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Abstract. It is widely believed that the Internet’s AS-graph degree distri-
bution obeys a power-law form. However, it was recently argued that since
Internet data is collected in a tree-like fashion, it only produces a sample of
the degree distribution, and this sample may be biased. This argument was
backed by simulation data and mathematical analysis, which demonstrated
that under certain conditions a tree sampling procedure can produce an artifi-
cial power-law in the degree distribution. Thus, although the observed degree
distribution of the AS-graph follows a power-law, this phenomenon may be an
artifact of the sampling process. In this work we provide some evidence to
the contrary. We show, by analysis and simulation, that when the underlying
graph degree distribution obeys a power-law with an exponent γ > 2, a tree-like
sampling process produces a negligible bias in the sampled degree distribution.
Furthermore, recent data collected from the DIMES project, which is not based
on single source sampling, indicates that the Internet indeed obeys a power-law
degree distribution with an exponent γ > 2. Combining this empirical data
with our simulation of traceroute experiments on DIMES-measured AS-graph
as the underlying graph, and with our analysis, we conclude that the bias in
the degree distribution calculated from BGP data is negligible.

1. Introduction. The connectivity of the Internet crucially depends on the rela-
tionships between thousands of Autonomous Systems (ASes) that exchange routing
information using the Border Gateway Protocol (BGP). These relationships can be
modeled as a graph, called the AS-graph, in which the vertices model the ASes, and
the edges model the peering arrangements between the ASes.

Significant progress has been made in the study of the topology of the Internet at
the Autonomous Systems (AS) and router levels over the last few years. Numerous
studies [17, 23, 2, 12, 20, 31, 32, 11, 4, 3, 19, 27, 21, 8, 6, 25, 29, 28, 18, 10] have
ventured to capture the Internet’s topology. Based on these and other topological
studies, it is widely believed that the Internet’s degree distribution, in both the
AS and router levels, has a power-law form with an exponent 2 < γ < 3, i.e., the
fraction of vertices with degree k is proportional to k−γ . Some of these studies are
based on data from sources such as RouteViews [26] and CIDR Reports [7].
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1.1. Related work. It was recently argued [20, 13, 24, 1, 27, 12, 28, 31] that the
evidence obtained from the analysis of the Internet graphs sampled as described
above may be biased. In a thought-provoking article, Lakhina et al. [20] claimed
that a power-law degree distribution may be an artifact of the BGP data collection
procedure. They suggest that although the observed degree distribution of the AS-
graph follows a power-law distribution, the degree distribution of the real AS-graph
might be completely different. They claim that with tree-like sampling, such as that
employed by traceroute, an edge is much more likely to be visible, i.e., included
in the sampled graph, if it is close to the root. Moreover, in tree-like sampling,
high-degree vertices are more likely to be encountered early on, and therefore they
are sampled more accurately than low-degree vertices. They backed this argument
with simulations that indicated that under some conditions, a BFS [Breadth First
Search] tree sampling process in itself is sufficient to produce a power-law degree
distribution in the sample, even when the underlying graph is a sufficiently-dense
Erdős-Renyi [16] graph.

Subsequently, Clauset and Moore [13] gave a mathematical foundation to the
argument of [20]. They showed that BFS tree sampling produces a power-law
degree distribution, with an exponent of γ = 1, both for Poisson-distributed random
graphs and for δ-regular random graphs with high (average) degree. That is, a
tree sampling process may have a significant bias, and may produce an artificial
power-law—albeit with an exponent that is very different from that observed in the
Internet. Moreover, in [13] they claim that one must use a number of sources which
grows linearly in the mean degree of the underlying graph in order to accurately
estimate the exponent of a graph with a power-law degree distribution.

On the other hand, Petermann and De Los Rios [24] showed that for the exponent
obtained for single-source tree sampling of a Barabási-Albert (BA) graph [5] is only
slightly under-estimated. This cannot be viewed as strong evidence against the
argument of [20], since the analysis assumes a BA-model, which is a highly idealized
evolution model of the AS-graph. However, this result does indicate that at least
in some power-law graphs, a tree sample does not create a significant bias in the
degree distribution.

