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Abstract. Different types of macroscopic reaction kinetics can be derived
from microscopic molecular interactions, with the law of mass action being
the most widely used one in standard situations. After such a modeling step,
where primarily the types of reactions are identified, it becomes a problem to
analyse qualitative properties of complete regulatory networks. This problem
has to be tackled, because chemical reaction networks play a part in some of
the most fundamental cellular processes such as cell metabolism and regula-
tion of cell signalling processes. This paper discusses how reaction networks
can be described and analysed by graph theoretic means. Graph theory is a
useful analysis tool for complex reaction networks, in situations where there is
parameter uncertainty or modeling information is incomplete. Graphs are very
robust tools, in the sense that whole classes of network topologies will show
similar behaviour, independently of precise information that is available about
the reaction constants. Nevertheless, one still has to take care to incorporate

sufficient dynamical information in the network structure, in order to obtain
meaningful results.

1. Introduction. Chemical reaction networks (CRNs) are among the most widely
used examples of dynamical networks. They are regarded as important represen-
tatives of a whole class of networks where dynamical systems defined on the graph
topology model different kinds of varying dependencies between the system compo-
nents. Different CRNs have been shown to exhibit various dynamic behaviour, from
multiple steady states to stable oscillations [1, 49, 60, 44, 50, 8, 30, 29, 67, 58, 59, 40].
Much of their diverse behaviour arises from the experimental or industrial set-up
which they describe. For example, chemical reactions can take place in open sys-
tems, where at least one substrate can enter and/or leave the tank at a fixed vol-
umetric rate. Open systems where all species have inflow and outflow are called
continuous-flow stirred reaction tanks (CFSRT). In contrast, the other extreme pos-
sibility are closed systems, where none of the species have an inflow or outflow.
There is increasing interest in applying chemical reaction network theory to complex
reaction and regulatory networks in biology. Many efforts can be found in the cur-
rent systems biology literature. For example, Bailey in [6] proposed the application
of methods from chemical reaction theory to the analysis of complex biochemical
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networks. One of the methods, the chemical reaction deficiency theory (c.f. Section
4) was used by Conradi et al. [13] to determine which potential mechanisms un-
derly activation of the MAPK kinase, an important enzyme in the cellular signalling
processes of eukaryotic cells. Reaction networks have also been used as models of
cellular biochemistry [2, 7], genetics [66] and immunology [70]. These applications
provide further motivation for the development of graph theoretic methods. Never-
theless much care has to be taken to validate the mass action hypothesis, on which
we base all our further review in this article. For example, enzyme kinetics are
usually derived by using a time scale analysis which transforms the non-linearities
used to model the reaction velocities. In biological situations one often has to deal
with large macro-molecules not changing in numbers during the time scale of mea-
surement. Such cases cannot be modelled on basis of the mass action hypothesis.
An accompanying paper in [64] gives an outline on recent methods developed for
deriving alternative reaction kinetics based on microscopic stochastic processes can
be found. Development of graphical methods for such approaches has not yet been
undertaken.

Several qualitative studies of chemical reaction networks have been accumulated
since the early work of the ’70s in [10, 11, 12, 25, 26, 42, 43, 46, 47, 79]. The
development of analytic tools for chemical reaction networks is driven by several
experimental issues. Usually the most important one is the lack of information
about the kinetic parameters in the models. In most cases, it is difficult to measure
the reaction constants in chemical systems very precisely. In this situation, most
traditional methods such as numerical bifurcation analysis are difficult to apply.
Another important issue is the size of the network, namely the number of species
involved, and the number of reactions occurring. Most known methods are very
successful when applied to smaller systems with two or more variables, however
they can be difficult and cumbersome to apply to large models. Therefore it is a
natural idea to develop methods which combine both graph and dynamical systems
theory and which can be more easily automated. There is increasing consensus in
the systems biology literature that specific small subnetworks, or so-called mod-
ules, might be linked to specific biological functions and might drive the dynamics
of the system [48, 54]. However, when they are embedded in large networks, as is
the case with genetic and biochemical networks, they might be difficult to identify.
Again, the application of chemical reaction graph theory is likely to provide a good
approach. It is however a deep mathematical question which graph structures do
represent and/or determine the qualitative behaviour of large dynamical systems,
especially if these graph structures are combined and linked in a modular way.

Another common problem is that reaction mechanisms may not be known, but
there might exist experimental evidence that the system can display a particular dy-
namics such as, for example, multistability. For such cases it is necessary to develop
methods that will identify an appropriate mechanism that is able to reproduce the
behaviour observed in experiments. Graph theoretic methods are able to exclude
certain models and are therefore useful in the early stages of the model development
where choices between proposed mechanisms need to be made.
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For the aforementioned reasons, graph theory seems to be a natural choice as a
method for fundamental analysis of CRNs. Here arises a problem, as chemical reac-
tion networks can be interpreted by various different graphs. We will review some
of the most prominent and recently discussed graphs, displaying different kinds of
dynamical information. We will start the paper with some general definitions in
Section 2. In Section 3 we will describe the interaction graph and developments
by Thomas, Soulé, Kaufman, and others [74, 39, 69, 71, 75, 76, 77, 78] starting with
some important conjectures on the interaction graph topology made by Thomas in
the early ’80s [74]. The interaction graph is the most intuitive graph, commonly
applied to areas of biology, such as gene networks where formation rates other than
polynomial ones are frequently chosen. The interaction graph can be easily associ-
ated with any non-linear dynamical system, and has been used in other fields, such
as mathematical ecology, see [52]. Next we will cover the deficiency theory devel-
oped in the ’70s by Craciun, Horn and Jackson [25, 43, 42]. This analysis relies
on a graph called the reaction diagram, also referred to as the species digraph
in [32]. Some of their results were verified by Gatermann and Huber via algebraic
geometry methods and the aid of another graph, the undirected bipartite graph
[32]. In the early ’90s, the SCL graph, reviewed in Section 5, unified some ideas
stemming from the interaction graphs (namely the dependence on the structure of
the Jacobian matrix), and also deficiency theory. The SCL graph was developed
by Feinberg and Rumschitzky [63], and by Feinberg and Schlosser [65] , to anal-
yse particular types of systems, called open systems, which could not satisfy the
conditions of deficiency theorems. Aside from the interaction graph and deficiency
theory, the SCL graph is related to the knot graph. Knot graphs are another
important class of graphs which have similarities to deficiency theory and also ap-
peared in the ’70s. We will only review them briefly in Section 6 , because they
can only be applied to chemical reaction networks where all reactions are reversible.

The SCL graphs derived from nonstandard reaction diagrams are predecessors of
the SR graph, described in Section 7. The SR graph was introduced by Craciun
and Feinberg in a series of papers [15, 16, 17], as a graphical representation of
injective networks. This is a class of networks described by Craciun and Feinberg
in [14]. Injective networks cannot admit multiple positive steady states. In Section
7.2 we review a directed bipartite graph as described by Ivanova [46], which share a
lot of their structure with the SR graph. Each graph has a section dedicated to it.
We will review these graphs and throughout the paper make comparisons between
them, whenever possible. It will be necessary to understand different connections
between the graphs that have been defined in order to identify their information
content. This will help with the further development of graph theoretic methods
for more general reaction networks.

