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ABSTRACT. We use a characterization of the fractional Laplacian as a Dirich-
let to Neumann operator for an appropriate differential equation to study its
obstacle problem in perforated domains.

1. Introduction. Given a smooth function ¢ : R™ — R™ and a subset T, of R",
we consider v (z) solution of the following obstacle problem:

vi(x) > @(z) forx el
(—A)*v* >0 for x € R" (1)
(—A)*v* =0 forx € R"\ T and for z € T if v°(x) > ¢(z).

The operator (—A)® denotes the fractional Laplace operator of order s, where s
is a real number between 0 and 1. It can be defined using Fourier transform, by
F((=A)PF£)(€) = |€**F(€). In particular, (1) can be seen as the Euler-Lagrange

~

equation for the minimization of the /I norm [l e = If(EIE°]|lr2 with the
constrain that f > ¢ on T.. We will see that this system of equations can also be
stated as a boundary obstacle problem for elliptic degenerate equations.

In (1), the domain R™ is perforated and the obstacle () is viewed by v°(z)
only on the subset T.. A typical example of T; is given by:

T. = | Ba(ek), (2)
A

with a® < . The goal of this paper is to study the asymptotic behavior of v® as
e — 0. When T is given by (2), the effective equation satisfied by the limit of v*
strongly depends on the radius a®: If a® is large enough, the limit turns out to be
an obstacle problem with obstacle ¢(z). On the other hand, if a® is small then the
limiting problem is a simple elliptic equation without any obstacle condition. It
is well known in the case of the regular Laplace operator (s = 1) that there is a
critical size for a® for which interesting behavior arises.
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In the case of the regular Laplace operator, this problem was first studied for pe-
riodic T; by L. Carbone and F. Colombini [2] and then in a more general framework
by E. De Giorgi, G. Dal Maso and P. Longo [9] and G. Dal Maso and P. Longo [11],
G. Dal Maso [10]. Our main reference will be the papers of D. Cioranescu and F.
Murat [3, 4], in which the case of a periodic distribution of balls is studied. More
precisely, they prove that when s = 1 and if 7. is given by (2) with a® = rg =
then the function v = lim,_ v° solves

—Av = p(v =) =0,

where p is a real number (depending on ) and w_ = max(—w,0). The obstacle
condition thus disappears when ¢ goes to zero, but it gives rise to a new term
(v — @)_ in the equation.

In [5], we generalize this result (still with s = 1) to sets T. that are the union
of small sets S:(k) C R™ still periodically distributed, but with random sizes and
shapes. More precisely, we introduce a probability space (€, F,P) and we assume
that for every w € 2 and every £ > 0 we are given some subsets S.(k,w) such that

S.(k,w) C B-(ck).

We then consider

T.w)= | S:(k,w).

kezn

The only assumptions necessary to generalize the result of D. Cioranescu and F.
Murat [3]-[1] is that each set Sc(k,w) is of capacity of order e™: cap(S:(k,w)) =
"~ (k,w) (this is where the critical exponent e7~2 comes from) and that the y(k, w)
have some averaging properties (stationary ergodicity).

In the present paper, we extend the result of [5] to the case of fractional Laplace
operators s € (0,1). We will show that under appropriate assumptions on the size
of the sets S.(k,w), the function v(z) = lim._,o v*(z) solves

(—A)0 — (o — ) =0.
In the particular case of sets T, of the form (2), the critical size is now given by

—_n__
aE =70 gn—2s

(the critical exponent —"5— is related to the s-capacity of the sets S.(k,w)).

In the remainder of this section, we briefly motivate the problem and we intro-
duce the extension problem for the fractional Laplace operators, which allows us to
rewrite (1) as a boundary obstacle problem for a local (degenerate) elliptic operator.
The precise hypothesis on T, (w) will be detailed in the following section in which
the precise statement of the main theorem is also given. The remainder of the paper

is devoted to the proof of our main statement.

1.1. A semipermeable membrane problem. When s = 1/2, (1) naturally
arises as a boundary obstacle problem for the regular Laplace operator (also know as
Signorini problem): We consider the following problem set in the upper-half space
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R = {(z,y) e R* x R; y > 0}:
0 for (z,y) € R
) forxz el
Oyu(z,0) < 0 forzeR"
0 forz € R"\ T and for z € T. if u(z,0) > ¢(x)
with the boundary condition

lim wu(z,y) = 0.

Yy—oo

It is then well-known that v(z) = w(z,0) is solution of (1) with s = 1/2 (see [14]
and [7] for details).

It can be of interest to state equation (3) in a bounded domain D C R’
Introducing

Y=Dn{y=0} and T =9DN{y>0},
we can consider the following boundary obstacle problem:
—Au(z,y) =0 for (x,y) € D
u(z,0) > p(x) forzeXnT,
Oyu(zr,0) < 0 forzxeX
Oyu(z,0) = 0 for x € ¥\ T, and for z € T, if u(z,0) > ¢(z)

with the boundary condition

u(z,y) = g(x,y) for (z,y) € T.

Equation (4) arises, for instance, in the modeling of diffusion through semi-
permeable membranes (such as the membrane of a cell): The membrane is modeled
by the surface . The outside concentration of molecules is given by ¢(z), and the
transport of molecules through the membrane and in the direction of the concen-
tration gradient is possible only across some given channels (represented by the set
T.) and only from the outside of the cell ({y < 0}) toward the inside of the cell
D. At equilibrium, the concentration inside the cell is then given by the solution

u(zx,y) of (4).

1.2. An extension problem for fractional obstacle problems. Following L.
Caffarelli, S. Salsa and L. Silvestre [7], we can actually rewrite (1) as a boundary
obstacle problem for all fractional powers s € (0, 1). We rely for this on the following
extension formula established by L. Caffarelli and L. Silvestre [6]: For a given

function f(x) defined in R", and for a € (—1,1), if we define u(z,y) by
—div (y*Vu) =0 for (z,y) € R )
u(z,0) = f(x) for z € R™,

then
(~A) (&) = lim 470y u(z,v)
with
s=(1-a)/2.
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We can thus rewrite the fractional obstacle problem (1) as follows:
—div (y*Vu®) =0 for (z,y) € R}
uf(x,0) > p(z) for v € T,
111% y*oyus(z,y) <0 for x € R" (6)
y—}
111% y*oyut(z,y) =0 for x € R"\ T, and = € T. N {u® > ¢}
y—}
where a = 1 — 2s (note that a € (—=1,1)). Our main result will concern problems
such as (6) with possibly bounded domain D instead of R’/
In the sequel, the theory of degenerate elliptic equations in weighted Sobolev

spaces will play an important role. We refer to [13] for many results that will be
used in this paper.

1.3. Variational formulation. The system of equations (6) can also be written
as a minimization problem. For a given open subset D of R’}rﬂ, we denote by
L?(D, |y|*) the weighted L? space with weight |y|* and by W12(D, |y|*) the corre-
sponding Sobolev’s space. We have

5112120, e = /D Iyl ul? da dy + /D 117 Vuf? dz dy.

We then introduce the energy functional:

1 a
S = [ SlaleVul? dody
D
and the set
K. ={veW"*D,|y|"); v(z,0) > ¢(z) for z € T-(w), v=gonT}.

It is readily seen that (6) is the Euler-Lagrange equation associated to the mini-
mization problem:

S = inf s),  u ek (7)
veEK*®
(Note that since K. is closed, convex and not empty, (7) has a unique solution

u® e K,).

Finally, we notice (see [6]) that if u(z,y) is the extension of a function f(x) as
in (5), then

/ 1] Vuf? d dy = / I
Ri+1 Rn

In particular, the minimization problem (7) is equivalent to the variational formu-
lation of problem (1).

