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Abstract. We introduce a tentative classification scheme for empirical net-
works based on global qualitative properties detected through the spectrum

of the Laplacian of the graph underlying the network. Our method identifies
several distinct types of networks across different domains of applications, indi-

cates hidden regularity properties and provides evidence for processes like node

duplication behind the evolution or construction of a given class of networks.

1. Introduction. Real world networks tend to be irregular and complicated and,
because of their size, also difficult to visualize. It is therefore important to develop
methods to identify qualitative properties that can characterize specific classes of
networks and that can be easily visualized. Recent research has identified certain
universal properties shared by large classes, if not most, of empirical graphs, like
randomness [10], small-world property [35], scalefreeness [31, 7]. Here, we want
to introduce a possible path towards a qualitative classification of different classes
of networks. This classification on one hand is robust towards fluctuations and
perturbations within a given class, and on the other hand, can readily distinguish
different types. It can also easily and directly be visually inspected.

Even though empirical networks typically have directed and weighted edges, we
here consider only the underlying undirected and unweighted graph. The methods
utilized, however, easily extend to the directed and weighted case, but it turns out
that already that reduced graph carries a lot of structural information that is quite
informative about the network. This, as well as space constraints, is our rationale
for that simplification.

Our essential tool is the spectrum of an (undirected and unweighted) graph Γ
(representing our network) with N vertices or nodes. For functions v from the
vertices of Γ to R, we define the Laplacian as

∆v(i) :=
1
ni

∑
j,j∼i

v(j)− v(i) (1)

where ni is the degree of the vertex i, that is, the number of its neighbors (the
vertices with which it is connected by an edge).

In the graph theoretical literature, one usually considers the algebraic graph
Laplacian which employs a different normalization and therefore leads to a different
spectrum. That Laplacian has also been applied to the investigation of complex
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networks, but from a different perspective. In [9, 29], for instance, asymptotic results
about that operator’s spectrum for the limit of infinite network size are derived. –
We found the Laplacian (1) better for our purposes of classifying finite networks
as it gives clearer pictures of network classes. Also, this, and not the algebraic
Laplacian, is the operator generating random walks on graphs, and moreover, for
diffusion processes on a graph, it satisfies a conservation law. – For mathematical
background, we refer to [8, 19, 18, 4, 5].

The eigenvalue equation for ∆ is

∆u + λu = 0. (2)

A nonzero solution u is called an eigenfunction for the eigenvalue λ. ∆ then has
N eigenvalues (possibly occurring with multiplicity). The eigenvalues of ∆ are real
(because ∆ is symmetric for the product (u, v) =

∑
i niu(i)v(i)) and nonnegative

(by our convention, because ∆ is a nonpositive operator). The smallest eigenvalue
is λ = 0. Its multiplicity equals the number of components of Γ. As we shall only
evaluate connected graphs, this eigenvalue is simple. We then order the eigenvalues
as

λ0 = 0 ≤ λ2 ≤ ... ≤ λK with K = N − 1.

For the largest eigenvalue, we have

λK ≤ 2, (3)

with equality iff the graph is bipartite, that is, when the graph consists of two
disjoint classes with the property that there are no edges between vertices in the
same class. Thus, a single eigenvalue determines the global property of bipartiteness.
Also, the graph is bipartite iff the spectrum is symmetric about 1, that is λ is an
eigenvalue iff 2− λ is.

