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Abstract. We use a characterization of the fractional Laplacian as a Dirich-
let to Neumann operator for an appropriate differential equation to study its
obstacle problem in perforated domains.

1. Introduction. Given a smooth function ϕ : R
n 7→ R

n and a subset Tε of R
n,

we consider vε(x) solution of the following obstacle problem:




vε(x) ≥ ϕ(x) for x ∈ Tε

(−∆)svε ≥ 0 for x ∈ R
n

(−∆)svε = 0 for x ∈ R
n \ Tε and for x ∈ Tε if vε(x) > ϕ(x).

(1)

The operator (−∆)s denotes the fractional Laplace operator of order s, where s
is a real number between 0 and 1. It can be defined using Fourier transform, by

F((−∆)sf)(ξ) = |ξ|2sf̂(ξ). In particular, (1) can be seen as the Euler-Lagrange

equation for the minimization of the
.

H
s

norm ||f || .
H

s = ||f̂(ξ)|ξ|s||L2 with the
constrain that f ≥ ϕ on Tε. We will see that this system of equations can also be
stated as a boundary obstacle problem for elliptic degenerate equations.

In (1), the domain R
n is perforated and the obstacle ϕ(x) is viewed by vε(x)

only on the subset Tε. A typical example of Tε is given by:

Tε =
⋃

k∈Zn

Baε(εk), (2)

with aε ≪ ε. The goal of this paper is to study the asymptotic behavior of vε as
ε → 0. When Tε is given by (2), the effective equation satisfied by the limit of vε

strongly depends on the radius aε: If aε is large enough, the limit turns out to be
an obstacle problem with obstacle ϕ(x). On the other hand, if aε is small then the
limiting problem is a simple elliptic equation without any obstacle condition. It
is well known in the case of the regular Laplace operator (s = 1) that there is a
critical size for aε for which interesting behavior arises.
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In the case of the regular Laplace operator, this problem was first studied for pe-
riodic Tε by L. Carbone and F. Colombini [2] and then in a more general framework
by E. De Giorgi, G. Dal Maso and P. Longo [9] and G. Dal Maso and P. Longo [11],
G. Dal Maso [10]. Our main reference will be the papers of D. Cioranescu and F.
Murat [3, 4], in which the case of a periodic distribution of balls is studied. More

precisely, they prove that when s = 1 and if Tε is given by (2) with aε = r0 ε
n

n−2 ,
then the function v = limε→0 v

ε solves

−∆v − µ(v − ϕ)− = 0,

where µ is a real number (depending on r0) and w− = max(−w, 0). The obstacle
condition thus disappears when ε goes to zero, but it gives rise to a new term
µ(v − ϕ)− in the equation.

In [5], we generalize this result (still with s = 1) to sets Tε that are the union
of small sets Sε(k) ⊂ R

n still periodically distributed, but with random sizes and
shapes. More precisely, we introduce a probability space (Ω,F ,P) and we assume
that for every ω ∈ Ω and every ε > 0 we are given some subsets Sε(k, ω) such that

Sε(k, ω) ⊂ Bε(εk).

We then consider

Tε(ω) =
⋃

k∈Zn

Sε(k, ω).

The only assumptions necessary to generalize the result of D. Cioranescu and F.
Murat [3]-[4] is that each set Sε(k, ω) is of capacity of order εn: cap(Sε(k, ω)) =

εnγ(k, ω) (this is where the critical exponent ε
n

n−2 comes from) and that the γ(k, ω)
have some averaging properties (stationary ergodicity).

In the present paper, we extend the result of [5] to the case of fractional Laplace
operators s ∈ (0, 1). We will show that under appropriate assumptions on the size
of the sets Sε(k, ω), the function v(x) = limε→0 v

ε(x) solves

(−∆)sv − µ(v − ϕ)− = 0.

In the particular case of sets Tε of the form (2), the critical size is now given by

aε = r0 ε
n

n−2s

(the critical exponent n
n−2s is related to the s-capacity of the sets Sε(k, ω)).

In the remainder of this section, we briefly motivate the problem and we intro-
duce the extension problem for the fractional Laplace operators, which allows us to
rewrite (1) as a boundary obstacle problem for a local (degenerate) elliptic operator.
The precise hypothesis on Tε(ω) will be detailed in the following section in which
the precise statement of the main theorem is also given. The remainder of the paper
is devoted to the proof of our main statement.

1.1. A semipermeable membrane problem. When s = 1/2, (1) naturally
arises as a boundary obstacle problem for the regular Laplace operator (also know as
Signorini problem): We consider the following problem set in the upper-half space
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R
n+1
+ = {(x, y) ∈ R

n × R ; y ≥ 0}:




−∆u(x, y) = 0 for (x, y) ∈ R
n+1
+

u(x, 0) ≥ ϕ(x) for x ∈ Tε

∂yu(x, 0) ≤ 0 for x ∈ R
n

∂yu(x, 0) = 0 for x ∈ R
n \ Tε and for x ∈ Tε if u(x, 0) > ϕ(x)

(3)

with the boundary condition

lim
y→∞

u(x, y) = 0.

It is then well-known that v(x) = u(x, 0) is solution of (1) with s = 1/2 (see [14]
and [7] for details).

It can be of interest to state equation (3) in a bounded domain D ⊂ R
n+1
+ :

Introducing

Σ = D ∩ {y = 0} and Γ = ∂D ∩ {y > 0},

we can consider the following boundary obstacle problem:




−∆u(x, y) = 0 for (x, y) ∈ D

u(x, 0) ≥ ϕ(x) for x ∈ Σ ∩ Tε

∂yu(x, 0) ≤ 0 for x ∈ Σ

∂yu(x, 0) = 0 for x ∈ Σ \ Tε and for x ∈ Tε if u(x, 0) > ϕ(x)

(4)

with the boundary condition

u(x, y) = g(x, y) for (x, y) ∈ Γ.

Equation (4) arises, for instance, in the modeling of diffusion through semi-
permeable membranes (such as the membrane of a cell): The membrane is modeled
by the surface Σ. The outside concentration of molecules is given by ϕ(x), and the
transport of molecules through the membrane and in the direction of the concen-
tration gradient is possible only across some given channels (represented by the set
Tε) and only from the outside of the cell ({y < 0}) toward the inside of the cell
D. At equilibrium, the concentration inside the cell is then given by the solution
u(x, y) of (4).

1.2. An extension problem for fractional obstacle problems. Following L.
Caffarelli, S. Salsa and L. Silvestre [7], we can actually rewrite (1) as a boundary
obstacle problem for all fractional powers s ∈ (0, 1). We rely for this on the following
extension formula established by L. Caffarelli and L. Silvestre [6]: For a given
function f(x) defined in R

n, and for a ∈ (−1, 1), if we define u(x, y) by
{

−div (ya∇u) = 0 for (x, y) ∈ R
n+1
+

u(x, 0) = f(x) for x ∈ R
n,

(5)

then

(−∆)sf(x) = lim
y→0

ya∂yu(x, y)

with

s = (1 − a)/2.
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We can thus rewrite the fractional obstacle problem (1) as follows:




−div (ya∇uε) = 0 for (x, y) ∈ R
n+1
+

uε(x, 0) ≥ ϕ(x) for x ∈ Tε

lim
y→0

ya∂yu
ε(x, y) ≤ 0 for x ∈ R

n

lim
y→0

ya∂yu
ε(x, y) = 0 for x ∈ R

n \ Tε and x ∈ Tε ∩ {uε > ϕ}

(6)

where a = 1 − 2s (note that a ∈ (−1, 1)). Our main result will concern problems
such as (6) with possibly bounded domain D instead of R

n+1
+ .

In the sequel, the theory of degenerate elliptic equations in weighted Sobolev
spaces will play an important role. We refer to [13] for many results that will be
used in this paper.

1.3. Variational formulation. The system of equations (6) can also be written
as a minimization problem. For a given open subset D of R

n+1
+ , we denote by

L2(D, |y|a) the weighted L2 space with weight |y|a and by W 1,2(D, |y|a) the corre-
sponding Sobolev’s space. We have

||u||2W 1,2(D,|y|a) =

∫

D

|y|a|u|2 dx dy +

∫

D

|y|a|∇u|2 dx dy.

We then introduce the energy functional:

J (u) =

∫

D

1

2
|y|a|∇u|2 dx dy

and the set

Kε =
{
v ∈W 1,2(D, |y|a) ; v(x, 0) ≥ ϕ(x) for x ∈ Tε(ω) , v = g on Γ

}
.

It is readily seen that (6) is the Euler-Lagrange equation associated to the mini-
mization problem:

J (uε) = inf
v∈Kε

J (v), uε ∈ Kε. (7)

(Note that since Kε is closed, convex and not empty, (7) has a unique solution
uε ∈ Kε).

Finally, we notice (see [6]) that if u(x, y) is the extension of a function f(x) as
in (5), then

∫

R
n+1
+

|y|a|∇u|2 dx dy =

∫

Rn

|ξ|2s
∣∣f̂(ξ)

∣∣2 dξ = ||f ||2.
H

s
(Rn)

.

In particular, the minimization problem (7) is equivalent to the variational formu-
lation of problem (1).

In this paper, we study the asymptotic behavior of the solutions of (7) for any
open subset D of R

n+1
+ . The assumptions and the main result are made precise in

the next section. The proof of the main theorem, which is detailed in Section 3,
relies on the construction of an appropriate corrector. This construction is detailed
in Sections 4 and 5.
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2. Assumptions and main result.

2.1. The set Tε. We consider a probability space (Ω,F ,P). For all ω ∈ Ω, the set
Tε(ω) is given by:

Tε(ω) =
⋃

k∈Zn

Sε(k, ω),

where the sets Sε(k, ω) ⊂ R
n satisfy the following assumptions:

Assumption 1: For all k ∈ Z
n and ω ∈ Ω, there exists γ(k, ω) (independent of ε)

such that
caps(Sε(k, ω)) = εn γ(k, ω),

where caps(A) denotes the s-capacity of subset A of R
n+1 (defined below).