FOI de = 1117 o

In this paper, we study the asymptotic behavior of the solutions of (7) for any
open subset D of R’}rﬂ. The assumptions and the main result are made precise in
the next section. The proof of the main theorem, which is detailed in Section 3,
relies on the construction of an appropriate corrector. This construction is detailed
in Sections 4 and 5.
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2. Assumptions and main result.

2.1. The set T.. We consider a probability space (2, F,P). For all w € Q, the set
T.(w) is given by:
T.(w)= | S:(k,w),
kezn
where the sets S.(k,w) C R™ satisfy the following assumptions:

Assumption 1: For all k € Z" and w € Q, there exists v(k,w) (independent of )
such that
capy(Se(k,w)) =" v(k,w),
where cap,(A) denotes the s-capacity of subset A of R"*1 (defined below).
Moreover, we assume that

Se(k,w) C B, = (€k) for all k € Z" a.e. w € Q, (8)

n—2s

for some large constant M, and that there exists a constant ¥ > 0 such that

v(k,w) <7  forallk € Z" and a.e. w € €. 9)

This first assumption defines the critical size of the set 7. It will guarantee that
cap,(T;) remains finite as € goes to zero. A natural definition for the s-capacity of
a subset A of R™ is the following:

cap,(A) = inf {/]}{Ja%}f(g)fdg; feHIRY), f(z) >1forz € A}

(note that the case s = 1 corresponds to the “classical” capacity involving the H}
norm). Using the extension problem for the fractional Laplace operator (see [6] for
details), an equivalent definition (up to a multiplicative constant) is given by

cap,(A) = inf {/ Y |Vh? dedy; he Wy * (R |y|?), h(z,0) > 1,z € A}.
R

n+1
We will use this second definition in this paper. If B is a n-dimensional ball, then
its s-capacity in R"*! is given by

n—1+a 2s

capg (B;l) = Cpt1—aTl = CnJrQSTn_
for some constant c¢,. Assumption 1 is thus satisfied in particular if the sets S¢ (k,w)

are balls centered on eZ" with radius r(k,w)e ™% .

Assumption 2: The process v : Z"™ x  +— [0,00) is stationary ergodic: There
exists a family of measure-preserving transformations 1y : Q — Q satisfying

vk + kK w)=~k,ww) for al k,k' € Z" and w € Q,

and such that if A C Q and A = A for all k € Z, then P(A) =0 or P(A) =1
(the only invariant set of positive measure is the whole set).

This second assumption is necessary to ensure that some averaging process occurs
as e goes to zero (the hypothesis of stationarity is the most general extension of
the notions of periodicity and almost periodicity for a function to have some self-
averaging behavior).
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2.2. Main result. We are now ready to state our main result:
Theorem 2.1. Let D be an open subset of R (n > 2), denote
Y =Dn{y=0} I=0Dn{y >0}

and let T-(w) be a subset of X satisfying Assumptions 1 and 2 above.
There erists a constant g > 0 such that for any p(x,y) € CH1(D) the solution

uF(,y,w) of
1
min {5 [ 9o dsdys 0 € WiHDL Iy, v(2.0) > o(0.0) Jor € Ts<w>} |
D

converges WH2(D, |y|*)-weak and almost surely w € Q to a function u(z,y) solution
of the following minimization problem

1 1
win {3 [y 19 dody + 5 [ aolo = o (0.0 dei v € WDy}
D b))

where w_ = max(0, —w).
If, moreover, there exists v > 0 such that y(k,w) > v for all k € Z" and a.e.
w € Q, then ag > 0.

In particular the function @(x,y) solves
—div (y*Vu) =0 for (x,y) € D
lir% Yo u(x,y) = ap(@— ¢)—(z,0) forx e X
y*}

u(z,y) =0 for (z,y) e

Remark 2.2. When D is a bounded subset of R ", the condition u € Wy (D, |y|*)
could easily be replaced by

ueWh(D,lyl*),  ulz,y) = g(x,y) for x € 0D N {y > 0}
for some function g(z,y) € L>(0D N {y > 0}).

We stated Theorem 2.1 in its most general form. It contains the semipermeable
membrane problem, as well as our original problem (1) with the fractional operator.
More precisely, if we have D = R*" and if we consider the trace v(z) = (z,0) in
Theorem 2.1 we get:

Corollary 2.3. Let T. be a subset of R™ (n > 2) satisfying Assumptions 1 and
2 above. There exists ag > 0 such that for any ¢(x) € CHYR™), the solution
ve(z,w) of (1) converges, as ¢ — 0, H*(D)-weak and almost surely to a function
v(z) solution of
(—A)°v —ap(v —p)- = 0.
As in Cioranescu - Murat [3, 4] and Caffarelli-Mellet [5], the proof of Theorem

2.1 relies on the construction of an appropriate corrector. More precisely, we use
the following result:

Proposition 2.4. Let T.(w) be a subset of R™ satisfying Assumptions 1 and 2
above. There exists a non-negative constant ag such that for every bounded subset
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D of R, there is a function w§(z,y,w) defined in D and satisfying

w(z,0) =1 forz € T.(w)N(DN{y=0}) (10)
[w[ze(p) < C (11)
w® — 0 WY2(D, |y|*)-weak a.s. w € Q (12)

and

For all sequences v¢(x,y,w) satisfying:
v¥(2,0) >0 forzeT(w)NXE
|| (D) < C

v — v in WH3(D, |y|*) — weak, a.s. (13)
and for any ¢ € D(D) such that ¢ > 0, we have:

lim [ y*Vw® Voodrdy > —/ ap ¢ dx
e—0 Jp )
with equality if v°(x,0) =0 for x € T.NX.

The proof of Proposition 2.4 will occupy most of this paper. We stress the fact
that Assumptions 1 and 2 are sufficient but by no mean necessary to the proof of
this Proposition. Any set T.(w) such that Proposition 2.4 holds would be admissible
for Theorem 2.1.

The condition (13) may seem rather obscure and the next Lemma will suggest
a nicer (but stronger) condition to replace it. However (13) is the condition that
appears naturally in the proof of Theorem 2.1.

Lemma 2.5. Let D be a bounded subset of Rfrl, and assume that w® satisfies
—div(y*Vw®) =0 for (z,y) € D
we(z,0) =1 forx e T (w)NX (14)
lim,, o y*Oyw® (z,y) = ao forxe¥.NX
limy, o y*Oywe (z,y) <0 forzeT.NX

together with (11) and (12). Then (13) holds.

This lemma also gives an indication of how to construct w®(z,y,w): We will look
for a constant ag such that the solution of (14) converges to zero in W2(D, |y|®)-
weak.

Proof. Let v¢ € L>(D)NW2(D, |y|*) be such that v*(z,0) > 0 on 7. N % and let
¢ be a smooth test function with compact support in D. Then, we have:

0 = / div (y*Vw) v dx dy
D
= —/ Yy opVuw® - Vo© dzdy—/ y*Vo - Vwo® drdy
D D

- / lim (y*0,w®) v° ¢ dx — / lim (y*0yw®) v° ¢ dz.
b 1. ¥=0

\T. Y0
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Since limy 0 y*dyw*(z,y) < 0 and v*(z,0) > 0 for z € T, we deduce:

/yagbVwE-Vvsd:cdy > —/ yanbVwEvEd:cdy—/ ag v Pdx.
D D s,
> —/ yanbVwEvEd:cdy—/ agv® pdx.  (15)
D

P

with equality if v°(z,0) = 0 for € T.. In order to pass to the limit in (15), we
note that we have the following convergences:

w® —0 W'2(D, |y|*)-weak a.s. w €,
and
v& — v L*(D, |y|*)-strong a.s. we .
Hence the first term in the right hand side of (15) goes to zero. Moreover we have
v°(-,0) — v(+,0) H*(%)-weak and L?*(X)-strong a.s. w €,
so (15) gives

y*oVw® - Vo© drdy > —/ Qg v @dr.
D b

with equality if v*(z,0) = 0 for x € T. O

lim
e—0

2.3. Related problems. Before turning to the proof of Theorem 2.1, we briefly
mention other results that follow from Proposition 2.4: If we consider energy func-
tionals of the form

1
F(v) = —/ y* | Vul? da:dy+/ uhdz
2Jp b
for some h € L*°(¥), then a proof similar to that of Theorem 2.1 shows that the
homogenization of the following equation
v (z) > p(x) for z € T,
(=A)*v® > h(z) for z € R"
(=A)%v® = h(z) for z € R"\T. and on T; if v > ¢
leads to
(—A)’v—ap(v—p)-=h in R".
More interestingly, we can replace the constrain v > ¢ on T, by a Dirichlet

condition of the form v* = 0 on 7.. This amounts to minimizing ¢ (v) in the
convex set

K. ={ve W3R, |y|); v(z,0) = 0 for z € T (w)}.
The corresponding Euler equation is
(=AY ve(z) = h(z) forz e R™\ T,
{ ve(x) =0 for z € OT..
We can then show that the solution v (z) converges to a function v(z) solution of

(—A)Yv—apv=nh in R".
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3. Proof of Theorem 2.1. In this section, we prove that Theorem 2.1 follows from
Proposition 2.4. For the sake of simplicity, we assume that D is a bounded domain
in R’ffl. This allows us to take the corrector w®(z,y,w) given by Proposition 2.4
and corresponding to the domain D. When D is unbounded, we note that every
integral involving w® is computed with a compactly supported test function ¢. We
can thus use, for each of them, the corrector w® corresponding to the domain supp ¢.

The final result is of course independent of w*®.

The maximum principle and the natural energy estimate easily give that u®
is bounded in L>(D) N W, (D, |y|*) almost surely. In particular, there exists a

function u(z, y,w) such that
ut — 7T Wy2(D, |y|%) — weak a.e. w e Q.
In order to prove Theorem 2.1, we have to show that

Ha(u) = inf Fa(v) ae we
veWy (D, y|®)

where _#, is the energy associated to the limiting problem, given by:

1 1
Falv) = 5/Dya|Vv|2da:dy—|—5/ ao(u — ¢)? d.

b
Equality (16) will be a consequence of the following lemmas:

Lemma 3.1. For any test function ¢ € D(D), we have
lim/ Y|Vt |2 dr dy = / apgpdr.
e—0 Jp )
Lemma 3.2. Let u® be a bounded sequence in W12(D, |y|*) N L*(D). If
ut —u in WH2(D, |y|*)-weak,

then

liiriiglfj(us) > Za(u).

Proof of Theorem 2.1. For any v € D(D), we consider the function v+ (v — ¢)_w®
(note that this function satisfies the obstacle constrain). Its energy is given by:

S+ (v—p)u)
1

=5 | 9P+ 90 = o) Pur? (0 - ) PIVu P dady
D

+ [ 1[0 =0T — 9w Vet + VT =)t

+Vu(v — @)_Vwa] dz dy.

Lemma 3.1 and the weak convergence of w® to 0 in W12(D,|y|%) thus implies

lim 7 (v + (v = ¢)-uf) = Fa(v).

Morever, it is readily seen that the function v + (v — ¢)_w*® belongs to K.. Since

u® minimizes # on K., we deduce

AW+ (v—p)w) > 7(u),



532 LUIS CAFFARELLI AND ANTOINE MELLET

and therefore

Fo(v) > limsup # (u) for all v € D(D).

e—0

On the other hand, Lemma 3.2 gives

liminf 7 (u®) > 7. (%).

e—0
and so
Fa(@) < _Za(v) for all v € D(D).
Equality (16) follows by a density argument. O

Proof of Lemma 3.1. This first lemma is a straightforward consequence of (13): If
we take v° = 1 — w®, we have v°(z,0) = 0 for z € T, v*(x,y) bounded in L>°(D)
and v¢(z,y) converges to 1 in WhH2(D, |y|*)-weak, L*(D, |y|*)-strong, and almost
surely w € Q. We can thus use (13), which implies

—/ yaqﬁVwE-V(l—ws)d:cdy—»/aogbda:,
D N
and so

/y“¢|Vw€|2dxdy—>/a0¢dx

D )

for all ¢ € D(D). O

Proof of Lemma 3.2. Following Cioranescu-Murat (see [4], Proposition 3.1), we eval-
uate the quantity

/ ly|*|V (uf — (2 + (2 — @) _w®))|]* da dy
D

for some test function z with compact support in D and then take the limit as ¢
goes to zero.
Using (12), we obtain:

liminf/ Y| VuE P dedy > 2/
e—0 D

y*Vu-Vzdrdy — / Y| Vz|? dx dy
D D

+2lim [ y*(z — ¢)-Vu® - Vu® dzdy
e—0 Jp
—lim [ y"(z — ¢)2|Vw|? dz dy.
e—0 Jp

Lemma 3.1 yields

e—0

lim [ y*(z — )|V *dedy = / ao(z — )2 da.
D by
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Property (13), together with the facts that u® € L*°(D) and (u® — ¢)(z,0) > 0 for
x € Ty, implies

lim [ y*(z—¢)-Vu* -V = lim [ y*(z—¢)_V(u° —¢) - Vwdxdy
e—0 Jp e—0 Jp

+lim [ y*(z —¢)_Ve- -V dedy
e—0 Jp

> _/Z%(a_@(z_@,dx.

It follows that for any test function z € D(D) we have:
liminf/ Y \Vus P dedy > 2/ yaVE-Vzda:dy—/ Y|V z|? dx dy
=0 Jp D D

2 / 0@ - 9)(z — ) da

- /2 ao(z — @)% da.

We can now take a sequence z, that converges to u strongly in W2(D, |y|*) and

such that z,(-,0) converges to u(-,0) strongly in L?(%,|y|*). Using the fact that

(T—9)(T@— ). =—(T—p)?, we get

1iminf/ Y| Vu P dedy > / ya|Vﬂ|2d:cdy+/ o (T — )% d.
=0 Jp D by
which concludes the proof. O

4. The auxiliary corrrector.

4.1. Notations and scheme of the proof. We recall that
R™H = {(z,y) € R" x R; y > 0},

and we fix a bounded domain D C R’ffl. For any zg € R™ and yo > 0, we introduce
the following notation for the Euclidian balls:

By (w0, y0) = { (2,y) € R™1; (jo — ol + |y —ol?) /* <7},
B; (20,0) = By(x9,0) N {y > 0},
Bl'(zg) ={z € R"; |z — zo| < r}.
4.1.1. The fundamental solution. We recall (see [7] for details) that the function

Enik—1
m2 (3=
h(z,y) = Lﬂil with v, = #)
5 5| i—lta 4
2% + 9?2

3

solves

—div (y*Vh)(z,y) =0 fory >0
lim "0, (2. ) — ~3(z),
where d(z) denotes the Dirac distribution centered at 0 in R™. We also have
div (y*Vh) = —pin,q0(z,y) in R"T!

where §(x,y) denotes the Dirac distribution centered at 0 in R"*! and for some
constant fiy, 4.
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4.1.2. An auxiliary corrector. One of the key points in the proof of Proposition 2.4
is to see that away from ek, the set S.(k,w) is equivalent to a (n+1)-dimensional
ball. More precisely, we introduce the capacitary potential ¢f (z,y,w) associated to
the set S.(k,w). It is defined by the following minimization problem:

wt{ [ Vel dndys p € WHHRI ). (0.0) 2 10 € Su(ho) |
R

n+1

It is readily seen that, almost surely in w, ¢5(z,y,w) satisfies

—div (y*Ve5) =0 for (z,y) € R
05 (z,0) =1 for x € Se(k,w) (17)
limy, o y*Oy¢s(z,y) =0 for x ¢ Sc(k,w)

and by definition of the capacity as seen in the introduction, Assumption 1 yields
[ vV dedy = (h). (13)
R’Vl

Moreover, we have the following lemma (the proof of which is presented in Appendix
A):

Lemma 4.1. For any § > 0, there exists Rs such that

h(x - Eka y) < 65"7(k7 w)
n,a Hn,a
for all (x,y) such that |(x — ek, y)| > e7=17a Rs and for all € > 0.
Moreover, Rs depends only on the constant M appearing in Assumption 1 (in
particular, Ry is independent of k and w).

