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Abstract. The paper deals with some extensions of the Keller-Dykhne duality
relations arising in the classical homogenization of two-dimensional uniformly
bounded conductivities, to the case of high-contrast conductivities. Only as-
suming a L

1-bound on the conductivity we prove that the conductivity and its
dual converge respectively, in a suitable sense, to the homogenized conductivity
and its dual. In the periodic case a similar duality result is obtained under a
less restrictive assumption.

1. Introduction. The homogenization of elliptic partial differential equations has
had an important development for nearly forty years. During the seventies, the
G-convergence of Spagnolo [24], and the H-convergence of Murat, Tartar [25], [23],
as well as the study of periodic structures by Bensoussan, Lions, Papanicolaou [4]
(see also [15]), laid the foundations of the homogenization theory in conduction
problems with uniformly bounded (both from below and above) conductivities.

The boundedness assumption implies some compactness which preserves the na-
ture of the homogenized problem. This is no more the case for high-contrast conduc-
tivities. Indeed, Khruslov was one of the first to derive vector-valued homogenized
problems in the case of low conductivities [17], as well as nonlocal homogenized
ones in the case of high conductivities [12] (see also [18] and [19] for various types
of homogenized problems and complete references). In the case of high conductivi-
ties, the appearance of nonlocal effects is strongly linked to the dimension greater
than two. So, the model example of nonlocal homogenization [12] in conduction
is obtained from a three-dimensional homogeneous medium reinforced by highly
conducting thin fibers which create a capacitary effect (see also [3], [6] and [10] for
extensions and alternative methods).

Recently, Casado-Dı́az and the first author proved in [5], [8], [9], that dimension
two, contrary to dimension three or greater, induces an extra compactness which
prevents from the nonlocal effects. In particular, an extension of the H-convergence
is obtained in [8] for conductivities which are only bounded in L1 but not in L∞.
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The present paper deals with the duality relations arising in the two-dimensional
homogenization. These relations were first noted by Keller [16] who obtained an
interchange equality relating the effective properties of a two-phase composite when
the conductivities are swapped. Following the pioneer work of Keller, Dykhne [11]
(see also [21] and [13] for a more general approach) proved that, for any periodic,
coercive and bounded matrix-valued function A, the homogenized matrix associated
with the dual conductivity AT / detA (where AT denotes the transposed of A)
is equal to AT

∗ / detA∗, where A∗ is the constant homogenized matrix associated
with A. We refer to Chapters 3, 4 of [22] for a general presentation of the duality
transformations.

Our contribution is the extension of the Dykhne duality relation to high-contrast
two-dimensional conductivities. More precisely, consider an equicoercive sequence An

of (not necessarily symmetric) conductivity matrices, which is not uniformly bounded
contrary to the classical case. Under the main assumption that

detAn

detAs
n

|As
n| weakly-∗ converges in the sense of the Radon measures

to a bounded function,
(1)

(where As
n denotes the symmetrized of An), we prove (see Theorem 2.2) that the

sequence AT
n / detAn “H-converges” to AT

∗ / detA∗, when An “H-converges” to A∗,
for suitable extensions of the H-convergence (see Definition 2.1). As a consequence,
we obtain (see Corollary 1) a compactness result for the opposite case of a uniformly
bounded but not equicoercive sequence of conductivity matrices. We also prove a
refinement (see Theorem 2.4) in the periodic case, i.e. An(x) := A♯

n( x
εn

) where A♯
n

is Y -periodic and εn > 0 tends to 0, under the less restrictive assumption than (1)

ε2
n

∫

Y

detA♯
n

det(A♯
n)s

∣

∣(A♯
n)s
∣

∣ dy −→
n→+∞

0. (2)

The paper is organized as follows. In Section 2, we define some appropriate
notions of H-convergence and we state the main duality results for high-contrast
conductivities, both in the non-periodic and periodic framework. Section 3 is de-
voted to the proof of the homogenization results.

Notations.

• Ω denotes a bounded open subset of R
2;

• I denotes the unit matrix in R
2×2, and J the rotation matrix of angle 90◦;

• for any matrix A in R
2×2, AT denotes the transposed of the matrix A, As

denotes its symmetric part in such a way that A = As + aJ , where a ∈ R;
• for any matrices A, B ∈ R

2×2 (even non-symmetric), A ≤ B means that
As ≤ Bs, i.e., for any ξ ∈ R

2, Aξ · ξ ≤ Bξ · ξ;
• | · | denotes both the euclidian norm in R

d and the subordinate norm in R
2×2,

i.e., for any A ∈ R
2×2, |A| := sup {|Ax| : |x| = 1}, which agrees with the

spectral radius of A if A is symmetric;
• for any α, β > 0 , M(α, β; Ω) denotes the set of the matrix-valued functions

A : Ω −→ R
2×2 such that

∀ ξ ∈ R
2, A(x)ξ · ξ ≥ α |ξ|2 and A−1(x)ξ · ξ ≥ β−1 |ξ|2, a.e. x ∈ Ω; (3)

• for Y := (0, 1)2 and for V := Lp, W 1,p, V#(Y ) denotes the Y -periodic func-
tions which belong to Vloc(R

2);
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• for any locally compact subset X of R
2, M(X) denotes the space of the Radon

measures defined on X ;
• c denotes a constant which may vary form a line to another one.