Moreover, we assume that

Sε(k, ω) ⊂ B
Mε

n
n−2s

(εk) for all k ∈ Z
n a.e. ω ∈ Ω, (8)

for some large constant M , and that there exists a constant γ > 0 such that

γ(k, ω) ≤ γ for all k ∈ Z
n and a.e. ω ∈ Ω. (9)

This first assumption defines the critical size of the set Tε. It will guarantee that
caps(Tε) remains finite as ε goes to zero. A natural definition for the s-capacity of
a subset A of R

n is the following:

caps(A) = inf

{∫

Rn

|ξ|2s
∣∣f̂(ξ)

∣∣2 dξ ; f ∈ Hs
0(Rn), f(x) ≥ 1 for x ∈ A

}

(note that the case s = 1 corresponds to the “classical” capacity involving the H1
0

norm). Using the extension problem for the fractional Laplace operator (see [6] for
details), an equivalent definition (up to a multiplicative constant) is given by

caps(A) = inf

{∫

Rn+1

ya|∇h|2 dx dy ; h∈W 1,2
0 (Rn+1

+ , |y|a), h(x, 0) ≥ 1, x ∈ A

}
.

We will use this second definition in this paper. If Bn
r is a n-dimensional ball, then

its s-capacity in R
n+1 is given by

caps(B
n
r ) = cn+1−ar

n−1+a = cn+2sr
n−2s

for some constant ck. Assumption 1 is thus satisfied in particular if the sets Sε(k, ω)

are balls centered on εZn with radius r(k, ω)ε
n

n−2s .

Assumption 2: The process γ : Z
n × Ω 7→ [0,∞) is stationary ergodic: There

exists a family of measure-preserving transformations τk : Ω → Ω satisfying

γ(k + k′, ω) = γ(k, τk′ω) for all k, k′ ∈ Z
n and ω ∈ Ω,

and such that if A ⊂ Ω and τkA = A for all k ∈ Z
n, then P (A) = 0 or P (A) = 1

(the only invariant set of positive measure is the whole set).

This second assumption is necessary to ensure that some averaging process occurs
as ε goes to zero (the hypothesis of stationarity is the most general extension of
the notions of periodicity and almost periodicity for a function to have some self-
averaging behavior).
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2.2. Main result. We are now ready to state our main result:

Theorem 2.1. Let D be an open subset of R
n+1
+ (n ≥ 2), denote

Σ = D ∩ {y = 0}, Γ = ∂D ∩ {y > 0}

and let Tε(ω) be a subset of Σ satisfying Assumptions 1 and 2 above.
There exists a constant α0 ≥ 0 such that for any ϕ(x, y) ∈ C1,1(D) the solution

uε(x, y, ω) of

min

{
1

2

∫

D

ya|∇v|2 dx dy ; v ∈ W 1,2
0 (D, |y|a), v(x, 0) ≥ ϕ(x, 0) for x ∈ Tε(ω)

}
,

converges W 1,2(D, |y|a)-weak and almost surely ω ∈ Ω to a function u(x, y) solution
of the following minimization problem

min

{
1

2

∫

D

ya|∇v|2 dx dy +
1

2

∫

Σ

α0(v − ϕ)2−(x, 0) dx ; v ∈ W 1,2
0 (D, |y|a)

}
,

where w− = max(0,−w).
If, moreover, there exists γ > 0 such that γ(k, ω) ≥ γ for all k ∈ Z

n and a.e.
ω ∈ Ω, then α0 > 0.

In particular the function u(x, y) solves




−div (ya∇u) = 0 for (x, y) ∈ D

lim
y→0

ya∂yu(x, y) = α0(u− ϕ)−(x, 0) for x ∈ Σ

u(x, y) = 0 for (x, y) ∈ Γ

Remark 2.2. WhenD is a bounded subset of R
n+1
+ , the condition u ∈W 1,2

0 (D, |y|a)
could easily be replaced by

u ∈W 1,2(D, |y|a) , u(x, y) = g(x, y) for x ∈ ∂D ∩ {y > 0}

for some function g(x, y) ∈ L∞(∂D ∩ {y > 0}).

We stated Theorem 2.1 in its most general form. It contains the semipermeable
membrane problem, as well as our original problem (1) with the fractional operator.
More precisely, if we have D = R

n+1
+ and if we consider the trace v(x) = u(x, 0) in

Theorem 2.1 we get:

Corollary 2.3. Let Tε be a subset of R
n (n ≥ 2) satisfying Assumptions 1 and

2 above. There exists α0 ≥ 0 such that for any ϕ(x) ∈ C1,1(Rn), the solution
vε(x, ω) of (1) converges, as ε → 0, Hs(D)-weak and almost surely to a function
v(x) solution of

(−∆)sv − α0(v − ϕ)− = 0.

As in Cioranescu - Murat [3, 4] and Caffarelli-Mellet [5], the proof of Theorem
2.1 relies on the construction of an appropriate corrector. More precisely, we use
the following result:

Proposition 2.4. Let Tε(ω) be a subset of R
n satisfying Assumptions 1 and 2

above. There exists a non-negative constant α0 such that for every bounded subset



RANDOM HOMOGENIZATION OF FRACTIONAL OBSTACLE PROBLEMS 529

D of R
n+1
+ , there is a function wε

0(x, y, ω) defined in D and satisfying

wε(x, 0) = 1 for x ∈ Tε(ω) ∩ (D ∩ {y = 0}) (10)

‖wε‖L∞(D) ≤ C (11)

wε −→ 0 W 1,2(D, |y|a)-weak a.s. ω ∈ Ω (12)

and 



For all sequences vε(x, y, ω) satisfying:





vε(x, 0) ≥ 0 for x ∈ Tε(ω) ∩ Σ

||vε||L∞(D) ≤ C

vε −→ v in W 1,2(D, |y|a) − weak, a.s.
and for any φ ∈ D(D) such that φ ≥ 0, we have:

lim
ε→0

∫

D

ya∇wε · ∇vεφdx dy ≥ −

∫

Σ

α0 φdx

with equality if vε(x, 0) = 0 for x ∈ Tε ∩ Σ.

(13)

The proof of Proposition 2.4 will occupy most of this paper. We stress the fact
that Assumptions 1 and 2 are sufficient but by no mean necessary to the proof of
this Proposition. Any set Tε(ω) such that Proposition 2.4 holds would be admissible
for Theorem 2.1.

The condition (13) may seem rather obscure and the next Lemma will suggest
a nicer (but stronger) condition to replace it. However (13) is the condition that
appears naturally in the proof of Theorem 2.1.

Lemma 2.5. Let D be a bounded subset of R
n+1
+ , and assume that wε satisfies





−div (ya∇wε) = 0 for (x, y) ∈ D

wε(x, 0) = 1 for x ∈ Tε(ω) ∩ Σ

limy→0 y
a∂yw

ε(x, y) = α0 for x ∈ Σε ∩ Σ

limy→0 y
a∂yw

ε(x, y) ≤ 0 for x ∈ Tε ∩ Σ

(14)

together with (11) and (12). Then (13) holds.

This lemma also gives an indication of how to construct wε(x, y, ω): We will look
for a constant α0 such that the solution of (14) converges to zero in W 1,2(D, |y|a)-
weak.

Proof. Let vε ∈ L∞(D) ∩W 1,2(D, |y|a) be such that vε(x, 0) ≥ 0 on Tε ∩Σ and let
φ be a smooth test function with compact support in D. Then, we have:

0 =

∫

D

div (ya∇wε)φ vε dx dy

= −

∫

D

yaφ∇wε · ∇vε dx dy −

∫

D

ya∇φ · ∇wεvε dx dy

−

∫

Σ\Tε

lim
y→0

(ya∂yw
ε) vε φdx−

∫

Tε

lim
y→0

(ya∂yw
ε) vε φdx.
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Since limy→0 y
a∂yw

ε(x, y) ≤ 0 and vε(x, 0) ≥ 0 for x ∈ Tε, we deduce:
∫

D

yaφ∇wε · ∇vε dx dy ≥ −

∫

D

ya∇φ∇wεvε dx dy −

∫

Σε

α0 v
ε φdx.

≥ −

∫

D

ya∇φ∇wεvε dx dy −

∫

Σ

α0 v
ε φdx. (15)

with equality if vε(x, 0) = 0 for x ∈ Tε. In order to pass to the limit in (15), we
note that we have the following convergences:

wε −→ 0 W 1,2(D, |y|a)-weak a.s. ω ∈ Ω,

and

vε −→ v L2(D, |y|a)-strong a.s. ω ∈ Ω.

Hence the first term in the right hand side of (15) goes to zero. Moreover we have

vε(·, 0) −→ v(·, 0) Hs(Σ)-weak and L2(Σ)-strong a.s. ω ∈ Ω,

so (15) gives

lim
ε→0

∫

D

yaφ∇wε · ∇vε dx dy ≥ −

∫

Σ

α0 v φ dx.

with equality if vε(x, 0) = 0 for x ∈ Tε.

2.3. Related problems. Before turning to the proof of Theorem 2.1, we briefly
mention other results that follow from Proposition 2.4: If we consider energy func-
tionals of the form

J (v) =
1

2

∫

D

ya|∇u|2 dx dy +

∫

Σ

u h dx

for some h ∈ L∞(Σ), then a proof similar to that of Theorem 2.1 shows that the
homogenization of the following equation





vε(x) ≥ ϕ(x) for x ∈ Tε

(−∆)svε ≥ h(x) for x ∈ R
n

(−∆)svε = h(x) for x ∈ R
n \ Tε and on Tε if vε > ϕ

leads to

(−∆)sv − α0(v − ϕ)− = h in R
n.

More interestingly, we can replace the constrain vε ≥ ϕ on Tε by a Dirichlet
condition of the form vε = 0 on Tε. This amounts to minimizing J (v) in the
convex set

Kε = {v ∈ W 1,2(Rn+1
+ , |y|a) ; v(x, 0) = 0 for x ∈ Tε(ω)}.