Or (T, y,w) — ey (k,w) h(z — ek, y)

This Lemma will play a fundamental role in the proof of Proposition 2.4 (see
Section 5). It suggests that at distance enita R away from ek, the corrector w®
should behave like the function

hi(l’,y,W) = En’)/(kjuw) h(.’II—Ek,y).

n,a
For later use, we introduce the notation
aa fr— 571771l+a .

The first step in the proof, and the main goal of this section is to construct a function
w® that would be a good approximation of w® away from ek and that behaves like
hy, at distance a*R from ¢k

For that purpose, we introduce

D. =D\ |J Blyuyae(ek), and  Sc =S\ By ). (),
keZm

where r(k,w) is chosen in such a way that hf(z,y) =1 on 8B:(k,w)a€

(ek), i.e.

r(k,w) = <M v(k,w) (19)

Hn.a

We will prove the following proposition:

) 1/(n—14+a)
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Proposition 4.2. There exist a non-negative real number «g (independent of the

choice of D) and a function w®(z,y,w) satisfying
—div(y*Vuw©) =0 for (z,y) € D.

_ < (20)
111% Y0, W (z,y) = ap for x € 3.
y—}

for almost all w € Q, such that

w(z,y) = hi(z,y) +o(l) for (z,y) € B;F/Q(sk) ND. as. weQ (21)

Moreover, we have:

() 17|l 5, < C

(i) ||{DE||L2(BE) — 0 ase — 0.
(iii)||V7ﬂa||L2(55) <C

The goal of this section is to establish Proposition 4.2. The main advantage of w*®
over w* is that the former only depends on the capacity of S.(k,w). This explains
why no assumptions are needed on the shape of S.(k,w). In the last section of the
paper (Section 5), we will see how to use both the functions ¢, (near k) and the
corrector w° (at distance a®R of €k) in order to prove Proposition 2.4.

4.1.3. Effective equation. The main idea to prove Proposition 4.2 (and in particular
(21)) makes use of the fact that hf(z,y,w) solves:

—div (y*Vh§)(z,y) =0 for (z,y) € R}
lirno yeoyhi(z,y) = —"v(k,w)o(x —ek) for x € R”
y—)

with

AVJ(k?w):V(kvw) & :

n,a

Proposition 4.2 will thus be a consequence of the following proposition:

Proposition 4.3. There exists ag > 0 such that the solution w(x,y,w) of

—div (y*Vw§) =0 for (z,y) e R}

lim y“0,wg = o — Z e"Y(k,w)d(x —ek) forxeX (22)
v=0 kEZP NS

wg(z,0) =0 forz e R"\ X

satisfies:
wi(z,y) = hi(z,y) +o(l) for (z,y) € B;F/Q(ak) NDas weQ  (23)

This proposition is the main step in the proof of Proposition 4.2 and its proof
will occupy most of section.

4.2. Proof of Proposition 4.3. In order to prove Proposition 4.3, it is more
convenient to work with the rescaled function

v (z,y,w) = e T (ex, ey, w). (24)
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Equation (22) then becomes:

—div (y*Vv§) =0 for (z,y) € R}

lin}J yO0yv5(z,y) = ap — Z F(k,w)o(x — k) forx € 718 (25)
v k€Z"ND

v5(2,0) =0 for z € R\ e713,

and (23) is equivalent to
v§(z,y,w) = hg(z,y,w) +o(e™ ) for (z,y) € B;r/2(£k) Ne'Das. we
where
r(k,w)n—1te
G R £ 2T

Note that hy = e~ on Bge, () with @° = ciTia,

In order to find the critical ag for which the solution v§ has the appropriate be-
havior near the lattice points k € Z", we follow the method developed by Caffarelli-
Souganidis-Wang in [8] and which was already the corner stone in [5]: We introduce
the following obstacle problem, for every open set A C R™ and for every real number
aeR:

hi(z,y) :=(k,w) h(x — k,y) =

v(z,0) >0 for z € R"
lim v(z,y) =0 for z € R"
y‘}OO
—div (y*Vv®) >0 for (z,y) € R (26)
lim y*Oyv(z,y) < a — Z Y(k,w)o(x — k) for xz € A.
=0 keZmND
We then define the smallest super-solution of the obstacle problem:
Vo, a(®,y,w) = inf {v(z,y) ; v solution of (26)}. (27)
It is readily seen that the function v, 4 satisfies
—div (y*VTq,a) =0 for (z,y) € R}
lim, 420y Ta,a(2,9) = a— 3 F(k,w)d(z — k) forz € AN {Tan >0} OO
=0 keZrnA
and
111% Y*0yTa,a(z,y) >0 for v € AN{Tq 4 = 0}. (29)
y—}

Remark 4.4. The function

hoa(@,y) = hi(,y) — a / Unilbe gy (30)
Br () (1o — 2 + 2) "3

satisfies
—div (y*Vhg) =0 for z € R7 ™!

lin})yaayhkya(:zr, y) — a—F(k,w)d(x — k) for z € By (k).
y‘}

It is radially symmetric around k and supj,—y, ;=0 hak(2,y) < 7771 In particu-
lar, the maximum principle and (28) implies that if B7*(k) C A, then:

5(1,14(:57 yaw) Z ha,k(xu yaw) - ,r,n—l-i-a for ((E, y) € B;r(k)7 a.s. (31)
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We now want to show that there exists a critical ag such that the followings hold:

1. The solution of the obstacle problem Ty a(z,y,w) behaves like hq k(x, v, w)
near any point k € ANZ".
2. The solution of (25) is not far from T, 4.

For that purpose, we introduce the following quantity, which measures the size
of the contact set along the boundary {y = 0}:

Mo(A,w) ={x € A; Ty a(x,0,w) = 0}

where |A| denotes the Lebesgue measure of a set A in R™.

The starting point of the proof is the following lemma:
Lemma 4.5. The random variable M, is subadditive, and the process
Tim(A,w) =m(k+ A w)
has the same distribution for all k € Z™.
Proof of Lemma 4.5. Assume that the finite family of sets (A;);er is such that

A;C A foralliel
AiNA; =0 foralli#j
|A — UierAi] =0

then v, 4 is admissible for each A;, and so U, 4, < Uuq,a. It follows that
{Ta,a(+,0,w) =0} N A; C {Ta,a,(-,0,w) =0}
and so

Ma(A,w) = Y [{Taal-,0,w) =0} N Al

el
< ZHva,Ai(',O,W):OH:Zma(Ai,W),
el el

which gives the subadditive property. Assumption 2 then yields
Tim(A,w) = m(A, Tpw)

which gives the last assertion of the lemma. O

Since My (A, w) < |4], and thanks to the ergodicity of the transformations 7y,
it follows from the subadditive ergodic theorem (see Akcoglu, Krengel [1] and Dal
Maso, Modica [12]) that for each a, there exists a constant £(a) such that

oy FalBi(0),0)

t=oe [By(0)]
where B;(0) denotes the ball centered at the origin with radius ¢. Note that the
limit exists and is the same if instead of B.(0), we use cubes or balls centered at

tzo for some xg.
If we scale back and consider the function

=/l(a) as.,

wz (Ia Y, w) - El_a 6&,35,1(5*110)(17/57 y/E,(.U), in Bl (IO)a

we deduce

e—0 |Bl|
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The next lemma summarizes the properties of £(a):

Lemma 4.6. (i) /() is a nondecreasing functions of c.
(ii) If o < 0, then £(a) = 0. Moreover, if the v(k,w) are bounded from below,
then {(a) = 0 for o positive small enough (0 < oo < C(7)).
(iil) If o is large enough (o > C(5)), then £(a) > 0.