The eigenvalue λ = 1 plays a special role as it gives some indication of vertex or
motif duplications underlying the evolution of the graph. That is, if we have some
graph Γ0 with a node i0 and create a new graph Γ by adjoining a new node j0 that
is given the same neighbors as i0, we obtain an eigenfunction u with eigenvalue 1 by
putting u(i0) = 1, u(j0) = −1, u(k) = 0 for all other nodes. In particular, through
repeated duplication of nodes, we can create graphs with the eigenvalue 1 of very
high multiplicity. In fact, the complete bipartite graph Km,n (the graph consisting
of one class with m and another class with n nodes such that every node in the
first class is connected with every node in the second one, and with no connections
inside classes) has the eigenvalue 1 with multiplicity m + n − 2 (and in addition
the eigenvalues 0 and 2 with multiplicity 1 each) because it can be constructed by
iterated node duplication from the connected graph with 2 nodes. Here, we see
the phenomenon of isospectral graphs, different graphs with the same spectrum, as
all Km,n with the same sum m + n share the same spectrum. Nevertheless, the
spectrum is a very powerful tool for characterizing qualitative properties of graphs;
for example, each graph having this spectrum then has to be of type Km,n. Likewise,
the complete graph KN of N vertices is characterized by having the eigenvalue

N
N−1 with multiplicity N − 1. In another direction, the smallest eigenvalue λ1 tells
us how difficult it is to disconnect the graph (splitting the graph into two large
components by cutting few edges), see [8]. In the converse direction, there also
exist good algorithms to reconstruct a graph from its spectrum, see [14] (of course,
up to isospectrality). In essence, the spectrum of a graph yields a set of invariants
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that on one hand captures what is specific about that graph and on the other hand
simultaneously encodes all its important properties.

We then plot the spectrum not directly, that is, as the collection of the eigenvalues
λj , but we convolve them with a smoothing kernel, here a Gaussian, that is, we plot

f(x) =
∑
λj

1
0.025

√
2π

exp(−|x− λj |2

0.00125
) (4)

The particular value .025 for the width of the Gaussian has been chosen as a com-
promise between high resolution with too many small scale fluctuations and low
resolution with a blurring of qualitative patterns.

2. Network classes. In order to get some orientation, we start with spectral plots
of artificial, that is, simulated networks. Our first examples come from two classes
of regular networks. The first one consists of regular 2d square grids, with 10,000
nodes. As we see in Fig.1, when we make the grid narrower and longer, the spectrum
shows characteristic side peaks. The spectral plot is symmetric about 1 as all these
graphs are bipartite. When we add one of the two possible diagonals (always the
same) in each square, we destroy bipartiteness and get a systematic shift in the
spectral plot (Fig.2), again with the side peaks when the grid gets narrower. The
other regular graphs originate from a circular arrangement of 1,000 nodes where
we connect each node with the the 2, 4, 6, 10, 20, or 50 closest nodes on the circle
(Fig.3). When thus progressing to higher degrees, we see the eventual merging at
1 of the two peaks that start out at 0 and 2 for small degrees.

We next turn to stochastically constructed graphs (Fig.4), all with 1000 nodes.
We first have an Erdös-Renyi random graph;1 here, a single realization and the
average of 100 such graphs will not exhibit substantially different spectral plots,
that is, each realization already shows the typical spectral properties. This is an
indication of the robustness of our scheme against random fluctuations – which, of
course, are at the heart of the idea of a random graph. Next, we have scale free
graph constructed by the algorithm of Barabási-Albert; here, averaging over 100
realizations smoothes the spetral plot out a bit. This is even more evident for a
small-world graph a la Strogatz-Watts. We construct them by rewiring a regular
graph, either of the square grid or of the circle type, both with rewiring probability
0.3 (Fig.5). The spectral plot becomes characteristically different from the regular
one. (A systematic investigation of the spectrum of a small-word graph as the
superposition of a regular ring and a random graph has been carried by Monasson
[25].)