2. Statement of the results.

2.1. The general case. We consider a sequence of two-dimensional conduction
problems in which the conductivity matrix-valued is either not uniformly bounded
from above or (exclusively) not equicoercive. As a consequence, either the associated
flux is not bounded in L2 or the associated potential is not bounded in H1. To take
into account these two degenerate cases we extend the definition of the classical
Murat-Tartar H-convergence (see [23]) by the following way:

Definition 2.1. Let αn and βn be two sequences of positive numbers such that
αn ≤ βn, and let An be a sequence of matrix-valued functions in M(αn, βn; Ω)
(see (3)).

• The sequence An is said to H(M(Ω)2)-converge to the matrix-valued func-
tion A∗ in M(α, β; Ω), with 0 < α ≤ β, if for any distribution f in H−1(Ω),
the solution un of the problem

{

− div (An∇un) = f in Ω

un = 0 on ∂Ω,
(4)

satisfies the convergences
{

un −⇀ u weakly in H1
0 (Ω)

An∇un −⇀ A∗∇u weakly-∗ in M(Ω)2,
(5)

where u is the solution of the problem
{

− div (A∗∇u) = f in Ω

u = 0 on ∂Ω.
(6)

We denote this convergence by An

H(M(Ω)2)
−⇀ A∗.

• The sequence An is said to H(L2(Ω)2)-converge to the matrix-valued func-
tion A∗ in M(α, β; Ω), with 0 < α ≤ β, if for any function f in L2(Ω), the
solution un of (4) satisfies the convergences

{

un −→ u strongly in L2(Ω)

An∇un −⇀ A∗∇u weakly in L2(Ω)2,
(7)

where u is the solution of (6). We denote this convergence by An

H(L2(Ω)2)
−⇀ A∗.

The main result of the paper is the following:

Theorem 2.2. Let Ω be a bounded open set of R
2 such that |∂Ω| = 0. Let α > 0,

let βn, n ∈ N, be a sequence of real numbers such that βn ≥ α, and let An be a
sequence of matrix-valued functions (not necessarily symmetric) in M(α, βn; Ω).
i) Assume that there exists a function a ∈ L∞(Ω) such that

det An

det As
n

|As
n| −⇀ a weakly-∗ in M(Ω̄). (8)
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Then, there exists a subsequence of n, still denoted by n, and a matrix-valued func-
tion A∗ in M(α, β; Ω), with β = 2 ‖a‖L∞(Ω), such that

An

H(M(Ω)2)
−⇀ A∗ and AT

n

H(M(Ω)2)
−⇀ AT

∗ . (9)

ii) In addition to the assumptions of i), assume that there exists a constant C0 > 0
such that, for any n ∈ N,

detAn

detAs
n

As
n ≤ C0 AnAT

n , a.e. in Ω. (10)

Then, we have

AT
n

detAn

H(L2(Ω)2)
−⇀

AT
∗

detA∗

. (11)

Remark 1. The part i) is a two-dimensional extension of the H-convergence for
unbounded sequences of equicoercive matrix-valued functions. It was first proved
in [8] under the following assumption: there exists a constant γ > 0 and ā ∈ L∞(Ω)
such that An = As

n + anJ satisfies

|an| ≤ γ As
n and |As

n| −⇀ ā weakly-∗ in M(Ω̄). (12)

Assumption (12) is more restrictive than (8) since

det An

det As
n

|As
n| =

(

1 +
a2

n

detAs
n

)

|As
n| ≤ (1 + γ2) |As

n|

which converges to a bounded function in the weak-∗ sense of the measures on Ω̄,
hence convergence (8). The proof of (9) is quite similar to the one in [8] up to a
few extra computations (see [20] for details).

On the contrary, the part ii) of Theorem 2.2 is a new result which extends
the duality result obtained by Dykhne [11] for periodic and uniformly bounded
conductivities to non-periodic and non-uniformly bounded ones. Condition (10) is
a technical assumption we need in the non-symmetric case. Indeed, (10) clearly
holds with C0 = α−1, if An ≥ αI is symmetric. It also holds if An = αnI + anJ
(i.e. As

n is isotropic) with αn ≥ α, since

detAn

detAs
n

As
n =

(

α2
n + a2

n

αn

)

I ≤

(

α2
n + a2

n

α

)

I = α−1 AnAT
n .

Part ii) will be proved in Section 3.

