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Abstract. This paper describes the effects of perturbations, which simulate

the knock-out of single genes, one at a time, in random Boolean models of

genetic networks (RBN). The analysis concentrates on the probability distri-
bution of so-called avalanches (defined in the text) in gene expression. The

topology of the random Boolean networks considered here is of the scale-free
type, with a power-law distribution of outgoing connectivities. The results for
these scale-free random Boolean networks (SFRBN) are compared with those

of classical RBNs, which had been previously analyzed, and with experimen-

tal data on S. cerevisiae. It is shown that, while both models approximate
the main features of the distribution of experimental data, SFRBNs tend to

overestimate the number of large avalanches.
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1. Introduction. While most of the studies in molecular biology are devoted to
the analysis of detailed molecular mechanisms or cellular subsystems, it should be
remarked that, in order to make sense of the wealth of available data, also system-
level models are needed, which are able to capture selected key features of the
observed phenomena, while adopting simplifications which make them tractable.

In previous works ([22],[21]) it has been shown that random Boolean networks
(briefly, RBNs) can be useful to model the perturbations in gene expression levels
which occur in cells of the yeast S. cerevisiae which are subject to the knock-out
(i.e. permanent silencing) of a single gene.

While those works were based on “classical” RBNs, which have a Poissonian
outdegree distribution, in this paper we investigate the influence of the topology
of the genetic network on the distribution of avalanches. Present data concern-
ing the whole genetic network of S. cerevisiae do not allow to conclusively deter-
mine its topology ([24],[9],[19],[8],[18]), so we decided to concentrate the analysis on
scale-free networks, which have raised considerable interest as they provide a good
approximation to several real networks, including metabolic and protein networks
([3],[15],[25],[14],[5]), at least within a range (one often finds an “exponential cutoff”
at high degree values).

We have therefore introduced a model of scale-free random Boolean networks,
which differs from most of the existing models because it allows the presence of
nodes without outgoing connections. This is motivated by the fact that in “classical”
RBNs there are indeed such nodes, and that it is likely that the same applies to
the real biological gene network. We will briefly refer to such scale-free networks
as SFRBN, while the shorthand RBN will be used exclusively for the classical ones
from now on.

In section 2 the main properties of “classical” random Boolean networks will be
recalled and in section 3 the main results of previous studies concerning gene expres-
sion avalanches in classical RBNs will be summarized. The way in which SFRBNs
are built, and the properties which characterize them, are described in section 4,
while in Section 5 we report the results concerning avalanches in gene expression
in the case of SFRBNs. A comparison with experimental data, for different values
of the threshold used to distinguish between affected and unaffected nodes, is also
provided. Critical comments and indications for further works are given in the final
section 6.

2. Random Boolean networks. Let us consider a network composed of N genes,
or nodes, which can take either the value 0 (inactive) or 1 (active). Let xi(t) ∈ [0, 1]
be the activation value of node i at time t, and let X(t) = [x1(t), x2(t)...xN (t)] be
the vector of activation values of all the genes. In a classical RBN each node has
the same number of incoming connections kin, and its kin input nodes are chosen
at random with uniform probability among the remaining N-1 nodes (self-coupling
and multiple connections from the same node being prohibited). It then turns out
that the distribution of outgoing connections per node follows a Poisson distribution
([16]):

pout(k) = e−A Ak

k!
(1)

where, since every connections must have both ends, A =< kout >= kin.
The output (i.e. the new value of a node) corresponding to each set of values of

the input nodes is determined by a Boolean function, which is associated to that
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node, and which is also chosen at random, according to some probability distribu-
tion. The simplest choice is that of a uniform distribution among all the possible
Boolean functions of kin arguments. However, a careful analysis of some known
real biological control circuits has shown that there is a strong bias in favour of the
so-called canalyzing functions ([11]). A Boolean function is said to be canalyzing
if at least one value of one of its input nodes uniquely determines its output, no
matter what the other input values are (this notion has recently been generalized
to that of nested Boolean functions ([17])).

Both the topology and the Boolean function associated to each gene do not
change in time (using the so-called “quenched model” of RBN ([2])). The network
dynamics is discrete and synchronous.