The corresponding Euler equation is
{

(−∆)svε(x) = h(x) for x ∈ R
n \ Tε

vε(x) = 0 for x ∈ ∂Tε.

We can then show that the solution vε(x) converges to a function v(x) solution of

(−∆)sv − α0v = h in R
n.
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3. Proof of Theorem 2.1. In this section, we prove that Theorem 2.1 follows from
Proposition 2.4. For the sake of simplicity, we assume that D is a bounded domain
in R

n+1
+ . This allows us to take the corrector wε(x, y, ω) given by Proposition 2.4

and corresponding to the domain D. When D is unbounded, we note that every
integral involving wε is computed with a compactly supported test function φ. We
can thus use, for each of them, the correctorwε corresponding to the domain supp φ.
The final result is of course independent of wε.

The maximum principle and the natural energy estimate easily give that uε

is bounded in L∞(D) ∩W 1,2
0 (D, |y|a) almost surely. In particular, there exists a

function u(x, y, ω) such that

uε −→ u W 1,2
0 (D, |y|a) − weak a.e. ω ∈ Ω.

In order to prove Theorem 2.1, we have to show that

Jα(u) = inf
v∈W 1,2

0 (D,|y|a)
Jα(v) a.e. ω ∈ Ω (16)

where Jα is the energy associated to the limiting problem, given by:

Jα(v) =
1

2

∫

D

ya|∇v|2 dx dy +
1

2

∫

Σ

α0(u− ϕ)2− dx.

Equality (16) will be a consequence of the following lemmas:

Lemma 3.1. For any test function φ ∈ D(D), we have

lim
ε→0

∫

D

ya|∇wε|2φdx dy =

∫

Σ

α0φdx.

Lemma 3.2. Let uε be a bounded sequence in W 1,2(D, |y|a) ∩ L∞(D). If

uε ⇀ u in W 1,2(D, |y|a)-weak,

then

lim inf
ε→0

J (uε) ≥ Jα(u).

Proof of Theorem 2.1. For any v ∈ D(D), we consider the function v+ (v−ϕ)−w
ε

(note that this function satisfies the obstacle constrain). Its energy is given by:

J (v + (v − ϕ)−w
ε)

=
1

2

∫

D

ya
[
|∇v|2 + |∇(v − ϕ)−|

2wε2 + |(v − ϕ)−|
2|∇wε|2

]
dx dy

+

∫

D

ya
[
(v − ϕ)−∇(v − ϕ)−w

ε∇wε + ∇v∇(v − ϕ)−w
ε

+∇v(v − ϕ)−∇w
ε
]
dx dy.

Lemma 3.1 and the weak convergence of wε to 0 in W 1,2(D, |y|a) thus implies

lim
ε→0

J (v + (v − ϕ)−w
ε) = Jα(v).

Morever, it is readily seen that the function v+(v−ϕ)−w
ε belongs to Kε. Since

uε minimizes J on Kε, we deduce

J (v + (v − ϕ)−w
ε) ≥ J (uε),
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and therefore

Jα(v) ≥ lim sup
ε→0

J (uε) for all v ∈ D(D).

On the other hand, Lemma 3.2 gives

lim inf
ε→0

J (uε) ≥ Jα(u).

and so

Jα(u) ≤ Jα(v) for all v ∈ D(D).

Equality (16) follows by a density argument.

Proof of Lemma 3.1. This first lemma is a straightforward consequence of (13): If
we take vε = 1 − wε, we have vε(x, 0) = 0 for x ∈ Tε, v

ε(x, y) bounded in L∞(D)
and vε(x, y) converges to 1 in W 1,2(D, |y|a)-weak, L2(D, |y|a)-strong, and almost
surely ω ∈ Ω. We can thus use (13), which implies

−

∫

D

yaφ∇wε · ∇(1 − wε) dx dy −→

∫

Σ

α0 φdx,

and so
∫

D

yaφ|∇wε|2 dx dy −→

∫

Σ

α0 φdx

for all φ ∈ D(D).

Proof of Lemma 3.2. Following Cioranescu-Murat (see [4], Proposition 3.1), we eval-
uate the quantity

∫

D

|y|a|∇(uε − (z + (z − ϕ)−w
ε))|2 dx dy

for some test function z with compact support in D and then take the limit as ε
goes to zero.

Using (12), we obtain:

lim inf
ε→0

∫

D

ya|∇uε|2 dx dy ≥ 2

∫

D

ya∇u · ∇z dx dy −

∫

D

ya|∇z|2 dx dy

+2 lim
ε→0

∫

D

ya(z − ϕ)−∇u
ε · ∇wε dx dy

− lim
ε→0

∫

D

ya(z − ϕ)2−|∇w
ε|2 dx dy.

Lemma 3.1 yields

lim
ε→0

∫

D

ya(z − ϕ)2−|∇w
ε|2 dx dy =

∫

Σ

α0(z − ϕ)2− dx.
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Property (13), together with the facts that uε ∈ L∞(D) and (uε − ϕ)(x, 0) ≥ 0 for
x ∈ Tε, implies

lim
ε→0

∫

D

ya(z − ϕ)−∇u
ε · ∇wε = lim

ε→0

∫

D

ya(z − ϕ)−∇(uε − ϕ) · ∇wε dx dy

+ lim
ε→0

∫

D

ya(z − ϕ)−∇ϕ · ∇wε dx dy

≥ −

∫

Σ

α0(u − ϕ)(z − ϕ)− dx.

It follows that for any test function z ∈ D(D) we have:

lim inf
ε→0

∫

D

ya|∇uε|2 dx dy ≥ 2

∫

D

ya∇u · ∇z dx dy −

∫

D

ya|∇z|2 dx dy

−2

∫

Σ

α0(u− ϕ)(z − ϕ)− dx

−

∫

Σ

α0(z − ϕ)2− dx.

We can now take a sequence zn that converges to u strongly in W 1,2(D, |y|a) and
such that zn(·, 0) converges to u(·, 0) strongly in L2(Σ, |y|a). Using the fact that
(u− ϕ)(u − ϕ)− = −(u− ϕ)2−, we get

lim inf
ε→0

∫

D

ya|∇uε|2 dx dy ≥

∫

D

ya|∇u|2 dx dy +

∫

Σ

α0(u− ϕ)2− dx.

which concludes the proof.

4. The auxiliary corrrector.

4.1. Notations and scheme of the proof. We recall that

R
n+1
+ = {(x, y) ∈ R

n × R ; y ≥ 0},

and we fix a bounded domain D ⊂ R
n+1
+ . For any x0 ∈ R

n and y0 > 0, we introduce
the following notation for the Euclidian balls:

Br(x0, y0) =
{

(x, y) ∈ R
n+1 ;

(
|x− x0|2 + |y − y0|2

)1/2
≤ r
}
,

B+
r (x0, 0) = Br(x0, 0) ∩ {y > 0},

Bn
r (x0) = {x ∈ R

n ; |x− x0| ≤ r} .

4.1.1. The fundamental solution. We recall (see [7] for details) that the function

h(x, y) =
νn+1+a

|x2 + y2|
n−1+a

2

with νk =
π

k
2 Γ(k−1

2 )

4
,

solves 




−div (ya∇h)(x, y) = 0 for y > 0

lim
y→0

ya∂yh(x, y) −→ −δ(x),

where δ(x) denotes the Dirac distribution centered at 0 in R
n. We also have

div (ya∇h) = −µn,aδ(x, y) in R
n+1

where δ(x, y) denotes the Dirac distribution centered at 0 in R
n+1 and for some

constant µn,a.
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4.1.2. An auxiliary corrector. One of the key points in the proof of Proposition 2.4
is to see that away from εk, the set Sε(k, ω) is equivalent to a (n+1)-dimensional
ball. More precisely, we introduce the capacitary potential ϕε

k(x, y, ω) associated to
the set Sε(k, ω). It is defined by the following minimization problem:

inf

{∫

Rn+1

ya|∇ϕ|2 dx dy ; ϕ ∈W 1,2(Rn+1
+ , |y|a), ϕ(x, 0) ≥ 1 ∀x ∈ Sε(k, ω)

}
.

It is readily seen that, almost surely in ω, ϕε
k(x, y, ω) satisfies





−div (ya∇ϕε
k) = 0 for (x, y) ∈ R

n+1
+

ϕε
k(x, 0) = 1 for x ∈ Sε(k, ω)

limy→0 y
a∂yϕ

ε
k(x, y) = 0 for x /∈ Sε(k, ω)

(17)

and by definition of the capacity as seen in the introduction, Assumption 1 yields
∫

Rn+1

ya|∇ϕε
k|

2 dx dy = εnγ(k, ω). (18)

Moreover, we have the following lemma (the proof of which is presented in Appendix
A):

Lemma 4.1. For any δ > 0, there exists Rδ such that
∣∣∣∣ϕ

ε
k(x, y, ω) − εnγ(k, ω)

2

µn,a
h(x− εk, y)

∣∣∣∣ ≤ δεnγ(k, ω)
2

µn,a
h(x− εk, y)

for all (x, y) such that |(x− εk, y)| ≥ ε
n

n−1+aRδ and for all ε > 0.
Moreover, Rδ depends only on the constant M appearing in Assumption 1 (in

particular, Rδ is independent of k and ω).

This Lemma will play a fundamental role in the proof of Proposition 2.4 (see

Section 5). It suggests that at distance ε
n

n−1+aR away from εk, the corrector wε

should behave like the function

hε
k(x, y, ω) := εnγ(k, ω)

2

µn,a
h(x− εk, y).

For later use, we introduce the notation

aε = ε
n

n−1+a .