More recently, Dall’Asta et al. [14, 15, 30] showed that the edge and vertex
detection probability depends on the betweenness centrality distribution of the un-
derlying network. They conclude that shortest path sampling provides a better
characterization of underlying graphs with a broad distribution of connectivity; the
heavier the tail — the higher the statistical accuracy of the sampled graph. Thus in
graphs with heavy-tails, such as scale-free networks, the main topological features
are therefore discriminated since the relevant statistical information is encapsulated
in the degree distribution tail. However, this may not hold for the sampling of ho-
mogeneous graphs. Thus they claim that it is very unlikely that the heavy-tailed
degree distribution observed in the AS-graph is just an artifact of the mapping
strategies.

Achlioptas et al. [1] analyzed the degree distribution discovered by a BFS tree
sampling process over a general graph. Among other results, they gave a general,
but rather unwieldy, expression of the degree distribution of the sampled graph,
depending on the underlying graph degree distribution. This work is the start-
ing point of our analysis: we use the results of [1] to analyze the sampled degree
distribution when the underlying graph has a power-law degree distribution.



BOUNDING THE BIAS 325

A new development in the empirical measurement of the Internet topology was
suggested recently by Shavitt and Shir [27]. In this work they describe an Internet
mapping system called DIMES, a distributed measurement infrastructure for the
Internet based on the deployment of thousands of measurement agents around the
globe. Unlike BGP data, that is sampled in a tree-like fashion, DIMES executes
traceroutes among all pairs of its agents, collects the router-level results, and ag-
gregates the AS-graph from this data. Because of this measurement methodology,
DIMES discovers significantly more links than BGP-based systems. The salient
point for our purposes is that DIMES data too shows a power-law degree distribu-
tion, with an exponent 2 < γ < 3 — and since the DIMES system uses an all-pairs
measurement paradigm, it is difficult to claim that the power-law is an artifact of
a tree-like sampling.

1.2. Contributions. Our main contribution is our analysis of the degree distribu-
tion observed in the BFS tree sample, when the underlying graph has a power-law
distribution with an exponent 2 < γ < 3. Under these conditions, we show that
the bias in the power-law is negligible, i.e., the degree distribution of the high-
degree nodes in the sample also exhibits a power-law, with the same exponent
γ. We support our analysis with simulation results using the DIMES-measured
AS-graph as the underlying graph and simulating traceroute experiments on this
graph. Putting this result in the context of the Internet topology, we recall the
data collected from the DIMES project is not based on BGP-style tree sampling.
Nevertheless, DIMES data indicates that the underlying AS-graph indeed obeys a
power-law degree distribution with an exponent γ > 2. By combining our simulation
of traceroute experiments on DIMES-measured AS-graph as the underlying graph
with our analysis, we conclude that the bias in the degree distribution calculated
from BGP data is negligible.

1.3. Organization: In the next section we give an overview of the results of [1]
we rely on. In Section 3 we show our main result, that the bias in the degree
distribution of a tree-sampled power-law graph is negligible. In Section 4 we sketch
an alternative, more rigorous, analysis of a weaker result, that validates some of the
approximations we used in our main result. Section 5 describes the results of our
simulations. We conclude with Section 6.

2. The results of Achlioptas et al. [1]. The proof of our result is based on the
model, sampling process, and the main results described in [1]. In this section we
give a brief introduction to the main results we need.
Throughout the paper we use G = (V, E) to denote the underlying graph, and
n = |V | to denote the number vertices.

Definition 2.1. We say that {aj} is a degree distribution of G if G contains aj · n
nodes of degree j.