In order to analyze the properties of an ensemble of random Boolean networks,
different networks are synthesized and their dynamical properties are examined.
While individual realizations may differ markedly from the average properties of
a given class of networks ([6],[23]), one of the major results is the discovery of
the existence of two different dynamical regimes, an ordered and a disordered one,
divided by a “critical zone” in parameter space. Attractors in the ordered regime
are cycles whose length scales as a power of N, moreover in this regime the system
is stable with respect to small perturbations of the initial conditions (e.g. if one
modifies the value of one of the xk(0), the system usually relaxes to the same
attractor). In the disordered regime the length of the cycles grows exponentially
with N, and small changes in initial conditions often lead to different attractors.
For fixed N, the most relevant parameter which determines the kind of regime is
the connectivity per node, k : one typically observes ordered behaviour for small k,
and a disordered one for larger k. The exact value of k at which the transition takes
place depends upon the way in which the Boolean functions are chosen. For a more
detailed discussion, the reader is referred to [16],[2],[6],[23].

3. Avalanches in gene expression data. We will briefly summarize here the
main result of our previous studies. The experimental setup is described in [13],
while the theoretical analyses are discussed in depth in [22] and [21]: the reader
interested in a deeper understanding of these topics is referred to the original works.

[13] performed several experiments where a single gene of S. cerevisiae has been
knocked-out, and compared the expression levels of all the genes, in cells with a
knocked-out gene, with those in normal, wild type cells. In order to make precise
statements about the number of genes perturbed in a given experiment, and to
compare them with Boolean models, it is required that a threshold be defined, such
that the difference is regarded as “meaningful” if the ratio of the expression of gene
i in experiment j to the expression of gene i in the wild type cell is greater than
the threshold. In order to describe the global features of these experiments, we
introduced the notion of avalanche, which is the number of genes affected by the
perturbation induced by a particular knock-out experiment.

The knock-out experiment can be simulated in silico by comparing the evolution
of two RBNs which start from identical initial conditions, except for the fact that
one gene is clamped permanently to the value 0 in the one which simulates knock-
out. We consider a gene belonging to that avalanche if it differs in the final states of
the two networks at least once in the attractor cycle. The initial simulations were
performed using a classical RBN with 2 input connections per node, restricting
the set of Boolean functions to the so-called canalyzing ones ([16]). The data set
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concerns 6325 genes and 227 experiments (for details see [22]). The comparison with
the experimental distribution of avalanches turns out to be good, if the threshold
is ≥ 4, being optimal for Θ = 7 (according the well-known χ2 index ([21])).

The reason why such a simple model worked so well has been uncovered by
analytical methods which have proven that the distribution of avalanches depends
only upon the outdegree distribution, while the indegree distribution plays no role.
Moreover, in the case of classical random Boolean networks, where the distribution
of outgoing connections is Poissonian, it can be also proven that the distribution
of small avalanches depends only upon a single parameter, the so-called Derrida
exponent ([7],[21]) which is given by the equation:

λ ≡ (1− q)A (2)
where A is the average connectivity of the network and q is the probability that a
chosen node does not change its value whether one (and only one) of its inputs has
changed (note that q depends on the choice of the set of Boolean functions). λ had
been introduced in the past in order to distinguish between ordered and disordered
dynamical regimes (being 1 the critical value), and it turns out that it also rules the
distribution of avalanches. It is interesting to observe that the best agreement with
experimental data (given Θ = 7) is provided by the case where λ = 6/7, slightly
smaller than the critical value 1.

4. Scale-free random Boolean networks. The above results hold for classical
RBNs, with a constant indegree and Poissonian outdegree distribution, but other
topologies of outgoing connections may however provide a closer approximation to
the real one. Among them, scale-free networks, with a power-law distribution of
node degrees, have attracted particular interest, as they have been found (within
suitable approximations) in several different biological as well as artificial and so-
cial systems. The dynamical properties of these networks differ from the classical
ones in many respects ([1],[10],[20]), so it would be very interesting to explore the
distribution of avalanches in networks of this kind.

