
NETWORKS AND HETEROGENEOUS MEDIA Website: http://aimSciences.org
c©American Institute of Mathematical Sciences
Volume 3, Number 2, June 2008 pp. 277–294

AUGMENTING k-CORE GENERATION WITH PREFERENTIAL

ATTACHMENT

Michael Baur, Marco Gaertler, Robert Görke, Marcus Krug

and Dorothea Wagner

Faculty of Informatics, Universität Karlsruhe (TH)
78131 Karlsruhe, Germany

Abstract. The modeling of realistic networks is of prime importance for mod-
ern complex systems research. Previous procedures typically model the natural
growth of networks by means of iteratively adding nodes, geometric positioning
information, a definition of link connectivity based on the preference for near-
est neighbors or already highly connected nodes, or combine several of these
approaches.

Our novel model brings together the well-know concepts of k-cores, orig-
inally introduced in social network analysis, and of preferential attachment.
Recent studies exposed the significant k-core structure of several real world
systems, e.g., the AS network of the Internet. We present a simple and effi-
cient method for generating networks which at the same time strictly adhere
to the characteristics of a given k-core structure, called core fingerprint, and
feature a power-law degree distribution. We showcase our algorithm in a com-
parative evaluation with two well-known AS network generators.

1. Introduction. The interest in modeling classes of graphs has significantly in-
creased by recent studies of complex systems such as the Internet, biological net-
works, river basins, or social networks. While random graphs have been studied
for a long time, the standard models appear to be inappropriate because they do
not share certain abstract characteristics observed for those systems. One of these
characteristics is the k-core structure which can be interpreted as a nested decom-
position separating parts of the network based on their density. This decomposition
is commonly applied in order to identify central parts of the networks since it peels
the network layer by layer, filtering out less important parts that are sparsely con-
nected with the remaining graph. Example applications are network fingerprinting
with LaNet-vi [3], protein network analysis [27], or the exploration of modern social
networks [12].

A crucial field of application of graph generators is the simulated evolution of a
given network, granting insights in both its past development and its anticipated
future behavior. One prominent example is the Internet at the Autonomous System
(AS) level where various models have emerged over the last few years, including
BRITE [20], Inet [17], nem [18], and various models presented by Pastor-Satorras

2000 Mathematics Subject Classification. Primary: 05C85, 05C80; Secondary: 05C75.
Key words and phrases. graph generation, k-core structure, preferential attachment.
This work was partially supported by the DFG under grant WA 654/14-3 and EU under grant

DELIS (contract no. 001907). A previous version appeared as Generating Graphs with Predefined
k-Core Structure, at the European Conference on Complex Systems (ECCS 2007) [7].

277

278 BAUR, GAERTLER, GÖRKE, KRUG AND WAGNER

and Vespignani [22]. While this network has been observed to possess a very distinct
k-core structure [2, 9], kept track of over a long period of time, all generating tools
so far ignore this structure, and thus largely fail to do justice to this significant and
stable property [11]. Overall, up to our knowledge an approach to create networks
with a given k-core structure is missing so far.

To address this issue we refine the abstract measurement of core sizes to a core
fingerprint that additionally includes information on the inter-connectivity of each
pair of shells. This allows us to design a simple and efficient method to incrementally
generate randomized networks with a predefined k-core structure, starting with the
maximum core. By utilizing two results on edge rewiring we thus achieve a structure
that precisely matches the core fingerprint.

Predefining the core fingerprint of a network still leaves many degrees of freedom
open. Since we focus on the network of Autonomous Systems as a case study
we exploit this fact and optionally bias the randomness in the adjacency of nodes
towards preferential attachment, as described by Barabási and Albert [1]. This
paradigm of setting up links in a network has been proven to introduce a power-law
degree distribution, which has first been observed by Faloutsos et al. [14] for the
Internet. Our approach imposes almost no modifications on a vanilla realization
of preferential attachment, a fact that is reflected by our experimental results. We
thus manage to coalesce two of the most fundamental concepts in the theory of
complex networks of the recent past.

This paper is organized as follows: first we clarify the preliminaries and state
some basic properties for k-core structures and on preferential attachment in Sec-
tion 2, then we give the description of the network generator in Section 3. In
Section 4 we evaluate our model in comparison to two well-known generators with
respect to commonly used network properties. Finally we give some concluding
remarks.

2. Preliminaries. Let G = (V, E) be a simple, undirected graph. A subset V ′ ⊆
V of the node set induces a subgraph G[V ′] := (V ′, E′) where the edge set E′

is defined by E′ := {{u, v} |u, v ∈ V ′, {u, v} ∈ E}. The degree deg(v) of the
node v is the number of its incident edges. A nested decomposition of G is a finite
sequence (V0, . . . , Vk) of subsets of nodes such that V0 = V , Vi+1 ⊆ Vi for i < k,
and Vk 6= ∅.

2.1. Core decomposition. Cores are a widely used realization of nested decom-
positions. The concept was originally introduced by Seidman [25] and generalized
by Batagelj and Zaversnik [6]. Constructively speaking, the i-core of an undirected
graph is defined as the unique subgraph obtained by iteratively removing all nodes
of degree less than i. This procedural definition immediately gives rise to a con-
struction algorithm that can easily be implemented. Moreover, it is equivalent to
the closed definition of the i-core as the set of all nodes with at least i adjacencies
to other nodes in the i-core. The core number of a graph is the smallest i such that
the (i +1)-core is empty, and the corresponding i-core is called the core of a graph.
Figure 1 depicts the core decomposition of an example graph with a core number
of 4. The core decomposition can be computed in linear time with respect to the
graph size [5].

A node has coreness i, if it belongs to the i-core but not to the (i + 1)-core. We
call the collection of all nodes having coreness i the i-shell. An edge {u, v} is an

k-CORE GENERATION USING PA 279

intra-shell edge if both u and v have the same coreness, otherwise it is an inter-shell
edge.

Figure 1. A k-core decomposition with 5 core shells.

Informally speaking, the coreness of a node can be viewed as a robust version of
the degree, i. e., a node of coreness i retains its coreness even after the removal of
an arbitrary number of nodes of smaller coreness. In the following section we state
some observations on core structures, that are crucial to our approach.

2.2. Edges in a core hierarchy. The following two lemmas summarize two facts
about the relation of intra- and inter-shell edges. Note that Lemma 2.1 corrects a
flaw present in a previous version of this paper [7]. We later exploit this interaction
and interchangeability of edges in our network generation algorithm.

Lemma 2.1 (Rewiring). Let G = (V, E) be a graph. Let u, v ∈ V be two non-
adjacent nodes with the same coreness and {u, w}, {v, w′} ∈ E two edges such
that coreness (u) < min{coreness (w) , coreness (w′)}. Then G′ := (V, E′) with E′ :=
E \ {{u, w}, {v, w′}} ∪ {u, v} has the same core decomposition as G. Conversely,
let u, v ∈ V be two adjacent nodes with the same coreness k and with at most k− 1
neighbors in higher cores, and let w, w′ ∈ V be two nodes such that coreness (u) <
min{coreness (w) , coreness (w′)} and {u, w}, {v, w′} 6∈ E. Then G′′ := (V, E′′)
with E′′ := E \ {u, v} ∪ {{u, w}, {v, w′}} has the same core decomposition as G.

Lemma 2.2 (Swapping). Let G = (V, E) be a graph, u, v, w, w′ ∈ V be four nodes
all having the same coreness, {u, v}, {w, w′} ∈ E be two intra-shell edges, and
{u, w}, {v, w′} 6∈ E. Then the graph G′ := (V, E′) with E′ := E \{{u, v}, {w, w′}}∪
{{u, w}, {v, w′}} has the same core decomposition as G.

It is not hard to see that the correctness of both lemmas follows from the defini-
tion of cores. The cumbersome prerequisites can be understood more easily by the
concept of a removal order that will be introduced later in Section 3.2. Informally
speaking, Lemma 2.1 allows for most pairs of disconnected nodes of the same core-
ness to each remove one edge to some nodes of higher coreness and instead become

280 BAUR, GAERTLER, GÖRKE, KRUG AND WAGNER

(a) original graph (b) after rewiring (c) after swapping

Figure 2. Rewiring and swapping edges in the left graph. The
labels show the coreness of the nodes.

connected, and vice versa, without changing the decomposition. Furthermore, ac-
cording to Lemma 2.2 we can swap the end-nodes of intra-shell edges if this does
not interfere with existing connections. Figure 2 illustrates these two lemmas for
an example graph. Using these statements, we can now establish (tight) bounds of
the sizes of cores and shells.

Lemma 2.3 (Size of i-Cores). Let G = (V, E) be a graph, (V0, . . . , Vk) its core
decomposition and Gi := (Vi, Ei) := G[Vi] the i-core. Then the size of every i-core
is bounded as follows:

i + 1 ≤ |Vi| and
(i + 1)i

2
≤ |Ei| . (1)

Let ni := |Vi \ Vi+1| be the number of nodes with coreness i and mi := |Ei \ Ei+1|
the number of all edges whose end-nodes with minimum coreness has coreness i
for 0 ≤ i ≤ k (for convenience we define Vk+1 := ∅ and Ek+1 := ∅). Then the size
of the i-shell is bounded as follows:

0 ≤ ni ≤ |V | (2)
⌈

i·|ni|
2

⌉

, if ni > i
(
ni

2

)
+ ni · (i− ni + 1) , if ni ≤ i

}

≤ mi ≤

{

i · ni , if i < k

i · ni −
i2+i

2 , if i = k
(3)

Note that the bounds for the i-core (Eq. 1) are trivially obtained from the defini-
tion. The bounds for the i-shell (Eq. 2 and 3), however, use the above two lemmas,
i. e., the shell has the minimum number of edges, if it has the maximum possible
number of intra-shell edges, since each such edge contributes twice, and a minimum
number of inter-shell edges. An analogous reasoning yields the upper bounds. We
omit proofs for the bounds of this lemma except of the following.

Proof of Upper Bound 3. By definition, there exists an removal order σ that iter-
atively removes a node v from Vk with deg(v) ≤ k, such that eventually all nodes
in Vk are removed. We now count the maximum number of edges that still allow
such an order of removal σ(v), v ∈ Vk by adding up the number of edges the re-
moved nodes in such an removal order can maximally be incident to. For the first
nk− (k+1) nodes (which can be zero), the removal order σ implies that the current
node v can have a maximum degree of k. For the last k+1 nodes (minimum number
of nodes for a k-shell) however, the number of incident edges during the removal

k-CORE GENERATION USING PA 281

order is even less, resulting in a (k + 1)-clique supported by (k2 + k)/2 edges. Thus
we arrive at

(nk − (k + 1)) · k
︸ ︷︷ ︸

by nodes beyond k + 1

+
(k + 1) · k

2
︸ ︷︷ ︸

by clique of last k + 1 nodes

= k · nk −
k2 + k

2
(4)

edges in total, which proves the bound. It is easy to see that this bound is sharp,
since our arguments induce an immediate construction.

Note, that this bound also applies to lower shells when excluding edges to higher
shells.

2.3. Random models and preferential attachment. A plethora of models for
random graphs have been proposed in the past. The most prominent and funda-
mental include the Erdős-Rényi model [13], also known as G(n, m), Gilbert’s model
G(n, p) [15] and the Watts and Strogatz model [26], which is also known as the
small-world -model. However, in a number of real-world graphs some properties
have been identified that are unlikely to emerge in these models, most notably a
distribution of node degrees that roughly obeys a power-law, a fact that has been
identified by Faloutsos et al. [14]. More precisely, the number of nodes with de-
gree d is proportional to d−γ for some constant γ. Graphs with this property are
commonly referred to as scale-free. Barabási and Albert describe a growth process
coined preferential attachment [1] that generates graphs with such a degree dis-
tribution. Starting out with an empty graph, this process iteratively adds a new
node that is adjacent to a fixed number of already existing nodes. The choice of a
specific neighbor is made with probability proportional to the current degree of the
nodes. We closely adhere to the particularly efficient implementation of preferential
attachment proposed by Batagelj and Brandes [4].

3. Core generator. In this section, we first introduce a set of relevant parameters
for the construction of core structures and discuss which combinations of these lead
to feasible instances, i. e., are capable of realizing a graph with a predefined core
structure. Then we describe our basic algorithm that generates such graphs, and
point out several variations.

As the 0-shell only contains isolated nodes and in order to reduce technical pe-
culiarities, we restrict ourselves to generating graphs with an empty 0-shell.

3.1. Input parameters. There are several possibilities to specify core structures.
Of the quantitative approaches, the most obvious is to give the number of nodes
per shell, the number of intra-shell edges, and the number of inter-shell edges (for
each pair of shells). This can be coded as a vector N ∈ N

k
0 where ni is the number

of nodes in the i-shell and a symmetric matrix M ∈ N
k×k
0 , where mi,j contains

the number of edges connecting the i-shell with the j-shell. We call this the core
fingerprint. For example, the graph (omitting isolated nodes) given in Figure 1 has
the following fingerprint:

N := (4, 3, 2, 5) and M :=







3 1 0 0
1 2 2 0
0 2 0 6
0 0 6 10







Clearly, the implied sizes of the shells have to respect the bounds established in
Lemma 2.3. This kind of specification of core structures provides the maximum

282 BAUR, GAERTLER, GÖRKE, KRUG AND WAGNER

(a) before rewiring (b) after rewiring

Figure 3. Example of rewiring. The fingerprint N = (0, 0, 7)
and m3,3 = 11 resulted in the left hand graph. Clearly, node 1 has
insufficient degree. In the rewiring phase we can choose either node
3 or 5 as the rich node. For the right hand graph we selected node
3 and node 5 as the rich node and the pivot node, respectively.
Thus we arrive at E = E \ {{3, 5}} ∪ {{1, 5}}.

degree of freedom, i. e., the user can configure the size distribution of each shell and
is only limited by constraints ensuring consistency.

One can easily relax the requirement of absolute values in the input by replacing
them by parameters that correspond to the ratio of edges with respect to the tight
bounds established in Equation 3. To further simplify the structure of the input,
these ratios could be replaced by a density function. Such a function could, e.g.,
follow a simple power-law.

3.2. Algorithmic approach. Our generator builds a graph by iteratively adding
new shells beginning at the maximum core. When adding a new shell, we create
nodes and edges according to the given core fingerprint and take care to not change
the coreness of nodes in previously built higher shells. The detailed pseudo code
is given in Algorithm 1. We omit in-depth explanations of supplementary opera-
tions such as appendAll or removeAllOccurences, since these methods have
one-to-one equivalences in most high-level programming languages. Non-computer
scientists can assume that these methods match their intuitive nomenclature.

In order to guarantee that the coreness of nodes in the i-shell will not exceed i,
we define an order σi which will be maintained as a valid removal order for this
shell (line 4). It is of vital importance to ensure that for every node in Vi the sum
of the number of neighbors in the shell i with a higher value of σi and the number
of neighbors in higher shells does not exceed i. To model this, newly created edges
are directed such that inter-shell edges point from the lower shell to the higher shell
and intra-shell edges are directed in accordance to our predefined order σi and each
node in Vi is restricted to a maximum out-degree of i (line 18). We are left to
guarantee that the coreness is exactly i and not less. An example where this not
yet satisfied is given in Figure 3(a).

While lines 3 to 25, called the element generation phase, avoid erroneously high
values of coreness, as further detailed below, the rewiring phase in lines 27 to 38
solves the problem of erroneously low values of coreness by a sophisticated movement

k-CORE GENERATION USING PA 283

Algorithm 1: Core Generator

Input: integer k, vector N ∈ N
k
0 , valid symmetric matrix M ∈ N

k×k
0

Output: graph G = (V, E)

V ← ∅; E ← ∅; targetNodes ← ∅;1

for i← k to 1 do // introduce next shell2

list Vi ← {ni new nodes} ;3

σi : Vi → {1, . . . , ni} defined by σ−1
i (ℓ) = Vi[ℓ] ; // removal order4

u← Vi[ni] ; // last node in removal order5

list sourceNodes ← Vi \ {u} ; // u cannot source intra-edges6

list targetNodes[i] ← {u} ; // u into PA-list7

list unconnectable ← {u} ; // see line 218

for j ← i to k do // select target shell9

for m← 1 to mi,j do // introduce mij edges10

s← sourceNodes[random] ; // source of new edge11

C ← targetNodes[j] ; // target candidates list12

C.removeAllOccurences(neighbors(s) ∪ {s});13

if j = i then // check removal order σ14

C.removeAllOccurences({ℓ ∈ Vi | σ(ℓ) < σ(s)});15

t← C[random] ; // target of new edge16

E ← E ∪ (s, t) ;17

if outdeg(s) = i then // source saturated18

sourceNodes.remove(s);19

else if j = i and outdeg(s) ≥ ni − σi(s) then20

sourceNodes.remove(s) ; // no more intra-targets21

unconnectable.append(s) ; // store for inter-targets22

targetNodes[i].append(s, t);23

if j = i then24

sourceNodes.appendAll(unconnectable) ; // restore25

remove direction of edges;26

list poorNodes ← {v ∈ Vi | deg(v) < i} ;27

list richNodes ← {v ∈ Vi | deg(v) > i} ;28

while poorNodes 6= ∅ do // rewire unsaturated nodes29

v ← poorNodes[random];30

w ← richNodes[random];31

C ← neighbors(w) \ neighbors(v) ; // pivot candidates32

c← C[random];33

E ← E \ {{w, c}} ∪ {{v, c}};34

if deg(v) = i then // v saturated35

poorNodes.remove(v);36

if deg(w) = i then // w no longer rich37

richNodes.remove(w);38

V ← V ∪ Vi ; // shell i completed39

return graph G = (V, E);40

284 BAUR, GAERTLER, GÖRKE, KRUG AND WAGNER

of edges. We choose a node v with insufficient degree (line 30) and a node w with
degree greater than i (line 31). Then we select a neighbor c ∈ neighbors(w) which
is not yet adjacent to v (lines 32 and 33) and replace this adjacency {w, c} by a new
edge {v, c} (line 34).

Before we revisit the element generation phase in detail, we recapitulate the
mechanism of preferential attachment. The network is grown from an arbitrary,
small seed such as a single node or a triangle. Iteratively nodes are added and
connected to a fixed number of neighbors. These neighbors are randomly selected
from existing nodes with probability proportional to their degree. This behavior
can be modeled by maintaining a list of nodes to which both end-nodes of each
newly inserted edge are appended. Thus, this list contains each node with multi-
plicity equal to its current degree. Drawing uniformly at random from this list is a
legitimate and efficient realization of preferential attachment, as described in detail
by Batagelj and Brandes [4].

Shells are created iteratively, starting with the maximum core. First the prede-
fined number ni of nodes are created (line 3), together with an arbitrary removal
order σi on them (line 4). In the element generation phase, some subtlety has been
put into the choice of incident nodes of new edges. Since we only predefine the
connectivity between shells, there is no fixed number of neighbors newly inserted
nodes can be connected to. Instead, we maintain a list of sourceNodes which
initially contains each node of shell i (line 6) exactly once, and an initially empty
list targetNodes into which we insert the end-nodes of each new edge following
the approach of Batagelj and Brandes [4].

We now iterate over each shell j that has already been created, starting with the
very shell that has just been created (j = i), and create mij edges from shell i to
shell j (loop starting at line 10). Each time an edge is created, we draw its source
uniformly at random from sourceNodes (line 11) and check (line 18) whether it
now has the maximum outdegree for belonging to shell i, in which case we remove
it from sourceNodes. Further, in the case j = i, if there are no more feasible
targets for this source, i.e., it is already connected to all nodes with a higher value
of σi, we remove it from sourceNodes (line 21). However, such a node is not
yet saturated and therefore stored in the list unconnectable (line 22) for later
use in the case j 6= i (line 25). Note that as a consequence, the highest ranking
node u = argmaxv∈Vi

σi(v) in the current shell i is removed before the loop from
sourceNodes (lines 5 and 6) and instantly added to the list unconnectable.

Since edges can be directed towards any higher shell, we maintain the list of
targetNodes[i] for each shell i throughout the algorithm. As mentioned above,
these lists are the key for realizing preferential attachment. We initialize target-

Nodes[i] with u (line 7), since u is the only feasible target for all v ∈ Vi. For each
choice of s in line 11, a list of feasible target nodes C is created (line 12). To this
end, we prune list C of illegal choices, which are the source itself and its neighbors
(line 13), and, in the case of j = i, nodes v ∈ Vi with a lower value of σ(v) (line 15).
Concluding the creation of a new edge, we append its source and target to the list
of targetNodes (line 23).

3.3. Analysis of the algorithm. Based on the observations in the previous sec-
tion, we prove the correctness of Algorithm 1 and analyze its running time in the
following.

k-CORE GENERATION USING PA 285

Observation 1. Algorithm 1 generates valid core structures for the maximum num-
ber of intra-shell edges, i. e., mii = i · ni − (i2 + i)/2 for 1 ≤ i ≤ k.

Proof. Let m = i · ni − (i2 + i)/2. A node is removed from sourceNodes if either
its out-degree is equal to i or it is connected to all nodes with a higher value of σi.
If sourceNodes is empty we have inserted (ni− (i+1)) · i+(i+1) · i/2 = m edges
(see Equation 4).

Based on this observation, Lemmas 3.1 and 3.2 prove the correctness of Algo-
rithm 1 inductively.

Lemma 3.1. Given a matrix M belonging to a valid core fingerprint and a valid
subgraph G[Vk ∪ · · · ∪ Vi+1], the element generation phase constructs the subgraph
G[Vk ∪ · · · ∪ Vi] such that M is obeyed and all nodes u ∈ Vℓ have coreness (u) ≤ ℓ,
for all i ≤ ℓ ≤ k.

Proof. Let j = i. Lines 15 and 18 guarantee that σi is a valid removal order. Thus
all nodes v ∈ Vi have coreness (v) ≤ i and the coreness of all other nodes remains
unchanged. Due to Observation 1 the upper bounds in Lemma 2.3 can be attained,
thus any valid mii can be realized.

Now let j > i. Analogously, requiring outdeg(v) ≤ i preserves the removal order
and thus a coreness of i or less for nodes in Vi. Again, the coreness of all other
nodes remains unchanged, and the upper bound in Lemma 2.3 can be attained.

The above lemma shows that the element generation phase fits in all nodes and
edges required by the fingerprint and grants to each node a coreness equal to or less
than the required value. We are left to prove that the rewiring phase refines the
edge set such that equality holds.

Lemma 3.2. Given a matrix M belonging to a valid core fingerprint and a valid
subgraph G[Vk∪· · ·∪Vi+1]. If coreness (v) ≤ i holds for all v ∈ Vi, then the rewiring
phase moves edges such that the subgraph G[Vk∪· · ·∪Vi] is valid, i. e., M is obeyed,
and all nodes u ∈ Vℓ have coreness (u) = ℓ, for all i ≤ ℓ ≤ k.

Proof. We have to proof that the list poorNodes defined in line 27 is empty when
the algorithm terminates. Suppose there exists at least one node v ∈ poorNodes.
Since deg v < i, clearly coreness(v) < i. Then, the list richNodes is not empty
since otherwise all nodes u ∈ Vi have deg u ≤ i contradicting Lemma 2.3. Let
w ∈ richNodes, i. e., w ∈ Vi and deg(w) > i. Since deg(w) > deg(v), the set
of pivot candidates C = neighbors(w) \ neighbors(v) is not empty. Choosing
c ∈ C, the new set of edges E′ = E \ {{w, c}} ∪ {{v, c}} still obeys M , decrements
deg(w) and increments deg(v), increasing coreness(v) by at most one.

Thus, the rewiring phase maintains the invariant. Furthermore, due to the strict
increase and decrease of deg(v) and deg(w), respectively, |poorNodes| strictly
decreases to 0, which terminates the algorithm.

By induction, Lemmas 3.1 and 3.2 yield that Algorithm 1 constructs a graph in
accordance with M and Vi, 0 ≤ i ≤ k, since the base case, i. e., the empty graph, is
trivial.

In terms of running time the crucial parts of the algorithm are the updates
and random accesses of the lists sourceNodes, targetNodes, poorNodes, and
richNodes, and the creation of the target candidate and pivot candidate lists
(lines 12–15 and 32). We use array-backed lists to guarantee constant-time access

286 BAUR, GAERTLER, GÖRKE, KRUG AND WAGNER

to random elements. When we remove an element e we fill its position with the last
element of the list, avoiding moving all successive elements of e. Since we only have
random access to the lists, preserving their orders is not required.

Lemma 3.3. The asymptotic running time of Algorithm 1 is bounded by O((m2 +
n2k) log(n)).

Proof. The runtime of the element generation phase is dominated by the assembling
of target candidates in lines 12–15. Building a decision tree for the nodes to be
remove in O(n log n) time, based on the ordering σ, we can prune list C in time
O(m log n + n logn) per edge, which dominates lines 3 to 25.

The running time of the rewiring phase is dominated by determining the list of
pivot candidates in line 32 using O(n log n) time per rewiring. The total number of
rewirings is bounded by n · k. This dominates lines 27 to 38 as well as the element
generation phase and all peripheral steps. Assuming the graph is connected, in
total, both phases sum up to a running time of O((m2 + n2k) log(n)).

Since real-world networks seldom exhibit pathologic characteristics, we replaced
the eager computation of the candidate list in lines 12–15 by a lazy selection from
targetNodes[i] that is repeated until a valid t has been drawn. Clearly this does
not improve worst-case running time but works faster for virtually all applications.

We performed our experiments on a recent standard PC, running SUSE Linux
10.2 with an implementation in Java. Absolute running times ranged between
100 and 500 milliseconds for the AS network which is comparable to BRITE. The
running time of Inet is in the order of minutes. See Section 4.1 for the description
of these generators.

3.4. Refinements. Although the core fingerprint is the prime characteristic we
focus on in this work, together with the inclusion of a preferential attachment
mechanism, a number of potentially describing features of a network exist. In this
section, we briefly discuss other relevant features, that can easily be integrated in
our generator.

Connectivity is a very basic characteristic of a network, boiling down to the
number of connected components. Building upon the core decomposition, this can
be refined to the number of connected components per shell. While the whole graph
or even the i-core can be connected, the i-shell can still have several disconnected
components. If this is not desired, the user can specify the number and the sizes
of connected components. The generator will then first create a spanning forest,
where each tree is the seed of a component, and mark these edges as not rewirable.
Note that requiring a specific set of connected components restricts the set of valid
shell-connectivity matrices. However, this can be resolved by allowing the number
of edges or the number and sizes of connected components to slightly deviate from
the predefined values, depending on the user’s interests.

Returning our focus to the degree distribution, the approach described in Sec-
tion 3.2, depending on not a single parameter, can clearly be further elaborated.
We tested two variants of our implementation of preferential attachment. In the
first variant, we require the degree distributions of each shell as an input. Based
on these we then prefill the array targetNodes[i] in line 7 with the nodes in Vi,
using the exact multiplicities as given by the degree distribution and an ordering
analogous to σ. This approach clearly biases the preferential attachment process
towards the desired degree distribution (see Figure 4). Alternatively, we can solely

k-CORE GENERATION USING PA 287

Figure 4. The number of nodes with degree at least d for the AS
network, the original, and the refined Core generator for January
2006. A graph generated by preferential attachment of approxi-
mately the same size is shown for comparison.

AS 2002-01 AS 2006-01 AS 2007-07
Number of Nodes 12,485 21,419 25,787
Number of Edges 25,980 45,638 53,014

Table 1. Sizes of the AS network snapshots.

rely on a post-processing step. In this case we can completely abandon preferential
attachment and simply apply a sequence of rewirings (Lemma 2.1) and swappings
(Lemma 2.2) in order to approach a given degree distribution. Although both these
techniques yielded very good results, we exclude them from further evaluation, due
to their requiring rather specific parameters in addition to the core fingerprint.

4. Modeling the AS network. An important application of a core-aware network
generator is the simulation of the Internet at the AS level. In this section we compare
networks generated by our method and established topology generators with three
exemplary snapshot of the real AS network at the router level taken by the Oregon
Routeviews project [23] at midnight on January 1, 2002 (oix-full-snapshot-2002-01-
01-0000), on January 1, 2006 (oix-full-snapshot-2006-01-01-0000), and on July 1,
2007 (oix-full-snapshot-2007-07-01-0000). Table 1 shows the sizes of these graphs.

4.1. Topology generators. The first methods to generate networks with Internet-
like structure date back to the 1990s and a multitude of techniques has been pro-
posed since then. Among the most popular and widely used tools we have chosen
Inet-3.0 [17] and BRITE [20] for our comparison since these are commonly included
in other studies which cover a broader range of existing models [19, 17]. Although
nem [18] also seems promising we do not take it into account because of its limitation
to networks not greater than 4000 nodes.

The Internet topology generator Inet [17] generates an AS-level representation of
the Internet. Its developers claim that “it generates random networks with charac-
teristics similar to those of the Internet from November 1997 to February 2002, and
beyond”. Basically, Inet generates networks with a degree distribution which fits

288 BAUR, GAERTLER, GