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Abstract. The metabolic networks are very well characterized for bacterial
such of E .coli . For this reason they provide a a very interesting framework
for the construction of analytically tractable statistical mechanics models. In
this paper we introduce a solvable model for the distribution of fluxes in the
metabolic network. We show that the effect of the topology on the distribution
of fluxes is to allow for large fluctuations of their values, a fact that should have
implications on the robustness of the system.

1. Introduction. Dynamical models on networks have attracted a large interest
because of the non-trivial effects of network structure [1, 9, 24, 25] on the dynamics
defined on them [10]. Important examples of the dynamics on networks with relevant
applications are the Ising model [11, 19, 3], the spreading of a disease [26] and the
synchronization models [23, 22]. In this paper we introduce a solvable model for the
distribution of fluxes in the metabolic network. While motivations come from the
study of the metabolic network, the problem is quite general and can be applied to
supply networks and to many other linear problems [18] of constraint satisfaction
on continuous variables on a network.

Metabolic networks describe the stoichiometric relations between substrates in
biochemical reactions inside the cell. They have been mapped [33] for a large
number of organisms in the three different domains of life (archea, bacteria and
eukaryotes). They provide the biomass needed for cell duplication, and the rate of
biomass production (growth rate) can be identified with a fitness of the cell. The
structure of the metabolic network can be represented as a factor graph with nodes
that are chemical reactions and function nodes that are chemical metabolites. The
projection of the network on the metabolites has a power-law degree distribution
and a hierarchical structure [17, 27, 31]. To each factor node, which describes a
chemical reactions, it is associated an enzyme which itself is produced by a regulated
gene network. Important aspect of the functioning of these very complex systems
include dynamical considerations. Flux-balance-analysis [13, 14, 16] make a major
simplification in the problem. In fact it considers only the steady state of the
dynamics and includes all the dynamical terms inside the definition of the flux of a
reaction. For this reason it was able to predict with sufficient accuracy the fluxes
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of the reactions in the graph for a given environment and it constitute a real break-
through in the field. Special interest has been addressed to the perturbation of
the distribution of the fluxes after knockout of a gene or in different environments
[28, 30]. The problem of identifying the flux distribution in Escherichia coli was
studied experimentally [12] and by means of Flux-Balance-Analysis [2] . A fat tail
in their distribution with different power-law exponents α < 2 was found.

Metabolic networks provide a very interesting framework for the construction
of analytically tractable models using tools of statistical mechanics of disordered
systems. In this paper we will discuss the impact of the network structure (degree
distributions) on the steady state distribution distribution of the fluxes. We shall
consider random networks with the same degree distribution as the real ones i.e.
networks in the the hidden-variable ensemble [7, 6, 15] with same expected degree
distribution as the metabolic factor graphs. Formally the problem is resolved with
replica calculations on diluted networks [19] extended to the case of continuous
variables. Due the simplicity of the Hamiltonian the problem is solved with an
expansion of the order parameter in terms of Gaussians. The problem shares some
similarity with other problems in statistical mechanics of disordered systems [4, 29].
In two recent papers [8, 5] a similar approach has been pursued. In [8] the metabolic
network was considered in the framework of a different model where the steady state
of the fluxes is not a priori considered and the positive fluxes don’t have any upper
limit. In [5] a very similar approach to the one we are going to present was studied
numerically.

2. The model. The metabolic network has a bow tie structure [31], therefore the
metabolites can be divided into: (i) input metabolites which are provided by the
environment, (ii) the output metabolites which provide the biomass and (iii) the
intermediate metabolites. The stoichiometric matrix is given by ((ξµ,i)) where µ =
1, . . . , M indicates the metabolite and i = 1, . . . , N the reaction and the sign of ξµ,i

indicates if the metabolite µ is an input or output metabolite of the reaction i. As
in the Flux-Balance-Analysis method we assume that each intermediate metabolite
has a concentration cµ which is consumed/produced by a reaction i at a rate si

which indicates the flux of each reaction i in the metabolic network. We assume
that the metabolites µ are produced or consumed at a fixed rate, i.e.

dcµ

dt
=
∑

i

ξµ,isi = gµ (1)

In particular for intermediate metabolites we assume steady state and gµ = 0.
Instead for input/output metabolites we assume gµ < 0, gµ > 0 respectively, fixing
in this way the rates or consumption of metabolites from the environment and of
production of biomass.

To mimic biological constraints on the concentrations of the enzymes we consider
only fluxes in within an ellipse of semi-axis

√
qiΛi i.e.

1

〈q〉N
∑

i

qi

(

si

Λi

)2

= L′. (2)

and L′ ≤ L. In other words the parameter Λi is fixes the typical flux of reaction i
and the global sherical contraint Eq.(2) limit the average flux to be lower that L.
For simplicity in the following we will take Λi = 1 ∀i = 1, . . . , N . The volume of
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solutions V , given the constraints (1) and (2), is proportional to the quantity

Ṽ =

∫ L

0

dL′

∫ N
∏

i=1

dsi

∏

µ

δ(
∑

i

ξµ,isi − gµ)δ(
∑

j

qj(sj/Λj)
2 − N〈q〉L′2). (3)

To consider analytical tractability of the problem we assume that the all the reac-
tions are potentially reversible. Consequently we assume that the fluxes have no
definite sign. In Ref. [5] the problem is solved by numerical integration of the belief
propagation (BP) equations derived by the estremization of the volume of solution
(3) respect to the flux distribution.

3. Replica method. We assume that the support of our stochiometric matrix is
a random uncorrelated network with given degree distribution, i.e. a realization
of the random hidden-variable model [7, 6, 15]. In particular we fix the expected
degree distribution of the nodes of the factor graphs to be qi for the reaction node
i = 1, . . .N and qµ for the metabolite nodes µ = 1, . . . , M and we assume that the
matrix elements ξµ,i are distributed following

P (ξµ,i) =
qiqµ

2〈qi〉N
[δ(ξµ,i − 1) + δ(ξµ,i + 1)] +

(

1 − qiqµ

〈qi〉N

)

δ(ξµ,i), (4)

where δ() indicates the Kronecker delta. Note that in (4) we have assumed that
the elements of the stochiometric matrix have values 0,±1 with a random sign and
that the variables qi qµ are nothing else than the hidden-variables associated with
metabolite µ of the reaction i of the hidden-variable network ensemble [7, 6, 15].

In order to evaluate the steady state distribution of the fluxes in a typical network
realization we replicate the realizations of the sa

i and we compute 〈log(V )〉 over the
different network realizations. To calculate this average we use the replica trick

S = 〈log(Z)〉 = limn→0
〈Ṽ n〉−1

n
. The averaged volume of solutions < Ṽ n > can be

expressed in the large N limit as

< Ṽ n >=

∫ L

0

dL′

∫

∏

a

dωa

∫

∏

a,i

dsi,a

∫

∏

a,µ

dλµ,a exp

[

−igµ

∑

a

λµ,a

]

exp



−
∑

i,µ

qiqµ

〈qi〉N
(1 − cos~λµ·~si) + i

∑

a

ωa





∑

j

qjs
2
j,a − L′2〈qi〉N







 , (5)

where for simplicity we have choose Λi = 1 ∀i. Using the techniques coming from
the field of diluted systems, we introduce the order parameters [21, 19]

c(~λ) =
1

〈qi〉N
∑

µ

qµ
∏

a

δ(λµ,a − λa)

c(~s) =
1

〈qi〉N
∑

i

qi
∏

a

δ(si,a − sa). (6)

The order papameter c(s) is a weighted flux distribution, and in the following we
will refer to it as the flux distribution.

getting for the volume

〈

Ṽ n
〉

=

∫

Dc(~λ)

∫

Dĉ(~λ)

∫

Dc(~s)

∫

Dĉ(~s) exp[nN〈qi〉Σ(ĉ(~λ), c(~λ), ĉ(~s), c(~s))]
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with

nΣ =

∫

d~λiĉ(~λ)c(~λ) +

∫

d~siĉ(~s)c(~s) −
∫

d~λ

∫

d~sc(~λ)c(~s)(1 − cos(~λ·~s)) +

+
1

〈qi〉N
∑

µ

log

∫

d~λ exp[−igµ

∑

a

λa − iqµĉ(~λ)] − i
∑

a

ωaL′2

+
1

〈qi〉N
∑

i

log

∫

d~s exp[−iqiĉ(~s) + i
∑

a

qiωas2
a].