The well-known formula for a scale-free distribution of outgoing links is:

pout(k) =
1
Z

k−γ (3)

Z(γ) =
kmax∑
k=1

k−γ (4)

where k can take values from 1 to a maximum possible value kmax (in our case,
where self-coupling and multiple connections are prohibited, kmax = N − 1. Z
(which coincides with Riemann zeta function in the limit kmax → ∞) guarantees
the proper normalization. It is well known that such scale-free networks also show
two regimes, an ordered and a disordered one, separated by a curve which determines
the critical slope of the exponent γ ([1]). The average value of k is:

< k >≡
kmax∑
k=1

kp(k) ∼=
∞∑

k=1

kp(k) =
1

Z(γ)

∞∑
k=1

k−γ+1 =
Z(γ − 1)

Z(γ)
(5)

The condition for a critical network with ρ = 0.5 is that the last term on the r.h.s.
of Eq. 5 be equal to 2 ([1]). Thus, the average value of the connectivity for critical
SFRBNs coincides with that for classical RBNs; consequently, we concentrate our
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analysis on this kind of networks. As we did with RBNs, we exclude the so-called non
canalyzing functions ([11]); in such a way the network should be slightly subcritical,
exactly as in the RBN case. We also performed some experiments using all the
Boolean functions, whose results are briefly summarized in section 5.

Since, as long as the avalanches are much smaller than the total number of genes,
the distribution of avalanches does not depend on the indegree distribution ([21]),
the SFRBNs were generated keeping the number of ingoing connections equal to
two for each node.

Note that the requirement of Eq. 5, together with the fact that we are consid-
ering a finite network of 6325 nodes and the requirement that the sum of all the
probabilities equals 1, would uniquely determine γ, which turns out to be 2.469, if
there were no node without outgoing links.

However, it should be stressed that the synthetic RBNs discussed in the previous
sections indeed have some nodes without outgoing links (a feature which might hold
also for real genetic networks). So, in order to analyze the effects of changes of the
form of the distribution of outdegrees, it is necessary to extend Eq. 3 to the case
k = 0. Of course, a direct extension would lead to a meaningless divergence. The
simplest generalization of Eq. 3 capable to include the value to k = 0 is then:{

pout(k) = 1
Z′ k

−γ if k 6= 0
pout(0) = p0

(6)

We therefore need to introduce another parameter pout(0). In the following we
will refer also to the distribution given by Eq. 6 as a “scale-free” distribution. The
normalization coefficient is now different from Z in Eq. 4. Indeed the normalization
condition which defines Z’ is:

Z ′ =
∑kmax

k=1 k−γ

1− p0
(7)

Note that as pout(0) grows the slope γ decreases. Hence, we have simulated
different networks, with different pout(0) ranging from 0.1 to 0.9. The corresponding
γ’s, for a network with 6325 nodes1, are listed below in table 1.

pout(0) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
γ 2.469 2.39 2.317 2.247 2.179 2.11 2.037 1.956 1.857 1.711

Table 1. Values of γ for different values of pout(0) in SFRBNs.

The SFRBNs were generated as follows. To every node of the network a specific
number of outgoing connections is assigned, which is determined according to the
distribution of outgoing links given by Eq. 6. The destination of the connections is
randomly chosen among all the other N -1 nodes, with uniform probability, but the
maximum number of ingoing connections per node is fixed to two, self and multiple
connections being forbidden. When a given node has received its two input links,
it cannot receive any more links. The final total number of outgoing links must be
equal to the number of incoming links which, given the way in which the network
is built, is 2N. If, due to rounding, one gets a slightly different total number of

1Here the criticality condition of [1] doesn’t holds, because of the presence of the parameter

pout(0); in order to allow an easier comparison with the other results of this work, during all the
simulations we maintain ρ = 0.5.
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connections, some links are adjusted in order to respect the constraint on the total
number. No preferential attachment procedure is used.

In the simulations of knock-out experiments the knocked-out gene was chosen at
random, with uniform probability, among all the genes which were not always in
the 0 (“inactive”) state in their own attractor cycle.

5. Avalanches in SFRBNs: comparison with avalanches distribution in
classical RBNs and with experimental data. As it might be expected, the
value of pout(0) affects the avalanche distribution p(n) (the probability that an
avalanche size is n), in such a way that the number of the smallest avalanches
increases as pout(0) increases: this is due to the increasing number of nodes without
outgoing connections, which prevent the avalanche to grow. As it could also be
expected, large avalanches can be the result of knocking-out a hub (fig. 1) or a
poorly connected gene which however affects a hub located downstream (fig. 2).

Figure 1. Avalanche dimension = 33, depth level = 6. The root
node is a hub (marked with a cross) of the network, radial diffusion
of the perturbation. The number close to the nodes is its identifier;
the number among brackets its depth level.