Theorem 2.2 implies the following H-convergence result for uniformly bounded
sequences of matrix-valued functions which are not equicoercive:

Corollary 1. Let Ω be a bounded open set of R
2 such that |∂Ω| = 0. Let β > 0 and

let αn be a sequence of real numbers such that 0 < αn ≤ β. Let Bn be a sequence
of matrix-valued functions in M(αn, β; Ω). Assume that there exist a function a
in L∞(Ω) such that

∣

∣(Bs
n)−1

∣

∣ −⇀ a weakly-∗ in M(Ω̄), (13)

and a constant C0 > 0 such that, for any n ∈ N,

BT
n Bn ≤ C0 Bs

n, a.e. in Ω. (14)
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Then, there exists a subsequence of n, still denoted by n, and a matrix-valued func-

tion B∗ in M(α, β; Ω), with α =
(

2 ‖a‖L∞(Ω)

)−1
, such that

Bn

H(L2(Ω)2)
−⇀ B∗. (15)

Proof. The sequence An defined by

An :=
BT

n

detBn

= J−1B−1
n J,

satisfies the inequality An ≥ β−1I. Inequality (10) is a consequence of (14) since
Bn = J−1A−1

n J and

AnAT
n = J−1(BT

n Bn)−1J ≥ C−1
0 J−1(Bs

n)−1J

= C−1
0

Bs
n

detBs
n

= C−1
0

detAn

detAs
n

As
n.

(16)

Moreover, convergence (8) is a consequence of (13) since

∣

∣(Bs
n)−1

∣

∣ =
∣

∣J−1(Bs
n)−1J

∣

∣ =

∣

∣

∣

∣

Bs
n

detBs
n

∣

∣

∣

∣

=
detAn

detAs
n

|As
n|. (17)

Then, by the part i) of Theorem 2.2, the sequence An (up to a subsequence)
H(M(Ω)2)-converges to some A∗ in M

(

β−1, 2 ‖a‖L∞(Ω); Ω
)

. Therefore, by the

part ii) of Theorem 2.2, Bn H(L2(Ω)2)-converges to the matrix-valued function

B∗ :=
AT

∗

detA∗

= J−1A−1
∗ J.

The matrix-valued function B∗ clearly belongs to the set M(α, β; Ω), with the con-

stant α :=
(

2 ‖a‖L∞(Ω)

)−1
, which concludes the proof.

2.2. The periodic case. In this section we consider the case of highly oscillating
sequences of conductivity matrices. Let Ω be a bounded open subset of R

2, and let
Y := (0, 1)2 be the unit square of R

2. Let A♯
n be a sequence of Y -periodic matrix-

valued functions in L∞
# (R2)2×2, and let εn be a sequence of positive numbers which

tends to 0. We define the highly oscillating sequence associated with A♯
n and εn by

An(x) := A♯
n

(

x

εn

)

, for a.e. x ∈ Ω. (18)

For a fixed n ∈ N, let A∗
n be the constant matrix defined by

A∗
nλ :=

∫

Y

A♯
n∇Wλ

n dy, (19)

where Wλ
n , for λ ∈ R

2, is the unique solution in H1
loc(R

2) of the problem
{

div
(

A♯
n∇Wλ

n

)

= 0 in R
2

Wλ
n (y) − λ · y is Y -periodic, with zero Y -average.

(20)

Note that A∗
n is the H-limit of the oscillating sequence A♯

n(x
ε
) as ε tends to 0 (see

e.g. the periodic homogenization in [4]). Under the periodicity assumption (18) we
can improve Theorem 2.2. To this end, we need a more general definition of H-
convergence than the one of Definition 2.1:

Definition 2.3. Let αn and βn be two sequences of positive numbers such that
αn ≤ βn, and let An be a sequence of matrix-valued functions in M(αn, βn; Ω).
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• The sequence An is said to Hs-converge to the matrix-valued function A∗

in M(α, β; Ω), with 0 < α ≤ β, if for any function f in L2(Ω), the solution un

of problem (4) strongly converges in L2(Ω) to the solution u of problem (6).

We denote this convergence by An

Hs

−⇀ A∗.
• The sequence An is said to Hw-converge to the matrix-valued function A∗

in M(α, β; Ω), with 0 < α ≤ β,if for any function f in L2(Ω), the solution un

of problem (4) weakly converges in L2(Ω) to the solution u of problem (6) and
the flux An∇un weakly converges to A∗∇u in L2(Ω)2.

We denote this convergence by An

Hw

−⇀ A∗.

Remark 2. In the part i) of Definition 2.3 we have the strong convergence of the
potential but not the convergence of the flux. This corresponds to the case of an
equicoercive sequence of conductivity matrices without control from above. In the
part ii) we have the weak convergence of both the potential and the flux. This
corresponds to the case of a uniformly bounded sequence of conductivity matrices
without control from below.

We have the following periodic homogenization result:

Theorem 2.4. Let α > 0 and let βn be a sequence of real numbers such that
βn ≥ α. Let A♯

n be a sequence of Y -periodic matrix-valued functions (not necessarily
symmetric) in M(α, βn; R2), and let An be the highly oscillating sequence associated
with A♯

n by (18).
i) Assume that the sequence A∗

n defined by (19) converges to A∗ in R
2×2, and that

the following limit holds

ε2
n

∫

Y

detA♯
n

det(A♯
n)s

∣

∣(A♯
n)s
∣

∣ dy −→
n→+∞

0. (21)

Then, we have

An

Hs

−⇀ A∗. (22)

ii) In addition to the assumptions of i) assume that An and AT
n satisfy inequal-

ity (10), and that the solution un of (4), with the matrix AT
n / detAn, is bounded

in L2(Ω) for any right-hand side f in L2(Ω). Then, we have

AT
n

detAn

Hw

−⇀
AT

∗

detA∗

. (23)

Remark 3. In the part i) of Theorem 2.4, taking into account the periodicity (18)
convergence (8) is equivalent to the L1(Y )-boundedness

∫

Y

det A♯
n

det(A♯
n)s

∣

∣(A♯
n)s
∣

∣ dy ≤ c,

which is clearly more restrictive than condition (21). The price to pay is that the
sequence An∇un is not necessarily bounded in L1(Ω)2.

In the part ii) of Theorem 2.4 we have to assume the L2(Ω)-boundedness of any
solution of (4) with conductivity matrix AT

n/ detAn, since condition (21) does not
imply it. To this end, it is sufficient to assume the existence of a constant C > 0
such that, for any n ∈ N,

∀u ∈ H1
0 (Ω),

∫

Ω

u2 dx ≤ C

∫

Ω

An

detAn

∇u · ∇u dx. (24)
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Example 2.5. Let E be a Y -periodic connected open set of R
2, with a Lipschitz

boundary, such that |Y ∩ E| > 0. Consider a Y -periodic symmetric matrix-valued
function A♯

n such that

A♯
n

detA♯
n

≥ I a.e. in E and
A♯

n

detA♯
n

≥ ε2
n I a.e. in R

2 \ E,

or equivalently

A♯
n ≤ I a.e. in E and A♯

n ≤ ε−2
n I a.e. in R

2 \ E.

Then, the highly oscillating sequence An defined by (18) satisfies the Poincaré
inequality (24) (see e.g. [2] for the derivation of a similar estimate). The proof
of (24) is based on the extension property established in [1] (see [20] for more
details).

3. Proof of the results.

3.1. Proof of Theorem 2.2. Taking into account Remark 1 we focus on the
part ii) of Theorem 2.2. Consider a sequence An in M(α, βn; Ω) which satisfies con-
vergence (8) and H(M(Ω)2)-converges to A∗ in M(α, β; Ω), with 0 < α ≤ β, and set
Bn := J−1A−1

n J . Let f ∈ L2(Ω) and let vn be the solution of the conduction prob-
lem (4) with conductivity matrix Bn. The proof of the H(L2(Ω)2)-convergence (11)
is divided into two steps. In the first step, we prove that the sequence vn strongly
converges in L2

loc(Ω) to some v ∈ H1
0 (Ω), and that the flux Bn∇vn weakly converges

to some ξ in L2(Ω). The second step is devoted to the determination of the limit ξ
in order to establish convergence (11).

First step : Convergences of the sequences vn and Bn∇vn.
Putting the function vn ∈ H1

0 (Ω) as test function in the equation − div (Bn∇vn) = f ,
we obtain by the Sobolev embedding of W 1,1(Ω) into L2(Ω) combined with the
Poincaré inequality

∫

Ω

Bn∇vn · ∇vn dx =

∫

Ω

f vn dx ≤ ‖f‖L2(Ω) ‖vn‖L2(Ω) ≤ c

∫

Ω

|∇vn| dx. (25)

Moreover, by the Cauchy-Schwarz inequality combined with (17) we have
∫

Ω

|∇vn| dx ≤

∫

Ω

∣

∣(Bs
n)−

1
2

∣

∣

∣

∣(Bs
n)

1
2∇vn

∣

∣ dx

≤

(
∫

Ω

∣

∣(Bs
n)−1

∣

∣ dx

)
1
2
(
∫

Ω

Bs
n∇vn · ∇vn dx

)
1
2

=

(
∫

Ω

detAn

detAs
n

|As
n| dx

)
1
2
(
∫

Ω

Bn∇vn · ∇vn dx

)
1
2

.