2. Background. A chemical reaction system with m reactions and n reacting
species is represented by a time-continuous dynamical system that is derived from
reaction schemes. A general reaction scheme can be written as

n
∑

i=1

αjiAi →

n
∑

i=1

βjiAi, j = 1, ...,m, (1)



298 MIRELA DOMIJAN AND MARKUS KIRKILIONIS

where Ai, 1 ≤ i ≤ n, are the reacting species participating in the j-th reaction
Rj . The coefficients αji and βji represent the number of Ai molecules participating
in the j-th reaction at reactant and product stages, respectively. A complex is the
object at the head or tail of the arrow in the reaction scheme, such as the one
shown in (1). A reaction complex is the set of species at the tail of the arrow,
labeled yi =

∑n

i=1 αjiAi. The product complex is the set of species at the head of
the arrow, labeled y′i =

∑n

i=1 βjiAi. Sometimes, we also write y → y′ to denote
a reaction whose reaction and product complexes are y and y′, respectively. We
label the set of all such reactions by R. If we regard each species as an element
of a basis of a formal vector field, then we can naturally associate each complex
with a vector form, for example, yj = (αj1, . . . , αjn)T . We do not distinguish the
label for the complex and its vector form, but from the context it will be clear to
which of the two we are referring. There are two special types of reactions that we
mention. A reaction is called an inflow reaction if the reaction complex vector is a
zero vector, namely 0 → y′. It is called an outflow reaction if the product complex
vector is a zero vector, y → 0. A system is called open, if at least one of the
species has an inflow or an outflow reaction. Feinberg and Craicun [17] call them
entrapped species models, because some species can enter and leave the system,
while others are “trapped”. On the other hand, the system is closed if none of
the species have inflow nor outflow reactions, namely all species are trapped. In
the following we take a deterministic approach to modeling CRNs, but in reality,
molecules are in discrete units and some cells might have a small number of species.
In these cases, stochastic modeling is much more appropriate, see [64]. However, we
will take the standard assumption that all species come in large numbers and hence
their concentrations are continuous. CRNs of particular interest are the ones with
mass-action kinetics, i.e. where the reaction scheme is interpreted to follow the law
of mass action. They are associated with polynomial ODEs. Each reaction has
only one kinetic coefficient associated with the reaction. For the reaction y → y′,
we denote this rate constant by ky→y′ . If we take the concentration of each species
Ai to be xi, then the rate at which the j-th reaction takes place is modeled by

vj(x) = kyj→y′

j
xyj ,

where the notation xyj :=
∏n

i=1 x
αji

i has been used. The species-formation rate
function takes the vector form,

f(x, k) = Nv(x, k), (2)

where N = [y′1 − y1, · · · , y
′
m − ym] is an R

n × R
m matrix, called stoichiometric

matrix, with the k-th column of N composed as the vector difference of complexes
y′k−yk. Moreover v is the vector of all corresponding reaction rates. The associated
deterministic ODEs describing the dynamics of the reaction networks in general can
be written simply as

ẋ = f(x, k).

The local existence and uniqueness of the initial value problem (with the require-
ment that x(0) ≥ 0 ) are guaranteed [81] and solutions will always stay positive,
namely x(t) ≥ 0 (x(t) > 0) if x(0) ≥ 0 (x(0) > 0), see [80]. From now on, we will
only be concerned with strictly positive solutions. We are often interested in the
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behaviour of the steady states, therefore the linearized equations play a crucial role
in the analysis. Such a vector field is given by the Jacobian J of the rate function
f(x, k) whose entries come in the form

Jik =

m
∑

j=1

(βji − αji)αjk

vj

xk

, (3)

for 1 ≤ i, k ≤ n. Note that each Jacobian entry quantifies the influence species
Ak has on Ai. This can be decomposed into the influence each species has on
the other via each j-th reaction. Stability of the positive steady state depends
on the eigenvalues of the Jacobian matrix that are the roots of the characteristic
polynomial,

det(λI − J) = λn + a1λ
n−1 + . . .+ an. (4)

Each coefficient ak for k = 1, . . . , n is the sum of all principal minors denoted by
M(−J)(i1, . . . , ik) of order k, where 1 ≤ i1 < . . . < ik ≤ n. If rank(N) = r < n,
then the last (n − r) coefficients, an−r = . . . = an = 0. Much important dynamic
behaviour is also linked to the eigenvalues of the Jacobian matrix. A necessary
condition for the system to have a saddle node bifurcation (associated with the
bifurcation picture of multistationarity) is that the Jacobian matrix has a zero ei-
genvalue. A necessary condition for oscillations is that the Jacobian matrix has a
pair of purely imaginary eigenvalues.

The Jacobian matrix and its properties can also be used to deduce sufficient con-
ditions for systems that will not to have multiple steady states. An important class
of CRNs are injective networks. A network is injective if its species-rate function
f are injective, namely if f(a) 6= f(b) whenever a 6= b. This injectivity property is
sufficient for a CRN not to have multiple steady states. By imposing some condi-
tions on the rate function f and the Jacobian, the global injectivity of a network
can be guaranteed. On the other hand the nonsingularity of the Jacobian alone
is not sufficient to guarantee that the rate function is injective [61]. Several other
conditions are needed [41, 28, 73]. In [31], Gale and Nikaidô proved that injectivity
can be guaranteed if the Jacobian has some additional properties. Any matrix A
is a P -matrix if all of its principal minors are strictly positive and A is a weakly
P -matrix if the determinant of A is positive and all other principal minors are non-
negative. In [31] Gale and Nikaidô showed that if D is a rectangular open domain
of R

n, the function f : D → R
n is a differentiable function and the Jacobian J(x) of

f is a weak P -matrix for all x ∈ D, then f is injective. For mass-action CRNs’ rate
function f is polynomial, and therefore, we would expect even stronger injectivity
conditions to hold. The same should be true if other properties of f are specified.
In fact, for open systems CRNs with all species having inflow and outflow reactions,
the global injectivity follows if the Jacobian is nonsingular, see [14].

Any matrix property, such as being a P -matrix, are determined by the matrix
structure. In fact, several of the graphs we present (interaction graph, SR graph,
knot graph, directed bipartite graph) encode information entirely based on the
Jacobian matrix. Their topologies are related to particular decompositions of the
Jacobian matrix. First, we will review the interaction graph for which there is in
fact no underlying decomposition of the Jacobian. Note that each entry of the
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Jacobian Jik denotes the influence species Ak exerts on Ai. From the form of the
Jacobian entry in Equation 3, each j-th entry in the sum represents this influence
via the j-th reaction. On the other hand, the directed bipartite graph and the
SR graph are derived using a decomposition for the Jacobian entries. But the
SR graph topology (cycles) relies also on additional information. Recall that the
Jacobian matrix evaluated at any positive steady state x can be written in vector
form as

J(x) = Ndiag(v(x, k))κT diag(1/x),

where diag denotes a diagonal matrix, diag(1/x) = diag(1/x1, . . . , 1/xn), and κ is
the kinetic matrix κ = [y1, . . . , ym]. The SR graph topology relates to the square
submatrices of the stoichiometic matrix N and the kinetic matrix κ, as derived from
Lemma 5.1 and 5.2 in [15]. Following from the same decomposition of the Jacobian
entries, the Jacobian can also be written as a sum of m elementary matrices, where
the j-th matrix contains only the entries of the Jacobian that correspond to reaction
j. For example,

J(x) =

m
∑

j=1

Aj ,

where Aj is an elementary matrix containing only entries of the Jacobian related
to the j-th reaction. Any knot graph results rely exactly on such matrix decompo-
sitions.

2.1. Example model. In the next few sections we will describe how graph the-
oretic approaches encode the information from the reaction network and hence
provide easy but also diverse ways for studying dynamical CRNs. The example we
consider throughout this paper is a well-known bistable model describing activity of
the mitogen-activated protein kinase (MAPK) [53, 13]. MAPKs play an important
part in the signalling processes of eukaryotic cells by intervening with a multitude
of proteins and phosphorylating them. They themselves undergo phosphorylation
by a MAPK/ERK kinase (MEK) and dephosphorylation by a phosphatase. The
system has been modelled by a succession of several Michaelis-Menten type reac-
tions. In this model we denote the MAPK kinase by S0, and the molecules with
single and double phosphorylation S1 and S2, respectively. The symbols E and F
represent MEK and the phosphatase. The reaction scheme for the model is:

E + S0 ⇌ ES0 → E + S1 ⇌ ES1 → E + S2

F + S2 ⇌ FS2 → F + S1 ⇌ FS1 → F + S0.