The proof of this Lemma is rather technical and of little interest. It is presented
in full details in Appendix B. Using Lemma 4.6, we can define

ap = sup{a; £(a) = 0}.

We observe that g is finite (Lemma 4.6 (iii)) and that aq is non negative (Lemma
4.6 (ii)). Moreover, « is strictly positive if the v(k,w) are bounded from below
almost surely by a positive constant.

We now fix a bounded subset A of R™ and we denote by
E(i(ajava) = Ea,E*IA(Iava) (32)

the solutions of (27) corresponding to e~ A. We also introduce the rescaled function

W, (2,y,w) = '~ Ty (a/e, y/e,w).

In order to complete the proof of Proposition 4.3, we are first going to prove that
we, satisfies inequality (23), and then that the solution w§ of (22) behaves like w?,.
We recall the definition of hq j:

k n—1+a
ha,k(xay) = T( ) n—1+ta —OA/ il n—1lta dxlv
(Jz —k[*+y?) = By (k) (lz —2'|* +y?) 2
and we introduce the scaled function
hz,k(xv y) = Eliahﬂhk(x/sa y/E)

Note that when (x,y) € 8B;;T(k o) (k), then

h/a.,k(xa y) = EilJra - 04/ Pnilta n—1+a dCC/
By () (lz —a2'P+y?) 2

(we recall that a* = gﬁ)
We then have the following lemma:

Lemma 4.7. (i) For every o and for every k € Z'" N A, we have
T5,(2,y) > hax(z,y) —r" T for (z,y) € Bf (k) a. s.
(i) For every a > ag and every k € Z" N A, we have
T (7,Y) < hax(z,y) +ole™T)  for (z,y) € BDQ(k) a. s.
We deduce:

Corollary 4.8. (i) For every o and every k € Z™ N A such that r(k,w) > 0, we
have

T (2, y) > e T+ 0(1)  for (z,y) € 8B;r(k)w)as(k) a.e. w €
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and so
W, (2,y) > 1+ 0(e' ™) for (z,y) € BB:r(k’w)as(k) a.e. w €
for all .
(ii) For every a > ag and every k € Z™ N A, we have
T (2, y) < e T4 o(e7 YY) for (z,y) € 8B:'<k7w)65 (k) ae weQ
and so

we, (x,y) <1+ 0(1) for (z,y) € 8B:r(k7w)a5 (k) ae weq

Proof of Lemma 4.7. (i) This is an immediate consequence of (31).

(ii) The proof of (ii) is more delicate and is split in several steps.

Preliminary: First of all since A is bounded, we have A C B}(x) for some R.
Without loss of generality, we can always assume that B} (zo) = B'(0). If we
consider

’Ui(.f, Y, LU) = Ea,ale{L ({E, Y, LU),
the solution of (27) corresponding to A = B!, (0), it is readily seen that
e (2, y,w) < U (x,y,w) for all (z,y) € RTT ae. we Q.
It is thus enough to prove (ii) for vZ.
In the sequel, we will need the following consequence of Lemma 4.5 (see [8] for
the proof):
Lemma 4.9. For any ball Bl(xo) € B}(0), the following limit holds, a.s. in w:
. e (z,0,w) =0} N B, (e aq)|
lim £
e—0 |Bn |

e 1r

=/(a)

Step 1: We now start the proof: For any > 0, we can cover B', by a finite
number N (< C6~") of balls B = Bj._, (¢ 'x;) with radius de~' and center
e lx;. Since a > ag, we have £(a) > 0. By Lemma 4.9, we deduce that for every
1, there exists e; such that if ¢ < ¢;, then

{ve(z,0,w) =0} NB >0 as. w.
In particular, if ¢ <infe;, then v (2}, 0) = 0 for some 2} in B} a.s. w € Q.
Introducing B; = Bjs.-1(¢7x;) the n + 1 dimensional ball with same radius and
same center as B!, we now have to show that v remains small in each B;" as long

as we stay away from the lattice points k € Z". More precisely, we want to show
that

sup Ve (z,y) < C6t et
Unezn BY (D\BY, 4 (k)

Step 2: Let n(z) be a nonnegative function defined in R™ such that 0 < n(x) <1
for all 2, n(x) =1 in Bysg and n =0 in R" \ By 4. We then consider the function

— €
U= Vg, %z 1)
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where *, indicates the convolution in R™ with respect to the xz-variable. The func-
tion u(z,y) is nonnegative on 2B; and satisfies

{ div (y*Vu) =0 for (z,y) € 2B; (33)
—C <limy_oy*Oyu(z,y) < C for z € 2B}
where C' is a universal constant depending only on n, 7 and o. We deduce:
Lemma 4.10. There exists a universal constant C such that

sgzpu < Cigifu + ClmagTta,
Proof. We write u = u; + us where u; and us are two functions solution of

div (y*Vu,;) = 0 in 2B;" and satisfying
limo y*oyur(z,y) = HH%J y*Oyu(x,y) for x € 2BP,
y— y—
ui(z,y) =0 for (z,y) € 9(2B;") N {y > 0}

and
{ lin% y*Oyus(x,y) =0 for x € 2BY,
y‘}

uz(z,y) = u(z,y) for (z,y) € d(2B;") N {y > 0}.
The maximum principle and the fact that B; has radius de~! yield:
lur(z,y)| < C((20e™ ) —y'™?)
S 0(5571)17¢1

for all (x,y) € 2B;". On the other hand, boundary Harnack inequality for degenerate
elliptic equation (see [13]) implies

sup us < Ci]glf Us.

The Lemma follows easily. |

For the next step, we will need the following lemma:

Lemma 4.11. If v satisfies
div(y*Vv) =0  in B (z0,0)
and
lin}J y*ou(z,y) <a  forx e Bl (zo),
y—)

then 5
— ly|*v(z,y) dz dy < v(wo,0) + aC(n)r' ="
WnJraTnJra /Bj(zo,o)

where C(n) is a universal constant and wy4q = fBl(IO 0) ly|® dx dy.

Crnq1t , .
nitite — da’ satisfies

@) (jo—ar|24y2) "
div (y*Vw) =0 and HH%J y*Oyw < 0.
y—}

Proof. The function w(z,y) = v(z,y) + « [4.,

Proceeding as in [6], we now reflect w about the plane {y = 0}. The function

S w(x,y) ify>0
w(z,y) =
Y w(z,—y) ify<0
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is now defined in the whole space R™*! and it satisfies
div (Jy|*Vw) <0  in B,(x0,0).

We can thus use the mean value formula (see [7]):

e [ o) dedy
n4al B,(0,0)
< E(,To,())
< w(xg,0)
Sv(xo,())—l—a/ OnJr—lJrfd:c’.
B (zo) [T0 — @'|P71He

Since o > 0, we see that v < w and so

2 . 1 u
7%,1/ y'o(z,y)dedy < 7,1%/ ly|*@(x,y) dx dy
Wn+al B;t (20,0) Wntal B, (20,0)

Moreover, we have

Chy1y Cri1+ -
[l [ Gt i
B (zo) |70 — @] Br (o) 2]

hence the lemma. O

Step 3: We have v, (2;,0) = 0 and lim, .o y?0yv5 (z,y) < a for x € Byjs(x)).
Lemma 4.11 thus applies and yields:

/B+ ly|*vE (2, y) doe dy < C(vE,(2,0) + a) < C(a,n + a). (34)

{a(20.0)

We want to deduce an upper bound on u in B;. Since u > 0, we note that

1/4 1/4
/ Tu(x, T)dr > ( inf u) / Tdr.
0 T€[0,1/4] 0

Then, using the definition of u (and the fact that n(z) = 0 outside B?/4(3:)), we
deduce:

1/4
inf  u < Cinf/ Tu(x, T)dT
*Jo

(7,0
1/4
C’inf/ / TE (€, 7) dE dT
*Jo By, ,(x)

< C’/ TE (&, T) dE dT,
Bl/2(m;70)

+
31/4

IN

which, together with (34) yields:

inf  u<C(a,n). (35)
Bf/4(z;,o)

Using Lemma 4.10 we see that for every § and for & small enough, we have:

supu < Cigfu + 05T < Cla,n) + C§ e T < o5t e (36)
B; K
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Step 4: We now want to use (36) to get an upper bound on v%,. For that purpose,
we note that lim,_.oy*9,vs, > 0 in B; \ Ngez»{k}, and so a proof similar to that of
Lemma 4.11 yields

W (2,y) < Cnta / 70 (€, 7) de dr (37)
BT/S(z,y)

for all (z,y) € B; \ ﬂkezn§1/4(k}).
Inequality (37) and the definition of u(z,y) yield that for all (x,y) in B;\

mkGZnB1/4(k), we have:
y+1/8
Crta / / 7[5 (€, 7) de dr
y=1/8 By, (2)

IN

valz,y)

IN

y+1/8
Cn+a/ |7]%u(z, T) dT
y—1/8

< C(n+a)ly/* *supu.

7

Inequality (36) therefore implies

sup Ve (z,y) < C§tae e (38)
(2:9)€Unezn B (W)\BY, 4 (k)

Step 5: In order to complete the proof of the lemma, we only have to notice
that since infsp, , ha,k(z,y) > —Ca, (38) and the definition of v, imply

U5 (,y) < ha(z,y) + C6' %™ in By (k)
for all k € Z™. O

This conclude the proof of Lemma 4.7, and we are now in position to complete
the proof of Propositions 4.3. |

Proof of Proposition 4.3. For every a, we denote by ¢, the solution of the obstacle
problem (26) corresponding to A = 713

EZ(Ia Y, (.«)) - Ea,sflE(Ia Y, (.«)),
and by w¢, the rescaled function:
We (@, y,w) = '™ Vo em1x(a/e, y/e,w).

We recall that wf is solution of

—div (y*Vwg) =0 for (z,y) € R
lim y*0,wg(z,y) = ap — Z Y(k,w)o(x —ek) forzeXx

=0 keZmND

w§(x,0) =0 forx e R"\ &

In order to prove Proposition 4.3, we have to establish (23). This is done in two
steps using the properties of the function w¢:



RANDOM HOMOGENIZATION OF FRACTIONAL OBSTACLE PROBLEMS 543

1. For every a@ > ag, we have div(y*V(w§ — ws)) = 0 for (z,y) € RIT

limoy“(?y(wg —wi) > ap —a on ¥ and (w§ — ws)(z,0) = 0 on R™\ X.
y—)

We deduce

wg (2o, o) — Wi, (o, Yo) S/ e d,
“ s (o —2)2 + 93|

o) — &

and therefore
sup (i) — w(2,)) < OIS/ g o — a
(zy)eRY !
with
px =inf{p; ¥ C B,}.
In particular, we thus have
wg(z,y) < wi(z,y) + Ola — ap) for (z,y) € R,
and Lemma 4.7 (ii) (since o > ) yields:
wo(w,y) < R p(z,y) + Ol —ag) +o(1)  for (z,y) € Beja(ek) ass.

(Note that this argument shows the continuity of w¢, with respect to «).
2. Similarly, we observe that for o < ag, we have div (y*V(wg, — w§)) = 0 for
(z,y) € R (wg, — w§)(,0) =0 for » € R™\ ¥ and
;ii% Y0y (w, —wg)(z,y) > a —ag — aliye —o1ns for z € .
Proceeding as before, we deduce:

l-a Ca
sup (wf, —wg) < Cpg™ [|Z7 (ag — )
RYH

+COal{ws (z,0) = 0} N z|i;+“1] .
So Lemma 4.7 (i) yields
wi(w,y) > S, (@) — o(e) — O(ag — @) — Cal{wf,(w,0) = 0} N B[
for all (z,y) € B, 2(ek). Finally, using the fact that
lim [{w (z,0) = 0} N %] = &(a)|%] =0

for all a < ap we easily deduce the first inequality in (23).

4.3. Proof of Proposition 4.2. In order to complete the proof of Proposition
4.2, we construct a corrector w® which is equal to 1 on the (n+1)-dimensional balls
B;r(k,w)af (ek). More precisely, we recall that D is a bounded subset of R’ffl, and
we introduce
T.=Dn |J Bk
kEZ"NS
and
Se=3\ | Blhw(eh).
kezrns
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We then define a corrector w®(x, y,w) which will satisfy all the conditions of Propo-

sition 2.4, with the set TE instead of T;. In particular, we will prove that w® behaves

like hf near the B;r(k,w)af (ek).

We consider the following obstacle problem:

div (y*Vw) <0 for (z,y) € R \ 7.

lim y*0,w(x,y) < « for z € &

i " Oyw(z,y) < o - (39)
w(z,y) > 1 for (x,y) € T

w(z,0) =0 for z e R"\ X,

and we define:
w®(x,y,w) = inf {w(x, y,w) ; w solution of (39)}.

It is readily seen that w® satisfies (20). So in order to complete the proof of Propo-
sition 4.2, we only have to show that w® is bounded uniformly in L°°(D) and that
w® — 0 in VV]iCQ(D, ly|*)-weak as € goes to zero.

Strong convergence in L?(D, |y|%):
First of all, since w® =1 = h{ ;(z,y) + o(1) on T¢, (23) implies

wg(z,y) —o(l) < w(z,y,w) < wi(z,y)+o(l) inD ae wel,
which in turn implies (using Proposition 4.3 again):
hen(zy) —o(l) < @ (z,w) < i u(a,y) +o(l) Y(z,y) € Bl ,(ck).  (40)

In particular, we get:

”aEHLw(RTl) <C.

Moreover, a simple computation shows that
/ Yo |h o ? dxdy < O
B (ek)\Bgc (ek)

and it is readily seen that (40) implies

wi(z,y)| < C' ™" +o0(1) =o(1)  V(x,y) € |J OB.ja(ck).
kezn
We deduce:
(o > [ vaPdedy+o) [yl dedy
ke{znne—1x} ¥ Be\Bae b
and since #{Z" Ne~1¥} < Ce™™ for all n, we have:
||@5||2L2(D)‘y‘a) <e+ 0(1) = 0(1) (41)

In particular
()

w* — 0 in L*(D,|y|*) — strong.

as € goes to zero.
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Bound in W12(D, |y|*):
Using the definition if w® and an integration by parts, we get:

/ Y Vo P dedy = / y*Var - V(o — 1) dx dy
RYTIT. RTTNT,

= [ iy )@ (@) - D dotey)
oT.ux. Y

_ _040/~ (@ (,0) — 1) dz

e
The L*> bound thus yieds

/ VI Rdedy < CaolSe|(||@][~ +1) < C,
RTIT.

which completes the proof. |

5. Proof of proposition 2.4. This section is devoted to the proof of the main
proposition. We recall that the sets S.(k,w) are subsets of R™ with unspecified
shapes and they satisfy

cap, (Se(k,w)) = e"y(k,w).

Lemma 4.1 gives the existence of a function ¢}, (z, y,w) such that

div (y*Vg) =0 for (z,y) € R
p(x,0) =1 for z € Sc(k,w)
lir% yO0yp(z,y) =0 for x ¢ Sc(k,w)
y*}

and we let op and w*(z,y,w) be given by Proposition 4.2.
We then have:

1. For a given § > 0, Lemma 4.1 implies that for every k € Z™ and w € ) there
exists a constant Rs(k,w) such that

7(k,w)
RnglJra

in B . Ry \B;Ré (ek) and for all € > 0. It is readily seen that for any R there
exists e1(R) such that

a"R<e%/4 foralle <e (43)

|0k (2, w) = hi(,y, )] < S hg(z,y,w) <6 (42)

for some o > 1.
2. Inequality (21) in Proposition 4.2 implies that for given § and R, there exists
£2(d, R) < e1(R) such that for all € < e2(d, R), we have

~ 1) )
|w5(x) - h’i(xvyaw” S W m B:/2

(ek). (44)
Thanks to (43), Inequality (44) holds in particular in By ., \ B p(ck).