The first step in the proof, and the main goal of this section is to construct a function
w̃ε that would be a good approximation of wε away from εk and that behaves like
hε

k at distance aεR from εk

For that purpose, we introduce

D̃ε = D \
⋃

k∈Zn

B+
r(k,ω)aε(εk), and Σ̃ε = Σ \Bn

r(k,ω)aε(εk),

where r(k, ω) is chosen in such a way that hε
k(x, y) = 1 on ∂B+

r(k,ω)aε(εk), i.e.

r(k, ω) =

(
2νn+1+a

µn,a
γ(k, ω)

)1/(n−1+a)

. (19)

We will prove the following proposition:
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Proposition 4.2. There exist a non-negative real number α0 (independent of the
choice of D) and a function w̃ε(x, y, ω) satisfying






−div (ya∇w̃ε) = 0 for (x, y) ∈ D̃ε

lim
y→0

ya∂yw̃
ε(x, y) = α0 for x ∈ Σ̃ε

(20)

for almost all ω ∈ Ω, such that

w̃ε(x, y) = hε
k(x, y) + o(1) for (x, y) ∈ B+

ε/2(εk) ∩ D̃ε a.s. ω ∈ Ω (21)

Moreover, we have:
(i) ||w̃ε||L∞(D̃ε) ≤ C

(ii) ||w̃ε||L2(D̃ε) −→ 0 as ε→ 0.

(iii)||∇w̃ε||L2(D̃ε) ≤ C

The goal of this section is to establish Proposition 4.2. The main advantage of w̃ε

over wε is that the former only depends on the capacity of Sε(k, ω). This explains
why no assumptions are needed on the shape of Sε(k, ω). In the last section of the
paper (Section 5), we will see how to use both the functions ϕε

k (near εk) and the
corrector w̃ε (at distance aεR of εk) in order to prove Proposition 2.4.

4.1.3. Effective equation. The main idea to prove Proposition 4.2 (and in particular
(21)) makes use of the fact that hε

k(x, y, ω) solves:





−div (ya∇hε
k)(x, y) = 0 for (x, y) ∈ R

n+1
+

lim
y→0

ya∂yh
ε
k(x, y) = −εnγ̃(k, ω)δ(x− εk) for x ∈ R

n

with

γ̃(k, ω) = γ(k, ω)
2

µn,a
.

Proposition 4.2 will thus be a consequence of the following proposition:

Proposition 4.3. There exists α0 ≥ 0 such that the solution wε
0(x, y, ω) of






−div (ya∇wε
0) = 0 for (x, y) ∈ R

n+1
+

lim
y→0

ya∂yw
ε
0 = α0 −

∑

k∈Zn∩Σ

εnγ̃(k, ω)δ(x− εk) for x ∈ Σ

wε
0(x, 0) = 0 for x ∈ R

n \ Σ

(22)

satisfies:

wε
0(x, y) = hε

k(x, y) + o(1) for (x, y) ∈ B+
ε/2(εk) ∩D a.s. ω ∈ Ω (23)

This proposition is the main step in the proof of Proposition 4.2 and its proof
will occupy most of section.

4.2. Proof of Proposition 4.3. In order to prove Proposition 4.3, it is more
convenient to work with the rescaled function

vε
0(x, y, ω) = ε−1+awε

0(εx, εy, ω). (24)
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Equation (22) then becomes:





−div (ya∇vε
0) = 0 for (x, y) ∈ R

n+1
+

lim
y→0

ya∂yv
ε
0(x, y) = α0 −

∑

k∈Zn∩D

γ̃(k, ω)δ(x− k) for x ∈ ε−1Σ

vε
0(x, 0) = 0 for x ∈ R

n \ ε−1Σ,

(25)

and (23) is equivalent to

vε
0(x, y, ω) = hk(x, y, ω) + o(ε−1+a) for (x, y) ∈ B+

1/2(εk) ∩ ε
−1D a.s. ω ∈ Ω

where

hk(x, y) := γ̃(k, ω) h(x− k, y) =
r(k, ω)n−1+a

|(x − k)2 + y2|(n−1+a)/2
.

Note that hk = ε−1+a on ∂Baεr(k,ω) with aε = ε
1−a

n−1+a .
In order to find the critical α0 for which the solution vε

0 has the appropriate be-
havior near the lattice points k ∈ Z

n, we follow the method developed by Caffarelli-
Souganidis-Wang in [8] and which was already the corner stone in [5]: We introduce
the following obstacle problem, for every open set A ⊂ R

n and for every real number
α ∈ R:





v(x, 0) ≥ 0 for x ∈ R
n

lim
y→∞

v(x, y) = 0 for x ∈ R
n

−div (ya∇vε) ≥ 0 for (x, y) ∈ R
n+1
+

lim
y→0

ya∂yv(x, y) ≤ α−
∑

k∈Zn∩D

γ̃(k, ω)δ(x− k) for x ∈ A.

(26)

We then define the smallest super-solution of the obstacle problem:

vα,A(x, y, ω) = inf
{
v(x, y) ; v solution of (26)

}
. (27)

It is readily seen that the function vα,A satisfies





−div (ya∇vα,A) = 0 for (x, y) ∈ R
n+1
+

lim
y→0

ya∂yvα,A(x, y) = α−
∑

k∈Zn∩A

γ̃(k, ω)δ(x − k) for x ∈ A ∩ {vα,A > 0}
(28)

and
lim
y→0

ya∂yvα,A(x, y) ≥ 0 for x ∈ A ∩ {vα,A = 0}. (29)

Remark 4.4. The function

hk,α(x, y) = hk(x, y) − α

∫

Bn
1 (k)

νn+1+a

(|x− x′|2 + y2)
n−1+a

2

dx′ (30)

satisfies 



−div (ya∇hk,α) = 0 for x ∈ R
n+1
+

lim
y→0

ya∂yhk,α(x, y) −→ α− γ̃(k, ω)δ(x− k) for x ∈ Bn
1 (k).

It is radially symmetric around k and sup|x|=1, y>0 hα,k(x, y) ≤ rn−1+a. In particu-

lar, the maximum principle and (28) implies that if Bn
1 (k) ⊂ A, then:

vα,A(x, y, ω) ≥ hα,k(x, y, ω) − rn−1+a for (x, y) ∈ B+
1 (k), a.s. (31)
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We now want to show that there exists a critical α0 such that the followings hold:

1. The solution of the obstacle problem vα,A(x, y, ω) behaves like hα,k(x, y, ω)
near any point k ∈ A ∩ Z

n.
2. The solution of (25) is not far from vα,A.

For that purpose, we introduce the following quantity, which measures the size
of the contact set along the boundary {y = 0}:

mα(A,ω) = |{x ∈ A ; vα,A(x, 0, ω) = 0}|

where |A| denotes the Lebesgue measure of a set A in R
n.

The starting point of the proof is the following lemma:

Lemma 4.5. The random variable mα is subadditive, and the process

Tkm(A,ω) = m(k +A,ω)

has the same distribution for all k ∈ Z
n.

Proof of Lemma 4.5. Assume that the finite family of sets (Ai)i∈I is such that

Ai ⊂ A for all i ∈ I
Ai ∩Aj = ∅ for all i 6= j
|A− ∪i∈IAi| = 0

then vα,A is admissible for each Ai, and so vα,Ai ≤ uα,A. It follows that

{vα,A(·, 0, ω) = 0} ∩Ai ⊂ {vα,Ai(·, 0, ω) = 0}

and so

mα(A,ω) =
∑

i∈I

|{vα,A(·, 0, ω) = 0} ∩Ai|

≤
∑

i∈I

|{vα,Ai(·, 0, ω) = 0}| =
∑

i∈I

mα(Ai, ω),

which gives the subadditive property. Assumption 2 then yields

Tkm(A,ω) = m(A, τkω)

which gives the last assertion of the lemma.

Since mα(A,ω) ≤ |A|, and thanks to the ergodicity of the transformations τk,
it follows from the subadditive ergodic theorem (see Akcoglu, Krengel [1] and Dal
Maso, Modica [12]) that for each α, there exists a constant ℓ(α) such that

lim
t→∞

mα(Bt(0), ω)

|Bt(0)|
= ℓ(α) a.s.,

where Bt(0) denotes the ball centered at the origin with radius t. Note that the
limit exists and is the same if instead of Bt(0), we use cubes or balls centered at
tx0 for some x0.

If we scale back and consider the function

wε
α(x, y, ω) = ε1−a vα,Bε−1(ε−1x0)(x/ε, y/ε, ω), in B1(x0),

we deduce

lim
ε→0

|{x ; wε
α(x, 0, ω) = 0}|

|B1|
= ℓ(α) a.s.
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The next lemma summarizes the properties of ℓ(α):

Lemma 4.6. (i) ℓ(α) is a nondecreasing functions of α.
(ii) If α < 0, then ℓ(α) = 0. Moreover, if the γ(k, ω) are bounded from below,

then ℓ(α) = 0 for α positive small enough (0 < α < C(γ)).

(iii) If α is large enough (α ≥ C(γ)), then ℓ(α) > 0.

The proof of this Lemma is rather technical and of little interest. It is presented
in full details in Appendix B. Using Lemma 4.6, we can define

α0 = sup{α ; ℓ(α) = 0}.

We observe that α0 is finite (Lemma 4.6 (iii)) and that α0 is non negative (Lemma
4.6 (ii)). Moreover, α0 is strictly positive if the γ(k, ω) are bounded from below
almost surely by a positive constant.

We now fix a bounded subset A of R
n and we denote by

vε
α(x, y, ω) = vα,ε−1A(x, y, ω) (32)

the solutions of (27) corresponding to ε−1A. We also introduce the rescaled function

wε
α(x, y, ω) = ε1−a vε

α(x/ε, y/ε, ω).

In order to complete the proof of Proposition 4.3, we are first going to prove that
wε

α satisfies inequality (23), and then that the solution wε
0 of (22) behaves like wε

α.
We recall the definition of hα,k:

hα,k(x, y) =
r(k)n−1+a

(|x− k|2 + y2)
n−1+a

2

− α

∫

Bn
1 (k)

νn+1+a

(|x− x′|2 + y2)
n−1+a

2

dx′,

and we introduce the scaled function

hε
α,k(x, y) := ε1−ahα,k(x/ε, y/ε).