In order to compare the avalanches in SFRBNs with those in classical RBNs, we
have computed the average fraction of nodes which have no outgoing links in the
RBN case (i.e. 0.1353) and have set pout(0) in SFRBNs equal to that value (for
this kind of networks γ=2.36). Note that, for both RBNs and SFRBNs, the set of
Boolean functions is restricted to canalyzing Boolean functions only.

This value of pout(0) might be considered as small on biological grounds, but two
remarks are in order.

First, this value has been chosen to ensure that the same fraction of nodes without
outgoing links is used in comparing classical RBNs and SFRBNs (and in the former
case this number is an outcome of the usual way of generating the network).

Second, in order to interpret this value from a biological viewpoint, it is necessary
to observe that the number of functional dependencies which can be observed is
different from the number of links in the graph. This is due to the fact that some
Boolean functions do not actually depend upon the value of some or all of their
inputs. Consider for example a node A which has a link to a node B (which has two
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Figure 2. Avalanche dimension = 29, depth level = 15. The root
node (marked with a cross) in the down-left corner is not a hub
and the perturbation spreads along the branch of the tree; only
two hubs are involved in the perturbation.

inputs): in this case there are four allowed Boolean functions for B which make it
actually independent of the state of A: the function which is always 1, always 0, the
one which always takes the same value of the other input or the opposite one. So,
if non canalyzing functions are excluded, in 4/14 ≈ 28% of the cases there would
be no real influence - and every experimental test would show no influence of A on
B - even if the formalism of RBNs would show a formal link between the two.

Let us call the links which are built according to the formal procedure for RBNs
or SFRBNs formal links. By excluding the ineffective links discussed above (on
average, the 28% of the total number of formal links), one is left with the subset
of active functional outgoing links. Taking into account the actual distribution of
formal links in our networks, one finds that about 32% of the nodes have no active
functional outgoing links - a number which differs significantly from the number of
nodes without any formal outgoing link (13%).

Figure 3. Comparison between the distribution of the avalanches
in classical RBNs (mean on 50 simulated networks) and SFRBNs
with pout(0)=0.1353 (mean on 10 simulated networks) - logarithmic
binning.
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In the comparison with classical RBNs (see fig. 3), the avalanche distribution
differs significantly, since smaller avalanches are largely more frequent in SFRBNs
(with pout(0) = 0.1353). Moreover, it is interesting to observe that, while the
value of the average avalanche is similar in the two cases (8.17 vs. 7.14), the mean
maximum avalanche is much larger in SFRBN case (403.7) than in RBN (132.8).
SFRBNs also show a higher variance on the dimension of the avalanches. All these
phenomena are likely due to the same reasons highlighted above: the larger number
of poorly connected nodes compared to the RBN case (where the outdegree dis-
tribution is Poissonian) increases the frequency of very small avalanches (including
those of size 1) in SFRBNs; on the other hand, the presence of hubs makes large
avalanches more frequent than in the case of Poisson distribution, where highly
connected nodes are very unlikely.

The distribution of avalanches in experimental data plainly depends on the choice
of the threshold (see section 3): small avalanches become relatively more frequent
as the chosen threshold increases. Consequently, the choice of a too large threshold
would lead to a trivial avalanches distribution, since the great majority of the genes
would turn out to be unchanged. Hence, we decided to compare SFRBNs with
experimental data with thresholds within the reasonable range 4 - 15.

As explained above, in SFRBNs smaller avalanches are relatively more frequent
than in the case of analogous classical RBNs, and increase as pout(0) becomes larger.
As a consequence, the best fit among SFRBNs and experimental data with low
thresholds is obtained using SFRBNs with low values of pout(0). For all of the
thresholds in the range 4 - 15 the best agreements are with SFRBNs whose pout(0)
is smaller than or equal to 0.1. In particular, the best statistical match is between
experimental data with a threshold equal to 11 and SFRBNs with pout(0) = 0.1

Figure 4. Comparison between experimental data with Θ=11 and
the results of simulations on SFRBNs with pout(0) = 0.1 (mean on
10 simulated networks), logarithmic binning. Θ = 11 provides
optimal fit of SFRBNs to experimental data, according the well-
known index χ2.

Figure 4 shows the comparison between the simulated and experimental distri-
butions, using the optimal (for SFRBNs with pout(0) = 0.1) threshold 11.