Let us label the concentrations of species E,F , S0, S1, S2, ES0, ES1, FS1 and
FS2, from x1 up to x9, respectively. Let C1 to C10 denote the complexes E + S0,
ES0, E + S1, ES1, E + S2, F + S2, FS2, F + S1, FS1 and F + S0. With these
definitions we can now associate the reaction system with the following set of ODEs:
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ẋ1 = −kC1→C2
x1x3 + (kC2→C1

+ kC2→C3
)x6 − kC3→C4

x1x4

+(kC4→C3
+ kC4→C5

)x7

ẋ2 = −kC6→C7
x2x4 + (kC7→C6

+ kC7→C8
)x9 − kC8→C9

x2x5

+(kC9→C8
+ kC9→C10

)x8

ẋ3 = −kC1→C2
u1x3 + kC2→C1

x6 + kC9→C10
x9

ẋ4 = kC2→C3
x6 − kC3→C2

x1x4 + kC4→C3
x7 + kC7→C8

x8

−kC8→C9
x2x5 + kC9→C8

x9

ẋ5 = kC4→C5
x7 − kC6→C7

x2x4 + kC7→C6
x8

ẋ6 = kC1→C2
x1x3 − (kC2→C1

+ kC2→C3
)x6

ẋ7 = kC3→C4
x1x4 − (kC4→C3

+ kC4→C5
)x7

ẋ8 = kC8→C9
x2x5 − (kC9→C8

+ kC9→C10
)x8

ẋ9 = kC6→C7
x2x4 − (kC7→C6

+ kC7→C8
)x9.

In the next few sections we will use the different graph theoretic approaches to
analyse the MAPK model.

3. The interaction graph. The interaction graph (often written IG, but here
we use the notation Gint) conveys the information about any influence one species
exerts on another. An advantage of the interaction graph is that it can be con-
structed for all classes of ODEs and hence its application is also widespread in all
of biology including ecology, where models are often not of polynomial structure.
This versatility is also useful in chemical models. Since the choice of mass-action
kinetics is a modeling assumption, chemical reaction networks with other kinetics
(such as Michaelis-Menten) can also be analysed via the interaction graph.

Definition 3.1. The interaction graph Gint(x) = (V,E) of a chemical reaction
network is an orientated graph with vertex set given by the species Ai. A directed
edge (arrow) from Ai to Ak is present if and only if fk(x) depends on xi. Each edge
is endowed with a sign, which is the sign of the associated element of the Jacobian,
Jki.

The interaction graph of the MAPK cascade is presented in Figure 1. Of course,
the structure of the interaction graph depends on species concentrations, since edges
can change sign for different species concentrations x, or can also vanish completely
when there is no interaction, namely if Jki = 0.

There are important classes of systems for which the sign pattern of the Jacobian
matrix doesn’t change over time. Most well known examples are quasi-monotone
systems and types of monotone systems, called cooperative and competitive sys-
tems. For cooperative (competitive) systems all edges corresponding to off-diagonal
entries of the Jacobian have only positive (negative) sign. Quasi-monotone systems
have more general edge types. For them the signs of edges are fixed, but can be
either positive or negative. Our MAPK system in Figure 1 is an example of a
quasimonotone system.

A cycle in the graph Gint(x) is a sequence of distinct vertices Ai1 , . . . , Aik
such

that there is an edge connecting Ai1 to Ai2 , Ai2 to Ai3 and so on, finishing with an
edge between Aik

and Ai1 . The length of the cycle is the number of vertices that
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it contains. The special case of a cycle containing only one vertex is called a loop.
A loop has obviously length one and is associated with the main diagonal entries
of the Jacobian matrix. Each cycle is endowed with a sign, which is the product of
the signs of its edges. In Figure 1, S1, FS1 and F form a negative (sign) cycle in
the interaction graph of the MAPK cascade.

E

F

ES0
ES1

FS1
FS2

S2

S1

S0

�
+

�
�

��
�

���

++++ ++
+ + +++

+

++ ++++
+

�
�

�

Figure 1. Interaction graph of the MAPK network.

Up to now we only mentioned the more intuitive cases of cooperative and com-
petitive monotone systems, but there are some types of monotone systems can be
identified via cycle signs.

A chemical reaction network is called monotone with respect to a partial order ≤,
if the order of initial conditions x0 ≤ y0 is preserved by the flow, namely x(t) ≤ y(t)
for all time t > 0 where x(t) and y(t) are two solutions of the system with respective
initial conditions. Partial order is generated by an orthant O of the real space R

n if
x ≤ y ⇔ y − x ∈ O. Systems that are monotone with respect to an orthant partial
ordering can be identified by their interaction graph topology. In fact, a system
is monotone with respect to an orthant ordering if, and only if, all cycles of its
associated interaction graph are positive [72]. As stated above, the interaction graph
of MAPK cascade contains at least one negative cycle and hence MAPK cascade
is not a monotone system with respect to any orthant order. We are interested
in monotone dynamical systems, because they represent a class of systems that
display restricted behaviour. They have convergent solutions and cannot admit
stable periodic behaviour. A lot of theory exists for these systems, see [3, 4, 5, 72].

Two cycles are called disjoint, if they don’t share any common vertices. A union
of disjoint cycles containing amongst themselves all vertices of Gint(x) is called a
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nucleus. In some literature it is referred to as a Hamiltonian hooping, see [71]. The
nucleus is also endowed with a sign (−1)p+1, where p is the number of positive
cycles of the nucleus. A nucleus (or a cycle) is referred to as variable if at least one
of its edges is sign changeable. A nucleus (or cycle) is called ambiguous when its
sign varies with species concentration x.

3.1. Theorems related to the interaction graph. The determinant and minors
of the Jacobian matrix can be calculated via the Leibnitz formula using permuta-
tions of rows and columns of the Jacobian (or its square submatrix, in the case of
minors). Since edges of the interaction graph are in one-to-one correspondence with
the nonzero entries of the Jacobian matrix, a set of entries of the Jacobian whose
rows and columns are in cyclic premutation are also in one-to one correspondence
with the cycles of the interaction graph: an important observation. Hence, it is clear
that cycles of the interaction graph are strongly linked to the system dynamics. In
the early ’80s René Thomas [74] conjectured that any dynamical system with multi-
ple steady states must have a positive cycle, while a system with stable oscillations
must contain at least one negative cycle (of length at least two). These conjec-
tures are very intuitive, as we will now demonstrate on the interaction graph of the
MAPK cascade. Consider the negative cycle of species S1, F and FS1. Increasing
the concentration of S1 will increase the concentration of FS1 which in turn, as it
unbinds, will increase the concentration of F . But with more F , the concentration
of S1 will decrease. So an initial increase in concentration of F along the negative
cycle leads to a decrease in its concentration, and hence we see how negative cycles
could possibly promote oscillatory behaviour, just as it has been shown for steam
engines where this behaviour was first observed and analysed. Next, we consider
the positive cycle between species ES1, S2, S2 and S1. An increase in S1 leads to
a further increase in its concentration when going around the cycle. Perturbation
of S1 pushes the system to a new basin of attraction and possibly to a new equilib-
rium. Thomas’s first conjecture was proven by Soulé in [71], and here we restate it
in reverse form:

Theorem 3.2 (Thomas-Soulé). If a system has no positive cycles in Gint(x) for
any x, then it cannot exhibit multi-stationarity.

Aside from the relationship between cycles and Jacobian entries, which lead to
conditions about positivity of the determinant of −J and its minors, Soulé made use
of Gale-Nikaidô theory [31] to show that the reaction system is injective and hence
cannot exhibit multistationarity. Thomas’ second conjecture has been shown to be
correct for quasimonotone systems, see Snoussi [69] and Gouzé [39]. Our MAPK
cascade has at least one positive cycle , Figure 1, hence it may have multiple steady
states. Aside from the Thomas’ conjecture, the negative cycle is linked to various
dynamics. For a steady state x, a negative cycle in the graph Gint(x) is necessary
in order for a steady state to be stable, see [76, 62]. Moreover, a negative cycle
of length one is necessary for the presence of a general attractor [76], a compact
subset of the phase space which is invariant under the flow and which attracts a
(fundamental) family of open neighbourhoods. Interestingly both of these types of
cycles are present in the interaction graph for the MAPK cascade. To fully under-
stand dynamics of the system we must understand how a particular cycle fits into
the full network landscape. Let us return to the positive cycle of species ES1, S2,
FS2 and S1. We concluded before that when this cycle is isolated, an increase in
S1 will lead to a further increase of S1, if we only consider interactions along the
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positive cycle. However, when we look at a full network, the influence of species
outside the cycle might give a different result. Let us link it to the negative cycle
S1, FS1, F which we reviewed before. Clearly an increasing concentration of S1

will decrease its concentration if we follow a negative cycle. This might offset the
increase from the positive cycle. We could end up with a smaller concentration of
S1 than the one we started with.