Then, we deduce from the previous inequalities and (8) that

∫

Ω

Bn∇vn · ∇vn dx ≤ c

(
∫

Ω

Bn∇vn · ∇vn dx

)
1
2

. (26)

Therefore, the sequences Bn∇vn · ∇vn and |∇vn| are bounded in L1(Ω), hence vn

is bounded in L2(Ω) by (25). On the other hand, similarly to (16) inequality (10)
implies that BT

n Bn ≤ C0 Bs
n and

|Bn∇vn|
2 = (BT

n Bn)∇vn · ∇vn ≤ C0 Bs
n∇vn · ∇vn = C0 Bn∇vn · ∇vn,
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hence the sequence Bn∇vn is also bounded in L2(Ω). Therefore, up to a sub-
sequence vn weakly converges to v in L2(Ω) and Bn∇vn weakly converges to ξ
in L2(Ω)2.

The strong convergence of vn in L2(Ω) is a consequence of the following result
which is proved in [8] (see the steps 3, 4 of the proof of Theorem 2.1 in [8], as
well as the first step of Theorem 2.4 i), which uses similar arguments adapted to
condition (21)):

Lemma 3.1. Let Q be a bounded open subset of R
2. Let Sn be a sequence of

symmetric matrix-valued functions in L∞(Q)2×2 such that there exist α > 0 and
a ∈ L∞(Q) satisfying

Sn ≥ α I and |Sn| −⇀ a weakly-∗ in M(Q). (27)

Let vn be a sequence in H1(Q) satisfying

vn −⇀ v weakly in L2(Q) and

∫

Q

S−1
n ∇vn · ∇vn dx ≤ c. (28)

Then, the sequence vn strongly converges to v in L2
loc(Q).

Let Q be an open subset of R
2 such that Ω ⊂ Q. Define the matrix-valued

function Sn by Sn := (Bs
n)−1 in Ω, and Sn := α I in Q\Ω. Since An ≥ α I, we have

|Bs
n| ≤ |Bn| = |A−1

n | ≤ α−1, hence Bs
n ≤ α−1I in Ω, and Sn ≥ α I in Q. Taking

into account that ∂Ω has a zero Lebesgue measure, by (8) combined with (17) we
get that the sequence |Sn| satisfies the weak-∗ convergence of (27) to a function
in L∞(Q), which is equal to α in Q \ Ω. Moreover, extending vn and v by zero
in Q \ Ω, by (26) the sequence vn satisfies (28). Therefore, Lemma 3.1 implies
that vn strongly converges to v in L2

loc(Q), hence strongly in L2(Ω).

It remains to prove that v belongs to H1
0 (Ω). Let Φ ∈ C1(Ω̄)2. Using successively

the Cauchy-Schwarz inequality and (26) we have
∣

∣

∣

∣

∫

Ω

vn div Φ dx

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

Ω

Φ · ∇vn dx

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

Ω

(Bs
n)−

1
2 Φ · (Bs

n)
1
2∇vn dx

∣

∣

∣

∣

≤

(
∫

Ω

∣

∣(Bs
n)−1

∣

∣ |Φ|2 dx

)
1
2
(
∫

Ω

Bn∇vn · ∇vn dx

)
1
2

≤ c

(
∫

Ω

∣

∣(Bs
n)−1

∣

∣ |Φ|2 dx

)
1
2

.

Therefore, passing to the limit in the previous inequality thanks to the weak con-
vergence of vn, to equality (17) and to convergence (8), we get

∣

∣

∣

∣

∫

Ω

v div Φ dx

∣

∣

∣

∣

≤ c ‖a‖
1
2

L∞(Ω) ‖Φ‖L2(Ω)2 , for any Φ ∈ C1(Ω̄)2,

which implies that v belongs to H1
0 (Ω).

Second step : Determination of the limit ξ of Bn∇vn.
Let λ ∈ R

2, θ ∈ C1
c (Ω), and let wλ

n be the solution of the problem
{

div
(

AT
n∇wλ

n

)

= div
(

AT
∗ ∇(θ λ · x)

)

in Ω

wλ
n = 0 on ∂Ω.

(29)
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By (9) and by virtue of Definition 2.1 we have the following convergences
{

wλ
n −⇀ θ λ · x weakly in H1

0 (Ω),

AT
n∇wλ

n −⇀ AT
∗ ∇(θ λ · x) weakly-∗ in M(Ω)2.

(30)

Now, we will pass to the limit in the product Bn∇vn · JAT
n∇wλ

n by two different
ways, which will give the desired limit ξ.

On the one hand, since Bn = J−1A−1
n J and J2 = −I, we have

Bn∇vn · JAT
n∇wλ

n = −A−1
n J∇vn · AT

n∇wλ
n = −J∇vn · ∇wλ

n = ∇vn · J∇wλ
n.

Moreover, since J∇wλ
n is divergence free, we have ∇vn · J∇wλ

n = div
(

vn J∇wλ
n

)

.