In the model in [1], the graph G is not a given graph but a random graph chosen
out of a family of graphs obeying a given degree distribution {aj}. The basic setting
is the configuration model of [9]: for each vertex of degree k we create k copies, and
then define the edges of the graph according to a uniformly random matching on
these copies.

The model in [1] defines a randomized process, that simultaneously produces a
random graph G obeying the degree distribution {aj}, and a BFS tree T that repre-
sents the sample. Note that for a given graph G, a BFS algorithm is a deterministic



326 REUVEN COHEN, MIRA GONEN AND AVISHAI WOOL

algorithm, but different outcomes are possible, depending on the order in which
outgoing edges are traversed. In [1] model, a random choice determines this order.

The sampling process is thought of taking place in continuous time. However, for
technical reasons the authors define a non-standard notion of time, which we denote
by a capitalized word (Time). In this model, the BFS sample process starts at Time
t = 1 with an empty tree T . As the sampling process evolves, Time decreases to
t = 0, when the sample tree T includes all n nodes (assuming G is connected).

Before the process starts, for each vertex v there are deg(v) copies of v. Each
copy is given a real-valued index chosen uniformly at random from the unit interval
[0, 1]. Namely, vertex v has deg(v) indices, chosen uniformly and independently at
random from the unit interval [0, 1]. At every Time step t two copies are matched:
one copy is a copy of a vertex already discovered, and the other copy is a copy with
index t. Such a matched pair forms an edge of the original graph. According to [1]
at Time t the indices of the unmatched copies are uniformly random in [0, t). Let
the maximum index of a vertex be the maximum of all its copies’ indices. Then
at any Time t, the vertices that have not been discovered yet are precisely those
whose maximum index is less than t. An edge will be visible, namely, included in
the BFS tree, if at the Time its endpoints are matched one of them is a copy of an
undiscovered vertex.

Let vt be the vertex that has a copy with maximum index t. Denote by Pvis(t) the
probability that another edge outgoing from vt appears in the BFS tree. Namely, vt

is the vertex that was discovered at Time t, and we are interested in the probability
that another vertex is discovered through vt.

Using the expectation of Pvis(t) as approximation the following Theorem is ob-
tained [1]: 1

Theorem 2.2. Let G be a connected graph and let {aj} be a degree distribution that

is upper bounded by a power-law with an exponent larger than 2. Let µ =
∑

j jaj

be the mean degree of G. Then it holds that

Pvis(t) ≈
1

∑

j jajtj

∑

k

kaktk

(

∑

j jajt
j

µt2

)k

. (1)

3. The degree distribution of the sampled graph. Our goal in this section is
to show that the bias observed in BFS tree sampling regarding the degree distri-
bution of the sampled graph is not significant, when the underlying graph degree
distribution obeys a power-law with an exponent γ > 2. We show the above by
examining the BFS tree received by the sampling process of [1], described in the
previous section. Finding a BFS tree from a single source is an idealization of the
traceroute data collection process. Thus, if the bias is negligible when using such
BFS process, we argue that it is very likely to be negligible when using the more
general case of BGP.

Recall that we focus on a BFS process on a random graph G. Let T be the BFS
tree received by this process. Let degT (v) denote the degree of node v in the BFS
tree received from the sampled graph. Let degG(v) denote the degree of node v in
the graph. We say that a vertex v has a high-degree if degG(v) ≥ 18.

1In Lemma 3 of [1] there is a requirement that aj = 0 for j < 3. This implies that with high
probability the graph is connected. However, if we assume that the graph is connected, which is
the case we are interested in, this requirement can be relaxed.
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We aim to show that if the underlying graph degree distribution obeys a power-
law with an exponent γ, where 2 < γ < 3, then the degree distribution of the
high-degree vertices of the sampled graph also follows a power-law, with the same
exponent value. We denote by ak = C ·k−γ the degree distribution, where 2 < γ < 3
and C > 0 is the constant normalization factor. Let µ denote the mean graph
degree, i.e., µ = E[degG(v)] =

∑

j jaj. Note that since the degree distribution is a
power-law with an exponent larger than 2, µ is finite.

Our starting point is Theorem 2.2 [1]. Our first step is to approximate the
following sum, which appears in Equation (1), when the degree distribution is a
power-law:

∑

k

kaktk = C
∑

k

kk−γtk = C
∑

k

k1−γtk. (2)

We use the integral approximation,
∑

k k1−γtk ≈
∫∞

1
x1−γtxdx. Let g(t) =

∫∞

1 x1−γtxdx. Then for all i ≥ 1 we have that the ith derivative of g(t) is g(i)(t) =
∫∞

1 x1−γ
∏i−1

j=0 (x − j)tx−idx. We have that g(0) = 0, g′(0) = 0 and g(i)(0) diverges

for all i ≥ 2. We also have g(1) =
∫∞

1
x1−γdx = 1

2−γ x2−γ
∣

∣

∣

∞

1
= 1

γ−2 . Finally, we

have g(i)(1) = ∞ for all i ≥ 2.
We will approximate g(t) by a polynomial f(t) =

∑

ℓ bℓt
ℓ. Obviously, no poly-

nomial has f (i)(1) = ∞ for any i. However, numerical study of the function shows
that a polynomial approximation for the range [0, 1] can be used, with the minimal-
degree non-trivial polynomial we can use is the cubic f(t) = t3/(γ − 2) and

g(t) =

∫ ∞

1

x1−γtxdx ≈
t3

γ − 2
. (3)

Numerical study shows that this is indeed a good approximation in most cases.
Using this approximation, it follows (for γ > 2),

µ(γ − 2) = (γ − 2)
∑

k

kak = (γ − 2)C
∑

k

kk−γ

≈ (γ − 2)C

∫ ∞

1

x1−γdx = (γ − 2)C
1

γ − 2
= C . (4)

We now show that most of the edges are detected early during in the sampling
process, near Time t = 1. Recall that Pvis(t) is the probability that the vertex
discovered at Time t gives rise to another edge in the BFS tree—i.e., not the edge
it was detected with. Using Eqs. (1) and (3) we further approximate Pvis.

Pvis(t) ≈
1

∑

j jajtj

∑

k

kaktk

(

∑

j jajt
j

µt2

)k

≈
γ − 2

Ct3

∑

k

Ck1−γ

tkµk

(

Ct3

γ − 2

)k

=
γ − 2

t3

∑

k

k1−γ

(

Ct2

µ(γ − 2)

)k

and by Eq. (4) we have that

Pvis(t) ≈
γ − 2

t3

∑

k

k1−γt2k. (5)
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Let w = t2. By substituting w in Eq. (5) we get Pvis(t) ≈ γ−2
t3

∑

k k1−γwk, and
using Eq. (3) again we get that

Pvis(t) ≈
γ − 2

t3
w3

γ − 2
=
(w

t

)3

= t3 . (6)

Note that at Time t = 0 Eq. (6) gives Pvis ≈ 0, which is as expected: at the end
of the BFS process no new tree-edges are detected. Furthermore, at Time t = 1 we
get Pvis ≈ 1, again matching our intuition that at the beginning of the BFS process
the edges detected very likely to be tree edges. Moreover, observe that most edges
are detected at the beginning of the BFS process.

Recall that in the BFS sampling process of [1] each copy of a vertex v is assigned
a Time index t ∈ [0, 1] (Section 2). Now let max-index(v) be the maximum index of
a vertex v, where the maximum is taken over all copies of v, and let v be a vertex
with graph degree i and max-index(v) = t. We follow the discussion in [1], and
neglect the possibility of self-loops and parallel edges involving a vertex v and its
siblings, and ignore the fact that we are choosing without replacement (i.e., that
processing each copy slightly changes the number of undetected vertices and the
number of unmatched copies). Under these assumptions, the events that each of
v’s siblings give rise to edges that will be detected in the tree are independent, and
[1] shows that the number of visible edges is approximately binomially distributed
as Bin(i − 1, Pvis(t)). Therefore,

E [degT (v) | degG(v) = i, max-index(v) = t] = (i − 1)Pvis(t). (7)

Thus, using Eq. (5) it holds that

E [degT (v) | degG(v) = i, max-index(v) = t] ≈ (i − 1)t3. (8)

Let v be a vertex with graph degree i. Then, since t = max-index(v) is the
maximum of i independent uniform variables in [0, 1], its probability density is
dti/dt = iti−1. Therefore, using Eq. (8), we get

E [degT (v) | degG(v) = i] =
∑

k

k Pr [degT (v) = k | degG(v) = i]

=
∑

k

k

∫ 1

0

iti−1 Pr [degT (v) = k | degG(v) = i, max-index(v) = t]dt

=

∫ 1

0

iti−1
∑

k

k Pr [degT (v) = k | degG(v) = i, max-index(v) = t]dt

=

∫ 1

0

iti−1E [degT (v) | degG(v) = i, max-index(v) = t]dt

≈

∫ 1

0

iti−1(i − 1)t3dt = i(i − 1)

∫ 1

0

ti−1+3dt =
i(i − 1)

i + 3
. (9)

For high-degree nodes i
i+3 ≥ 6

7 , thus we have that E [degT (v) | degG(v) = i] ≥
6
7 (i − 1). Let m = i(i−1)

2(i+3) . Recall that the events that each of v’s copies give rise to

a visible edge are approximately independent. Therefore we can use the Chernoff
bound (cf. [22]). Let E = E [degT (v) | degG(v) = i]. Then using Eq. (9), we get

Pr [degT (v) < m | degG(v) = i] < Pr [degT (v) < E/2 | degG(v) = i]

< e−E/8 ≈ e−
i(i−1)
8(i+3) . (10)
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As a result of Eq. (10) we get that for high-degree nodes with finite probability

1 + i(i−1)
2(i+3) ≤ degT (v) ≤ i where i = degG(v). Since for high-degree nodes i(i−1)

2(i+3) ≥
6
7 (i− 1), we have that with finite probability 1 + 3

7 (i− 1) ≤ degT (v) ≤ i Therefore,

degT (v) ≈ 1+ c(i−1), where c is a constant s.t 3
7 ≤ c ≤ 1. Thus for a finite fraction

of the high-degree nodes

Pr [degT (v) = k] ≈ Pr

[

degG(v) =
k − 1

c
+ 1

]

=

(

k − 1

c
+ 1

)−γ

∝ k−γ . (11)

4. A more rigorous analysis. Our analysis of the bias, used a somewhat cavalier
polynomial approximation. In this section we give an alternative derivation of
the conservation of the power law tail behavior without relying on the polynomial
approximation of the sum. We use a more rigorous approach, but we show a weaker
result—that validates the approximations up to multiplicative constants for large
k.

Lemma 4.1. If γ > 2 then Ct ≤ C
∑

k k1−γtk ≤ µ, for all 0 ≤ t ≤ 1.

Proof. All summands are positive, so the sum is larger than the first summand.
Also the sum is increasing with t and equals µ for t = 1.

Lemma 4.2. Pvis(t) ≥
C2

µ2 for all 0 ≤ t ≤ 1

Proof. Recall that ak = C · k−γ . Using equation (1) and Lemma 4.1 we further
approximate Pvis as follows.

Pvis(t) ≈
1

∑

j jajtj

∑

k

kaktk

(

∑

j jajt
j

µt2

)k

≥
1

µ

∑

k

C · k1−γtk
(

Ct

µt2

)k

≥
C2

µ2
. (12)

Theorem 4.3. For large enough k there exists c1 > 0 such that

c1k
1−λ ≤ Pr[degT (v) ≥ k] ≤ Ck1−λ

for a random v.