Conjectures about the dynamics and their relation to the full network structure
have also been explored. René Thomas [75] conjectured that the appearance of both
negative and positive cycles is necessary for chaotic dynamics. This conjecture was
discussed in detail by Toni in [78]. On the full scale of the system Kaufmann and
Thomas [77] conjectured that the presence of a variable nucleus or any presence of
two nuclei of opposite sign are necessary for a system to display multistationarity.
Recently, together with Soulé [76], they proved their conjecture for a class of sys-
tems which encompass mass action chemical reaction systems.

In the MAPK case in Figure 1 we can identify at least two nuclei with opposite
sign. The first nucleus is composed of a union of cycles {E,ES0, S0}, {F, FS1} and
{S1, ES1, S2, FS2}. The second has cycles {FS1, S1, F}, {S2, FS2}, {ES1, E} and
{S0, ES0}. Next, we review the chemical reaction deficiency theory, which appeared
in the late ’70s. It appeared in the chemical engineering literature and developed
in a different direction from the interaction graph theory.

4. Reaction diagrams and deficiency theory. Deficiency theory was pioneered
by Horn, Jackson and Feinberg [43, 42, 25] and centers around a nonnegative index,
called deficiency, by which one can identify classes of networks that can or cannot
have multiple positive equilibria. It was extensively developed in following decades,
see [26].

C1 C2 C3 C4 C5

C6 C7 C8 C9 C10

Figure 2. Reaction diagram of the MAPK network.

Definition 4.1. A reaction diagram of a CRN is a digraph GD = (V,E), where
the vertex set V is composed of the network complexes (Ci), and a directed edge
exists from Ci and Cj if there is a reaction with Ci as a reaction complex, and Cj

as the product complex.

The reaction diagram of the MAPK network is shown in Figure 2. Namely E+S0

is the complex C1 etc. It is very similar to the reaction scheme presented in Section
2.1. Often the reaction diagram is called a directed graph [32]. It can be supple-
mented with a bipartite graph displaying the information which species are present
in which complex, see Definition 4.4 and Figure 3. As will be shown the advantage
is that the polynomial differential equations can be fully formulated in terms of ad-
jancency and incidence matrices belonging to these graphs. A nonstandard version
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of the reaction diagram , which we describe in Section 5, is useful in the analysis
of the SCL graph [65]. We say that complexes y and y′ belong to the same linkage
class if there exists an undirected path in the reaction diagram connecting the two
complexes. For the MAPK network given in Figure 2 it holds that the complexes
C1 to C5 belong to the same complex linkage class. In total the MAPK network
has two linkage classes. A reaction network is called weakly reversible if, whenever
there exists a directed path from y to y′ in the reaction diagram, there must also
exist a directed path from y′ to y. From Figure 2 it can be seen that the MAPK
network is weakly reversible, since there exist a direct path from C1 to C3, but not
vice versa.

4.1. Theorems related to the deficiency index. The deficiency of a reaction
network (denoted by the symbol δ) is defined by the following formula,

δ = c− l− r,

where c is the number of complexes, l is the number of linkage classes and r is the
rank of the stoichiometric matrix N . It holds that the deficiency index is always
nonnegative, see [25]. The stochiometric subspace for a reaction network is the span
of the reaction vectors, namely Im(N). Two vectors y and y′ are stoichiometrically
compatible if y′−y ∈ Im(N). Stoichiometric compatibility is an equivalence relation
that induces a partition of the space R

n
+ into equivalence classes. Each positive

stoichiometric compatibility class is a space of the form {x0 + Im(N)}∩R
N
+ , where

x0 is some positive initial concentration. We state the following version of the
deficiency theorems, as given in [26]:

Theorem 4.2 (Deficiency-Zero Theorem). Consider a mass-action reaction net-
work of deficiency zero. Then the following holds for any arbitrary parameter set:

1. If the network is not weakly reversible, then system admits neither a positive
equilibrium, nor a positive periodic orbit.

2. If the network is weakly reversible, then system has the following properties:
each positive stoichiometric compatibility class contains precisely one equilib-
rium, this equilibrium is asyptotically stable, and there is no nontrivial periodic
orbit.

The power of the deficiency-zero theorem is that by definition of the deficiency
index we can identify a class of networks which cannot have multiple positive steady
states. These networks can be very complicated and contain hundreds of species.
Regardless of the kinetic parameter values, the deficiency zero theorem can give
information about the positive steady states. However, the theory is also limited.
Many open systems tend to have non-zero deficiency index [51]. The Deficiency-
One Theorem relaxes the deficiency index condition, keeping the assumption that
the network must be weakly reversible. The theorem now relies on the notion of
the deficiency restricted to a linkage class. The deficiency of θ-th linkage class L
(denoted δθ) is defined by the formula

δθ := cθ − 1 − rθ,

where cθ is the number of complexes in linkage class L, and rθ is the rank of the
linkage class, namely the rank of a submatrix NT that is restricted only to columns
for which y, y′ ∈ L. We are now able to state the theorem:
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Theorem 4.3 (Deficiency-One Theorem). Assume a mass-action reaction network
with l linkage classes. Let δ denote the deficiency of the network, and let δθ denote
the deficiency of the θ-th linkage class, θ = 1, 2, . . . , l. Furthermore suppose that
both of the following conditions are satisfied:

1. δθ ≤ 1, θ = 1, 2, . . . , l and,

2. δ =
∑l

θ=1 δθ.

If the network is weakly reversible (in particular if the network is reversible), then
the system admits precisely one equilibrium in each positive stoichiometry compati-
bility class.

Several versions of the deficiency theorems are given by Feinberg et al. in [25, 26].
The proofs of deficiency theorems are related directly to the structure of the species-
formation rate and its stoichiometric matrix. In fact, the stoichiometric matrix is
a product of two matrices, N = Y Iα. Here the incidence matrix Iα is an c × m
matrix and relies on information of the directed graph. Its entry iαjk is −1 if the
complex j is at the tail of a directed edge representing the k-th reaction, and is 1 if
j-th complex is at the head of the edge. Otherwise it is 0, i.e. if the complex does
not participate in the j-th reaction. The directed graph has also another incidence
matrix, Ik, which is an m× c matrix with the ikjkth entry equal to kk if, and only if,
the complex Cj is at the tail of the directed edge responding to the k-th reaction.
Otherwise, the entry is zero. The matrix Y is related to the undirected bipartite
graph, a relationship first described in [32].

C1

C2

C3

C4

C5

C6

C7

C8

C9

C10

E

ES0

ES1

FS1

FS2

F

S0

S1

S2

Figure 3. Undirected bipartite graph of the MAPK network.

Definition 4.4. The undirected bipartite graph GB = (V,E) is a graph with two
sets of vertices: one for the species (V1) and the other for the complexes (V2).
An edge exists between the vertices of two sets, say Sj and Ci, if complex Ci

contains species Sj . Each edge has a weight which is the stoichiometry of the
species occurring in the complex.