Nevertheless, although the overall agreement is undoubtedly significant, there is
an important aspect which is hidden by this representation: given the presence of
hubs, the average maximum avalanche increases with pout(0) (see fig. 5) and even
when pout(0)=0 it is already much higher (583.2) than the observed experimental
value in S. cerevisiae (which decreases from 219 to 150 as the threshold is increased
from 4 to 15).
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Figure 5. Variation of the maximum observed avalanche, aver-
aged on 10 different networks for each distinct value of pout(0); set
of the Boolean functions restricted to the canalyzing functions only.
The considered values of pout(0) are: 0, 0.2, 0.4, 0.6, 0.8 and 0.9.
The simulations are realized with a particularly high number of
knockout perturbations (2000), much larger than the experimental
one (227).

Further analyses have been made on SFRBNs with critical slope (with, in partic-
ular, pout(0) = 0 and γ = 2.469), but without the restriction on canalyzing Boolean
functions only. Networks of this kind are exactly critical ([1]). The results of the
simulations showed a much higher variance on the distribution of avalanches com-
pared to the sub-critical case, recalling an analogous behaviour which had been
observed analysing different RBNs ([22]). Also for SFRBNs, the restriction on can-
alyzing functions clearly reduces the dispersion of the distributions.

In addition, even though SFRBNs with pout(0) = 0 and no constraint on the
set of Boolean functions provide indeed a good approximation to the distribution
of experimental small avalanches, the mismatch regarding the maximum avalanche
is even larger than the one observed with SFRBNs with canalyzing functions only
(the value of the average maximum avalanche being 1296).

6. Conclusions. The previous studies on classical RBNs demonstrated that the
distribution of avalanches, provided that they are small with respect to the total
number of nodes, depends only upon the Derrida parameter. The only topological
feature which enters this parameter is the average degree, while other topological
parameters are irrelevant (as long as the outdegree distribution is Poissonian). On
the other hand, the analyses presented here on scale-free random Boolean networks
show that the form of the outdegree distribution function does indeed affect the
way in which the perturbations induced by knock-outs spread in the gene network,
i.e. the distribution of avalanches.

In particular, due to the presence of hubs with a large number of connections
and of a high number of poorly connected nodes, scale-free networks display larger
maximum avalanches than RBNs. In contrast, if the number of knock-outs is much
smaller than the number of nodes, it may happen that a hub is never knocked-out
or reached by a propagating avalanche. Therefore, when examining the maximum
avalanche in SFRBNs, one observes a high variance in the case of a small number
of knock-outs.
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Under the hypotheses of the presented study, discussed above, there are two
parameters whose values affect the comparison of simulations versus experimen-
tal data: the value of pout(0), which determines the distribution of simulated
avalanches, and the threshold, which determines that of the real ones. When the
parameters are chosen in a way which guarantees that the two distributions are
close, one observes that the maximum simulated avalanche is typically much larger
than the experimental one. Since a similar effect has not been found in classical
RBNs, the present results would seem to favour them with respect to SFRBNs for
the description of the response of the network to knock-out perturbations.

However, the high variance of the maximum avalanche in SFRBNs suggests a
more cautious approach. Note that the data concerning simulations refer to a num-
ber of knock-outs (2000) which is much larger than the experimental one. Indeed,
when simulating a much smaller number of knock-outs, of the order of the experi-
mental one (227), one occasionally observes values of the maximum avalanche close
to the one actually observed in S. cerevisiae. Therefore the mismatch on the value
of the maximum avalanche might be related to the limited size of the experimen-
tal sample: in 227 knock-outs one might have never have hit a large hub. While
this might be regarded as an unlikely event, it cannot be ruled out until further
experimental data become available.

Note that in this study some topological features have been supposed a priori,
and the consequences of different hypotheses (RBNs, SFRBNs) have been compared.
It should be remarked that it is unlikely that real gene networks are purely random
or purely scale-free without cut-off. Moreover, there are different ways to obtain
scale-free networks, with different properties ([4]) and in this work we explored
the behaviour of a particular kind of network of this type. It has been however
shown that data on gene knock-out can provide useful indications, and accumulating
further data might reduce the uncertainties which are still there. A different, very
promising approach which might provide suggestions or constraints on the network
topologies is the one which takes into account the evolutionary process which led
to present-day gene networks (see e.g. [12] for a recent review).
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