The corrector will be constructed by gluing together the functions ¢f, (near the
sets S:(k)) and the function w® (away from the sets S:(k)). The gluing has to
be done very carefully so that the corrector satisfies all the properties listed in
Proposition 2.4: For a given e, we define J. to be the smallest positive number such
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that (43) and (44) hold with 6 = 6. and R = Rs,. From the remarks above, we
see that ¢, is well defined as soon as ¢ is small enough (say smaller than e2(1, Ry)).
Moreover, for any § > 0, there exists 9 = e2(, Rs) such that 6. < ¢ for all e < &.
In particular

lim 6. = 0.
e—0

From now on, we write
R. = Rs..

In order to define w®, we introduce the cut-off function 7. (z, y) defined on D and
such that

ne(w,y) =1 for (w,y) € D\ J Bi,.p (ek)
keZ’Vl

Ne(z,y) =0 for (z,y) € | Blp (ck).
kezn

We can always choose 7 in such a way that
V.| < C(a®R.)™"  and |An.| < C(a°R.)™?
for (z,y) € By,._(ck) \ By p_(ek). We now set:
w®(2,y) = ne(2, )0 (2, 9) + (L= ne(m,w)) D oR(@w) 1ps oy (@0).
keZrnD
It satisfies

oi(z,y) for (z,y) € DN By (ck) VkeZ"

@ (z,y)  for (x,y) € D\ |J Bjyep, (k).
kezm

w®(z,y,w) =

To simplify the notations in the sequel, we denote

e (y) = Y Pe(@,9,0) 1 oy (2,9)-
keZ™ND

The properties of w® are summarized in the following lemma, which implies
Proposition 2.4:

Lemma 5.1. The function w® satisfies the following properties:
(i) w®(z,0) =1 for x € S. and ||w®||pepy < C.
(ii) w® converges to zero in L*(D, |y|*)-strong as € goes to zero.
(iii) w® is bounded in W2(D,|y|*).
(iv) we satisfies (13).

Proof. (i) Immediate consequence of the definition of w* since ¢f, = 1 on S.(k,w)
and w® and ¢f are bounded in L.
(ii) Since Se(k,w) C BY.,,(ek), we have:

n—14a
eyw) < e e ek
PelT,y,w) = Le v 1+ (I € 7y)
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for all (z,y) such that |(x — ek, y)| > a®M. Since ¢} < 1in Bs-p(ck), we get
[l 10 = )P oy

< / Iyl 5 ? dedy
kEZ"ﬁa 1y / B2as r(ek)

< > [ pyrdeay

kezrne—1x 7 Basnm(ek)

Mn 14+a 2
+C Z / ly|* (snih(x - 5/€)> dx
kezrne—1ys Y B2as (ro)(ek) \Bac 1 (€k) Vn—1+a

Z (aaM)n—i-l—i-a
keZrNe—1%

+C Z 5211(asM)n+172(n71+a)Mn71+a.
kEZ™Ne— 12

IN

Using (43) and the definition of ¢, we deduce:

2n—an

||(1_775)<P5||i2(D)‘yaD < O(M)gn—1+a_

Estimate (41) thus implies

w2, yapy < W0 [|L2o,pyap + (1 = n0e)¢°[|L2 (D, ya)) = o(1).

and therefore

&€

w® — 0 L?(D, |y|*)-strong.
(iii) Next, we want to show that w® is bounded in W12(D,|y|%). First, we

note that outside Upezn Be/o(ck) we have Vw® = Vw® which is bounded
in WH2(D, |y|"). Next, we see that in B s(ck), we have:

Vs = Vi (0" — @) +1eV© + (1 —n:) Ve (45)

Since w® and ¢° are both bounded in W12(D, |y|%) (thanks to (18)), we see
that in order to show that Vw*® is bounded in L?(D,|y|*), we only have to
show that

/ YV (@ — o) dady < C.
D

For that purpose, we notice that (42) and (44) yield

@~ il < Optrs 10 Baeas (k) \ Brae (<),
€
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and so, using the definition of 7. (x,y), we deduce:

/Dy“Wns(aE )P dedy

<> |/ I — ) de
keeznns Y B2reas (k)\BRreas (k)
L,
< Z (REG/E)”J’_]‘-’_U’(REGE) ’ 2(nfl+a)
keeZnrNE €
< Y Rt
keeZ"rNXE

< Ce™"e"6. = O,

where we used the fact that we can always assume that . < 1 and R, > 1.
For latter use, we note that we actually proved

/ Y| Vn (w0 — ¢°)|* dzdy — 0 when € — 0. (46)
D

(iv) It remains to show that (13) holds. We only show the inequality (the equality
follows easily). Let v® be a sequence of functions satisfying:

v (x,0) >0 for x € T,
[[0¥]|poe(p) < C

v — v in WH3(D,|y|*) — weak.

Then for any ¢ € D(D), we have:
—/ y*Vw® - Voo dr dy
D
= —/ y'Vne - Vo (w® — ¢%)pdedy — / y'Vu© - Voon. dx dy
D D
—/ YV - Voo (1 —ne) dx dy
D
= —/ Y Vne - Vo© (u° — )¢ da dy
D
+ / (lim y*0,w* )v°¢pn. dx + / (lim y*0y*)v ¢ (1 — n.) dz
» y=0 »y—=0
4 [ VT ene dedy+ [ 46 V6l - ) dody
D D

where we used the fact that div (y*Vw®) = 0 on supp 7° and div (y*V¢©) =0
on supp (1 — n®). The first term goes to zero thanks to (46) and the weak
convergence of Vo© in L?(D, |y|*), and the boundary terms satisfy

lim [ (lim y*0yw*)v¢n.dz = lm [ aov¢n.dx
y—0 e=0Jx

e—=0 J»
= 1im/aov¢)77dx
e—0 J»
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and
lim [ (lim y*0y¢°)v°p(l —me)de = lim [ (lim y®9y¢°)v¢p(1 —n.) dx
e—0 ) y—0 ) e—0 T. y—0 )
< 0

Finally, the last two terms can be rewritten as:

/ YOVEE - V(o) dedy + / YOVGE V(1 — 1)) ddy
D D
= /D y*V(w® — %) - (V) v°pda dy

+/ yaUEnEVﬁs-V¢dxdy+/ y* v (1 —n.) Ve© - Voda dy
D D

Using the weak convergence of Vw® and V¢°® to zero, we see that in order to
prove (13), it only remains to prove that

/ y'V(w® — %) - (Vn)v°ddrdy — 0 when e — 0.
D
Since v¢ is bounded in L, it is enough to show that
/ ly|“|V(w° — ¢°)||Vne| dzdy — 0 when £ — 0.
D

For that purpose, we recall that

_ 0 .
W — o] < RTEHCL in Byyep, \ By g,
€
and
div (y*V (w0 — ¢5)) =0 for (z,y) € B \ B;Rs/z
lim 40, (8" = ¢i)(@,y) = a0 for @ € Bluen \ Bilppo.