Weights of the edges are arranged into the adjacency matrix Y , where each entry
yij is the weight of an edge between i-th complex (vertex in V2) and j-th species
(with corresponding vertex in V1). In Figure 3, the undirected bipartite graph of
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the MAPK network is shown. Now the associated ODE can be written completely
in terms of an adjacency and an incidence matrix:

ẋ = Y IαIkψ(x),

where ψ(u) is a vector of the reaction rate monomials (without the kinetic constant).
That is one of the rare cases where a whole dynamical system can be completely
defined in terms of graph theoretic concepts. Gatermann [32] showed that the
deficiency index is the rank defect between Iα and N ,

δ = dim(Iα) − dim(N). (5)

Conditions of weak reversibility are linked to the structure of the product of ma-
trices Iα and Ik. Gatermann [32] used algebraic geometry to prove some versions
of the deficiency theorems. These algebraic geometry methods simplify the compu-
tations, however they apply only to polynomial vector fields. In fact, the deficiency
theory can also be applied to non-mass action kinetic systems, namely to systems
with more general vector fields [26] . In our example, the MAPK network has defi-
ciency δ = 2 and therefore deficiency theory predicts that the MAPK system could
potentially have multiple steady states.

As above theorems show the deficiency theory can be applied to a wide range
of biological systems to check whether the mechanisms in question could poten-
tially exhibit multistationarity [13, 21]. Analysis tools based on deficiency theory
have been implemented into a software tool called the ’Chemical Reaction Network
Toolbox’, see [27]. But as has been mentioned, deficiency theory has its limitations.
Its theorems cannot be applied to many classes of systems such as the isothermal
homogeneous CFSTRs, [51]. In the next section we will review theory that has been
developed alongside deficiency theory and can deal with networks where deficiency
theory is not applicable.

5. The SCL graph. Network deficiency theory provided a way of identifying a
large class of networks for which some dynamical behaviour can be described with-
out knowledge of the parameters, and without restrictions on the size of these
networks. There is a class of open systems to which deficiency theory cannot be
applied. These systems are of special interest from a qualitative point of view.
There are reports that such networks can exhibit multistationarity [59, 58], though
this behaviour is considered to be experimetally very rare [14]. CFSRTs are vessels
where chemical reactions take place with the property that all species have a con-
stant inflow and outflow. The authors in [51] argued that by including the inflow
and outflow of every species, the augmented reaction network would not have defi-
ciency index of zero nor one, and hence deficiency theory would not be applicable.
The need for graphical methods that could apply to such systems lead to the devel-
opment of work complementary to deficiency theory. The theory was constructed
for the isothermal homogeneous CFSTRs and it was introduced in the mid ’80s by
Rumshitzky and Feinberg in [63]. Considerable extensions to the theory was done
later by Schlosser and Feinberg in [65]. We base this review on their developments.

Schlosser and Feinberg associated a Species-Complex-Linkage (SCL) graph with
each CFSTR reaction network. In terms of graph theoretic considerations, this work
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was a considerable step away from deficiency theorems. The criteria for enabling
or restricting specific dynamics in SCL graphs rely on the existence of cycles in the
graph, hence SCL graph has many similarities to the interaction graph. Moreover,
the linkage classes are also described by a subset of the graph vertices, so cycles in
the SCL graph also depend on information about the linkage classes. In this way
the SCl graph theory unifies deficiency theory with the interaction graph theory.
The SCL theory was derived to deal with models from homogeneous isothermal
CFSTRs, but its results depend only on the network of true chemical reactions.
Hence it is applicable to a wider spectrum of systems. Keeping the terminology
from the previous section, we can define an SCL graph as follows:

Definition 5.1. The species-complex-linkage graphGSCL = (V,G) is an undirected
bipartite graph which has two types of vertices: The species (represented by V1) and
the complex linkage classes (represented by V2). We draw an edge from a species
vertex to a linkage vertex if the linkage class has a complex which contains this
particular species.

The SCL graph of the MAPK system is shown in Figure 4. As can be seen from
Figure 2, the MAPK has two linkage classes: L1 = {E+S0, ES0, E+S1, ES1, E+S2}
and L2 = {F + S2, FS2, F + S1, FS1, F + S0}. Each edge of the SCL graph has
two labels associated with it: a complex label and a stoichiometric label. The
first label is the complex to which the species adjacent to the edge belongs. For
example, E and L1 are connected by an edge with complex label E + S0, because
complex E + S0 belongs to linkage class L1, and it contains E. The second label
is the stoichiometric coefficient in the complex label, associated with the species
that is adjacent to the edge. In the SCL graph of the MAPK system none of the
stoichiometric labels are shown, because they are simply all one. Now three types
of cycles can be identified in the SCL graph: o-cycles, c-cyles and s-cycles. They
are all associated to the complex labels on the edges of the cycles. A c-pair in a
SCL graph is a pair of edges that carry the same complex label. In the MAPK
SCL graph, the edges connecting S0 to L1 and L1 to E form a c-pair. If a cycle
contains an odd number of c-pairs, then it is called an o-cycle. If a cycle is made
entirely out of c-pairs, then it is called a c-cycle. We label a cycle as a s-cycle if
we can walk around the cycle (in either direction), alternately multiply and divide
the stoichiometric coefficients of the edges, proceed until we return to the starting
point, and if then the product of this calculation is 1. An alternating-1 cycle is a
cycle in which there are no c-pairs, and in which there is an edge labeled with a
stoichiometric coefficient 1 such that every second edge thereafter it is again labeled
with 1 (while in-between edges can take any values). Such cycle information seems
to be very specific. In the SCL graph description in [65] proofs for the theorems
are actually not given, but a similar cycle terminology is applied to SR graph [15].
There these specific cycles are related to established theorems. The SCL graph of
the MAPK system has two cycles, as seen in Figure 4. They are {S0, L1, S1, L2}
and {S1, L1, S2, L2}. Both cycles are s cycles and alternating 1 cycles.

5.1. Qualitative theory related to the SCL graph. In [65], Schlosser and Fein-
berg gave no mathematical proofs of the following statements from their paper, but
it seems likely that the proofs for the graph we review next, the SR graph (also
introduced by Feinberg , this time in collaboration with Craciun) can be applied.
The theory based on the interaction graph is also useful in this case. In the SCL
graph a lot of information from the interaction graph is simply condensed. An edge
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in the interaction graph signifies that a species reacts with, or produces another
species. In the SCL graph this is represented by two edges connected by the same
linkage vertex. A cycle in an SCL graph will always correspond to at least one cycle
in the interaction graph. For example, look at the loop with connecting E and
L1 through edges with complex labels E + S0 and E + S2. This is represented by
two cycles in interaction graph, first cycle with species E and ES0, and the second
with species E and ES1. An edge in the SCL graph might correspond to a set of
cycles in the interaction graph. For example, look at the SCL graph of the MAPK
and two edges connecting E and L1 and L1 with S1. Though this is not a cycle in
the SCL graph, there exists a positive cycle containing both of these species in the
interaction graph, see Figure 1.

The first theorem, related to the conjectures of Thomas [74], states that a system
without cycles in the SCL graph cannot exhibit interesting dynamics:

Theorem 5.2. Consider a mass-action reaction network describing a CSFRT for
which the SCL graph contains no cycles. Then the system cannot admit multiple
positive steady states for any positive parameter values.

S0 S1

S2

ES1ES0

FS1
FS2

L1

L2

F

E
E + S2

E + S1

E + S0

F + S0

F + S1

F + S2

FS2FS1

ES1ES0

F + S0

F + S1

F + S2

E + S2E + S0

E + S1

Figure 4. The SCL graph of the MAPK network.
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Feinberg and Schlosser also identified how different types of cycles and their
intersections can guarantee that the system does not have multiple positive steady
states:

Theorem 5.3. Consider a mass-action CSFRT reaction network for which the
corresponding SCL graph has all of the following properties:

1. Each cycle is an o-cycle, a c-cycle, or a s-cycle.
2. If both edges of a c-pair are cycle edges, then any cycle containing one of the

edges contains both of them.
3. In an o-cycle that is neither a c-cycle nor a s-cycle, no linkage class symbol

is adjacent to more than three cycle edges.

Then the system cannot admit multiple positive steady states for any positive pa-
rameter values.