We now turn to empirical networks and compare their spectral plots both with
each other and with the model types presented above. We shall have to keep in
mind below, however, that some of the empirical networks are quite small, on the
order of 100 nodes only, and so, obviously random fluctuations may have stronger
effects that suggest some caution concerning the robustness of our classification. –
The first type comprises several classes of biological networks at the molecular level,
including metabolic, transcription, signal transduction, and protein-protein inter-
action networks, as well as word adjacency and internet topology graphs (Fig.[6 -
10]). The characteristic features are the very high peak at or near 1, the shallow rest

1Because we have normalized our Laplacian, we do not get Wigner’s semicircle law for the
spectrum of a random graph here. See also [2] for some investigations of the spectrum of the
unnormalized Laplacian.
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with two secondary peaks, and the high degree of symmetry about 1. As we recall
from the mathematical discussion above, these graphs then come close in spectral
terms to a complete bipartite graph which, as we discussed, arises through repeated
node duplication. Simulations that we present elsewhere [3] indicate that the sec-
ondary peaks arise from random deletion of edges after the node duplications. Node
duplication with subsequent random edge deletion has been proposed in different
application fields as a mechanism for network growth that can reproduce qualitative
properties of empirical networks, e.g. for the internet [21], for protein-interaction
networks [32, 33, 34] or citation networks [22], although the precise rules can differ
between those investigations, for instance, whether the duplicated node and its copy
are connected or not.

For each of these empirical classes, one can then try to find an explanation of
their evolution or construction through such processes, like gene duplication in the
biological ones. Our second class contains weblog hyperlink graphs (in US politics),
conformation spaces of polypeptides, food webs, and, with less confidence, email
interchanges (Fig.[11-13]). Neuronal connectivity graphs of C.elegans constitute a
borderline case (Fig.14). This class is characterized by a concentration near 1, but
not as sharply peaked as in the first case, and, except for the neuronal network,
again symmetry about 1. This class is different from all the model types, but shows
a little similarity with the scalefree type. The third class contains power grids,
coauthorships between scientists, copurchasing of books, and US football games
(Fig.[15-17]). They all resemble the square grid with diagonal class, moving from
the less narrow to the very narrow ones. Finally, the electronic circuit graph spectra
(Fig.18) resemble those of a narrow square grid without diagonals.

3. Conclusion. We have presented a scheme for the rough classification of em-
pirical networks in terms of their qualitative spectral properties. Since we can
also understand from mathematical theory how some of those characteristic spec-
tral properties are caused by topological properties of the underlying graph or can
emerge from processes like node duplication, random rewiring, random edge deletion
etc., this scheme also offers the potential for systematic insights into the evolution or
the emergence of global properties of specific classes of empirical networks. As usual
with mathematical structures, structural similarities can be shared across empirical
domains.

Of course, this represents at best the first step towards a systematic theory of
complex networks. Perhaps the state at this moment is a little similar to the one
of cellular automata about 25 years ago when also classifications were proposed
in terms of visually representable global features. Not all of what was proposed
then could be consolidated by subsequent research, but it nevertheless opened up a
fruitful perspective.
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[10] P. Erdös and A. Rényi, On random graphs, Publ. Math. Debrecen, 6 (1959), 290–297.
[11] M. Faloutsos et al., On power-law relationships of the Internet topology, SIGCOMM ’99:

Proceedings of the conference on Applications, technologies, architectures, and protocols for

computer communication, (1999), 251–262.
[12] M. Girvan and M. E. J. Newman, Community structure in social and biological networks

Proc. Natl. Acad. Sci. USA, 99 (2002), 7821–7826.
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Figure 4. Specral plots of generic networks. (a) Random network
by the Erdös-Rényi model [10] with p = 0.05. (b) Small-world
network by the Watts-Strogatz model [35] (rewiring a regular ring
lattice of average degree 4 with rewiring probability 0.3). (d) Scale-
free network by the Albert-Barabási model [7] (m0 = 5 and m =
3). Figures (a-c) obtained from a single realization, (d-f) represent
the averages of 100 realizations. Size of all networks is 1000.
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Figure 5. Specral plot of a small-world network created by
rewiring a 2-dimensional grid of dimension 100 by 100 with rewiring
probability 0.3. Single realization.
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Figure 6. Metabolic networks. Nodes represent substrates, en-
zymes and intermediate complexes. Data used in [15]. Data
Source: http://www.nd.edu/~networks/resources.htm. [Down-
load date: 22nd Nov. 2004] (a) Archaeoglobus fulgidus. Network
size 1268. (b) Escherichia coli. Network size 2268. (c) Saccha-
romyces cerevisiae. Network size 1511.
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Figure 7. Transcription networks. Data source: Data
published by Uri Alon (http://www.weizmann.ac.il/mcb/
UriAlon/). [Download date: 13th Oct. 2004]. Data used in
[23, 30]. (a) Escherichia coli. Network size 328. (b) Saccharomyces
cerevisiae. Network size 662.

http://www.nd.edu/~networks/resources.htm
http://www.weizmann.ac.il/mcb/UriAlon/
http://www.weizmann.ac.il/mcb/UriAlon/
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Figure 8. Protein-protein interaction networks. (a) Saccha-
romyces cerevisiae. Network size 1458. Data downloaded from
http://www.nd.edu/~networks/ and data used in [16] [download
date: 17th September, 2004]. (b) Helicobacter pylori. Network size
710. (c) Caenorhabditis elegans.Network size 314. (b,c) Data col-
lected from http://www.cosinproject.org [download date: 25th
September, 2005].

http://www.nd.edu/~networks/
http://www.cosinproject.org
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Figure 9. Word-adjacency networks of a text in (a) French.
Network size 8308. (b) Japanese. Network size 2698. (c) Eng-
lish. SNetwork size 7377. Data downloaded from http://www.
weizmann.ac.il/mcb/UriAlon/ [Download date 3rd Feb. 2005].
Data used in [24].
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Figure 10. Autonomous Systems topology of the Internet. Ev-
ery vertex represents an autonomous system, and two vertices are
connected if there is at least one physical link between the two
corresponding Autonomous Systems. (a) AS graph of 1997/11/08.
Network size 3015. (b) AS graph of 1999/07/02. Network size 5357.
(c) AS graph of 2001/03/16. Network size 10515. Data collected
from http://www.cosinproject.org and data used in [11] [down-
load date: 23rd September, 2005]. Main source: BGP routing data
collected by University of Oregon Route Views Project, then pro-
cessed and made available in various formats at the Global ISP
interconnectivity by AS number page of NLANR (National Labo-
ratory of Applied Network Research).

http://www.cosinproject.org
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Figure 11. (a) The network of hyperlinks between weblogs on US
politics, recorded in 2005 by Adamic and Glance [1]. Network size
1222. Data downloaded from http://www-personal.umich.edu/

~mejn/netdata/ [Download date: 23rd April 2007]. (b) Network
of conformation space (Only conformations that are visited at least
20 times during the simulation are considered in the building of the
network.) of a 20 residue antiparallel beta-sheet peptide sampled
by molecular dynamics simulations [28]. Snapshots saved along
the trajectory are grouped according to secondary structure into
nodes of the network and the transitions between them are links.
Network size 1199. Downloaded from Caflisch group, University
of Zurich, http://www.biochem-caflisch.unizh.ch/ [Download
date: 18th Dec. 2006].

http://www-personal.umich.edu/~mejn/netdata/
http://www-personal.umich.edu/~mejn/netdata/
http://www.biochem-caflisch.unizh.ch/
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Figure 12. Food-web. (a) From “Ythan estuary”. Data down-
loaded from http://www.cosinproject.org. [Download Date
21st December, 2006]. Network size 135. (b) From “Florida bay in
wet season”. Data downloaded from http://vlado.fmf.uni-lj.
si/pub/networks/data/ (main data resource: Chesapeake Bi-
ological Laboratory. Web link: http://www.cbl.umces.edu/).
[Download Date 21st December, 2006]. Network size 128. (c)
From “Little rock lake”. Data downloaded from http://www.
cosinproject.org. [Download Date 21st December, 2006]. Size
of the network is 183.