Then, since vn strongly converges to v in L2
loc(Ω) and ∇wλ

n weakly converges
to ∇(θ λ · x) in L2(Ω)2 by (30), the sequence vn J∇wλ

n converges to v J∇(θ λ · x)
in L1

loc(Ω). Therefore, we obtain the first convergence

Bn∇vn · JAT
n∇wλ

n −⇀ div (v J∇(θ λ · x)) = ∇v · J∇(θ λ · x) in D′(Ω). (31)

On the other hand, consider a regular simply connected open subset ω of Ω. Since
by definition (29) AT

n∇wλ
n − AT

∗ ∇(θ λ · x) is a divergence free function in L2(ω)2,
there exists a stream function (see e.g. [14]) w̃λ

n in H1(ω) uniquely defined by
∫

ω

w̃λ
n dx = 0 and AT

n∇wλ
n − AT

∗ ∇(θ λ · x) = J∇w̃λ
n. (32)

Since AT
n∇wλ

n is bounded in L1(Ω)2 by (30) and w̃λ
n has a zero ω-average, the

Sobolev imbedding of W 1,1(ω) into L2(ω) combined with the Poincaré-Wirtinger
inequality in ω implies that w̃λ

n is bounded in L2(ω) and thus converges, up to a sub-
sequence, to a function w̃λ in L2(ω). Moreover, by the Cauchy-Schwarz inequality
and (29) we have, with Bn = J−1A−1

n J ,
∫

ω

Bs
n∇w̃λ

n · ∇w̃λ
n dx =

∫

ω

(

A−1
n

)s
J∇w̃λ

n · J∇w̃λ
n dx

=

∫

ω

(

A−1
n

)s [

AT
n∇wλ

n − AT
∗ ∇(θ λ · x)

]

·
[

AT
n∇wλ

n − AT
∗ ∇(θ λ · x)

]

dx

≤ 2

∫

ω

(

A−1
n

)s
AT

n∇wλ
n · AT

n∇wλ
n +

(

A−1
n

)s
AT

∗ ∇(θ λ · x) · AT
∗ ∇(θ λ · x) dx

≤ 2

∫

Ω

AT
n∇wλ

n · ∇wλ
n + A−1

n AT
∗ ∇(θ λ · x) · AT

∗ ∇(θ λ · x) dx

= 2

∫

Ω

AT
∗ ∇(θ λ · x) · ∇wλ

n + A−1
n AT

∗ ∇(θ λ · x) · AT
∗ ∇(θ λ · x) dx.

The last term is bounded by (30) and by the inequality |A−1
n | ≤ α−1. Therefore, the

sequences vn := w̃λ
n and Sn = (Bs

n)−1 of the first step satisfy the assumptions (27)
and (28) of Lemma 3.1 in ω, hence w̃λ

n strongly converges to w̃λ in L2
loc(ω). More-

over, the second convergence of (30) and definition (32) imply that w̃λ has a zero
ω-average and ∇w̃λ = 0 in D′(ω), hence w̃λ = 0 by the connectedness of ω. There-
fore, by the uniqueness of the limit we get for the whole sequence

w̃λ
n −→ 0 strongly in L2

loc(ω). (33)

By (32) we have

Bn∇vn · JAT
n∇wλ

n = Bn∇vn · JAT
∗ ∇(θ λ · x) − Bn∇vn · ∇w̃λ

n.
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Clearly, the sequence Bn∇vn · JAT
∗ ∇(θ λ · x) weakly converges to ξ · JAT

∗ ∇(θ λ · x)
in L2(ω)2. Moreover, the strong convergence (33) implies that

Bn∇vn · ∇w̃λ
n = div

(

w̃λ
n Bn∇vn

)

+ w̃λ
n f −⇀ 0 in D′(ω).

Therefore, we obtain

Bn∇vn · JAT
n∇wλ

n −⇀ ξ · JAT
∗ ∇(θ λ · x) in D′(ω).

This combined with (31) yields

∇v · J∇(θ λ · x) = ξ · JAT
∗ ∇(θ λ · x) a.e. in ω.

Now, choose θ ∈ C1
c (Ω) such that θ = 1 in ω in the former equality. Therefore, due

to the arbitrariness of λ and ω we get the equality J∇v = A∗Jξ a.e. in Ω, hence
ξ = J−1A−1

∗ J∇v = B∗∇v a.e. in Ω, which concludes the proof.

3.2. Proof of Theorem 2.4. Proof of the part i) of Theorem 2.4. The proof
is similar to the one of the compactness result in [5]. But there are extra difficulties
since the conductivity matrices are not symmetric and the fluxes are not necessarily
bounded in L1(Ω), due to the condition (21). We will give the main steps of the
proof pointing out these difficulties.

Let un be the solution of the conduction problem (4), where An is the highly
ocillating sequence (18). Let λ ∈ R

2, and let V λ
n be the unique solution of prob-

lem (20) with the matrix-valued function (A♯
n)T . Note that the matrix A∗

n defined
by (19) and V λ

n satisfy the relation

(A∗
n)T λ =

∫

Y

(A♯
n)T∇V λ

n dy

and (A∗
n)T λ · λ =

∫

Y

(A♯
n)T∇V λ

n · ∇V λ
n dy ≤ c |λ|2.

(34)

Set vλ
n(x) := εnV λ

n ( x
εn

) and zλ
n(x) := vλ

n(x) − λ · x. Note that the second estimate

of (34) and the α-coerciveness of A♯
n imply that the sequence (V λ

n −λ ·y) is bounded
in H1

#(Y ), hence

zλ
n −⇀ 0 weakly in H1(Ω). (35)

To prove the Hs-convergence (22) it is enough to prove that

An∇un −⇀ A∗∇u in D′(Ω),

where A∗ is the limit of A∗
n in R

2×2, and u is the weak limit of un in H1
0 (Ω). To

this end, we proceed in two steps. In the first step, we prove the convergence

An∇un · ∇vλ
n − An∇un · λ −⇀ 0 in D′(Ω), (36)

and in the second one, the convergence

An∇un · ∇vλ
n − A∗∇u · λ −⇀ 0 in D′(Ω). (37)

First step : Proof of (36).
Let ω be a regular simply connected subset of Ω, let v ∈ H1

0 (Ω) be the solution of
−∆v = f , and consider the stream function ũn ∈ W 1,1(ω) defined by

∫

ω

ũn dx = 0 and An∇un −∇v = J∇ũn a.e. in ω. (38)
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Set Ãn := J−1
(

A−1
n

)s
J and Ã♯

n := J−1
[

(A♯
n)−1

]s
J . Using successively the Poincaré-

Wirtinger inequality in ω, the Cauchy-Schwarz inequality, equality (17), estimate (21)
and |A−1

n | ≤ α−1, we have
∫

ω

|ũn| dx

≤ c

∫

ω

|∇ũn| dx

≤ c

(
∫

ω

∣

∣Ã−1
n

∣

∣ dx

)
1
2
(
∫

ω

Ãn∇ũn · ∇ũn dx

)
1
2

≤ c

(
∫

Y

∣

∣(Ã♯
n)−1

∣

∣ dy

)
1
2
(
∫

ω

Ãn∇ũn · ∇ũn dx

)
1
2

≤ c

(

∫

Y

detA♯
n

det(A♯
n)s

∣

∣(A♯
n)s
∣

∣ dy

)
1
2 (∫

ω

An∇un · ∇un + A−1
n ∇v · ∇v dx

)
1
2

= o
(

ε−1
n

)

.

(39)

To get (36) we need to prove that the sequence An∇un · ∇zλ
n converges to zero

in D′(Ω). To this end consider ϕ ∈ C∞
c (Ω). Integrating by parts we deduce

from (38) and (35) the equality
∫

ω

An∇un · ∇zλ
n ϕdx =

∫

ω

∇v · ∇zλ
n ϕdx +

∫

ω

ũn J∇zλ
n · ∇ϕdx

=

∫

ω

ũn J∇zλ
n · ∇ϕdx + o(1).

(40)

Let Qn ⊂ ω be a covering of suppϕ by the squares εn(k + Y ), k ∈ Kn ⊂ Z
2, and

let ūn be the piecewise constant function defined by

ūn :=
∑

k∈Kn

(

−

∫

εn(k+Y )

ũn

)

1εn(k+Y ). (41)

Following the procedure of [5], let us prove that ūn − ũn strongly converges to 0
on suppϕ. By the Sobolev imbedding of W 1,1 in L2 in each square εn(k + Y ),
k ∈ Kn, (note that the following imbedding constant C is independent of the
squares) combined with the Poincaré-Wirtinger inequality, and by the Cauchy-
Schwarz inequality we have

∫

εn(k+Y )

(ūn − ũn)2 dx ≤ C

(

∫

εn(k+Y )

|∇ũn| dx

)2

≤ C

∫

εn(k+Y )

∣

∣Ã−1
n

∣

∣ dx

∫

εn(k+Y )

Ãn∇ũn · ∇ũn dx.

(42)

Then, summing over k ∈ Kn we get similarly to (39)
∫

Qn

(ūn − ũn)2 dx

≤ c ε2
n

∫

Y

detA♯
n

det(A♯
n)s

∣

∣(A♯
n)s
∣

∣ dy

∫

ω

(

An∇un · ∇un + A−1
n ∇v · ∇v

)

dx,

(43)
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which tends to 0 by (21). Therefore, we can replace ũn by ūn in (40). Now, consider
the approximation of ∇ϕ by a function Φ̄n constant in each square εn(k + Y ) and
such that |∇ϕ − Φ̄n| ≤ c εn. Then, since ∇Vn − λ has a zero Y -average,the last
term of (40) reads as
∫

ω

ũn J∇zλ
n · ∇ϕdx =

∫

ω

ūn J∇zλ
n · Φ̄n dx +

∫

ω

ūn J∇zλ
n · (∇ϕ − Φ̄n) dx + o(1)

=

∫

ω

ūn J∇zλ
n · (∇ϕ − Φ̄n) dx + o(1).