Theorems stated above have been extended to non-standard reaction diagrams.
In a non-standard reaction diagram the linkage classes are separated into individual
reactions. This graph will later be referred to as a SR graph. The SR graph
of the MAPK is shown in Figure 6. Each complex linkage becomes separated
into several reaction vertices. Some paths from standard SCl graph become cycles
in the nonstandard version of the graph. For example, the path between E and
S1 in the SCL graph (Figure 4) with two edges labeled E + S1 becomes a cycle
in the nonstandard SCL graph (Figure 6). The SCL graphs from non-standard
reaction diagrams sometimes carry information not contained in the standard SCL
graphs. An example is provided in [65]. All the graph properties will carry over
once the definition of a c-pair is sharpened. In an SCL graph derived from a non-
standard reaction diagram, a c-pair is a pair of edges that carry the same complex
label, but also share a common linkage class symbol as an end point. All the
aforementioned theorems can be applied to SCL graphs taken from the non-standard
reaction diagrams. With the standard reaction diagram in mind, results about the
stability of the reaction network can be deduced. These results are applicable only
to reversible reaction networks, i.e. networks where all reactions must be reversible.
Let c be the number of complexes and l be the number of linkage classes in the
network. A reversible reaction network is forest-like if the number of reactions m,
is m = c− l.

Theorem 5.4. Consider a (forest-like) reversible mass-action reaction network for
which the SCL graph has no cycles. Then the system cannot admit any unstable
positive steady states for any choice of positive parameter values.

This theorem is a consequence of the work of Beretta [9] on knot graphs that
will be described in the next section.

5.2. General comments on the SCL graph. The SCL graph theory has been
useful to describe a large class of networks that do not have the capacity for multiple
positive equilibria. On the other hand, its information is not conclusive for some
reaction networks, as we will show in an example in Section 5. In some ways the SCL
graph is a predecessor of the SR graph, with its results drawing on the existence of
graph cycles. The SCL graph has also drawn criticism from Craciun and Feinberg
(see [14]) for not being a good candidate for automation.

6. The knot graph. Another type of graph related to the complex linkage theory
is the knot graph. It can be more widely applied than the zero-deficiency theorem.
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The knot graph was introduced by Delattre [18] and Hyver [45], but here we review
the latest work of Beretta and co-authors [9] which relates this graph to open
chemical systems. The setting for this graph approach is very specific, since the
chemical reaction network under consideration must be reversible. Due to this
relatively strict condition, we only review briefly this work.

In order to define a knot we need to introduce a specific equivalence relation
between the network species. Let Ai be a species in complex y1 and let Ak be a
complex in species yl. We define an equivalence relation Ai ∼ Ak if, and only if,
there exists a sequence of complexes from y1 to yl (namely y1, y2, y3, . . . , yl) such
that yT

j yj+1 6= 0 for all j = 1, . . . , l − 1. The classes of species defined by this
equivalence relation are called knots.

As the MAPK network is not a reversible network, the knot graph theory cannot
be applied. Hence, we will modify our MAPK network by assuming that all reactions
are reversible. This is a perturbation of the original model, since we can assume
that these added reactions have very small reaction constant. The reaction scheme
for the modified MAPK network is

E + S0 ⇌ ES0 ⇌ E + S1 ⇌ ES1 ⇌ E + S2

F + S2 ⇌ FS2 ⇌ F + S1 ⇌ FS1 ⇌ F + S0.

The modified MAPK network has five knots {E,F, S0, S1, S2}, {ES0}, {ES1},
{FS1} and {FS2}.

Definition 6.1. The knot graph GK = (V,E) of a reversible chemical reaction
network where the vertex set are the knots (equivalence classes on the set of species).
We draw an undirected edge between two knots if there is a reaction for which the
species set of a reactant complex is in one knot, and the species set of the product
complex is in another knot.

Figure 5. The knot graph of the modified MAPK network, with
all reactions made reversible. The knot with four edges contains
the species {E,F, S0, S1, S2}.

The knot-graph theory as given by Beretta et al. [9] is closely tied to the ad-
ditive decomposition of the Jacobian matrix into elementary matrices associated
to reactions occurring inside the system (closed part of the system), and a non-
positive diagonal matrix related to reactions describing the exchange of material
with the environment (open part of the system). Since all reactions are reversible,
the elementary matrices of each forward and backward reaction can be partitioned
into blocks. These block structures identify the edges between knots. Hence certain
patterns in these block matrices can represent specific graph structures. Beretta et
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al. identify two such structures: tree graphs and cycle graphs. Note that the cyclo-
matic number is defined to be the smallest number of edges that have to be removed
such that no cycles remain in the graph. Tree graphs have m knots (vertices) and
m − 1 branches (edges), therefore their cyclomatic number is zero. Cycle graphs
have m knots and m branches, with m ≥ 2. Obviously their cyclomatic number
is one. In particular, block structures can give results about the eigenvalues, i.e.
the spectrum of the Jacobian matrix. Hence graph structures can be related in
this way to the dynamics of the system. For example, Beretta et al.[9] show that
if GK is a tree graph, then the Jacobian matrix of any positive steady state has
only eigenvalues with nonpositive real part. Such a knot graph structure is creating
a stable reaction network according to Beretta’s definition. A knot graph of the
modified MAPK network is shown in Figure 5. It is a tree graph, so any positive
steady states of this system are stable.

It is important to note that the vector field of the modified MAPK network
can be interpreted as a perturbation of the MAPK vector field. In perturbation
theory one tries to identify classes of perturbations of the vector field such that the
perturbed system has the same qualitative properties as the unperturbed system. It
seems that for the ’perturbed’ reversible MAPK system knot graph theory predicts
all positive steady states to be stable, which would not allow multistationarity of
the system where basins of attraction are separated by the unstable manifolds of
some positive equilibria. A theory to test such hypothesis for letting ’reversibility
tend to zero’ is still missing.

7. The SR graph. Craciun and Feinberg identified another class of CFSTR net-
works that are injective [14]. Injective networks cannot admit multiple positive
steady states. Injective networks contain the class of networks identified by con-
ditions defined on the SCL graph [14]. The species-reaction graph (SR graph for
short) was introduced by Craciun and Feinberg in [15] as a graphical representation
of injective networks. The graph is closely related to the previous graphical methods
and it is identical to the SCL graph based on the nonstandard reaction diagram.
Note that the reaction complex vector of an inflow reaction, and the product com-
plex of an outflow reaction are zero vectors, a characterisation that can be used for
their definition.

Definition 7.1. The species-reaction graph GSR = (V,E) is a bipartite graph,
i.e. its vertex set V is partitioned into two classes, with no edges inside one of the
classes. The first class are vertices of species, the second are vertices of internal
reactions, i.e. all inflow and outflow reactions are excluded. If Ai is participating
in the reaction (αji > 0), then there exists an edge between species vertex Ai and
reaction vertex yj → y′j . We label it with the reaction complex yj . An edge exists

between reaction node yj → y′j and species node Ai if βji > 0, meaning that Ai is
produced in this reaction. This edge is labeled with y′j .

Edges that are connected by the same reaction node and have identical complex
label are called a c-pair. Aside from the complex label, each edge in the SR graph
also has an attached stoichiometric coefficient, as in the SCL graph. The rest of
the graph cycle terminology carries over from SCL graphs. Craciun and Feinberg
introduce a concept for sharing a c-pair among cycles [15]. A simple path from a
species vertex to a reaction vertex in GSR is defined as an S-to-R chain. Two cycles
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in GSR are said to have an S-to-R intersection if their common edges belong to a
S-to-R chain or a disjoint union of several chains. This condition implies that two
cycles split a c-pair, namely if each edge of the c-pair appears in at least one of the
two cycles, and if one of the edges is contained in just one of the cycles. The idea
of a split c-pair was already implicitly introduced in Condition 2 of Theorem 5.3.
As an extension, the SR graph has an oriented version, called the OSR graph. All
theorems presented by Craciun and Feinberg are related to the properties of the SR
graph, and only the proofs use the OSR graph. For the sake of brevity, we will not
review their construction. Interested reader should consult [15].
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Figure 6. SR graph of the MAPK network.

In the interaction graph, we mentioned that every cycle presents a set of nonzero
coefficients of the Jacobian whose row and column are in cyclic permutation. The
addition Craciun and Feinberg make via the SR graph is that every entry Jik is now
split into terms related to the contribution each reaction rate generates for the entry
Jik. This split allows for finer results relating the graph topology to the values of
the minors of the Jacobian. In contrast to the interaction graph, each path between
two species vertices encodes information about the reaction that is the link for the
two species. As an example we look at the cycle between species E and S1 in the
interaction graph of the MAPK network in Figure 1. The interaction between these
two species here depends on two reactions.



314 MIRELA DOMIJAN AND MARKUS KIRKILIONIS

However, there are important differences between the interaction and the SR
graph. Cycles in the interaction graph are in direct correspondence with the cycles
in the entries of the Jacobian matrix. Cycles in the SR graph are related to the
cycles in the stoichiometric and the kinetic matrix, as described in Lemma 5.1 and
5.2 in [15]. Cycles in the interaction and the SR graph do not have a one-to-one
correspondence. For example, take any one of the cycles in the interaction graph
of the MAPK network in Figure 1 with species E, ES0 and S0. In the SR graph,
Figure 6, these three species are not in a cycle. In order for a cycle to be present in
the SR graph, there would have to be a third reaction vertex adjacent to the edges
incident to species S0 and ES0.

An advantage of Craciun-Feinberg theory is that it is aimed at mass-action kinetic
systems. Obviously this specific structure can lead to much stronger results, a
remark that is generally true for most part of this paper.

Theorem 7.2. Consider some CFSTR network such that its SR graph GSR con-
tains only cycles that are o-cycles or s-cycles, and such that no two e-cycles have
an S-to-R intersection. Then the reaction network is injective.

The proof presented by Craciun and Feinberg in [15] relies on two parts: that
cycles conditions imply that the Jacobian matrix is nonsingular and then that this
result as well as the polynomial structure of the ODEs (due to mass-action kinetics
and CFSTR environment) imply that the vector field is injective.

A weaker version of the previous theorem involves a definition of a split c-pair.
This version was used by Craciun in [16] to confirm that a bistable mechanism
underlying the operation of the classical anti-cancer target, Dihydrofolate Reductase
(DHFR), does not violate conditions of the theorem.

7.1. Recent extensions. The classical CFSTR models may not be appropriate
inside a wider biological context. If the reaction vessel is interpreted as a cell, all
chemical substrates may not be freely diffusing across the cell membrane. We might
imagine that substrates and products are readily transported, but enzyme-related
molecules with high molecular weight may be entrapped within the cell. Craciun
and Feinberg [17] investigated variants of the CFSTR model where some species
cannot diffuse. They called them the entrapped species models. In [17] it has been
shown that if a CFSTR reaction network cannot have multiple steady states, then
also the entrapped model network cannot create multiple non-degenerate equilibria.
The success of the SR graph is that only properties of the cycles are required
to determine the network dynamics. Another graph, the directed bipartite graph
introduced in the next subsection, will be very similar. In addition it provides more
detailed information on the relation between the coefficients of det(−J) and the
minors related to subgraphs. Whereas this information may not be needed in the
context of searching for Turing unstable systems [20], it is useful for identifying
delay-induced unstable systems [57].

7.2. The directed bipartite graph (DB graph). The directed bipartite graph
(DB graph) was developed by Ivanova [46, 47, 79], and more rigorously analysed
by Mincheva and Roussel in [55, 56]. It has been applied to some real mechanisms
by Ermakov, Goldstein et al. [23, 34, 36, 37], and analysed for small networks with
up to four species [22, 24, 35]. The directed bipartite graph Gbip has the same
vertex and edge set as constructed for the SR graph, except that outflow and inflow
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reactions are included in the reaction vertex set (V2). Moreover, as the name indi-
cates, all edges become directed. An edge is always directed away from a species
vertex if it has a reaction complex label, while it is directed toward a species vertex
if it has a label of a product complex . Some other nomenclature is different. A
c-pair is called a negative path, and cycles are labeled positive or negative, whereas
for the SR graph they were called e-cycles and o-cycles, respectively. The directed
bipartite graph of the MAPK would be identical to the SR graph in Figure 6, ex-
cept the edges would be directed in the way described above. In general, cycles
are defined differently. A path along the directed bipartite graph is a union of
two edges (Ai1 , yi1 → y′i1) and (yi1 → y′i1 , Ai2 ) that share a common reaction ver-
tex. We denote the path from Ai1 to Ai2 by (Ai1 , yi1 → y′i1 , Ai2). A cycle C in
the directed bipartite graph Gbip is a union of distinct paths (Ai1 , yi1 → y′i1 , Ai2),
(Ai2 , yi2 → y′i2 , Ai3 ) etc. until (Aik

, yik
→ y′ik

, Ai1). A c-pair is considered to be a
cycle, because a path from one species vertex A1 to another vertex A2 is considered
to be different from a path from A2 to A1, and the two paths together form a cycle.
For example, in Figure 6, two c-pair edges adjacent to E, S0 and the reaction vertex
E+ES0 ⇌ ES0 would form a cycle. In the SR graph, a cycle has an equal number
of species and reaction vertices, while in the directed bipartite graph a cycle might
have less reaction than species vertices. Every cycle in the interaction graph corre-
sponds to one or more cycles in the directed bipartite graph. This occurs because
each edge in the interaction graph represents an interaction between two species,
say Si and Sj , so namely, Jji 6= 0. This Jacobian entry can be decomposed by the
type of reaction, which implies that this entry is represented by several paths within
the directed bipartite graph, each having a different reaction vertex.

The main advantage of this graphical interpretation is the relation between each
coefficient of the expansion of the determinant of −J (or a minor). Each coefficient
is defined in terms of a particular subgraph of the DB graph. A subgraph g of
Gbip is a union of edges and cycles which are disjoint. The order of a subgraph
is defined to be the number of V1 vertices contained in the subgraph. The set of
all subgraphs g of order k that share the same set of vertices is called a fragment

of order k, and denoted by Sk

(

i1, . . . , ik

j1, . . . , jk

)

, where i1, . . . , ik are the indices of the

species, and j1, . . . , jk are index subset of the reactions in the vertex sets. Note
again that the DB graph Gbip includes information about the inflows and outflows,
and hence possibly contains more information than the SR graph. With these
structures the graph-theoretic formula for the coefficients ak of the characteristic
polynomial (λI − J) and the determinant of −J (which is an) can be derived in
terms of fragments. Using the notation in [55], we let g be a subgraph of Gbip of
order n, and {g} denote the set of all such graphs. Then

det(−J) =
∑

g∈Gbip

Kg

vj1 . . . vjk

xi1 . . . xik

, (6)

where each coefficient Kg is a product of stoichiometric labels over all edges and all
tg cycles C of g:

Kg = (−1)tg

∏

[Ak,Bj ]∈g

α2
jk

∏

C∈g

KC . (7)
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HereKC is a product of all stoichiometric labels over all paths (negative/positive)
of each cycle C ∈ g:

KC =
∏

[Ak,Bj ,Ai]∈C

(−αjkαji)
∏

[Ak,Bj ,Ai]∈C

αjkβji.

For all other coefficients 1 ≤ k < n, we have

ak =
∑

Sk

(

i1, . . . , ik

j1, . . . , jk

)

KSk

vj1 . . . vjk

xi1 . . . xik

, (8)

where the contribution of fragment Sk is

KSk
=

∑

g∈Sk

(

i1, . . . , ik

j1, . . . , jk

)

Kg.

The derivation of both formulas is stated in [55]. A fragment Sk with Ksk
< 0

is called a critical fragment. It contains at least one subgraph with an odd number
of positive cycles, namely Kg < 0. In fact, from above formula, each subgraph with
a disjoint union of cycles and edges must contain the same number of species and
reaction vertices. Hence, the cycles formed with repeating reaction vertices do not
appear in the calculation of the coefficients inside the determinant of the Jacobian
and so not in any of the coefficients occurring in the characteristic polynomial. De-
spite the definition of the cycles, these notions are not used in the work of Mincheva
and Roussel [55], and instead all attention is given to the critical fragments.