Note that when (x, y) ∈ ∂B+
aεr(k,ω)(k), then

hα,k(x, y) = ε−1+a − α

∫

Bn
1 (0)

νn+1+a

(|x− x′|2 + y2)
n−1+a

2

dx′

(we recall that aε = ε
1−a

n−1+a ).
We then have the following lemma:

Lemma 4.7. (i) For every α and for every k ∈ Z
n ∩A, we have

vε
α(x, y) ≥ hα,k(x, y) − rn−1+a for (x, y) ∈ B+

1 (k) a. s.

(ii) For every α > α0 and every k ∈ Z
n ∩A, we have

vε
α(x, y) ≤ hα,k(x, y) + o(ε−1+a) for (x, y) ∈ B+

1/2(k) a. s.

We deduce:

Corollary 4.8. (i) For every α and every k ∈ Z
n ∩ A such that r(k, ω) > 0, we

have

vε
α(x, y) ≥ ε−1+a + o(1) for (x, y) ∈ ∂B+

r(k,ω)aε(k) a.e. ω ∈ Ω
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and so

wε
α(x, y) ≥ 1 + o(ε1−a) for (x, y) ∈ ∂B+

r(k,ω)aε(k) a.e. ω ∈ Ω

for all α.
(ii) For every α > α0 and every k ∈ Z

n ∩A, we have

vε
α(x, y) ≤ ε−1+a + o(ε−1+a) for (x, y) ∈ ∂B+

r(k,ω)aε(k) a.e. ω ∈ Ω

and so

wε
α(x, y) ≤ 1 + o(1) for (x, y) ∈ ∂B+

r(k,ω)aε(k) a.e. ω ∈ Ω

Proof of Lemma 4.7. (i) This is an immediate consequence of (31).

(ii) The proof of (ii) is more delicate and is split in several steps.
Preliminary: First of all since A is bounded, we have A ⊂ Bn

R(x0) for some R.
Without loss of generality, we can always assume that Bn

R(x0) = Bn
1 (0). If we

consider

vε
α(x, y, ω) = vα,ε−1Bn

1
(x, y, ω),

the solution of (27) corresponding to A = Bn
ε−1(0), it is readily seen that

vε
α(x, y, ω) ≤ vε

α(x, y, ω) for all (x, y) ∈ R
n+1
+ a.e. ω ∈ Ω.

It is thus enough to prove (ii) for vε
α.

In the sequel, we will need the following consequence of Lemma 4.5 (see [8] for
the proof):

Lemma 4.9. For any ball Bn
r (x0) ∈ Bn

1 (0), the following limit holds, a.s. in ω:

lim
ε→0

|{vε
α(x, 0, ω) = 0} ∩Bn

ε−1r(ε
−1x1)|

|Bn
ε−1r|

= ℓ(α)

Step 1: We now start the proof: For any δ > 0, we can cover Bn
ε−1 by a finite

number N (≤ Cδ−n) of balls Bn
i = Bn

δε−1(ε−1xi) with radius δε−1 and center

ε−1xi. Since α > α0, we have ℓ(α) > 0. By Lemma 4.9, we deduce that for every
i, there exists εi such that if ε ≤ εi, then

|{vε
α(x, 0, ω) = 0} ∩Bn

i | > 0 a.s. ω.

In particular, if ε ≤ inf εi, then vε
α(x′i, 0) = 0 for some x′i in Bn

i a.s. ω ∈ Ω.
Introducing Bi = Bδε−1(ε−1xi) the n+ 1 dimensional ball with same radius and

same center as Bn
i , we now have to show that vε

α remains small in each B+
i as long

as we stay away from the lattice points k ∈ Z
n. More precisely, we want to show

that

sup
∪k∈ZnB+

1 (k)\B+
1/4

(k)

vε
α(x, y) ≤ Cδ1−aε−1+a.

Step 2: Let η(x) be a nonnegative function defined in R
n such that 0 ≤ η(x) ≤ 1

for all x, η(x) = 1 in B1/8 and η = 0 in R
n \B1/4. We then consider the function

u = vε
α ⋆x η
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where ⋆x indicates the convolution in R
n with respect to the x-variable. The func-

tion u(x, y) is nonnegative on 2B+
i and satisfies

{
div (ya∇u) = 0 for (x, y) ∈ 2B+

i

−C ≤ limy→0 y
a∂yu(x, y) ≤ C for x ∈ 2Bn

i

(33)

where C is a universal constant depending only on n, r and α. We deduce:

Lemma 4.10. There exists a universal constant C such that

sup
Bi

u ≤ C inf
Bi

u+ Cδ1−aε−1+a.

Proof. We write u = u1 + u2 where u1 and u2 are two functions solution of
div (ya∇ui) = 0 in 2B+

i and satisfying
{

lim
y→0

ya∂yu1(x, y) = lim
y→0

ya∂yu(x, y) for x ∈ 2Bn
i ,

u1(x, y) = 0 for (x, y) ∈ ∂(2B+
i ) ∩ {y > 0}

and {
lim
y→0

ya∂yu2(x, y) = 0 for x ∈ 2Bn
i ,

u2(x, y) = u(x, y) for (x, y) ∈ ∂(2B+
i ) ∩ {y > 0}.

The maximum principle and the fact that Bi has radius δε−1 yield:

|u1(x, y)| ≤ C((2δε−1)1−a − y1−a)

≤ C(δε−1)1−a

for all (x, y) ∈ 2B+
i . On the other hand, boundary Harnack inequality for degenerate

elliptic equation (see [13]) implies

sup
Bi

u2 ≤ C inf
Bi

u2.

The Lemma follows easily.

For the next step, we will need the following lemma:

Lemma 4.11. If v satisfies

div (ya∇v) = 0 in B+
r (x0, 0)

and
lim
y→0

ya∂yv(x, y) ≤ α for x ∈ Bn
r (x0),

then
2

ωn+arn+a

∫

B+
r (x0,0)

|y|av(x, y) dx dy ≤ v(x0, 0) + αC(n)r1−a

where C(n) is a universal constant and ωn+a =
∫

B1(x0,0)
|y|a dx dy.

Proof. The function w(x, y) = v(x, y) + α
∫

Bn
r (x0)

Cn+1+a

(|x−x′|2+y2)
n−1+a

2

dx′ satisfies

div (ya∇w) = 0 and lim
y→0

ya∂yw ≤ 0.

Proceeding as in [6], we now reflect w about the plane {y = 0}. The function

w(x, y) =

{
w(x, y) if y > 0

w(x,−y) if y < 0
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is now defined in the whole space R
n+1 and it satisfies

div (|y|a∇w) ≤ 0 in Br(x0, 0).

We can thus use the mean value formula (see [7]):

1

ωn+arn+a

∫

Br(x0,0)

|y|aw(x, y) dx dy

≤ w(x0, 0)

≤ w(x0, 0)

≤ v(x0, 0) + α

∫

Bn
r (x0)

Cn+1+a

|x0 − x′|n−1+a
dx′.

Since α ≥ 0, we see that v ≤ w and so

2

ωn+arn+a

∫

B+
r (x0,0)

yav(x, y) dx dy ≤
1

ωn+arn+a

∫

Br(x0,0)

|y|aw(x, y) dx dy

Moreover, we have
∫

Bn
r (x0)

Cn+1+a

|x0 − x′|n−1+a
dx′ =

∫

Bn
r (0)

Cn+1+a

|z|n−1+a
dz = C(n+ a)r1−a,

hence the lemma.

Step 3: We have vε
α(x′i, 0) = 0 and limy→0 y

a∂yv
ε
α(x, y) ≤ α for x ∈ B1/2(x

′
i).

Lemma 4.11 thus applies and yields:
∫

B+
1/2

(x′

i,0)

|y|avε
α(x, y) dx dy ≤ C(vε

α(x′i, 0) + α) ≤ C(α, n + a). (34)

We want to deduce an upper bound on u in Bi. Since u ≥ 0, we note that
∫ 1/4

0

τau(x, τ) dτ ≥

(
inf

τ∈[0,1/4]
u

)∫ 1/4

0

τa dτ.

Then, using the definition of u (and the fact that η(x) = 0 outside Bn
1/4(x)), we

deduce:

inf
B+

1/4
(x′

i,0)
u ≤ C inf

x

∫ 1/4

0

τau(x, τ) dτ

≤ C inf
x

∫ 1/4

0

∫

Bn
1/4

(x)

τavε
α(ξ, τ) dξ dτ

≤ C

∫

B1/2(x′

i,0)

τavε
α(ξ, τ) dξ dτ,

which, together with (34) yields:

inf
B+

1/4
(x′

i,0)
u ≤ C(α, n). (35)

Using Lemma 4.10 we see that for every δ and for ε small enough, we have:

sup
Bi

u ≤ C inf
Bi

u+ Cδ1−aε−1+a ≤ C(α, n) + Cδ1−aε−1+a ≤ Cδ1−aε−1+a. (36)
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Step 4: We now want to use (36) to get an upper bound on vε
α. For that purpose,

we note that limy→0 y
a∂yv

ε
α ≥ 0 in Bi \∩k∈Zn{k}, and so a proof similar to that of

Lemma 4.11 yields

vε
α(x, y) ≤ Cn+a

∫

B+
1/8

(x,y)

|τ |avε
α(ξ, τ) dξ dτ (37)

for all (x, y) ∈ Bi \ ∩k∈ZnB1/4(k).
Inequality (37) and the definition of u(x, y) yield that for all (x, y) in Bi \

∩k∈ZnB1/4(k), we have:

vε
α(x, y) ≤ Cn+a

∫ y+1/8

y−1/8

∫

Bn
1/8

(x)

|τ |avε
α(ξ, τ) dξ dτ

≤ Cn+a

∫ y+1/8

y−1/8

|τ |au(x, τ) dτ

≤ C(n+ a)|y|1+a sup
Bi

u.

