodic property ψ(x + 2πp) = e2πiξ·pψ(x) for a.e. x ∈ RN , and for all p ∈ ZN (see
[6] pp. 193 or [16] pp. 279 for more details). To prove existence of Bloch waves,
we will first establish a new version of the classical De Rham’s Theorem in the
space of (ξ, Y ∗)−periodic functions (see Proposition 3 below); for an alternative
construction of these Bloch waves, the reader is referred to [1].

The content of this paper is the following. In Section 2 we study the direct integral
decomposition of the spaces L2(O) and H1

0(O) in (ξ, Y ∗)−periodic function spaces
L2

#(ξ, Y ∗), H1
#(ξ, Y ∗) and H1

0,#(ξ, Y ∗). Later, by using these decompositions, a
new version of the classical De Rham’s Theorem is established. Finally, in Section 3
we obtain the Bloch waves for the Stokes system rewriting its Green’s operator as
a family of self-adjoint compact operators which depend on the parameter ξ.
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2. (ξ, Y ∗)-periodic functions decomposition of L2(O) and H1
0(O). Let Z be a

measurable space endowed with a positive measure ν. A family (H(ξ))ξ∈Z is called
a “Hilbert space field” if H(ξ) is a Hilbert space for each ξ ∈ Z. We shall denote
by || · || the Hilbertian norm of H(ξ). Define (see [8], [12] and [16]) the “direct
integral”:

H =

∫ ⊕

Z

H(ξ)dν(ξ) ≡







x ∈
∏

ξ∈Z

H(ξ)
∣

∣ x is measurable and

∫

Z

‖x(ξ)‖2dν(ξ) <∞







An operator T ∈ L(H,H) is decomposable in terms of operators acting on H(ξ)
if there exists a ν−measurable linear bounded mapping field (T (ξ))ξ∈Z , which is
essentially bounded with respect to ξ, such that Tx = (T (ξ)x(ξ))ξ∈Z ; we write

T =

∫ ⊕

Z

T (ξ)dν(ξ).

2.1. The spaces L2
#(ξ, Y ∗), H1

#(ξ, Y ∗) and H1
0,#(ξ, Y ∗). First of all, we state

some basic notation following the book by C. Conca, J. Planchard and M. Van-
ninathan [6]. Set Y =]0, 2π[N and let T ⊆ Y be a C2, star-shaped domain with
respect to x0 ∈ T . We can thus define

Y ∗ = Y \ T (2)
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Figure 1. Basic cell Y ∗

O = R
N \ ∪j∈ZN {Tj}, (3)

where

Tj = T + 2πj, j ∈ Z
N . (4)

We say that v ∈ L2
loc(O) is (ξ, Y ∗) − periodic if

v(x + 2πm) = e2πim·ξv(x) a.e. x ∈ O, ∀ m ∈ Z
N ,

where ξ ∈ RN is a parameter. Let us observe that if ξ is replaced by (ξ + q) with
q ∈ ZN , the above equality is unaltered and we can therefore restrict ξ to the cell
Y ′ = [0, 1[N . Let us define the space L2

#(ξ, Y ∗) by

L2
#(ξ, Y ∗) = {v ∈ L2

loc(O)| v is (ξ, Y ∗) − periodic}, (5)
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Figure 2. Periodic perforated domain O

Now, we can define the following spaces,

H1
#(ξ, Y ∗) =

{

v ∈ L2
#(ξ, Y ∗)

∣

∣

∂v

∂xl
∈ L2

#(ξ, Y ∗), l = 1, . . . , N

}

,

H1
0,#(ξ, Y ∗) = {v ∈ H1

#(ξ, Y ∗)
∣

∣ v = 0 on ∂T },

which are Hilbert spaces with respect to the inner product in H1(Y ∗). The spaces
labeled in bold face denote the cartesian product of the space with N-times itself.