The critical fragment is a useful concept for the manipulation of the characteris-
tic polynomial, det(λI − J). Since critical fragments are negative coefficients of the
expansion of the determinant of −J or the minors, the necessary conditions for any
sort of instability reduce to a search for critical fragments [55, 56].

The DB graph has some advantages and disadvantages over the SR graph. Often
the information contained in the DB graph is not needed. If we like to derive
a necessary condition for the existence of a spatial instability (such as a Turing
instability), it is enough to show that there exists a coefficient in the expansion of
the principal minors of J that is negative. So critical fragments are not needed.
This implies that it is computationally easier to use the SR graph, since it doesn’t
identify the coefficients explicitly, but simply gives graphical conditions for when
a coefficient will be negative. Using the SR graph there are also graph-theoretic
conditions allowing to derive necessary conditions for a Turing instability to occur
in non-mass action kinetic systems, see [20]. Moreover, it should be noted that the
search for a critical fragment in the DB graph can lead to large computations. As an
example, let us consider a network with n species and m reactions. Mincheva and
Roussel in [56] state that the existence of a critical fragment of order k ≤ rank(NT )
is a necessary condition for a Turing instability. For this network there can exist
up to n!

(n−k)!k!m
k fragments of order k. To determine whether a fragment is critical,

all corresponding subgraphs have to be identified. The number of such subgraphs
might also be large: there might be up to k! subgraphs just composed only of
edges and no cycles. This search for the critical fragments becomes increasingly
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computationally expensive with the growing size of the network. However, there are
indeed cases where more specific information about the coefficients via the critical
fragments obtained from the DB graph is essential. For example when considering
delay-induced instability, as described in [57].

8. Conclusion. Graph theoretic approaches applied to chemical reaction networks
have attracted considerable attention in the past few decades. Each graph presented
encodes different information about the system, and there is therefore a multitude
of graphs which can be associated to dynamical systems defined on a network struc-
ture. Particular graphs have been developed with specific system properties in mind.
For example the SR graph was developed for dealing with open systems where all
species have inflows and outflows. The interaction graph, the SCL graph, the knot
graph, the SR graph, and the DB graph use information encoded in the Jacobian
matrix, which can then in turn be used to formulate results about the dynamics of
the associated ODEs. But each graph uses very different information from the Ja-
cobian. For example, in interaction graphs, there is no information which reactions
are establishing the relation that one species can influence another. In contrast
such information is available in the SR and the DB graph. The structure of the
Jacobian is also influenced by the choice made in modeling, for example, the type of
reactions allowed (whether the systems are open, closed, or some variant between
these two extremes, whether the system has reversible reactions or not, etc.), and
the kinetics (whether they are of mass-action type or not, of Michaelis-Menten type,
etc.). The more specific information that exists about the network topology and
the type of non-linearities defining the dynamics, the weaker are the conditions that
can be applied to gather the relevant information. All the aformentioned graphs
have been used in somewhat different settings, and hence the results they give are
different too. For example, for reaction networks associated to a general ODE sys-
tem (not necessarily polynomial) to be injective, one of the conditions is that the
Jacobian matrix needs to be a weak P -matrix. For open mass-action CRNs to
check injectivity, the condition is weaker: the Jacobian must have a non-vanishing
determinant. Possible extension of the graphical methods would be useful so that
the results based on different graphs could be better compared. We have attempted
to compare some of the graphs within this paper, namely the SCL graph with the
deficiency theory and the interaction graph, then the DB graph and the SR graph
with the interaction graph. But we have not yet investigated or established math-
ematically rigorous relations between these graphs. Such a theory could help to
unify some of the underlying ideas, making advances in dynamical network theory.

The historical development of the different graphs was also outlined. For the
interaction graph theory, most of Thomas’ conjectures have only been partially
proven and hence they still remain open. The SR graph theory is useful, but it is
applicable to open systems only. However, these systems may not be appropriate
for modelling most biological systems. For example, if the reaction tank is treated
as a cell, and some species inside the cell are enzymes, it is realistic to assume that
because of the shape and sizes of their molecules, not all species can freely diffuse
into and out of the cell. Hence, the cell might be better modeled by an open system
where not all species have inflow and outflow. Craciun and Feinberg in [16] sup-
plied results relating the dynamics of completely open systems with the dynamics
of entrapped-species models (where some species do not have continuous inflow and



318 MIRELA DOMIJAN AND MARKUS KIRKILIONIS

outflow). A graphical interpretation of their conditions would be useful.

A look back at the proofs would also be advantageous in identifying some fur-
ther developments. The usage of contemporary mathematical theory could give
an insight into chemical reaction networks dynamics. For example, Gatermann
and Huber in [32] presented an algebraic geometry based version of the deficiency
theorems from Horn, Feinberg and Jackson [43, 25]. In the paper of Schlosser and
Feinberg [65], no mathematical proofs for the theorems on SCL graphs are supplied.
Reconstructing these proofs and verifying how close they are to the results stem-
ming from the SR graph would also be interesting. Establishing a theory whether
the SR or the nonstandard SCL graph give stronger results for networks with no
multiple positive equilibria is also of interest.

Most of the dynamics considered by graph theoretic approaches are related to
multiple steady states. However, they do not lead to many results about other
types of dynamics. Chemical reaction networks are well known to exhibit all kinds
of qualitative behaviour, such as stable oscillations [67, 29, 30, 1]. Such properties
are linked to numerous functions in biochemical systems [33] and hence the inves-
tigation of such phenomena is also important. For some of the graphs mentioned,
there are conditions for oscillations, but such results are fewer and usually weaker.
Part of the problem is that even necessary conditions for a Hopf bifurcation (a
bifurcation where by a change of parameters periodic solutions are created from
the change in dynamics around a steady state) can be difficult to verify. One of
the necessary conditions for a Hopf bifurcation is that the Jacobian has a pair of
eigenvalues that cross the imaginary axis with this change of parameter values. To
check the necessary condition that a Jacobian has a unique pair of pure imaginary
eigenvalues can be related to the Hurwitz criteria. Unfortunately, these are rela-
tively cumbersome to compute. A clear relation between the graph structure and
the Hurwitz matrices would need to be established, which, at the moment, does
not seem straightforward. Golubitsky and Stewart [38] apply interaction graphs
to networks with symmetry conditions to study synchronous behaviour, namely
oscillations. The application of such theory might be useful for chemical reaction
networks, but unfortunately relies on having classes of identical types of dynamics
on each of the vertices.

We have not discussed ’modularity’ of reaction networks. Each of the graphs
discussed, or combination of graphs, can be used to derive how the ’combination
of networks’ is affecting the qualitative properties of the system. The usual as-
sumption if that the overall network has to be in equilibrium. A concept already
introduced by Clarke ([12], [10], [11]) are the ’extremal currents’ (often called ’ele-
mentary flux modes’ and widely cited in the Systems Biology literature). They are
a systematic way of spanning all possible equilibria of the overall system in terms
of convex coordinates (associated to sub-networks which themselves can be in equi-
librium). The sub-networks that can be expressed in terms of the reaction graph in
combination with the undirected bipartite graph. Such approaches are very helpful
for bifurcation theory, see the work of Gatermann, cited in [32], and a more recent
contribution [19].
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As we mentioned earlier, graph theoretic approaches used in chemical reaction
theory have also been proposed for the analysis of biochemical networks [13, 6].
However as mentioned before, in these biological settings, one very rarely can use
simple mass-action kinetics alone. One argument is that there exists stochastic
noise induced by the low (and finite) number of macro-molecules and whole molec-
ular machines in the cell. This is discussed in the ’microscopic’ counterpart to
this paper, [64]. Moreover there is a link between the genetic and the metabolic
cellular networks. For example it is possible that species and reactions are altered
through genetic modifications [6]. Modeling such situations requires development of
graphical tools for a wider range of relevant stochastic and deterministic dynamics.
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