In particular, interior gradient estimates (see [7]) imply

V(w0 = ¢}) (aRe)™ + C(a”Re)™"

£
< e
€
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in B;:ZERE \B;RE. We deduce:
/D WV (@ — o)) [V | da dy

< ¥ /B V(@ — )| Ve da dy

+ +
keeZ"rNE 2a5R5\Ba5R5

Co. _9 u
< Z W(GERJ /B+ . ly|* dx dy

keeZmr Ny 2a5R5\Ba5R€

+ Z C’(asRs)*l*a/ ly|* dx dy

B .. \BT

keeZ"NZ 2a€ Re VW af Re
1) _
< Y (@R @R
keeznny T €
+ Z C(asRa)flfa(asRa)nJrlJra
keeZnrNXZ
055 —n/ & n—1+a —n/ & n
SiRanas (a®Re) + Ce "(a*R:)"™.
€

Using (43) and the definition of a¢, we deduce:
/ ||V (@° — ©°)| |Vne|dedy < Co. + Ce™o D),
D

which concludes the proof since o > 1 and lim._.¢ 6. = 0.

O

Appendix A. Proof of Lemma 4.1. We now turn to the proof of Lemma 4.1.
We take k& = 0 and we recall that ¢f is the capacity potential associated to S.(0).

It satisfies (17) and (18). We then introduce the function
G, &y, m)=hlz =&y —7)+hlx =&y +7)
which satisfies
dive (I7|"Ve,rG) = —pin,ad(x = &y = 7) = pn,ab(z = &y +7)

and

hn%)T“aTG(a:,f,y,T) =0
for all , £ and y. If y > 0, we deduce that for any function ¢(xz,y), we have:
/ TVe G(2,&,y,7)Ve (&, T)dE dT.
7>0
=— / div (7°Ve - G(x, &, y, 7)) (&, 7) d§ dT
7>0

_ /R lim 799, G(x, £, y, ) (€, 0) dé

n T—

= fin,ap(T,Y).
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Moreover, if ¢§(z,y) is the capacity potential associated to S¢(0), then (17) yields
/ TVe G2, &y, T)Ve rp5 (€, 7) dE dr.
7>0

= - G(x, &y, 7)div (T°Ve r05(E, 7)) d§ dr
7>0

- [ G0 tim 770, (6 7) e

0
_ _2/ ha — &,) lim 70,45 (€,7) dE.

Combining those two equalities, we get:

Mn,a(pi(xay) = _2/

h(z—&,y) lin%T“aTgog(f, T) dE.
5.(0) T—

Next, we note that (18) yields, after integration by parts and using (17):
o) = [ r Ve P g = [ lim rangge, ) de
R™ Se (0) L
and therefore

2y (0)h(z, y)

n,a
2

N _/'Ln,a, /SE(O) [h(x a 57 y) - h(Ia y)] anloT 87-%00(5, 7—) dg

o5z, y) —

In order to conclude, we recall that S.(0) C Bae-(0) and so we have |¢] < Ma®
in the previous integral. If (z,y) is such that |(x,y)| > Ra® with R > 8M, we
deduce that for all £ € S:(0), we have:

Ih(x =& y) = h(z,y)] < sup |V h(z =&, y)ll¢]

£*€Brac (0)
< sup i " a

£*€Bnrqac (0) ((,T - 5*)2 + y2) 2
< iﬂ

(.’II2 + yz)T

C
@2+ )]
CM

We can thus write

©o(,y) — uz E"W(O)h(%y)‘

where the right hand side is bounded by 5%5"7(0%(96, y) if R is large enough. [
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Appendix B. Proof of Lemma 4.6. (i) For a given set A, it is readily seen
from the definition of T, 4 that if o < «, then 7,/ 4 is admissible for the obstacle
problem with «: It follows that

VoA < TVar A for any «, o’ such that o/ < «
and so a — m,(A,w) is nondecreasing. The result follows from the definition of
().
(ii) If « is negative, then we have

lin% Y OyUap(z,y) <0 for z € R".
y‘}

Since Ta. 5 (7,y) > 0 for (z,y) € RTH, we deduce
Tag(2,0) >0 for z € R™.
It follows that mq (tB,w) = 0 for all t > 0, and so £(a) = 0 for all @ < 0.
If r(k,w) is bounded from below:

r(k,w)>r>0forall k€ Z" ae weQ,

then, we define

o ita Vn+ilta ’
(Jz|2 +y2) = By (Jz — /> + )"

with

_ Vn41
Co=r1" 1+“—a/ e de
B7 (e) |2

where e denotes any unit vector in R”. In particular, we have

o(x,0) =0if |z| =1,
and, if « is small enough

o(z,0) > 0if |z] < 1,
and

o(z,y) <0if |zl =1, y>0

(we note that ¢ is the sum of a term which is decreasing with respect to |z| and
one which is increasing). Since ¢ satisfies

lim y*dyp(w, y) = a —18(x) 2 o —7(0,w)d(x),
for all = € B}(0), we deduce
Ta,8(2,0) > p(x,0) >0 in BT (0).
Since we can do this in any ball B} (k), we must have m, (tB™,w) =0 for all t > 0,

and so /() = 0 for all a small enough.

(iii) We consider the function
=n—1+a
Y(x,y) = T—m - 04/ nilia —— da' + C,
(|z* +y%) By () (Jz —2/|> +y*) "=
where the constant C' will be chosen later. It satisfies

lim y*0y(w,y) = a —74(z) < a=75(0,w)é(z)  Va € By(0),




RANDOM HOMOGENIZATION OF FRACTIONAL OBSTACLE PROBLEMS 553

Y(z,y) — C when |z|* + y* — oo
and we note that ¢ (z,0) is radially symmetric. Moreover, when « is such that
a/ Vn+lta S

B (0) le1 — a[nTte
then

P(x,0) < C when |z| = 1.
Since div (y*Ve) = 0 for y > 0 and lim, o y*0y¥(x,y) = 0 for ¢ B7(0), the
strong maximum principle and Hopf Lemma yield that the minimum of ¢ (z,y) is

reached for y = 0 and = € B} (0), and with an appropriate choice of the constant
C, we can always assume that this minimum is O:

inf ¥(z,y) = inf ¥(z,0) =0.
) =l 000

Finally, if « is such that

1 1
_ d / > —n—1+a 4n+1 -1
a/B{‘(o) [|%1 —wrEe g — e |0 =T ( )

then v (z,0) reaches its minimum when |z| = R, with R, < 1/4.
We now consider the function ¢(z,y) defined by:

vz —k,y) for (z,y) € Bfr/4(k)
plz,y) =1 . / n41 + (.
infp p(x — k', y) for (z,y) € RY \Uk/B1/4(k)

We clearly have
lir% Yy Ooyp(z,y) < ag — y(k,w)d(x — k) for z € B, (k)
y*}
and
lin})ya oz, y) < ap for x € R™ \ Uy ?/4(]{3/).
y—)

In order to prove that ¢ is a supersolution for the obstacle problem, we only have
to check that

W(z —k,y) = inf(x —Ky)  for (x,y) € OB, (k)
or equivalently
U(w,y) =infy(e —K,y)  for (,y) € 9B;),(0).

It is readily seen that this amounts to showing that
1 1
n—1+a

A Vni14+ / - n—ita
T ey (je— 2Py T (ka2 y?)

for all k € Z" \ {0} and all (z,y) € 8334(0). This inequality is obviously satisfied
if av is large enough provided we can prove that

d(E/ 2 4n717n71+a

1 1
/ n—14a - n—1+ta dx/ > 0
By (o) (Jv — ' +y?) = (lz =k =2 +4%)
for all k € Z™\ {0} and all (x,y) € 8334(0). This is equivalent to

1 1
/ n—1l+a dI/ > / n—1+a dI/ > O
By (@) (|2 +y?) 2 By (e—k) (|2'> +y?) 2

whick holds for all (z,y) € 8Bf/4(0) since |k| > 1.
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In

By definition of v, p, we deduce that

TatB(z) < @(x,y) intB" as.

particular, this implies that T, g~ vanishes in tB™ \ Upezn By /2(k), and so
Mo (tB™, w) - |Cl|_|B?/2| W
[tBn| |C1| B 2n o

We conclude

1
[2

3

[4

(8

[0

[10

Z(a)Zl—%>0.
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