Inequality (36) therefore implies

sup
(x,y)∈∪k∈ZnB+

1 (k)\B+
1/4

(k)

vε
α(x, y) ≤ Cδ1−aε−1+a. (38)

Step 5: In order to complete the proof of the lemma, we only have to notice
that since inf∂B1/2

hα,k(x, y) ≥ −Cα, (38) and the definition of vε
α imply

vε
α(x, y) ≤ hα,k(x, y) + Cδ1−aε−1+a in B1/2(k)

for all k ∈ Z
n.

This conclude the proof of Lemma 4.7, and we are now in position to complete
the proof of Propositions 4.3.

Proof of Proposition 4.3. For every α, we denote by vε
α the solution of the obstacle

problem (26) corresponding to A = ε−1Σ:

vε
α(x, y, ω) = vα,ε−1Σ(x, y, ω),

and by wε
α the rescaled function:

wε
α(x, y, ω) = ε1−a vα,ε−1Σ(x/ε, y/ε, ω).

We recall that wε
0 is solution of





−div (ya∇wε
0) = 0 for (x, y) ∈ R

n+1
+

lim
y→0

ya∂yw
ε
0(x, y) = α0 −

∑

k∈Zn∩D

γ̃(k, ω)δ(x− εk) for x ∈ Σ

wε
0(x, 0) = 0 for x ∈ R

n \ Σ

In order to prove Proposition 4.3, we have to establish (23). This is done in two
steps using the properties of the function wε

α:
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1. For every α > α0, we have div (ya∇(wε
0 − wε

α)) = 0 for (x, y) ∈ R
n+1
+ ,

lim
y→0

ya∂y(wε
0 − wε

α) ≥ α0 − α on Σ and (wε
0 − wε

α)(x, 0) = 0 on R
n \ Σ.

We deduce

wε
0(x0, y0) − wε

α(x0, y0) ≤

∫

Σ

α0 − α

|(x0 − x)2 + y2
0 |

n−1+a
2

dx,

and therefore

sup
(x,y)∈R

N+1
+

(wε
0(x, y) − wε

α(x, y)) ≤ C|Σ|
1−a
n+1 ρ

1−a
n+1

Σ |α− α0|

with

ρΣ = inf{ρ ; Σ ⊂ Bρ}.

In particular, we thus have

wε
0(x, y) ≤ wε

α(x, y) +O(α − α0) for (x, y) ∈ R
n+1
+ ,

and Lemma 4.7 (ii) (since α > α0) yields:

wε
0(x, y) ≤ hε

α,k(x, y) +O(α − α0) + o(1) for (x, y) ∈ Bε/2(εk) a.s.

(Note that this argument shows the continuity of wε
α with respect to α).

2. Similarly, we observe that for α ≤ α0, we have div (ya∇(wε
α − wε

0)) = 0 for
(x, y) ∈ R

n+1
+ , (wε

α − wε
0)(x, 0) = 0 for x ∈ R

n \ Σ and

lim
y→0

ya∂y(wε
α − wε

0)(x, y) ≥ α− α0 − α1{wε
α=0}∩Σ for x ∈ Σ.

Proceeding as before, we deduce:

sup
R

N+1
+

(wε
α − wε

0) ≤ Cρ
1−a
n+1

Σ

[
|Σ|

1−a
n+1 (α0 − α)

+Cα|{wε
α(x, 0) = 0} ∩ Σ|

1−a
n+1

]
.

So Lemma 4.7 (i) yields

wε
0(x, y) ≥ hε

α,k(x, y) − o(ε) −O(α0 − α) − Cα|{wε
α(x, 0) = 0} ∩ Σ|

1−a
n+1

for all (x, y) ∈ Bε/2(εk). Finally, using the fact that

lim
ε→0

|{wε
α(x, 0) = 0} ∩ Σ| = ℓ(α)|Σ| = 0

for all α ≤ α0 we easily deduce the first inequality in (23).

4.3. Proof of Proposition 4.2. In order to complete the proof of Proposition
4.2, we construct a corrector w̃ε which is equal to 1 on the (n+1)-dimensional balls
B+

r(k,ω)aε(εk). More precisely, we recall that D is a bounded subset of R
n+1
+ , and

we introduce

T̃ε = D ∩
⋃

k∈Zn∩Σ

B+
r(k,ω)aε(εk)

and

Σ̃ε = Σ \
⋃

k∈Zn∩Σ

Bn
r(k,ω)aε(εk).
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We then define a corrector w̃ε(x, y, ω) which will satisfy all the conditions of Propo-

sition 2.4, with the set T̃ε instead of Tε. In particular, we will prove that w̃ε behaves
like hε

k near the B+
r(k,ω)aε(εk).

We consider the following obstacle problem:




div (ya∇w) ≤ 0 for (x, y) ∈ R
n+1
+ \ T̃ε

lim
y→0

ya∂yw(x, y) ≤ α0 for x ∈ Σ̃ε

w(x, y) ≥ 1 for (x, y) ∈ T̃ε

w(x, 0) = 0 for x ∈ R
n \ Σ,

(39)

and we define:

w̃ε(x, y, ω) = inf {w(x, y, ω) ; w solution of (39)} .

It is readily seen that w̃ε satisfies (20). So in order to complete the proof of Propo-
sition 4.2, we only have to show that w̃ε is bounded uniformly in L∞(D) and that

w̃ε −→ 0 in W 1,2
loc (D, |y|a)-weak as ε goes to zero.

Strong convergence in L2(D, |y|a):

First of all, since w̃ε = 1 = hε
α,k(x, y) + o(1) on T̃ε, (23) implies

wε
0(x, y) − o(1) ≤ w̃ε(x, y, ω) ≤ wε

0(x, y) + o(1) in D a.e. ω ∈ Ω,

which in turn implies (using Proposition 4.3 again):

hε
α,k(x, y) − o(1) ≤ w̃ε(x, ω) ≤ hε

α,k(x, y) + o(1) ∀(x, y) ∈ B+
ε/2(εk). (40)

In particular, we get:

||w̃ε||L∞(Rn+1
+ ) ≤ C.

Moreover, a simple computation shows that
∫

Bε(εk)\Baε (εk)

ya|hε
α,k|

2 dx dy ≤ Cεn+1

and it is readily seen that (40) implies

|wε
0(x, y)| ≤ Cε1−a + o(1) = o(1) ∀(x, y) ∈

⋃

k∈Zn

∂Bε/2(εk).

We deduce:

||w̃ε||2L2(D,|y|a) ≤
∑

k∈{Zn∩ε−1Σ}

∫

Bε\Baε

ya|hε
α,k|

2 dx dy + o(1)

∫

D

|y|a dx dy

and since #{Z
n ∩ ε−1Σ} ≤ Cε−n for all n, we have:

||w̃ε||2L2(D,|y|a) ≤ ε+ o(1) = o(1). (41)

In particular

w̃ε −→ 0 in L2(D, |y|a) − strong.

as ε goes to zero.
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Bound in W 1,2(D, |y|a):
Using the definition if w̃ε and an integration by parts, we get:
∫

R
n+1
+ \T̃ε

ya|∇w̃ε|2 dx dy =

∫

R
n+1
+ \T̃ε

ya∇w̃ε · ∇(w̃ε − 1) dx dy

= −

∫

∂T̃ε∪Σ̃ε

[ lim
y→0

yaw̃ε
y(x, y)](w̃ε(x, y) − 1) dσ(x, y)

= −α0

∫

Σ̃ε

(w̃ε(x, 0) − 1) dx

The L∞ bound thus yieds
∫

R
n+1
+ \T̃ε

ya|∇w̃ε|2 dx dy ≤ Cα0|Σ̃ε|(||w̃
ε||L∞ + 1) ≤ C,

which completes the proof.

5. Proof of proposition 2.4. This section is devoted to the proof of the main
proposition. We recall that the sets Sε(k, ω) are subsets of R

n with unspecified
shapes and they satisfy

caps(Sε(k, ω)) = εnγ(k, ω).

Lemma 4.1 gives the existence of a function ϕε
k(x, y, ω) such that






div (ya∇ϕ) = 0 for (x, y) ∈ R
n+1
+

ϕ(x, 0) = 1 for x ∈ Sε(k, ω)

lim
y→0

ya∂yϕ(x, y) = 0 for x /∈ Sε(k, ω)

and we let α0 and w̃ε(x, y, ω) be given by Proposition 4.2.
We then have:

1. For a given δ > 0, Lemma 4.1 implies that for every k ∈ Z
n and ω ∈ Ω there

exists a constant Rδ(k, ω) such that

|ϕε
k(x, ω) − hε

k(x, y, ω)| ≤ δ hε
k(x, y, ω) ≤ δ

γ̃(k, ω)

Rn−1+a
δ

(42)

in B+
2aεRδ

\B+
aεRδ

(εk) and for all ε > 0. It is readily seen that for any R there

exists ε1(R) such that

aεR ≤ εσ/4 for all ε ≤ ε1 (43)

for some σ > 1.
2. Inequality (21) in Proposition 4.2 implies that for given δ and R, there exists
ε2(δ,R) < ε1(R) such that for all ε ≤ ε2(δ,R), we have

|w̃ε(x) − hε
k(x, y, ω)| ≤

δ

Rn−1+a
in B+

ε/2(εk). (44)

Thanks to (43), Inequality (44) holds in particular in B+
2aεR \B+

aεR(εk).

The corrector will be constructed by gluing together the functions ϕε
k (near the

sets Sε(k)) and the function w̃ε (away from the sets Sε(k)). The gluing has to
be done very carefully so that the corrector satisfies all the properties listed in
Proposition 2.4: For a given ε, we define δε to be the smallest positive number such
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that (43) and (44) hold with δ = δε and R = Rδε . From the remarks above, we
see that δε is well defined as soon as ε is small enough (say smaller than ε2(1, R1)).
Moreover, for any δ > 0, there exists ε0 = ε2(δ,Rδ) such that δε ≤ δ for all ε ≤ ε0.
In particular

lim
ε→0

δε = 0.