Using |∇ϕ − Φ̄n| ≤ c εn, estimate (39) and the one of (34), we also have
∣

∣

∣

∣

∫

ω

ūn J∇zλ
n · (Φ̄n −∇ϕ) dx

∣

∣

∣

∣

≤ c εn

∫

Qn

|ūn| |∇zλ
n| dx

= c εn

∫

Y

|∇V λ
n − λ| dy

∫

Qn

|ūn| dx

≤ c εn

∫

ω

|ũn| dx = o(1).

The two previous estimates combined with (40) conclude the first step.

Second step : Proof of (37).
Following the first step and taking into account that (A♯

n)T∇V λ
n is a periodic di-

vergence free function, we may define the periodic stream function Ṽ λ
n ∈ H1

#(Y )
by

∫

Y

Ṽ λ
n dy = 0 and (A♯

n)T∇V λ
n =

∫

Y

(A♯
n)T∇V λ

n dy + J∇Ṽ λ
n

= (A∗
n)T λ + J∇Ṽ λ

n ,

(44)

where the second equality is a consequence of (34). Proceeding similarly to (42)

and (43), we have by the equality Ã♯
n = J−1

[

(A♯
n)−1

]s
J and estimates (21), (34),

∫

Y

(Ṽ λ
n )2 dy

≤

∫

Y

detA♯
n

det(A♯
n)s

∣

∣(A♯
n)s
∣

∣ dy

∫

Y

[

(A♯
n)T∇V λ

n · ∇V λ
n + (A♯

n)−1(A∗
n)T λ · (A∗

n)T λ
]

dy

= o
(

ε−2
n

)

,

hence the sequence ṽλ
n(x) := εnṼ λ

n ( x
εn

) strongly converges to 0 in L2(Ω). Let

ϕ ∈ C∞
c (Ω). Therefore, using the second equality of (44) and integrating by parts

we get
∫

Ω

An∇un · ∇vλ
n ϕdx =

∫

Ω

∇un · AT
n∇vλ

n ϕdx

=

∫

Ω

∇un · (A∗
n)T λϕdx +

∫

Ω

∇un · J∇ṽλ
n ϕdx

=

∫

Ω

A∗
n∇un · λϕdx +

∫

Ω

ṽλ
n J∇un · ∇ϕdx

=

∫

Ω

A∗∇u · λϕdx + o(1),

which yields (37).
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Proof of the part ii) of Theorem 2.4. Set Bn := J−1A−1
n J and B♯

n :=
J−1(A♯

n)−1J . Let B∗
n be the constant matrix defined by formula (19) with the

matrix-valued function B♯
n. By the classical duality formula due to Dykhne [11]

(see also [13]) we have B∗
n = J−1(A∗

n)−1J , where A∗
n is given by (19). Therefore,

the sequence B∗
n converges to B∗ := J−1(A∗)

−1J , where A∗ is the limit of A∗
n.

On the other hand, for any periodic function V ∈ H1
#(Y ) with Y -average V̄ , the

Sobolev imbedding of W 1,1
# (Y ) into L2

#(Y ) combined with the Poincaré-Wirtinger

inequality in Y , the Cauchy-Schwarz inequality and equality (17) with B♯
n, imply

that
∫

Y

(V − V̄ )2 dy ≤ c

(
∫

Y

|∇V | dy

)2

≤ c

(
∫

Y

∣

∣

∣

[

(B♯
n)s
]− 1

2

∣

∣

∣

∣

∣

∣

[

(B♯
n)s
]

1
2∇V

∣

∣

∣
dy

)2

≤ c

(
∫

Y

∣

∣

∣

[

(B♯
n)s
]−1
∣

∣

∣
dy

)
∫

Y

(B♯
n)s∇V · ∇V dy

= c

(

∫

Y

detA♯
n

det(A♯
n)s

∣

∣(A♯
n)s
∣

∣ dy

)

∫

Y

B♯
n∇V · ∇V dy.

This, combined with (21), yields the following estimate of the weighted Poincaré-
Wirtinger inequality

sup
V ∈H1

#
(Y ), V 6=V̄









∫

Y

(V − V̄ )2 dy
∫

Y

B♯
n∇V · ∇V dy









≤ Cn with lim
n→+∞

ε2
n Cn = 0. (45)

In the symmetric case Bn = Bs
n, the first author proved in [7] that, under the L2(Ω)-

boundedness of any solution vn of − div (Bn∇vn) = f ∈ L2(Ω), estimate (45) is a
sufficient condition to obtain the Hw-convergence of Bn to B∗. This compactness
result can be easily extended (see [20] for details) to the non-symmetric case assum-
ing that An and AT

n satisfy condition (10), or equivalently Bn and BT
n satisfy (14).

Therefore, the Hw-convergence (23) holds true since

Bn =
AT

n

detAn

and B∗ =
AT

∗

detA∗

,

which concludes the proof.
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