The saddle point equations for evaluating Σ are given by

iĉ(~λ) =

∫

d~sc(~s)(1 − cos(~λ·~s))

iĉ(~s) =

∫

d~λc(~λ)(1 − cos(~λ·~s))

c(~λ) =
1

〈qi〉N
∑

µ

qµ

exp
[

−igµ

∑

a λa − iqµĉ(~λ)
]

∫
∏

a dλ′
a exp

[

−igµ

∑

a λ′
a − iqµĉ(~λ′)

]

c(~s) =
1

〈qi〉N
∑

i

qi

exp
[

−iqiĉ(~s) + i
∑

a ωas
2
a

]

∫

d~s′ exp
[

−iqiĉ(~s′) + i
∑

a ωa(s′)
2
a

]

L2 =
1

〈qi〉N
∑

i

qi

∫

d~ss2
a exp[−iqiĉ(~s) + i

∑

a qiω
as2

a]
∫

d~s′ exp[−iqiĉ(~s) + i
∑

a qiωas2
a]

. (7)

We assume that the solution of the saddle point equation is replica symmetric, i.e.
the distribution of the variables za = λa, sa conditioned to a vector field ~x are
identically equal distributed,

c(~z) =

∫

d~xP (~x)

n
∏

a=1

φ(za|~x) (8)

where φ(z|~x) are distribution functions of z and P (~x) is a probability distribution of
the vector field ~x. For the function φ(z|~x) the exponential form is usually assumed
in Ising models. In our continuous variable case for our quadratic problem, we
assume instead that φ(z|~x) has a Gaussian form. This assumption could be in
general considered as an approximate solution of the equations (7). Explicitly we

assume that the functions c(~λ) and c(~s) can be expressed as the following,

c(~λ) =

∫

dmλdhλP (hλ, mλ)
∏

a

exp

[

−1

2
hλλ2

a +
1

2

m2
λ

hλ

]

cos[mλλa]

√

hλ

2π

c(~s) =

∫

dmsdhsP (hs, ms)
∏

a

exp

[

−1

2
hss

2
a − 1

2

m2
s

hs

]

cosh[mssa]

√

hs

2π

ωa = iω (9)

from which we derive for ĉ(~s) and ĉ(~λ)

ĉ(~s) = −i

(

1 −
∫

dmλdhλP (hλ, mλ)
∏

a

exp

[

− 1

2hλ

s2
a

]

cosh[mλsa/hλ]

)

ĉ(~λ) = −i

(

1 −
∫

dmsdhsP (hs, ms)
∏

a

exp

[

− 1

2hs

λ2
a

]

cos[msλa/hs]

)

. (10)



VIABLE FLUX DISTRIBUTION IN METABOLIC NETWORKS 365

The saddle point equations (7), taking into account the expression for the order
parameters (9)(10) closes and can be written as recursive equation for P (hλ, mλ)
and P (hs, ms), i.e.

P (hλ, mλ) =
1

〈qi〉N
∑

µ

qµ

∑

k

e−qµqk
µ

1

k!

∫

...

∫ k
∏

l=1

dhl
sdml

s

∏

l

P (hl
s, m

l
s)

δ

(

hλ −
k
∑

l=1

1

hl
s

)

1

2k

∑

{nl}

δ

(

mλ −
∑

i

(−1)nl
ml

s

hl
s

− gµ

)

P (hs, ms) =
1

〈qi〉N
∑

i

qie
−qi

∑

k

qk
i

1

k!

∫

...

∫ k
∏

l=1

dhl
λdml

λ

∏

i

P (hl
λ, ml

λ)

δ

(

hs −
k
∑

i=1

1

hl
λ

− 2ωqi

)

1

2k

∑

{nl}

δ

(

ms −
∑

i

(−1)nl
mi

λ

hl
λ

)

(11)

L2 =
1

〈qi〉N
∑

i

qie−qi
∑

k

qk
i

k!

∑

si

1

2k

∫

...

∫

∏

l=1k

dhl
λdml

λ

∏

l

P (hl
λ, ml

λ)

δ

(

H −
k
∑

l=1

1

hl
λ

− 2ωqi

)

1

2k

∑

{nl}

δ

(

M −
∑

i

(−1)nl
ml

λ

hl
λ

)

(H + M2).

In these last expressions we indicated by nl some auxiliary variables that can take
values 0 or 1.

Finally S can be calculated at the saddle point as

S = −
∫

dhsdmsdhλdmλP (hs, ms)P (hλ, mλ)

[

− (ms/hs)
2

2(hλ + 1/hs)
+

(mλ/hλ)2

hs + 1/hλ

+

+ ln cosh

(

msmλ

hshλ + 1

)

+
1

2
ln

1

hλhs + 1

]

+ (12)

+
1

〈qi〉N
∑

µ

∑

k

e−qµqk
µ

1

k!

∫ k
∏

l=1

dhl
sdml

sP (hl
s, m

l
s)







1

2k+1

[

g2
µ +

∑

j(ms,j/hs,j)
2

∑

j
1

h
j
s

]

− 1

2
ln
∑

j

1

hj
s







− 1

〈qi〉N
∑

i

∑

k

e−qi qk
i

1

k!

∫

∏

l

dhl
λdml

λP (hl
λ, ml

λ)







1

2k

[

∑

j(mλ,j/hλ,j)
2

∑

j
1

hλ,j
+ 2ωqi

]

− 1

2
ln





∑

j

hj
λ + 2ωqi











4. Population dynamics. We solved the equations (11) by a
population-dynamical algorithm. We represent the effective field distributions
(hs, ms) (hλ, mλ) by a large population of P ≫ 1 fields. Running the algorithm the
population is first initialized randomly and then equations (11) are used to itera-
tively replace the fields inside the population until convergence is reached. We fix
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the value of the lagrangian multiplier ω to account for a fixed average value of L2.
The action of the algorithm is summarized in the following pseudo code

algorithm PopDyn({h1
s, m

1
s, h

2
s, m

2
s, . . . , h

P
s , mP

s }; {h1
λ, m1

λ, h2
λ, m2

λ, . . . , hP
λ , mP

λ }, ω)
begin do

• choose a reaction i0 with probability qiP (qi);
• draw d from a Poisson distribution (e−qiqk

i /k!)
• select d indexes i1, . . . id ∈ {1, . . .M}
• draw a d-dimensional vector ~n = {ni} of random numbers ni = 0, 1

hi0
s : =

d
∑

l=1

1

hil

λ

+ 2ωqi;

mi0
s : =

d
∑

l=1

(−1)nl
mil

λ

hil

λ

;

L2 : =

(

1 − 1

〈qi〉N

)

L2 +
1

〈qi〉N
hi0

s + (mi0
s )2

(hi0
s )2

;

(13)

• choose a random metabolite µ0 with probability qµP (qµ)
• draw d from a Poisson distribution (e−qµqk

µ/k!)
• select d indexes i1, . . . id ∈ {1, . . .M}
• draw a d-dimensional vector ~n = {ni} of random numbers ni = 0, 1

hµ0

λ : =

d
∑

l=1

1

hil
s

;

mµ0

λ : =

d
∑

l=1

(−1)nl
mil

s

hil
s

+ gµ0 (14)

while (not converged) return end

We run the population dynamics algorithm and we measure the distribution of
fluxes P (s) for different values of ω. We consider as the underline network a network
with the real degree distribution of the metabolic factor graph of Escherichia coli
and on a network with the same number of metabolites and reactions as the real
Escherichia coli network but with a fixed connectivity for each metabolite and re-
action node. We consider a population of P = 3000 pair of fields (hs, ms). The flux
distributions c(s) depend significantly on the input/output flux. In Fig. 1 we report
the results in the case gµ = 0 for all metabolites. In particular we show the flux
distribution c(s) for different value of ω: i) for the random network with the same
degre distribution as the metabolic network of E. coli and ii) for the random net-
work with two delta function degree distribution (P (qi) = 〈qi〉, P (qµ) = 〈qi〉N/M).
We observe that flux distribution for the random graph with the same degree dis-
tribution as E.coli allow for larger fluctuations of the fluxes. In Fig 2 we report
the results in the case in which the incoming and outgoing fluxes are applied to
15% of the metabolites to be gµ = g0. The random graphs with the same degree
distribution of the real metabolic networks of E.coli develops a power-law tail with
an exponent α depending on g0.
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Figure 1. Flux distribution c(s) with different values of ω. Inset
(a) show the results for a random network with the same degree
distribution of the metabolic network of Escherichia coli. Inset
(b) show the results for a random graph with the same number of
metabolites and reactions and the same number of nodes that the
real metabolic network of Escherichia coli but with two delta peaks
for the degree distribution.
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Figure 2. Flux distribution c(s) with different values of the input
flux g0. Inset (a) show the results for a random network with the
same degree distribution of the metabolic network of Escherichia
coli. Inset (b) show the results for a random graph with the same
number of metabolites and reactions and the same number of nodes
that the real metabolic network of Escherichia coli but with two
delta peaks for the degree distribution.

5. Conclusions. In this paper we have proposed a statistical mechanics approach
for the study of flux-balance-analysis in a particular ensemble of metabolic networks.
This method when considering the real degree distributionof E.coli generates flux
distribution with the higher variance respect to graph with more uniform distri-
bution. Further work is under consideration for the implementation of a message-
passing algorithm able to predict the fluxes taking into account the full complexity
of the real metabolic network.
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