From now on, we write

Rε = Rδε .

In order to define wε, we introduce the cut-off function ηε(x, y) defined on D and
such that

ηε(x, y) = 1 for (x, y) ∈ D \
⋃

k∈Zn

B+
2aεRε

(εk)

ηε(x, y) = 0 for (x, y) ∈
⋃

k∈Zn

B+
aεRε

(εk).

We can always choose η in such a way that

|∇ηε| ≤ C(aεRε)
−1 and |∆ηε| ≤ C(aεRε)

−2

for (x, y) ∈ B+
2aεRε

(εk) \B+
aεRε

(εk). We now set:

wε(x, y) = ηε(x, y)w̃
ε(x, y) + (1 − ηε(x, y))

∑

k∈Zn∩D

ϕε
k(x, y) 1B+

ε/2
(εk)(x, y).

It satisfies

wε(x, y, ω) =






ϕε
k(x, y) for (x, y) ∈ D ∩B+

aεRε
(εk) ∀k ∈ Z

n

w̃ε(x, y) for (x, y) ∈ D \
⋃

k∈Zn

B+
2aεRε

(εk).

To simplify the notations in the sequel, we denote

ϕε(x, y) :=
∑

k∈Zn∩D

ϕε
k(x, y, ω) 1B+

ε/2
(εk)(x, y).

The properties of wε are summarized in the following lemma, which implies
Proposition 2.4:

Lemma 5.1. The function wε satisfies the following properties:
(i) wε(x, 0) = 1 for x ∈ Sε and ||wε||L∞(D) ≤ C.

(ii) wε converges to zero in L2(D, |y|a)-strong as ε goes to zero.
(iii) wε is bounded in W 1,2(D, |y|a).
(iv) wε satisfies (13).

Proof. (i) Immediate consequence of the definition of wε since ϕε
k = 1 on Sε(k, ω)

and w̃ε and ϕε
k are bounded in L∞.

(ii) Since Sε(k, ω) ⊂ Bn
aεM (εk), we have:

ϕε
k(x, y, ω) ≤ CεnM

n−1+a

νn−1+a
h(x− εk, y)
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for all (x, y) such that |(x− εk, y)| ≥ aεM . Since ϕε
k ≤ 1 in BaεM (εk), we get

∫

D

|y|a |(1 − ηε)ϕ
ε|2 dx dy

≤
∑

k∈Zn∩ε−1Σ

∫

B2aεR(εk)

|y|a |ϕε
k|

2
dx dy

≤
∑

k∈Zn∩ε−1Σ

∫

BaεM (εk)

|y|a dx dy

+C
∑

k∈Zn∩ε−1Σ

∫

B2aε(Rε)(εk)\BaεM (εk)

|y|a
(
εnM

n−1+a

νn−1+a
h(x− εk)

)2

dx

≤
∑

k∈Zn∩ε−1Σ

(aεM)n+1+a

+C
∑

k∈Zn∩ε−1Σ

ε2n(aεM)n+1−2(n−1+a)Mn−1+a.

Using (43) and the definition of aε, we deduce:

‖(1 − ηε)ϕ
ε‖2

L2(D,|ya|) ≤ C(M)ε
2n−an
n−1+a .

Estimate (41) thus implies

||wε||L2(D,|ya|) ≤ ||w̃ε||L2(D,|ya|) + ||(1 − ηε)ϕ
ε||L2(D,|ya|) = o(1).

and therefore

wε −→ 0 L2(D, |y|a)-strong.

(iii) Next, we want to show that wε is bounded in W 1,2(D, |y|a). First, we
note that outside ∪k∈ZnBε/2(εk) we have ∇wε = ∇w̃ε which is bounded

in W 1,2(D, |y|a). Next, we see that in Bε/2(εk), we have:

∇wε = ∇ηε(w̃
ε − ϕε

k) + ηε∇w̃
ε + (1 − ηε)∇ϕ

ε
k (45)

Since w̃ε and ϕε are both bounded in W 1,2(D, |y|a) (thanks to (18)), we see
that in order to show that ∇wε is bounded in L2(D, |y|a), we only have to
show that

∫

D

ya|∇ηε(w̃
ε − ϕε)|2 dx dy ≤ C.

For that purpose, we notice that (42) and (44) yield

|w̃ε − ϕε
k| ≤ C

δε

Rn−1+a
ε

in B2Rεaε(εk) \BRεaε(εk),
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and so, using the definition of ηε(x, y), we deduce:
∫

D

ya|∇ηε(w̃
ε − ϕε)|2 dx dy

≤
∑

k∈εZn∩Σ

∫

B2Rεaε (εk)\BRεaε (εk)

ya|∇ηε(w̃
ε − ϕε

k)|2 dx

≤
∑

k∈εZn∩Σ

(Rεa
ε)n+1+a(Rεa

ε)−2 δ2ε

R
2(n−1+a)
ε

≤
∑

k∈εZn∩Σ

R−(n−1+a)
ε εnδ2ε

≤ Cε−nεnδε = Cδε,

where we used the fact that we can always assume that δε < 1 and Rε ≥ 1.
For latter use, we note that we actually proved

∫

D

ya|∇ηε(w̃
ε − ϕε)|2 dx dy −→ 0 when ε→ 0. (46)

(iv) It remains to show that (13) holds. We only show the inequality (the equality
follows easily). Let vε be a sequence of functions satisfying:





vε(x, 0) ≥ 0 for x ∈ Tε

||vε||L∞(D) ≤ C

vε −→ v in W 1,2(D, |y|a) − weak.

Then for any φ ∈ D(D), we have:

−

∫

D

ya∇wε · ∇vεφdx dy

= −

∫

D

ya∇ηε · ∇v
ε(w̃ε − ϕε)φdx dy −

∫

D

ya∇w̃ε · ∇vεφηε dx dy

−

∫

D

ya∇ϕε · ∇vεφ (1 − ηε) dx dy

= −

∫

D

ya∇ηε · ∇v
ε(w̃ε − ϕε)φdx dy

+

∫

Σ

( lim
y→0

ya∂yw̃
ε)vεφηε dx +

∫

Σ

( lim
y→0

ya∂yϕ
ε)vεφ (1 − ηε) dx

+

∫

D

ya∇w̃ε · ∇(φηε)v
ε dx dy +

∫

D

ya∇ϕε · ∇(φ(1 − ηε))v
ε dx dy

where we used the fact that div (ya∇w̃ε) = 0 on supp ηε and div (ya∇ϕε) = 0
on supp (1 − ηε). The first term goes to zero thanks to (46) and the weak
convergence of ∇vε in L2(D, |y|a), and the boundary terms satisfy

lim
ε→0

∫

Σ

( lim
y→0

ya∂yw̃
ε)vεφηε dx = lim

ε→0

∫

Σ

α0v
εφηε dx

= lim
ε→0

∫

Σ

α0vφη dx
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and

lim
ε→0

∫

Σ

( lim
y→0

ya∂yϕ
ε)vεφ(1 − ηε) dx = lim

ε→0

∫

Tε

( lim
y→0

ya∂yϕ
ε)vεφ(1 − ηε) dx

≤ 0.

Finally, the last two terms can be rewritten as:

∫

D

ya∇w̃ε · ∇(φηε)v
ε dx dy +

∫

D

ya∇ϕε · ∇(φ(1 − ηε))v
ε dx dy

=

∫

D

ya∇(w̃ε − ϕε) · (∇ηε) v
εφdx dy

+

∫

D

ya vεηε ∇w̃
ε · ∇φdx dy +

∫

D

ya vε(1 − ηε)∇ϕ
ε · ∇φdx dy

Using the weak convergence of ∇w̃ε and ∇ϕε to zero, we see that in order to
prove (13), it only remains to prove that

∫

D

ya∇(w̃ε − ϕε) · (∇ηε) v
εφdx dy −→ 0 when ε→ 0.

Since vε is bounded in L∞, it is enough to show that

∫

D

|y|a|∇(w̃ε − ϕε)| |∇ηε| dx dy −→ 0 when ε→ 0.

For that purpose, we recall that

|w̃ε − ϕε
k| ≤

δε

Rn−1+a
ε

in B+
2aεRε

\B+
aεRε

,

and






div (ya∇(w̃ε − ϕε
k)) = 0 for (x, y) ∈ B+

4aεR \B+
aεRε/2

lim
y→0

ya∂y(w̃ε − ϕε
k)(x, y) = α0 for x ∈ Bn

4aεR \Bn
aεRε/2.

In particular, interior gradient estimates (see [7]) imply

|∇(w̃ε − ϕε
k)| ≤

δε

Rn−1+a
ε

(aεRε)
−1 + C(aεRε)

−a
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in B+
2aεRε

\B+
aεRε

. We deduce:

∫

D

|y|a|∇(w̃ε − ϕε)| |∇ηε| dx dy

≤
∑

k∈εZn∩Σ

∫

B+
2aεRε

\B+
aεRε

|y|a|∇(w̃ε − ϕε)| |∇ηε| dx dy

≤
∑

k∈εZn∩Σ

Cδε

Rn−1+a
ε

(aεRε)
−2

∫

B+
2aεRε

\B+
aεRε

|y|a dx dy

+
∑

k∈εZn∩Σ

C(aεRε)
−1−a

∫

B+
2aεRε

\B+
aεRε

|y|a dx dy

≤
∑

k∈εZn∩Σ

δε

Rn−1+a
ε

(aεRε)
−2(aεRε)

n+1+a

+
∑

k∈εZn∩Σ

C(aεRε)
−1−a(aεRε)

n+1+a

≤
Cδε

Rn−1+a
ε

ε−n(aεRε)
n−1+a + Cε−n(aεRε)

n.

Using (43) and the definition of aε, we deduce:

∫

D

|y|a|∇(w̃ε − ϕε)| |∇ηε| dx dy ≤ Cδε + Cεn(σ−1).

which concludes the proof since σ > 1 and limε→0 δε = 0.