Proof. The upper value follows immediately from the fact that the visible degree
is at most the graph degree. By Lemma 4.2 we have that Pvis(t) ≥ C2/µ2 for all
0 ≤ t ≤ 1. Therefore, for a random v it follows that

E[degT (v)] ≥
C2

µ2
degG(v)

and hence,

E[degG(v) − degT (v)] ≤

(

1 −
C2

µ2

)

degG(v).

By the Markov inequality this means that

Pr[degG(v) − degT (v) > α] <

(

1 − C2

µ2

)

degG(v)

α
.
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Figure 1. CCDF graphs for BFS trees and raw DIMES data

Table 1. Sampled power law exponent γ for each group.

Data Source γ
Group 1 2.101
Group 2 2.079
Group 3 2.072
Raw DIMES Data 2.126

Take α =
(

1 − C2

µ2 + ǫ
)

degG(v) for some constant ǫ. The probability of a node v

to have such a difference between its tree-degree and its graph-degree is at most
some constant less than 1, and therefore, a constant fraction of the nodes have a
degree proportional to the original degree. Therefore, the tail of the distribution
has a power law with exponent at least γ.

Notice that for all γ′ < γ, there exists some large K∗, such that C′Kγ′

∗ > CKγ
∗ .

Therefore, the exponent of the power law can not decrease throughout the entire
degree sequence.

In fact, since the high degree nodes are discovered almost surely at t ≈ 1, we
expect to see Pvis ≈ 1 for these nodes, and therefore, the behavior of the tail is
almost unchanged. Giving an exact bound near t = 1 is deferred to a future work.

5. Simulation results. To further validate our analysis, we conducted a simu-
lation study. We used the data collected by Shavitt and Shir [27] in the DIMES
project as our underlying graph.

To test whether the choice of the BFS tree root has a noticeable effect on the re-
sulting degree distribution, the graph vertices were split into the following 3 groups,
based on their graph degree:

1. Low-degree nodes: 1 ≤ degG(v) < 35,
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2. Medium-degree nodes: 36 ≤ degG(v) < 70,
3. High-degree nodes: degG(v) ≥ 71.

From each group we selected 10 nodes at random and constructed a BFS tree
for each, where the selected node was a tree root. An average CCDF2 of degree
distribution was then calculated for every group. We compared the resulting curves
to the original connectivity data, collected by DIMES.

Figure 1 shows the plotted CCDF curves for the three groups, and the curve for
the raw DIMES data. The figure clearly shows the familiar power-law curves in
all cases, and we can see that the curves are almost parallel graphs, indicating a
similar value of the power-law exponent γ.

Table 1 contains the computed values of γ for each group. We can immediately
see that the values of γ on the sampled trees (2.072–2.101) are very close to the
true power-law exponent (2.126), thus validating our analysis that the bias is minor.
Furthermore, Table 1 shows that the γ values for the three groups are all close to
one another, with a minor decrease in value as the degree of the root grows. Thus,
it seems that the value of the power-law exponent in the sampled tree is largely
invariant to the degree of the tree root.

6. Conclusions and future work. We have shown that if the underlying graph
degree distribution obeys a power-law with an exponent γ > 2 (as is the case in the
AS-graph) then with w.h.p the degree distribution of the high-degree vertices of the
sampled graph also follows a power-law, with the same exponent value. Therefore,
the bias observed in tree-sampling regarding the degree distribution of the sampled
graph is not significant under these conditions. Furthermore, since according the
non-tree-sampled data of [27] the AS-graph degree distribution does obey a power-
law with an exponent γ between 2 and 3, we conclude that the bias observed in the
degree distribution of the BGP data is negligible. Thus, the commonly held view
of the Internet’s topology as having a degree distribution of a power-law form with
an exponent 2 < γ < 3 seems to be correct, and unlikely to be a by-product of the
BGP data collection process.

Acknowledgment. we thank Sagy Bar for producing the CCDF graphs from the
DIMES data.
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