Proposition 1. ([6])

(1) The imbedding H1
#(ξ, Y ∗) →֒ L2

#(ξ, Y ∗) is compact, so is H1
0,#(ξ, Y ∗) →֒

L2
#(ξ, Y ∗).

(2) Define H1
0,T (Y ∗) ≡ { v ∈ H1(Y ∗) | v = 0 on ∂T }. Then H1

0,#(ξ, Y ∗) is a

Hilbert subspace of H1
0,T (Y ∗).

It is well known that there exists C > 0 such that
∫

Y ∗

|v|2dx ≤ C

∫

Y ∗

|∇v|2dx for all v ∈ H1
0,T (Y ∗).

Hence, from this and by Proposition 1, we have

Proposition 2. There exists C > 0 such that for each ξ ∈ Y ′

∫

Y ∗

|uξ(x)|
2dx ≤ C

∫

Y ∗

|∇uξ(x)|
2dx for all uξ ∈ H1

0,#(ξ, Y ∗),

in particular C > 0 does not depend on ξ.

Remark 1. For each ξ ∈ Y ′ = [0, 1[N we define:

I(ξ) : L2
#(Y ∗) → L2

#(ξ, Y ∗)

φ 7→ eix·ξφ.
(6)

This mapping is an isometry. Moreover, if φ ∈ H1
#(Y ∗), Φ ∈ H1

#(Y ∗) we have

∇(eix·ξφ) = eix·ξD(ξ)φ, and ∇ · (eix·ξΦ) = eix·ξD(ξ) · Φ,

where D(ξ) = ∇ + iξ.
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It is well-known that if u ∈ D′
#(Y ), where D′

#(Y ) is the space of the Y−periodic

distributions on RN (see [18]), then

u =
∑

p∈ZN

upe
ip·x, (7)

in the sense of distributions. Here up are complex numbers such that

|up| ≤ C(1 + |p|)M p ∈ Z
N ,

for some C,M ≥ 0. In the same manner, if v ∈ L2
#(Y ) then,

v =
∑

p∈ZN

v̂(p)eip·x,

in the sense of L2(Y ) and v̂(p) is defined by

v̂(p) =
1

(2π)N

∫

Y

v(x)e−ip·xdx,

moreover,

1

(2π)N

∫

Y

|v(x)|2dx =
∑

p∈ZN

|v̂(p)|2, (8)

i.e., (v̂(p))p∈ZN ∈ l2(ZN ,C). Identity (8) allows us to identify L2
#(Y ) with l2(ZN ,C).

According to the above facts, we can alternative define H1
#(Y ) as follows

H1
#(Y ) = {v ∈ D′

#(Y ) | (vp(1 + |p|2)
1
2 )p∈ZN ∈ l2(ZN ,C)},

where vp, with p ∈ ZN , are the coefficients given in (7). Furthermore, for each s > 0
we can define

Hs
#(Y ) = {v ∈ D′

#(Y ) | (vp(1 + |p|2)
s

2 )p∈ZN ∈ l2(ZN ,C)}.

This definition is similar to the one of the classical Sobolev spaces on RN via Fourier
series instead of Fourier transform. Moreover, as in the case of Sobolev spaces on
RN , we have

(

H1
#(Y )

)′
= H−1

# (Y ).

Our next purpose is to obtain a generalized version of De Rham’s Theorem for
periodic functions. We start recalling the following definitions:

χ(Ω) ≡ {u ∈ H−1(Ω) | ∇u ∈ H−1(Ω)}.

By using Fourier transform it can be proved that χ(RN ) = L2(RN ) (see [21]) and
hence, by using a standard reflexion technique, χ(RN

+ ) = L2(RN
+ ). We next define

χ#(Y ) := {u ∈ H−1
# (Y ) | ∇u ∈ H−1

# (Y )}.

Lemma 2.1. χ#(Y ) = L2
#(Y ).