http://www.cosinproject.org
http://vlado.fmf.uni-lj.si/pub/networks/data/
http://vlado.fmf.uni-lj.si/pub/networks/data/
http://www.cbl.umces.edu/
http://www.cosinproject.org
http://www.cosinproject.org
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Figure 13. E-mail interchanges between members of the Uni-
veristy Rovira i Virgili (Tarragona) [13]. Network size 1133.
Data downloaded from http://www.etse.urv.es/aarenas/data/
welcome.htm [Download date: 21st March, 2007].
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Figure 14. Neuronal connectivity. (a) Caenorhabditis elegans.
Network size 297. Data used in [35, 36]. Data Source: http://cdg.
columbia.edu/cdg/datasets [Download date: 18th Dec. 2006].
(b) Caenorhabditis elegans (animal JSH, L4 male) in the nerve ring
and RVG regions. Network size 190. Data source: Data assembled
by J. G. White, E. Southgate, J. N. Thomson, S. Brenner [36]
and revisited by R. M. Durbin (Ref. http://elegans.swmed.edu/
parts/ ). [Download date: 27th Sep. 2005]. (c) Caenorhabditis
elegans (animal N2U, adult hermaphrodite) in the nerve ring and
RVG regions. Network size 199. Data source: Data assembled
by J. G. White, E. Southgate, J. N. Thomson, S. Brenner [36]
and revisited by R. M. Durbin (Ref. http://elegans.swmed.edu/
parts/ ). [Download date: 27th Sep. 2005].

http://www.etse.urv.es/aarenas/data/welcome.htm
http://www.etse.urv.es/aarenas/data/welcome.htm
http://cdg.columbia.edu/cdg/datasets
http://cdg.columbia.edu/cdg/datasets
http://elegans.swmed.edu/parts/
http://elegans.swmed.edu/parts/
http://elegans.swmed.edu/parts/
http://elegans.swmed.edu/parts/
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Figure 15. Topology of the Western States Power Grid of the
United States [35]. Network size 4941. Data downloaded from
http://cdg.columbia.edu/cdg/datasets [Download date: 1st
March, 2007.].
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Figure 16. (a) Coauthorships between scientists posting
preprints on the High-Energy Theory E-Print Archive, http://
arxiv.org/archive/hep-th between 1st Jan, 1995 and 31st De-
cember 1999 [26]. Network size 5835. (b) Coauthorships of scien-
tists working on network theory and experiment [27]. Network size
379. Data downloaded from http://www-personal.umich.edu/

~mejn/netdata/ [Download date: 23rd April, 2007].

http://cdg.columbia.edu/cdg/datasets
http://arxiv.org/archive/hep-th
http://arxiv.org/archive/hep-th
http://www-personal.umich.edu/~mejn/netdata/
http://www-personal.umich.edu/~mejn/netdata/
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Figure 17. (a) Books about recent US politics sold by the
online bookseller Amazon.com. Edges between books repre-
sent frequent copurchasing of books by the same buyers. Net-
work compiled by V. Krebs (unpublished). Network size
105. Data downloaded from http://www-personal.umich.
edu/~mejn/netdata/[original source http://www.orgnet.com/.
Download date: 23rd April, 2007]. (b) American football games
between Division IA colleges during regular season Fall 2000,
as compiled by M. Girvan and M. Newman [12]. Network size
115. Data downloaded from http://www-personal.umich.edu/

~mejn/netdata/ [Download date: 23rd April, 2007].
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Figure 18. Electronic circuits. (a) With size = 122. (b) With size
= 252. (c) With size = 512. Data downloaded from http://www.
weizmann.ac.il/mcb/UriAlon/ [Download date: 15th March,
2005]. Data used in [23].

http://www-personal.umich.edu/~mejn/netdata/ 
http://www-personal.umich.edu/~mejn/netdata/ 
http://www.orgnet.com/
http://www-personal.umich.edu/~mejn/netdata/
http://www-personal.umich.edu/~mejn/netdata/
http://www.weizmann.ac.il/mcb/UriAlon/
http://www.weizmann.ac.il/mcb/UriAlon/
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