Appendix A. Proof of Lemma 4.1. We now turn to the proof of Lemma 4.1.
We take k = 0 and we recall that ϕε

0 is the capacity potential associated to Sε(0).
It satisfies (17) and (18). We then introduce the function

G(x, ξ, y, τ) = h(x− ξ, y − τ) + h(x− ξ, y + τ)

which satisfies

div ξ,τ (|τ |a∇ξ,τG) = −µn,aδ(x − ξ, y − τ) − µn,aδ(x− ξ, y + τ)

and

lim
τ→0

τa∂τG(x, ξ, y, τ) = 0

for all x, ξ and y. If y > 0, we deduce that for any function ϕ(x, y), we have:

∫

τ>0

τa∇ξ,τG(x, ξ, y, τ)∇ξ,τϕ(ξ, τ) dξ dτ.

= −

∫

τ>0

div (τa∇ξ,τG(x, ξ, y, τ))ϕ(ξ, τ) dξ dτ

−

∫

Rn

lim
τ→0

τa∂τG(x, ξ, y, τ)ϕ(ξ, 0) dξ

= µn,aϕ(x, y).
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Moreover, if ϕε
0(x, y) is the capacity potential associated to Sε(0), then (17) yields
∫

τ>0

τa∇ξ,τG(x, ξ, y, τ)∇ξ,τϕ
ε
0(ξ, τ) dξ dτ.

= −

∫

τ>0

G(x, ξ, y, τ)div (τa∇ξ,τϕ
ε
0(ξ, τ)) dξ dτ

−

∫

Rn

G(x, ξ, y, 0) lim
τ→0

τa∂τϕ
ε
0(ξ, τ) dξ

= −2

∫

Rn

h(x− ξ, y) lim
τ→0

τa∂τϕ
ε
0(ξ, τ) dξ.

Combining those two equalities, we get:

µn,aϕ
ε
k(x, y) = −2

∫

Sε(0)

h(x− ξ, y) lim
τ→0

τa∂τϕ
ε
0(ξ, τ) dξ.

Next, we note that (18) yields, after integration by parts and using (17):

εnγ(0) =

∫

Rn

τa|∇ϕε
0(ξ, τ)|

2 dξ = −

∫

Sε(0)

lim
τ→0

τa∂τϕ
ε
0(ξ, τ) dξ,

and therefore

ϕε
0(x, y) −

2

µn,a
εnγ(0)h(x, y)

= −
2

µn,a

∫

Sε(0)

[h(x− ξ, y) − h(x, y)] lim
τ→0

τa∂τϕ
ε
0(ξ, τ) dξ.

In order to conclude, we recall that Sε(0) ⊂ BMaε(0) and so we have |ξ| ≤Maε

in the previous integral. If (x, y) is such that |(x, y)| ≥ Raε with R ≥ 8M , we
deduce that for all ξ ∈ Sε(0), we have:

|h(x− ξ, y) − h(x, y)| ≤ sup
ξ∗∈BMaε (0)

|∇x,yh(x− ξ∗, y)||ξ|

≤ sup
ξ∗∈BMaε (0)

|ξ|

((x− ξ∗)2 + y2)
n−a

2

≤
C|ξ|

(x2 + y2)
n−a

2

≤
C|ξ|

(x2 + y2)
1
2

h(x, y)

≤
CM

R
h(x, y).

We can thus write
∣∣∣∣ϕ

ε
0(x, y) −

2

µn,a
εnγ(0)h(x, y)

∣∣∣∣

≤
CM

R

2

µn,a
h(x, y)

∫

Sε(0)

∣∣∣ lim
τ→0

τa∂τϕ
ε
0(ξ, τ)

∣∣∣ dξ

≤
CM

R

2

µn,a
εnγ(0)h(x, y),

where the right hand side is bounded by δ 2
µn,a

εnγ(0)h(x, y) if R is large enough.
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Appendix B. Proof of Lemma 4.6. (i) For a given set A, it is readily seen
from the definition of vα,A that if α′ ≤ α, then vα′,A is admissible for the obstacle
problem with α: It follows that

vα,A ≤ vα′,A for any α, α′ such that α′ ≤ α

and so α 7→ mα(A,ω) is nondecreasing. The result follows from the definition of
ℓ(α).

(ii) If α is negative, then we have

lim
y→0

ya∂yvα,tB(x, y) < 0 for x ∈ R
n.

Since vα,tB(x, y) ≥ 0 for (x, y) ∈ R
n+1
+ , we deduce

vα,tB(x, 0) > 0 for x ∈ R
n.

It follows that mα(tB, ω) = 0 for all t > 0, and so ℓ(α) = 0 for all α < 0.

If r(k, ω) is bounded from below:

r(k, ω) ≥ r > 0 for all k ∈ Z
n, a.e. ω ∈ Ω,

then, we define

ϕ(x, y) =
rn−1+a

(|x|2 + y2)
n−1+a

2

− α

∫

Bn
1 (0)

νn+1+a

(|x− x′|2 + y2)
n−1+a

2

dx′ − C0

with

C0 = rn−1+a − α

∫

Bn
1 (e)

νn+1+a

|z|n−1+a
dz

where e denotes any unit vector in R
n. In particular, we have

ϕ(x, 0) = 0 if |x| = 1,

and, if α is small enough

ϕ(x, 0) > 0 if |x| < 1,

and

ϕ(x, y) < 0 if |x| = 1, y > 0

(we note that ϕ is the sum of a term which is decreasing with respect to |x| and
one which is increasing). Since ϕ satisfies

lim
y→0

ya∂yϕ(x, y) = α− γδ(x) ≥ α− γ̃(0, ω)δ(x),

for all x ∈ Bn
1 (0), we deduce

vα,tB(x, 0) > ϕ(x, 0) > 0 in Bn
1 (0).

Since we can do this in any ball Bn
1 (k), we must have mα(tBn, ω) = 0 for all t > 0,

and so ℓ(α) = 0 for all α small enough.

(iii) We consider the function

ψ(x, y) =
rn−1+a

(|x|2 + y2)
n−1+a

2

− α

∫

Bn
1 (0)

νn+1+a

(|x− x′|2 + y2)
n−1+a

2

dx′ + C,

where the constant C will be chosen later. It satisfies

lim
y→0

ya∂yψ(x, y) = α− γ δ(x) ≤ α− γ̃(0, ω)δ(x) ∀x ∈ Bn
1 (0),



RANDOM HOMOGENIZATION OF FRACTIONAL OBSTACLE PROBLEMS 553

ψ(x, y) −→ C when |x|2 + y2 → ∞

and we note that ψ(x, 0) is radially symmetric. Moreover, when α is such that

α

∫

B1(0)

νn+1+a

|e1 − x′|n−1+a
dx′ ≥ rn−1+a

then
ψ(x, 0) < C when |x| = 1.

Since div (ya∇ψ) = 0 for y > 0 and limy→0 y
a∂yψ(x, y) = 0 for x /∈ Bn

1 (0), the
strong maximum principle and Hopf Lemma yield that the minimum of ψ(x, y) is
reached for y = 0 and x ∈ Bn

1 (0), and with an appropriate choice of the constant
C, we can always assume that this minimum is 0:

inf
R

n+1
+

ψ(x, y) = inf
Bn

1 (0)
ψ(x, 0) = 0.

Finally, if α is such that

α

∫

Bn
1 (0)

[
1

| e1

2 − x′|n−1+a
−

1

|e1 − x′|n−1+a

]
dx′ ≥ rn−1+a(4n+1 − 1)

then ψ(x, 0) reaches its minimum when |x| = Rα with Rα < 1/4.
We now consider the function ϕ(x, y) defined by:

ϕ(x, y) =

{
ψ(x− k, y) for (x, y) ∈ B+

1/4(k)

infk′ ψ(x− k′, y) for (x, y) ∈ R
n+1
+ \ ∪k′B+

1/4(k
′)

We clearly have

lim
y→0

ya∂yϕ(x, y) ≤ α0 − γ(k, ω)δ(x− k) for x ∈ Bn
1/4(k)

and
lim
y→0

ya∂yϕ(x, y) ≤ α0 for x ∈ R
n \ ∪k′Bn

1/4(k
′).

In order to prove that ϕ is a supersolution for the obstacle problem, we only have
to check that

ψ(x− k, y) = inf
k′

ψ(x− k′, y) for (x, y) ∈ ∂B+
1/4(k)

or equivalently

ψ(x, y) = inf
k′

ψ(x− k′, y) for (x, y) ∈ ∂B+
1/4(0).

It is readily seen that this amounts to showing that

ανn+1+a

∫

Bn
1 (0)

1

(|x− x′|2 + y2)
n−1+a

2

−
1

(|x− k − x′|2 + y2)
n−1+a

2

dx′ ≥ 4n−1rn−1+a

for all k ∈ Z
n \ {0} and all (x, y) ∈ ∂B+

1/4(0). This inequality is obviously satisfied

if α is large enough provided we can prove that
∫

Bn
1 (0)

1

(|x− x′|2 + y2)
n−1+a

2

−
1

(|x− k − x′|2 + y2)
n−1+a

2

dx′ > 0

for all k ∈ Z
n \ {0} and all (x, y) ∈ ∂B+

1/4(0). This is equivalent to
∫

Bn
1 (x)

1

(|x′|2 + y2)
n−1+a

2

dx′ >

∫

Bn
1 (x−k)

1

(|x′|2 + y2)
n−1+a

2

dx′ > 0

whick holds for all (x, y) ∈ ∂B+
1/4(0) since |k| ≥ 1.
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By definition of vα,tB, we deduce that

vα,tB(x) ≤ ϕ(x, y) in tBn a.s.

In particular, this implies that vα,tBn vanishes in tBn \ ∪k∈ZnB1/2(k), and so

mα(tBn, ω)

|tBn|
≥

(
|C1| − |Bn

1/2|

|C1|

)
= 1 −

ωn

2n
a.s.

We conclude
ℓ(α) ≥ 1 −

ωn

2n
> 0.
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