Proof. Let u ∈ χ#(Y ) be given. Then (up(1 + |p|2)−
1
2 )p∈ZN and

(pkup(1 + |p|2)−
1
2 )p∈ZN , k = 1, . . . , N , are elements of l2(ZN ,C), where up is given

in (7). Therefore,
( 1+|p|

(1+|p|2)
1
2

up

)

p∈ZN
∈ l2(ZN ,C) and thus, (up)p∈ZN ∈ l2(ZN ,C).

This implies u ∈ L2
#(Y ).

Now, by using an appropiate partition of 1, we prove:
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Lemma 2.2. If T ⊆ Y is an open set with smooth boundary and Y ∗ = Y \ T .
Then,

χ#(Y ∗) = L2
#(Y ∗).

We recall the following lemma which will be useful in our study.

Lemma 2.3. [10, pp.18] Let B1, B2, B3 be three Banach spaces, S ∈ L(B1;B2)
and R ∈ L(B1;B3) be compact operators such that

‖u‖B1
∼= ‖Su‖B2

+ ‖Ru‖B3
, ∀u ∈ B1.

Then Ker(S) is a finite dimensional space, the mapping S is an isomorphism from
B1/Ker(S) onto Im(S) and Im(S) is a closed subspace of B2.

Lemma 2.4. The linear mapping

∇ : L2
#(Y ∗) → H−1

# (Y ∗)

has closed range in H−1
# (Y ∗).

Proof. To prove this result we will use Lemma 2.3. Let us consider the spaces
B1 = L2

#(Y ∗), B2 = H−1
# (Y ∗) and B3 = H−1

# (Y ∗), moreover we consider the

operators S = ∇ and the injection R from L2
#(Y ∗) into H−1

# (Y ∗). We note that

since the injection from H1
0,#(Y ∗) into L2

#(Y ∗) is compact, so the dual injection

from L2
#(Y ∗) into H−1

# (Y ∗) is also compact. Now, we must show that ||u||L2
#

(Y ∗)
∼=

||∇u||
H

−1

#
(Y ∗) + ||u||H−1

#
(Y ∗).

In fact, since ||∇u||
H

−1

#
(Y ∗) + ||u||H−1

#
(Y ∗) ≤ C||u||L2

#
(Y ∗), it is only necessary to

prove that

||∇u||
H

−1

#
(Y ∗) + ||u||H−1

#
(Y ∗)

is a complete norm on L2
#(Y ∗).

Let (un)n≥1 be a Cauchy sequence in the above norm. Then (∇un)n≥1 is a

Cauchy sequence in H−1
# (Y ∗) and (un)n≥1 is also a Cauchy sequence in H−1

# (Y ∗).

As H−1
# (Y ∗) is complete, it is easy to prove that there exists u ∈ H−1

# (Y ∗) such
that

lim
n→∞

un = u in H−1
# (Y ∗),

lim
n→∞

∇un = ∇u in H−1
# (Y ∗),

and thus u ∈ χ#(Y ∗) = L2
#(Y ∗), which completes the proof.

In a similar way, we can prove that ∇ : L2
#(ξ, Y ∗) → H−1

# (ξ, Y ∗) has a closed

range for each ξ ∈ Y ′. Now, if we define, for every ξ ∈ Y ′, div : H1
0,#(ξ, Y ∗) →

L2
#(ξ, Y ∗) by div u = ∇ · u, then it is not so difficult to prove that the dual

operator of div is −∇. Thus, since ∇ has a closed range we can conclude that
Ker(div) = Im(∇) (see [4] pp 29 or [24] pp 205).

From the previous result we can obtain a new version of the classical De Rham’s
Theorem.

Proposition 3. If ξ ∈ Y ′ and f ∈ H−1
# (ξ, Y ∗) are such that < f, v >= 0 for each

v ∈ H1
0,#(ξ, Y ∗), satisfying ∇ · v = 0, then f = ∇p, where p ∈ L2

#(ξ, Y ∗).
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In what follows we define

V#(ξ, Y ∗) = {u ∈ H1
0,#(ξ, Y ∗) | ∇ · u = 0}. (9)

In the same way, we consider

H#(ξ, Y ∗) = V#(ξ, Y ∗)
L

2
#(ξ,Y ∗)

, (V#(ξ, Y ∗) without topology).

The following result give us a characterization of H#(ξ, Y ∗).

Proposition 4. H#(ξ, Y ∗) = {u ∈ L2
#(ξ, Y ∗) | ∇ · u = 0, u · n|∂T = 0}.

2.2. Direct decomposition of L2(O) and H1
0 (O). The following lemma give us

a relationship between L2(O) and L2
#(ξ, Y ∗), for the proof the reader is referred to

[2], [14] or [16].

Lemma 2.5. Let φ, ψ ∈ L2(O) then the function φ(ξ; ·) defined by

φ(ξ;x) =
∑

p∈ZN

φ(x+ 2πp)e−2πip·ξ, (10)

satisfies

(i) φ(ξ; ·) ∈ L2
#(ξ, Y ∗), a.e. ξ ∈ Y ′.

(ii) φ(·; ·) ∈ L2(Y ′ × Y ∗), furthermore ‖φ(·; ·)‖L2(Y ′×Y ∗) = ‖φ‖L2(O).

(iii) φ(x) =

∫

Y ′

φ(ξ;x)dξ.

(iv) (φ(· + 2πm))(ξ;x) = φ(ξ;x)e2πim·ξ , for each ξ ∈ Y ′, x ∈ Y ∗.

(v)

∫

O

ψ(x)φ(x)dx =

∫

Y ′

∫

Y ∗

ψ(ξ;x)φ(ξ;x)dx dξ.

Lemma 2.5 amounts to say that L2(O) can be written as a direct integral de-
composition (see [8] and [9] for details), that is:

L2(O) =

∫ ⊕

Y ′

L2
#(ξ, Y ∗)dξ =







(fξ)ξ∈Y ′ ∈
∏

ξ∈Y ′

L2
#(ξ, Y ∗)

∣

∣

∫

Y ′

‖fξ‖L2(Y ∗)dξ <∞







.

In the same manner, if v ∈ H1(O), then

v(ξ;x) =
∑

p∈ZN

v(x+ 2πp)e−2πip·ξ, (11)

belongs to H1
#(ξ, Y ∗) and satisfy (ii)-(v) of Lemma 2.5, moreover:

H1(O) =

∫ ⊕

Y ′

H1
#(ξ, Y ∗)dξ, H1

0 (O) =

∫ ⊕

Y ′

H1
0,#(ξ, Y ∗)dξ.

The following result provides a Poincaré type inequality for H1
0 (O).

Proposition 5. There is a constant C > 0 such that,
∫

O

|u(x)|2dx ≤ C

∫

O

|∇u(x)|2dx ∀ u ∈ H1
0 (O).

Proof. By Proposition 2 there exists C > 0, which does not depend on ξ, so that
∫

Y ∗

|u(ξ;x)|2dx ≤ C

∫

Y ∗

|∇u(ξ;x)|2dx.



562 C. CONCA, L. FRIZ AND J. H. ORTEGA

Therefore,
∫

O

|u(x)|2dx =

∫

Y ′

∫

Y ∗

|u(ξ;x)|2dxdξ

≤ C

∫

Y ′

∫

Y ∗

|∇u(ξ;x)|2dxdξ

= C

∫

O

|∇u(x)|2dx.

The above result implies that ‖∇u‖L2(O) is a norm on H1
0 (O), which is equivalent

to the norm of H1(O).

3. Bloch waves for the Stokes system. This section is devoted to the study of
the Bloch waves for the Stokes system. To do this we study the Green’s operator
associated to this model.

3.1. The Stokes system. Firstly, we recall the classical De Rham’s Theorem:

Proposition 6. [19] Let Ω be an open subset of RN and f = (f1, ..., fN ). fi ∈
D′(Ω), i = 1, .., N . A necessary and sufficient condition to have f = ∇p for some
p ∈ D′(Ω), is that < f, v >= 0 ∀v ∈ C∞

c (Ω) such that ∇ · v = 0.

Proposition 7. [22, pp. 14] Let Ω be a bounded Lipschitz domain in R
N .

(i) If a distribution p has all its first-order derivatives Dip, 1 ≤ i ≤ N , in L2(Ω),
then p ∈ L2(Ω) and ‖p‖L2(Ω)/R ≤ C(Ω)‖∇p‖L2(Ω).

(ii) If a distribution p has all its first derivatives Dip, 1 ≤ i ≤ N , in H−1(Ω),
then p ∈ L2(Ω) and ‖p‖L2(Ω)/R ≤ C(Ω)‖∇p‖H−1(Ω).

In both cases if Ω is any open set in RN , p ∈ L2
loc(Ω).

In this section we consider the following Stokes system






−∆u + ∇p = f in O
∇ · u = 0 in O

u = 0 on ∂Tj, j ∈ ZN .
(12)

where O is defined in (3) and Tj in (4).
In what follows we consider the spaces

V(O) = {u ∈ H1
0(O) | ∇ · u = 0}

and

H(O) = V(O)
L

2(O)
= {f ∈ L2(O) |∇ · f = 0, f · n = 0 on ∂Tj, j ∈ Z

N}.

It is not so hard to prove that

V(O) =

∫ ⊕

Y ′

V#(ξ, Y ∗)dξ, H(O) =

∫ ⊕

Y ′

H#(ξ, Y ∗)dξ

where V#(ξ, Y ∗) and H#(ξ, Y ∗) are defined in (9).
By taking v ∈ V(O) and multiplying the first equation of (12) by v and inte-

grating by parts, we obtain the following variational problem:






Find u ∈ V(O) such that
∫

O

∇u · ∇vdx =

∫

O

f · vdx, for all v ∈ V(O).
(13)
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If we define

a(u,v) =

∫

O

∇u · ∇vdx,

then it is clear that a is a coercive bounded bilinear form in V(O), then from
Lax-Milgram lemma, Proposition 7 and definition of V(O), we obtain

Theorem 3.1. The problem (13) has a unique solution u ∈ V(O). Furthermore, it
satisfies (12) in the following weak sense: There exists a pressure p ∈ L2

loc(O) such
that:

−∆u + ∇p = f in the distribution sense in O

∇ · u = 0 in the distribution sense in O

u = 0 on ∂Tj, j ∈ Z
N , in the trace sense.

We define the Green’s operator associated to the Stokes system

G : H(O) → H(O)
f 7→ u,

(14)

where u ∈ V(O) is the unique solution of (13).

3.2. Bloch waves for the Stokes system. Let ξ be a parameter in Y ′ = [0, 1[N

and fξ ∈ L2
#(ξ, Y ∗) be a given function. Let us consider the following variational

problem:






Find uξ ∈ V#(ξ, Y ∗) such that,
∫

Y ∗

∇uξ(x) · ∇vξ(x)dx =

∫

Y ∗

fξ(x) · vξ(x)dx, ∀vξ ∈ V#(ξ, Y ∗),
(15)

where V#(ξ, Y ∗) = {vξ ∈ H1
0,#(ξ, Y ∗) | ∇·vξ = 0}. As in the above subsection, by

using Lax-Milgram Lemma, we can prove that problem (15) has a unique solution.
Moreover, by Proposition 3 we establish:

Theorem 3.2. For every ξ ∈ Y ′, the problem (15) has a unique solution uξ ∈
V#(ξ, Y ∗). Furthermore, there exists pξ ∈ L2

#(ξ, Y ∗) such that






−∆uξ + ∇pξ = fξ in the sense of H−1
# (ξ, Y ∗)

∇ · uξ = 0 in the sense of L2
#(ξ, Y ∗)

uξ = 0 in the trace sense on ∂T.

(16)

Now, we define the Green’s operator associated to (16)

G(ξ) : H#(ξ, Y ∗) → H#(ξ, Y ∗)

fξ 7→ uξ,

where uξ ∈ V#(ξ, Y ∗) is the unique solution of (15). Here H#(ξ, Y ∗) = {f ∈
L2

#(ξ, Y ∗) | ∇ · f = 0 and f · n = 0 on ∂T }. Again, as in the case of operators

G in the above subsection, for any ξ ∈ Y ′, G(ξ) is bounded compact self-adjoint
operator. Moreover, we have

∫

Y ∗

G(ξ)fξ · fξdx > 0, fξ 6= 0.

Thefore, by using the standard theory of compact self-adjoint operators, we obtain
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Theorem 3.3. Let ξ ∈ Y ′ be fixed. Then there exists a subsequence of eigenvalues
(µn(ξ))n≥1 for the operator G(ξ) each of which is of finite multiplicity. As usual,
repeating each value as many times as its multiplicity

µ1(ξ) ≥ µ2(ξ) ≥ . . . ≥ µn(ξ) ≥ . . > 0.

The corresponding eigenfunctions denoted by (Ψn(ξ, ·))n≥1 form an orthonormal
basis in H#(ξ, Y ∗).

Definition 3.4. The eigenfunctions {Ψn(ξ, ·) : ξ ∈ Y ′, n ≥ 1} given by Theorem
3.3 are so-called Bloch waves for the Stokes system.

Remark 2. a) If we define λn(ξ) =
1

µn(ξ)
, n ∈ N, then Bloch waves Ψn(ξ, ·) and

Bloch eigenvalues λn(ξ) are solution of














−∆Ψ + ∇p = λΨ in Y ∗

∇ · Ψ = 0 in Y ∗

Ψ = 0 on ∂T
Ψ, p are (ξ, Y ∗) − periodic functions.

(17)

b) From Lemma 2.5, by translating the test function v in 2πm, m ∈ ZN , problem
(13) can be written

∫

Y ′

∫

Y ∗

e2πim·ξ∇u(ξ;x) · ∇v(ξ;x)dxdξ =

∫

Y ′

∫

Y ∗

e2πim·ξf(ξ;x) · v(ξ;x)dxdξ,

∀v ∈ V(O), ∀m ∈ ZN , therefore,

∫

Y ∗

∇u(ξ;x) · ∇v(ξ;x)dx =

∫

Y ∗

f(ξ;x) · v(ξ;x)dx,

a.e. ξ ∈ Y ′, for all v ∈ V(O). In other words, the Green’s operators are related by:

Gf =

∫

Y ′

G(ξ)f(ξ; ·)dξ, ∀f ∈ H(O).

Theorem 3.5. Let v ∈ H(O) be given. Then the following integrals:

v̂n(ξ) =

∫

O

v(x) · Ψn(ξ, x)dx (18)

exists a.e. ξ ∈ Y ′, for n ≥ 1, where (Ψn(ξ, ·))n≥1 are the Bloch waves, and they
satisfy

‖v‖2
L2(O) =

∫

Y ′

(

∞
∑

n=1

|v̂n(ξ)|2)dξ. (19)

Moreover, we have the following inversion formula

v(x) =

∫

Y ′

∞
∑

n=1

v̂n(ξ)Ψn(ξ, x)dξ. (20)
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Remark 3. If we put Φ = e−ix·ξΨ and q = e−ix·ξp, then problem (17) becomes:















−D(ξ) · (D(ξ)Φ) +D(ξ)q = λΦ in Y ∗

D(ξ) · Φ = 0 in Y ∗

Φ = 0 on ∂T
Φ, q are Y ∗ − periodic functions,

where D(ξ) = ∇ + iξ. This is the spectral problem considered in [1] to obtain the
Bloch waves for the Stokes system in a perforated domain.
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