
NETWORKS AND HETEROGENEOUS MEDIA Website: http://aimSciences.org
c©American Institute of Mathematical Sciences
Volume 3, Number 3, September 2008 pp. 437–460

DISTRIBUTION OF MINIMUM VALUES OF STOCHASTIC

FUNCTIONALS

Victor Berdichevsky

Mechanical Engineering, Wayne State University
Detroit, MI 48202, USA

Abstract. Some mathematical problems of mechanics and physics have a
form of the following variational problem. There is a functional, I, which
is a sum of some quadratic positive functional and a linear functional. The
quadratic functional is deterministic. The linear functional is a sum of a large
number, N , of statistically independent linear functionals. The minimum value
of the functional, I, is random. One needs to know the probability distribution
of the minimum values for large N . The probability distribution was found in
[2] in terms of solution of some deterministic variational problem. It was clear
from the derivation that the class of quadratic and linear functionals for which
this probability distribution can be used is not empty. It was not clear though
how wide this class is. This paper aims to give some sufficient conditions for
validity of the results of [2].

1. Introduction. Let H be a Hilbert space of functions u. The scalar product of
two elements u, v of H is denoted by (u, v). Consider a linear functional (l0, u) on
H. The linear functional is random. To emphasize this in our notation, we write
for the linear functional (l0(r), u) where r is an event, an element of a set with some
prescribed probabilistic measure. We define an empirical “average” of the linear
functional l0, as

(l, u) =
1

N

N
∑

a=1

(l0(ra), u) , (1)

where r1, ..., rN are independent identically distributed random variables.
Consider also a linear operator A acting on elements u of H. The operator A

is assumed to be positive, i.e. for all u the quadratic form (Au, u) is nonnegative.
The operator A is deterministic. We set a minimization problem for the functional

I(u) =
1

2
(Au, u) − (l, u). (2)

The minimum is sought either on all space H or on its linear subspace H′.
We assume that the minimum value of the functional I(u) is achieved at a unique

element, ǔ. This element obeys the Euler equation

Aǔ = l. (3)
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Since, in accordance with (3), (Aǔ, ǔ) = (l, ǔ), the minimum value is given by
Clapeyron’s formula

min
u
I(u) =

1

2
(Aǔ, ǔ) − (l, ǔ) = −1

2
(Aǔ, ǔ). (4)

The minimum is negative due to positiveness of the quadratic form (Au, u). In phys-
ical problems, the functional 1

2 (Au, u) has usually the sense of energy. Therefore, we
call −min I(u) energy and denote it by E. Energy is random. The question under
consideration is: What is the probability distribution of energy for large N? Such a
question arises in various branches of physics and mechanics : statistical mechanics
of point vortices and statistical mechanics of vortex lines [3-5,17], homogenization
problems [6], Kosterlitz-Thouless phase transition [7], plasticity of micro-samples
[8], random excitation of elastic bodies [2], dynamic Saint-Venant’s principle [11].
To formulate the answer let us first rectify the question.

We may expect that the linear functional (1) converges, in some sense, to the
averaged functional

(l̄, u) = M (l0(r), u) . (5)

Here M stands for mathematical expectation. The right hand side of (5) is an
integral of a function of events, (l0(r), u), over the probabilistic measure.

Denote by Ē energy, corresponding to (l̄, u):

− Ē = min

(

1

2
(Au, u) − (l̄, u)

)

. (6)

One may expect that, as in the central limit theorem, energy fluctuates around the
average value Ē with the magnitude of fluctuations in the order of N−1/2. We are
interested to find the probability of large fluctuations, when E differs from Ē for a
finite amount independent on N .

The probability density was found in [2] in the following terms. Consider a
functional of three variables, parameter E, number z and element u of H,

S(E, z, u) = Ez +
z

2
(Au, u) + lnMe−z(l0,u). (7)

Here, as in (5), Me−z(l0,u) means the integral over the probabilistic measure of the
function of r, e−z(l0(r),u).

Consider the stationary points of the functional S(E, z, u) with respect to z and
u. Denote the maximum stationary value of functional (7) by S(E). In physical
problems, function S(E) has usually the sense of entropy. We use this term for
S(E) in what follows, and call S(E, z, u) the entropy functional.

To emphasize that functional I(u) and probability density of energy, f(E), de-
pend onN we write IN (u) and fN (E), respectively. Note that the entropy functional
(7) and entropy S(E) do not depend on N . Probability density of energy is given
by the relation:

fN(E) = const eNS(E). (8)

The value of the prefactor was also found (see [2] and section VII below).
Entropy is always negative and achieves its maximum at the point E = Ē. This

is the most probable value of energy. In vicinity of this point,
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S(E) =
1

2

d2S

dE2

∣

∣

∣

∣

E=Ē

(E − Ē)2.

The second derivative is negative, denote it by −1/σ2. In vicinity of Ē the
probability density of energy is

const e−N
(E−Ē)2

2σ2 = const e
− (E−Ē)2

2(σ/
√

N)2 .

We obtain Gaussian distribution with the small variance, σ/
√
N . In the limit

N → ∞ the probability density converges to δ-function with the support at the
point E = Ē.

Probability that energy deviates from Ē on a finite amount is exponentially small
in the order eNS(E) (remind that N is large and S(E) is negative).

Derivative dS(E)/dE = β has the sense of inverse temperature. Temperature is
positive for E < Ē and negative for E > Ē. If Ē decreases and goes to zero the
branch of positive temperatures disappears.

Energy Ē is equal to zero in the limit N → ∞ if the linear functional (l0(r), u)
has zero mean value. Indeed, let us write down energy in terms of the inverse
operator, A−1, explicitly. From (3),

ǔ = A−1l. (9)

Plugging(9) and (1) in the energy expression, we have

E =
1

2
(Aǔ, ǔ) =

1

2
(l, A−1l) =

1

2N2

∑

a,b

(

A−1l0(ra), l0(rb)
)

(10)

Averaged energy is obtained by applying math expectation M to (10):

M E =
1

2N2
M
∑

a,b

(

A−1l0(ra), l0(rb)
)

=
1

2N2
M





N
∑

a=1

(

A−1l0(ra), l0(ra)
)

+
∑

a6=b

(

A−1l0(ra), l0(rb)
)





=
1

2N2

(

NM(A−1l0, l0) +N(N − 1)(A−1 l̄0, l̄0)
)

. (11)

If l̄0 6= 0, the last term in (11) dominates, and, in the limit N → ∞, averaged
energy ME coincides with Ē

ME = Ē =
1

2
(A−1 l̄0, l̄0)

If l̄0 = 0, then the last term in (11) vanishes, and

ME =
1

2N
M(A−1l0, l0). (12)

We see that averaged energy, as it should be, is never zero, but, if l0 has zero
mean value, the averaged energy becomes small, in the order of N−1, and tends
to zero as N tends to infinity. This yields disappearance of the range of positive
temperatures in the limit N → ∞.
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The range of positive temperatures is quite important in some applications. In
order to study this range, we have to rescale energy, multiplying it, as follows from
(12), byN . Therefore, we have to study the minimization problem for the functional

N

[

1

2
(Au, u) − 1

N

N
∑

a=1

(l0(ra), u)

]

=
N

2
(Au, u) −

N
∑

a=1

(l0(ra, u) (13)

Note that minimization of the functional (13) is carried out over all elements of a

linear space. Making a change u → u/
√
N we do not change the set of admissible

elements. The functional I, after this change, takes the form (2) where

(l, u) =
1√
N

N
∑

a=1

(l0(ra), u) .. (14)

Emphasize that the linear functional (l0(r), u)in (14) is supposed to have zero mean
value.

The cases (1) and (14) were called in [2] small and large excitation cases, respec-
tively.

Probability density of energy of large excitations can be also obtained explicitly
[2]. To write it down we introduce a positive operator B by the formula,

(Bu, u) = M(l0(r), u)
2, (15)

and consider the eigenvalue problem:

Aϕ = µBϕ. (16)

Let the eigen-functions of this problem form a basis in H. Quadratic forms
(Au, u) and (Bu, u) are diagonal in this basis:

(Au, u) =

∞
∑

k=1

λku
2
k , (Bu, u) =

∞
∑

k=1

bku
2
k. (17)

We define an analytic function of complex variable z,

Φ(z) =
∞
∏

i=1

(

1 +
zbk
λk

)

. (18)

Here it is assumed that 0 ≤ b1/λ1 ≤ b2/λ2 ≤ · · · and

∞
∑

k=1

bk
λk

< ∞ (19)

Denote by f̂N (z) Laplace’s transform of probability density of energy:

fN(E) =
1

2πi

i∞
∫

−i∞

eEz f̂N (z) dz.

Then

lim
N→∞

f̂N (z) =
1

√

Φ(z)
, (20)

where Φ(z) is the function (18).
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A heuristic derivation of (7), (8) and (20) in [2] contains a number of steps which
need a justification. In particular, it was far from obvious that these steps are
legitimate for singular excitations like point vortices, electric charges or dislocations,
for which the linear functional (l0(r), u) is not continuous in the norm of the operator
A.

This paper aims to prove the above-mentioned formulas for probability density of
energy for a wide class of functionals. First we consider the case of large excitation
and give some sufficient conditions for validity of (20) which can be effectively
checked. The case of small excitation is more difficult. Formula (8) is not valid,
in general, because probability density fN(E) may have δ-type contributions. We
prove a version of (8) for probability distribution,

FN (E) =

E
∫

0

fN (E′) dE,

namely,

FN (E) = RNe
NS(E), (21)

and determine the asymptotics of the prefactor RN . The key point of the proof
is the identity discussed in section VI which reduces computing of the prefactor to
studying of a large excitation problem with some auxiliary measure. The auxiliary
measure contains an information on the stationary point of the entropy functional.
This makes the sufficient conditions in case of small excitations less explicit.

The paper is organized as follows. First, for the reader’s convenience, we re-
peat a heuristic derivation of the formulas for probability density. Then, in section
III, the statements of the paper are formulated. The proof is given in sections V
and VII. The proof is preceded by a discussion of peculiarities of integration in
infinite-dimensional spaces (section IV), and derivation of an identity for proba-
bility distribution (section VI). The paper is concluded by checking the sufficient
conditions for a case of large singular excitations (section VIII).

2. Heuristic derivation. To find probability density of energy we make first a fi-
nite dimensional truncation, Hm , of space H. Then u and l0 become m-dimensional
vectors, A is m×m positive matrix, (Au, u)m and (l0, u)m are m-dimensional qua-
dratic and linear functions, respectively. We are seeking for the probability density
of the minimum values of the quadratic function

Im,N (u) =
1

2
(Au, u)m − (l, u)m , (l, u)m ≡ 1

N

N
∑

a=1

(l0(ra), u)m, (22)

where l0 is a random vector. We put indices m,N to indicate the dependence on
the space dimension m and the number of independent random variables, N . We
assume that minimum is taken over the entire space Hm (actually, this is a generic
case because Hm can be always taken as a subspace of H′).

Probability density is sought in the limit m → ∞ , N → ∞. By definition, the
probability density of energy is

fm,N (E) = Mδ(E + min
u
Im,N ), (23)

where δ(E) is the δ-function. Following to Lyapunov’s idea, it is useful to consider
Fourier (or Laplace) transform of probability density if one deals with independent
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random variables. Thus, we present δ-function in (23) as an integral over imaginary
axis in a plane of complex variable z:

δ(E) =
1

2πi

i∞
∫

−i∞

eEzdz. (24)

We have

f(E) =
1

2πi
M

i∞
∫

−i∞

e
Ez+zmin

u
Im,N

dz. (25)

Suppose we may change the order of integration and mathematical expectation in
(25). Then

f(E) =
1

2πi

i∞
∫

−i∞

eEzMe
zmin

u
Im,N

dz. (26)

Our goal is to change, in a sense, the order of minimization and mathematical
expectation in (26): if we find first mathematical expectation of exp(z Im,N ) and
do minimization after that, then computing of the probability density is reduced to
solving deterministic problems only. A key to perform such “a change of order” is
the following observation:

There is a well known relation,

∫

e−
1
2
(Au,u)m+(l,u)mdmu = e

1
2
(A−1l,l)m

√

(2π)m

detAm
, (27)

where A−1 is the inverse matrix and detAm is the determinant of the matrix A. It
is remarkable that this relation can be written also in the form:

e
min

u
[ 1
2 (Au,u)m−(l,u)m]

=

√

detAm
(2π)m

∫

e−[ 1
2 (Au,u)m−(l,u)m] dmu. (28)

The exponent of the minimum value is presented in the form of integral. Applying
mathematical expectation to (28) we may change the order of integration over u
and M -operation which is an integration over the event space. Then the whole
problem is reduced to computing integrals: minimization has gone.

To get to the final result faster it is more convenient to take (28) in the form

e
zmin

u
[ 1
2 (Au,u)m−(l,u)m]

=

√

zm detAm
(2π)m

α1+i∞
∫

α1−i∞

· · ·
αm+i∞
∫

αm−i∞

ez[
1
2 (Aζ,ζ)m−(l,ζ)m] d

mζ

im
.

(29)
Here ζ1, ..., ζm are complex variables running over lines [α1−i∞, α1 +i∞] , ... [αm−
i∞, αm+i∞] , vector α = (α1, ..., αm) is arbitrary, Re z ≥ 0. Dealing with complex
valued vectors ζ, we use the scalar product without complex conjugation, i.e., for
real v, (l0, iv) = i(l0, v).
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Applying M-operation to (29) we have

Me
−zmin

u
[ 1
2 (Au,u)m−(l,u)m]

=

√

zm detAm
(2π)m

α+i∞
∫

α−i∞

e
z
2 (Aζ,ζ)mMe−z(l,ζ)m

dmζ

im
. (30)

The second term in the integral can be written in terms of the characteristic function
of l0:

χm(u) = M ei(l0,u)m .

Indeed, using the statistical independence of variables r1, ..., rN we have

M e−z(l,ζ)m = M e
z
N

N
∑

a=1
(l0(ra),ζ)m

=
(

M e−
z
N (l0(r),ζ)m

)N

=

[

χm

(

izζ

N

)]N

. (31)

We will usually write (31) without introducing the characteristic function explicitly:

M e−z(l,ζ)m = eN lnM e−
z
N

(l0(r),ζ)m
. (32)

Combining (26), (30) and (32) we obtain

f(E) =

i∞
∫

−i∞

α+i∞
∫

α−i∞

√

zm detAm
(2π)m

eEz+
z
2 (Aζ,ζ)m+N lnM e−

z
N

(l0(r),ζ)m

dmζ
dz

2πim+1
.

Let us make a change of variable z → zN . Then we finally have

f(E) =
N

2πi

i∞
∫

−i∞

α+i∞
∫

α−i∞

1

im

√

(

Nz

2π

)m

detAm eNSm(E,z,ζ)dmζ dz, (33)

Sm(E, z, ζ) = Ez +
z

2
(Aζ, ζ)m + lnMe−z(l0,ζ)m .

One may expect that in the limit m→ ∞ the function Sm(E, z, ζ) transforms to
the functional (7) while the asymptotics of the integral (33) as N → ∞ is given by
formula (8).

The case of large excitations is treated similarly:

f(E) = Mδ
(

E + min
u
I(u)

)

=
1

2πi

i∞
∫

−i∞

eEzMe
zmin

u
I(u)

dz =

= lim
m→∞

1

2πi

i∞
∫

−i∞

eEz

√

detAm
(2π)m

M

∫

e−
1
2 (Au,u)m+i

√
z(l,u)m dmu dz =

= lim
m→∞

1

2πi

i∞
∫

−i∞

∫

eEz

√

detAm
(2π)m

e−
1
2 (Au,u)m+N lnMe

i
√

z
N

(l0,u)m

dmu.

Changing the function,

N lnM ei
√

z
N (l0,u),
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by its limit value as N → ∞,

−z
2
(Bu, u) ≡ −z

2
M(l0, u)

2,

we find

f(E) =
1

2πi

i∞
∫

−i∞

eEz lim
m→∞

√

detAm
det(A+ zB)m

dz,

which transforms to (20) if all changes of limit procedures made in this derivation
are legitimate.

Formula (8) looks like the leading term in an integral asymptotics obtained by
the steepest descent method. Note that the steepest descent method cannot be
applied to the integral (33) directly because this method assumes that N → ∞
while m is fixed. In our case m≫ N , and we first tend m to infinity.

The limit of m-dimensional integrals like (33) as m → ∞ may be considered as
an integral in infinite-dimensional space. Such integrals appear in various issues
of physics and mathematics [9,10,12-15,18-21]. A peculiarity of the problem under
consideration is that the integral (33) does not converge absolutely and uniformly
with respect to m: if one substitute the integrand by its absolute value, then the
integral tends to infinity asm→ ∞. Similar difficulty is encountered if one attempts
to give a probabilistic interpretation to Feynman’s path integrals.

For real valued integrals, the Laplace method in infinite-dimensional spaces has
been developed by Ellis and Rosen [9] (see also a review paper [18]). Note also that
the problem under consideration is similar in nature to the problems considered in
theory of large deviations by S.Varahdan [21], M.Freidlin and A.Wentzel [13].

3. Statements. We formulate in this section three statements the proof of which
is the subject of the rest of the paper.

1. Let the following properties are satisfied:
A. The spectrum of the eigenvalue problem,

Aϕ = µBϕ ,

where the operator B is defined by (15) is discrete. The corresponding eigen-
functions ϕ1, ϕ2, ... form a basis in H. The quadratic forms (Au, u) and (Bu, u) in
this basis are diagonal:

(Au, u) =

∞
∑

k=1

λku
2
k , (Bu, u) =

∞
∑

k=1

bku
2
k.

We number the eigen-functions in such a way that the corresponding λk increases
λ1 ≤ λ2 ≤ ... Operator A is positive definite, i.e.

λ1 > 0.

Operator B is positive, and bk ≥ 0.
B.The series of inverse eigenvalues converges:

∞
∑

k=1

1

λk
<∞.
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C. Denote (
◦
l(r), ϕk) by

◦
lk(r). We assume that

◦
lk(r) are uniformly bounded for

all r and k:
∣

∣

◦
lk(r)

∣

∣ ≤ h.

D. There exist a positive operator C such that for any u

a. max
r

(l0(r), u)
2 ≤ (Cu, u) ,

b. operator C is diagonal in the basis {ϕk}:

(Cu, u) =

∞
∑

k=1

cku
2
k,

c. for some positive number α A− αC > 0 , i.e.

αck < λk for all k,

d. the series
∞
∑

k=1

ck

λk
converges.

Under these conditions, if lim
N→∞

f̂N (z) is an analytic function of z in some vicinity

of the point z = 0, then (20) holds true.
2. If, in addition to the above conditions,

E. ln
∣

∣

∣M e(l0(r),u)
∣

∣

∣ ≤ (Du, ū),

for some positive operator D , u is complex-valued, bar means complex conjugate;

F. for α from condition D and some α′ > 0,

A− α′D − αC > 0,

and
lim
m→∞

√

detAm/ det(A− α′D − αC)m exists,

then lim
N→∞

f̂N(z) is an analytic function in some vicinity of the point z = 0.

A. Beliaev proved that condition E follows from condition D.a with D = 4C [1].
3. Let (β, ǔ) be the stationary point of the entropy functional. Define an auxiliary

probabilistic measure with mathematical expectation M̃ by the formula: for any
function ϕ(r)

M̃ϕ(r) = M
[

e−β(l0(r),ǔ)ϕ(r)
]

/

M e−β(l0(r),ǔ). (34)

Suppose that all assumptions of the statement 1 are fulfilled for the functional l0
substituted by l′0 = l0 − M̃l0 and the mathematical expectation M substituted by

M̃ . Consider the function,

f̂N(z, ζ) = M̃ ezmin I(u)−ζ(l,u), (35)

and assume that lim
N→∞

f̂N(z, ζ) is an analytical function in vicinity of the point

z = 0, ζ = 0. Assume also that β > 0 and for ξ = 1√
N

∑N
a=1 l

′
0(ra) the integral,

+∞
∫

−∞

∣

∣

∣

∣

M̃ e−
β+iη

2 (A−1ξ,ξ)+iλη(ξ,ǔ)

∣

∣

∣

∣

dη, (36)

exists and does not exceed const
/

λ1+κ, κ > 0. Then (7), (21) hold true.
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4. Asymptotics of some integrals in functional spaces. Consider an integral,

Jm(R) =

∫

(Cu,u)m≥R2

e−
1
2 (Au,u)m

√

detAm
(2π)m

dmu, (37)

where (Au, u)m and (Cu, u)m are positive quadratic forms in m-dimensional space.

The factor
√

detAm/(2π)m is included to make the integral over the entire space
equal to unity:

Jm(0) = 1.

For brevity, we use the notation,

Dmu =

√

detAm
(2π)m

dmu,

and write Jm(R) in the form

Jm(R) =

∫

(Cu,u)m≥R2

e−
1
2 (Au,u)mDmu.

For the limit value of the integral Jm(R) as m→ ∞ we use a symbolic notation

J(R) =

∫

(Cu,u)≥R2

e−
1
2 (Au,u)Du.

Note that J(0) = 1.
We are interested in asymptotics of the integral Jm(R) as R → ∞ and m→ ∞.

The multidimensional integrals behave quite differently from the low dimensional
ones. This is caused by a peculiar behavior of the volume in the multidimensional
spaces: most of the volume of a sphere is concentrated near its surface; in a sense,
spheres in multidimensional spaces are practically empty. This can be seen from the
following estimate. Since the volume of a sphere of radius R is V = cmR

m, cm is
a constant depending on the space dimension m, the volume △V of the spherical
layer of the thickness, △, which is adjacent to the sphere boundary is: △V/V =
[Rm − (R−△)m] /Rm, or

△V
V

= 1 −
(

1 − △
R

)m

. (38)

Let the spherical layer contains 99% of the volume, i.e. △V/V = 0.99V . Then,
solving (38) with respect to △/R, we find: △ = 0.99R for m = 1, △ ∼ 3/4R for
m = 3, △ ∼ 1/3R for m = 10, △ ∼ 0.05R for m = 1000.

Including the “mass density” e−
1
2 (u,u) exponentially decaying away from the

origin does not change the situation. Indeed, let us put in (37) A = C = I, I is
the identity matrix, and consider the integral,

J̃m(R) =
1

(2π)m/2

∫

(u,u)≥R2

e−
1
2 (u,u)dmu. (39)

If m is fixed and R tends to infinity, integral (39) goes to zero. If R fixed and m
tends to infinity then the integral (40) goes to the unity, as if R = 0. To make this
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obvious, let us write (39) in “spherical coordinates”, denoting (u, u) = r2. Then

J̃m(R) =
1

(2π)m/2
σ(m)

∞
∫

R

e−
1
2 r

2

rm−1dr, (40)

where σ(m) is the area of the unit sphere,

σ(m) =
2πm/2

Γ(m/2)
.

Asymptotics of integral (40) can be found by Laplace’s method. We change the
variable r =

√
mξ and write the integral in the form

∞
∫

R

e−
1
2 r

2+(m−1) ln rdr = mm/2

∞
∫

R√
m

em[− 1
2 ξ

2+ln ξ] dξ

ξ
.

The stationary point of the function − 1
2ξ

2 + ln ξ is ξ = 1, and, in the first approxi-
mation, the integral does not depend on R:

∞
∫

R

e−
1
2 r

2+(m−1) ln rdr = mm/2e−
1
2m

+∞
∫

−∞

e−mξ
2

dξ =
mm/2

√
2m

e−
1
2m2π ,

and, using the asymptotics of Γ-function for large argument, we obtain J̃m(R) =

J̃m(0).
After these preliminary comments we return to evaluation of the integral (37).

It is clear that the region (Cu, u)m ≥ R2 must be much bigger then the region
(Au, u)m ≥ R2 to let the integral feel the value of the constant R for large m. That
means that (Cu, u) is, in a sense, much smaller then (Au, u). A precise meaning of
“smallness” is given by condition D.d. Let us show that, if (Cu, u) satisfies condition
D.d,

∑

ck/λk <∞, then a simple estimate of Jm(R) holds:

Jm(R) ≤ κe−
1
2αR

2

, (41)

the constant κ is specified later. First, let us note that, due to condition D.d, the

product
m
∏

k=1

(

1 + zck

λk

)

converges to an analytical function exp[2ψ(z)],

ψ(z) =
1

2

∞
∑

k=1

ln

(

1 +
zck
λk

)

. (42)

This function is analytic in the half plane Rez > −c0 , 0 < c0 = min
k

{λk/ck}.
It is equal to unity at z = 0. Choosing α < c0 we have for all m

(

m
∏

k=1

(

1 − αck
λk

)

)−1/2

≤ e−ψ(−α), (43)

because
∞
∏

k=m+1

(

1 − αck

λk

)

< 1.

For that α we have

Jm(R) = e−αR
2

∫

(Cu,u)m ≥ R2

e−
1
2 (Au,u)m+αR2Dmu



448 VICTOR BERDICHEVSKY

≤ e−αR
2

∫

(Cu,u)m≥R2

e−
1
2 (Au,u)m+α(Cu,u)Dmu

≤ e−αR
2

∫

e−
1
2 ((A−αC)u,u) Dmu = e−αR

2

(

m
∏

k=1

(

1 − αck
λk

)

)−1

≤ κe−αR
2

,

where we put κ = exp[−ψ(−α)].
Hence,

J(R) ≤ κe−αR
2

(44)

Estimate (44) corresponds to Lemma 4.3 of paper [9].

5. Large excitations: Proof of the statements. We begin with some simple
corollaries of the assumptions made.

Corollaries:

1.Coefficients of the form (Bu, u) are uniformly bounded:

bk ≤ h2. (45)

Indeed, for any sequence {uk},

(Bu, u) = M

(

l0(r),
∑

k

ukϕk

)2

=
∑

k,s

M (l0(r), ϕk) (l0(r), ϕs) ukus

=
∑

k

bku
2
k.

Therefore,

M (l0(r), ϕk) (l0(r), ϕs) = 0 for k 6= s and bk = M (l0(r), ϕk)
2 . (46)

Estimate (45) follows from (46) and condition C.
2.The quadratic functional (Bu, u) does not exceed (Cu, u),

(Bu, u) ≤ (Cu, u).

Indeed,

bk = M (l0(r), ϕk)
2 ≤ max

r
(l0(r), ϕk)

2 ≤ ck.

The latter inequality follows from D.a if one puts in D.a u = ukϕk.

3.The series
∞
∑

k=1

bk

λk
converges:

∞
∑

k=1

bk
λk

≤ h2
∞
∑

k=1

1

λk
<∞. (47)

4.Function Φ(z) =
∞
∏

1

(

1 + zbk

λk

)

is an entire analytic function in the half plane

Re z > −a, a = min{λk/bk}. This follows from (47).
5.Function Φ(z) does not have a zero at any finite point of the half plane Re

z > −a (see, for example, [16]).

6. Energy of “an elementary excitation”,
◦
E(r), defined by the relation

−
◦
E(r) ≡ min

u

[

1

2
(Au, u) − (l0(r), u)

]

,
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is finite and uniformly bounded.
Indeed,

◦
E(r) =

1

2

∞
∑

k=1

◦
l2k(r)

λk
≤ h2

2

∞
∑

k=1

1

λk
< +∞

Proposition 1. Let f̂N (z) be Laplace’s transform of probability density of energy,

f̂N(z) = M e
zmin

u
IN (u)

Denote by IN,m the m-dimensional truncation of the functional IN :

IN,m(u) =
1

2
(Au, u)m − 1√

N

N
∑

a=1

(l0(ra), u)m

(Au, u)m =

m
∑

k=1

1

2
λku

2
k , (l0(r), u)m =

m
∑

k=1

◦
lk(r)uk

and by f̂N,m(z) the Laplace transform of the probability density of truncated energy,

f̂N,m(z) = M e
zmin

u
IN,m(u)

.

Then

f̂N(z) = lim
m→∞

f̂N,m(z) = lim
m→∞

√

detAm
(2π)m

∫

e−
1
2 (Au,u)m+N lnMe

−i
√

z
N

(l0,u)m

dmu.

(48)
Proof. The sum,

− min
u
IN,m(u) =

1

2

m
∑

k=1

1

λk

(

1√
N

N
∑

a=1

◦
lk(ra)

)2

, (49)

converges uniformly as m → ∞ because the members of the sum are bounded by
the converging series,

1

2

∞
∑

k=1

1

λk
(
√
Nh)2.

Therefore,

M lim
m→∞

e
zmin

u
IN,m

= lim
m→∞

Me
zmin

u
IN,m

. (50)

The sum (49) converges to

1

2

∞
∑

k=1

1

λk

(

1√
N

N
∑

a=1

◦
lk(r)

)2

= −min
u
IN (u, r).

Thus, due to (50),

M lim
m→∞

e
zmin

u
IN,m(u,r)

= Me
zmin

u
IN (u,r)

= f̂N(z) = lim
m→∞

Me
zmin

u
IN,m(u,r)

(51)

= lim
m→∞

f̂N,m(z).

Now we recall the identity for any positive quadratic form (Au, u)m, any linear
form (l, u)m and a complex number z,
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√

detAm
(2π)m

∫

e−
1
2 (Au,u)m−i√z(l,u)mdmu = e−

1
2 z(A

−1
m l,l) = ezmin[ 12 (Au,u)m−(l,u)m].

(52)
Using (52) we can write:

Me
zmin

u
IN,m(u,r)

= M

√

detAm
(2π)m

∫

e
− 1

2 (Au,u)m−i
√

z
N

N
∑

a=1
(l0(r),u)m

dmu. (53)

The integral in (53) converges absolutely, therefore we may compute integral and
mathematical expectation in any order. Computing first the mathematical expec-
tation,

Me
−i
√

z
N

N
∑

a=1
(l0(r),u)m

=
(

Me−i
√

z
N (l0(r),u)m

)N

= eN lnMe
−i
√

z
N

(l0(r),u)m

,

we arrive at (48). �

Proposition 2. The limit value of the characteristic function on the real positive

axis in a small vicinity of the origin, z ≤ δ, is given by the relation,

f̂(z) = lim
N→∞

f̂N(z) =
1

√

Φ(z)
. (54)

Proof. Let us split the region of integration in (48) into two subregions, (Cu, u) ≤ R2

and (Cu, u) ≥ R2. For the integral I1 over the first region we have

I1 =

√

detAm
(2π)m

∫

(Cu,u)m≤R2

e−
1
2 (Au,u)m+N lnMe

−i
√

z
N

(l0(r),u)m

dmu =

=

√

detAm
(2π)m

∫

(Cu,u)m≤R2

e−
1
2 ((A+zB)u,u)m dmu (55)

+

√

detAm
(2π)m

∫

(Cu,u)m≤R2

e−
1
2 (Au,u)m △dmu,

where

△ =
[

Me−i
√

z
N (l0(r),u)m

]N

− e−
z
2 (Bu,u)m .

The first integral in the right hand side of (54) can be presented as the difference
of integrals over the entire space and over the region (Cu, u)m ≥ R2:

√

detAm
(2π)m

∫

e−
1
2 ((A+zB)u,u) dmu−

√

detAm
(2π)m

∫

(Cu,u)m≥R2

e−
1
2 ((A+zB)u,u) dmu. (56)

The first integral over the entire space can be found exactly. It is equal to 1
/

√

Φm(z),

Φm(z) =

m
∏

k=1

(

1 +
zbk
λk

)

.
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The second integral over the region (Cu, u)m ≥ R2 may be estimated by means of
(41). In the estimate of I1 we assume that z is any complex number from a small
vicinity of the origin, |z| ≤ δ. We have

∣

∣

∣

∣

∣

√

detAm
(2π)m

∫

(Cu,u)m≥R2

e−
1
2 ((A+zB)u,u)m dmu

∣

∣

∣

∣

∣

≤

≤
√

detAm
(2π)m

∫

(Cu,u)m≥R2

e−
1
2 ((A−δB)u,u)m dmu ≤

≤
√

detAm
(2π)m

∫

(Cu,u)m≥R2

e−
1
2 ((A−δC)u,u)m dmu ≤

√

detAm
(2π)m

e−α
′R2

∫

(Cu,u)m≥R2

e−
1
2 ((A−δC−α′C)u,u)m dmu ≤

≤ e−α
′R2 1
√

m
∏

k=1

(

1 − (δ+α′)ck

λk

)

≤ κe−α
′R2

. (57)

It is assumed in the last inequality that δ and α′ are small enough to satisfy the
condition

δ + α′ ≤ α.

To estimate the second integral in (55) we have to estimate △. We may write △
in the form

△ = e−
z
2 (Bu,u)m

(

e
z
2 (Bu,u)m

(

1 − z

2N
(Bu, u)m +

ρ

N

)N

− 1

)

, (58)

where

ρ

N
= M

(

e−i
√

z
N (l0(r),u)m − 1 + i

√

z

N
(l0(r), u)m +

z

2N
(l0(r), u)m

)

..

First we bound ρ by means of inequality,
∣

∣

∣

∣

ew − 1 − w − w2

2

∣

∣

∣

∣

≤ |w|3
3!

e|w|.

Let us put in this inequality

w = i

√

z

N
(l0(r), u)m ,

and note that

|w| ≤
√

|z|
N

√

(Cu, u)m ≤
√

δ

N
R.

Imposing a constraint on R:
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√

δ

N
R < 1/2,

we find a bound for ρ

|ρ|
N

≤ 1

2

(
√

δ

N
R

)3

,

or

|ρ| ≤ 1

2

δ3/2R3

N1/2
.

Denote, for brevity, − z
2 (Bu, u) by w in (58):

△ = ew
(

eN ln(1+ w+ρ
N )−w − 1

)

Using inequality |ez − 1| ≤ |z| e|z| we have

|△| ≤ eRew
∣

∣

∣

∣

N ln

(

1 +
w + ρ

N

)

− w

∣

∣

∣

∣

e|N ln(1+ w+ρ
N )−w|. (59)

Function N ln
(

1 + w+ρ
N

)

− w may be estimated as follows. Let us introduce a
function of t,

ϕ(t) = N ln

(

1 +
(w + ρ)t

N

)

− wt.

We need to estimate ϕ(1). Derivative of ϕ has a simple form

dϕ

dt
=

w + ρ

1 + (w+ρ)t
N

− w = − (w + ρ)2

N

t

1 + (w+ρ)t
N

+ ρ.

Thus,

ϕ(1) =

1
∫

0

dϕ

dt
dt = − (w + ρ)2

N

1
∫

0

tdt

1 + (w+ρ)t
N

+ ρ. (60)

Since

δ

N
R2 <

1

4
,

|ρ|
N

≤ 1

2

(
√

δ

N
R

)3

<
1

4
,

we have
|w + ρ|
N

≤
∣

∣

z
2 (Bu, u)m

∣

∣

N
+

|ρ|
N

<
δ
2R

2

N
+

|ρ|
N

<
1

2
. (61)

Combining (60) and (61) we obtain
∣

∣

∣

∣

N ln

(

1 +
w + ρ

N

)

− w

∣

∣

∣

∣

= |ϕ(1)| ≤ (62)

≤ |w + ρ|2
N

1
∫

0

tdt

1 − 1
2

+ |ρ| =
|w + ρ|2
N

+ |ρ| ≤ 2
|w|2 + |ρ|2

N
+ |ρ|.

We add one more constraint on R to have
∣

∣

∣

∣

N ln

(

1 +
w + ρ

N

)

− w

∣

∣

∣

∣

< 1 (63)

Requiring that the right hand side of (62) be less then 1 we have
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2

N

(

∣

∣

∣

z

2
(Bu, u)m

∣

∣

∣

2

+
1

4

δ3R6

N

)

+
1

2

δ3/2R3

N1/2
< △1 < 1 , (64)

△1 ≡ 2

N

(

δ2

4
R4 +

1

4

δ3R6

N

)

+
1

2

δ3/2R3

N1/2
.

We see that the inequality (63) is satisfied if

R

N1/6
is sufficiently small (65)

In accordance with (62) and (63) the estimate for △ (59) takes the form

|△| ≤ 3△1 e
δ
2 (Bu,u)m . (66)

From (66)

√

detAm
(2π)m

∫

(Cu,u)m≤R2

e−
1
2 (Au,u)m |△| dmu ≤ (67)

≤
√

detAm
(2π)m

∫

e−
1
2 (Au,u)m+ 1

2 δ(Bu,u)m dmu 3△1 =
3△1

√

Φm(−δ)
.

Combining (67) and (57) we obtain

∣

∣

∣

∣

I1 −
1

√

Φm(z)

∣

∣

∣

∣

≤ κe−α
′R2

+
3△1

√

Φm(−δ)
. (68)

Let us estimate now the integral over the second subregion,

I2 =

√

detAm
(2π)m

∫

(Cu,u)m≥R2

e−
1
2 (Au,u)m+N lnMe

−i
√

z
N

(l0(r),u)m

dmu. (69)

We choose in (69) z to lie on the real positive semi-axis. Then

RelnMe−i
√

z
N (l0(r),u)m ≤ 0, and, due to (41), integral I2 admits an estimate

|I2| ≤
√

detAm
(2π)m

∫

(Cu,u)m≥R2

e−
1
2 (Au,u)mdmu ≤ κe−αR

2

.

Tending R to infinity as, for example, N1/7, we see that I converges to 1/
√

Φ(z)
uniformly in m and N . �

Proposition 3. If conditions E and F are fulfilled then lim
N→∞

f̂N (z) is an analytic

function of z.
Proof. Indeed, in this case we may estimate integral I2 (69) for all complex z from
some vicinity of the point z = 0 , |z| ≤ δ

I2 ≤
√

detAm
(2π)m

∫

(Cu,u)m≤R2

e−
1
2 (Au,u)m+N ln |Me

−i
√

z
N

l0(r),u)| dmu

≤
√

detAm
(2π)m

∫

(Cu,u)m≤R2

e−
1
2 (Au,u)m+δ(Du,u)m dmu
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≤ e−α
′R2

√

detAm
det(A− δD − α′C)m

.

The estimate (68) was derived for all complex z in a vicinity of the origin. Choosing

again R ∼ N1/7, we have a sequence of analytic functions f̂N,m(z) converging
uniformly in the circle |z| ≤ δ as N → ∞, m→ ∞. Thus the limit is an analytic

function. It is equal to 1/
√

Φ(z) in the circle and can be continued outside of the

circle as 1/
√

Φ(z). �

6. Small excitations: An identity. Denote by FN (E) the probability distribu-
tion of energy,

FN (E) =

E
∫

0

fN (E′)dE′,

and by (β, ǔ) any stationary point of the entropy functional. Let us show that, for
the case of small excitations, the following identity holds:

FN (E) = RNe
NS(E), (70)

RN = M̃

[

eNβ(l′,ǔ)θ

(

−(l′, ǔ) − 1

2
(A−1l′, l′)

)]

, (71)

where M̃ is the mathematical expectation for the auxiliary probability measure
(34), l′ = l − M̃l0, and θ(E) is the step function ( θ(E) = 1 if E > 0 and θ(E) = 0
if E < 0 ). In [2] this identity was obtained for probability density.

Since,

θ(E) =
1

2πi

+i∞
∫

−i∞

1

z
eEzdz =

1

2πi

+i∞
∫

−i∞

1

z
eNEzdz, (72)

we have

F (E) = Mθ

(

E − 1

2
(A−1l, l)

)

= M
1

2πi

+i∞
∫

−i∞

1

z
eNEz−

Nz
2 (A−1l,l)dz =

= M



e
−β

N
∑

a=1
(l0(ra),ǔ)

+i∞
∫

−i∞

e
NEz+β

N
∑

a=1
(l0(ra),ǔ)−Nz

2 (A−1(M̃l0+l′), M̃l0+l′) dz

2πiz



 =

=
(

Me−β(l0,ǔ)
)N

× (73)

×M̃
+i∞
∫

−i∞

e
NEz+β

N
∑

a=1
(l0(ra),ǔ)−Nz

2 (A−1M̃l0,M̃l0)−Nz(A−1M̃l0,l
′)−Nz

2 (A−1l′,l′) dz

2πiz
.

Note that the equations for the stationary point of the entropy functional (7) reads

Aǔ =
Ml0e

−β(l0,ǔ)

Me−β(l0,ǔ)
= M̃l0,

1

2
(Aǔ, ǔ) = E.
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Thus
(M̃l0, ǔ) = 2E , (A−1Ml̃0,Ml̃0) = (ǔ,Ml̃0) = 2E,

(A−1Ml̃0, l
′) = (ǔ, l′),

and

S(E) = Eβ +
β

2
(Aǔ, ǔ) + lnM

∫

e−β(l0,ǔ) = 2Eβ + lnM

∫

e−β(l0,ǔ).

Using these relations we simplify (73):

F (E) = eNS(E)M̃
1

2πi

+i∞
∫

−i∞

1

z
eN△Sdz,

△S = β(l′, ǔ) − z(l′, ǔ) − z

2
(A−1l′, l′). (74)

Identity (70) follows from (74) and (72). Note that the identity holds for any
stationary point of the entropy functional, including the points with negative tem-
perature.

The formula (70) means that the prefactor is an integral over the region

−(l′, ǔ) − 1

2
(A−1l′, l′) ≥ 0

This region is a sphere in the space of linear functionals l′. The sphere passes
through the origin. The equation of the sphere can be written in the form

1

2
(A−1(l′ +Aǔ), l′ +Aǔ) =

1

2
(Aǔ, ǔ)

or, since Aǔ = M̃l0 and (Aǔ, ǔ) = 2E,

1

2
(A−1(l′ + M̃l0), l

′ + M̃l0) = E

That means that the sphere has the radius
√

2E and the center is at the point
−M̃l0. If, in the limit N → ∞, the linear functional

√
Nl′ =

1√
N

N
∑

a=1

l′0(ra) , l′0(r) = l0(r) − M̃l0, (75)

has a Gaussian distribution, the prefactor can be computed [2]. Here we describe a
similar way in which the necessary assumptions can be seen more clear.

Denote the linear functional (75) by ξ. Then equation (71) takes the form

RN = M̃

[

e
√
Nβ(ξ,ǔ)θ

(

− 1√
N

(ξ, ǔ) − 1

2N
(A−1ξ, ξ)

)]

(76)

= M̃

[

e
√
Nβ(ξ,ǔ)θ

(

−
√
N(ξ, ǔ) − 1

2
(A−1ξ, ξ)

)]

.

Here ǔ, as a solution of deterministic problem, does not depend on “an event”.
Averaging is conducted with respect to a random functional ξ.

The functional 1
2 (A−1ξ, ξ) is the energy in the variational problem with large

excitations:

−1

2
(A−1ξ, ξ) = min

u

[

1

2
(Au, u) − (ξ, u)

]

.

Thus, if we know the joint probability of energy and linear functional (ξ, ǔ),
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fN (E, t) = M̃

[

δ

(

E − 1

2
(A−1ξ, ξ)

)

δ (t− (ξ, ǔ))

]

,

we can determine RN from (76):

RN =

∫

e
√
Nβtθ(−E −

√
N t) fN(E, t) dE dt. (77)

Computing the probability density fN (E, t) is similar to computing fN (E). It is
more convenient, as before, to deal with Laplace’s transform of the probability
density,

fN (E, t) =
1

(2πi)2

c+i∞
∫

c−i∞

+i∞
∫

−i∞

eEz+tζ f̂(z, ζ) dz dζ,

f̂(z, ζ) = M̃ ezmin I(u)−ζ(ξ,ǔ).

We have

RN =

∫

e
√
Nβtθ(−E −

√
N t)

1

(2πi)2
eEz+tζ f̂N(z, ζ) dE dt dz dζ =

= − 1

(2πi)2
√
N

∫ ∫

f̂N (z, ζ)
dz dζ

(

z − β − ζ√
N

)(

β + ζ√
N

) . (78)

Here we assumed that

Re (ζ +
√
Nβ) > 0, Re

(

z − β − ζ√
N

)

> 0.

Let f̂N (z, ζ) be an analytical function of z for each ζ on imaginary axis, Re z >

0 , f̂N(z, ζ) → 0 as Re z → ∞ so that

c+i∞
∫

c−i∞

f̂N (z, ζ)
dz

z − β − ζ√
N

→ 0 as c→ ∞.

Then, the only contribution to (78) is given by the pole at z = β + ζ
/√

N , and the
prefactor is given by the formula:

RN =
1

2πi
√
N

+i∞
∫

−i∞

f̂N

(

β +
ζ√
N
, ζ

)

dζ

β + ζ√
N

. (79)

In conclusion of this section, note that an identity similar to (70) can be obtained
for the antiderivative of FN (E),

F
• N

(E) =

E
∫

−∞

FN (E′) dE′ ,
d

dE
F
• N

(E) = FN (E)

Denote by θ
•
(E) the antiderivative of θ(E):

θ
•
(E) = 0 if E < 0 , θ

•
(E) = E if E > 0
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Then

F
• N

(E) = R̃N e
NS(E), (80)

R̃N = M̃

[

eNβ(l′,ǔ)
θ
•

(

−(l′, ǔ) − 1

2
(A−1l′, l′)

)]

.

Identity (80) can be obtained by repeating the derivation of (70) with the change
of (72) by the relation,

θ
•
(E) =

1

2πi

+i∞
∫

−i∞

1

z2
eEz dz =

1

2πiN

+i∞
∫

−i∞

1

z2
eNEz dz.

7. Prefactor. In this section we find the limit value of the prefactor.
Consider function (35). For each fixed z and ζ the limit of this function as

N → ∞ can be computed in the same way as in section II

f̂(z, ζ) = lim
N→∞

f̂N(z, ζ) = lim
N→∞

M̃ e−z
1
2 (A−1l,l)−ζ(l,ǔ)

= M̃ lim
m→∞
N→∞

√

detAm
(2π)m

∫

e−
1
2 (Au,u)m+i

√
z(l,u)−ζ(l,ǔ) dmu

= lim
m→∞
N→∞

√

detAm
(2π)m

∫

e−
1
2 (Au,u)m+N ln M̃e

i 1√
N

(l′0,
√

z u−iζǔ)m

dmu

= lim
m→∞

√

detAm
(2π)m

∫

e−
1
2 (Au,u)m− 1

2 (B(
√
z u−iζǔ),

√
z u−iζǔ)

m dmu

= lim
m→∞

√

detAm
(2π)m

∫

e−
1
2 ((A+zB)u,u)m+

√
zζi(Bu,ǔ)m+ ζ2

2 (Bǔ,ǔ) dmu

= e
ζ2

2 ((Bǔ,ǔ)−z((A+zB)−1Bǔ,Bǔ))

√

detA

det(A+ zB)
. (81)

Validity of all equalities in (81) can be established in the same way as in section V.

If we drop in (79) the term ζ/
√
N and change f̂N by f̂ we find

√
NRN ≃ 1

2π

+∞
∫

−∞

e−
η2

2 ((Bǔ,ǔ)−β((A+βB)−1Bǔ,Bǔ))

√

detA

det(A+ βB)
dη =

=

√

detA

2π det(A+ βB) ((Bǔ, ǔ) − β ((A+ βB)−1Bǔ,Bǔ))
≡

√
NR∞. (82)

Let us check if (82) is indeed the limit value of
√
NR. We split the integral (79)

into a sum of two integrals

√
NRN =

1

2π

∫

|η|≤c

f̂N

(

β +
iη√
N
, iη

)

dη

β + iη√
N

+
1

2π

∫

|η|≥c

f̂N

(

β +
iη√
N
, iη

)

dη

β + iη√
N

.
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Choose c = Nα , 0 < α < 1/2. Then the first integral converges to (82) as
N → ∞. The second integral is estimated by means of (36).

∣

∣

∣

∣

∣

1

2π

∫

|η|≥Nα

f̂N

(

β +
iη√
N
, iη

)

dη

β + iη√
N

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

√
N

2π

∫

|η|≥Nα−1/2

f̂N (β + iη,
√
Niη)

dη

β + iη

∣

∣

∣

∣

∣

=

√
N

2π

∫

∣

∣

∣

∣

∣

M̃e−
β+iη

2 (A−1l,l)+i
√
Nη(l,ǔ)

∣

∣

∣

∣

∣

dη

β
≤ const

1

Nκ/2
.

So, √
N (RN −R∞) → 0 as N → ∞.

8. Large singular excitations. Consider the minimization problem for the func-
tional,

IN (u) =
1

2

∫

V

(

▽u2 + h4s−2(▽▽ u)2s
)

d2x− 1√
N

N
∑

a=1

(

u (r+a ) − u (r−a )
)

. (83)

Here V is a two-dimensional square of the size 2π, ra(a = 1, .., N) is a couple of two
points r+a and r−a in region V , all vectors r+a , r

−
a are distributed homogeneously and

independently in V . Minimum is sought over all periodic functions on the square
V . Such a problem appears in the theory of Kosterlitz-Thouless phase transition
[7] and theory of point vortices [17].

The functional is invariant under a shift of function u on a constant. To specify
the minimizing element uniquely we put an additional constraint on the set of
admissible functions,

< u > = 0, (84)

where we use the notation

< · > ≡ 1

|V |

∫

V

· d2x.

Let us check that formula (20) can be used in this case.
Indeed,

(l0(r), u) = u (r+) − u (r−)

and for operator B we have

(Bu, u) = M(l0, u)
2 =

1

|V |2
∫

(

u (r+) − u (r−)
)2
d2r+ d2r−

=
2

|V |

∫

V

u2(x) d2x.

Here we used condition (83). The eigenvalue problem (16) has the eigen-functions
ei(kx) where k is a node vector of the lattice with unit spacing. The point k = 0
is excluded due to condition (84). The eigenvalues are λk = |k|2 + h4s−2|k|4s while
bk ∼ 1. Let us check the conditions of statement 1. The series

∑

λ−1
k converges if
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s > 0. Functions
◦
lk(r) = eikr are all bounded. Operator C can be chosen in the

following way. Let µk be any series such that
∑ 1

µk
= a < +∞. We put ck = aµk.

Then

max
r

(l0(r), u)
2 ≤

(

∑

|uk|
)2

≤
∑ 1

µk

∑

µku
2
k = (Cu, u),

or

ck = µk

∞
∑

s=1

1

µs
.

To have

αck < λk = |k|2 + h4s−2|k|4s

we may put µk = |k|2 + ε4σ−2|k|4σ and choose σ < s, ε < h, α = 1/2a. For
convergence of the series

∑

ck/λk we have to put additionally,

4s− (4σ + 1) > 1,

or s− σ > 1/2. The minimum integer value of s is s = 1.
The term with higher derivatives in (83) can be considered as a means to smear

out the δ-type singularity of the excitation. The parameter h has the meaning of
a finite core of a singularity. One cannot put h = 0 in (83) because the vari-
ational problem becomes ill-posed: the functional IN (u) is not bounded below
if h = 0. Probability density of minimum values of functional (83) depends on
two parameters, N and h; denote it by fN,h(E). Formula (20) allows one to find
the limit lim

N→∞
fN,h(E) for a fixed value of h. One may consider then the limit

lim
h→0

lim
N→∞

fN,h(E). It turns out that this limit, after some “infinite shift” of energy,

exists and can be found explicitly [17]. It remains unclear though whether one can
change the order of the limits because the integral (69) does not seem converging
uniformly.
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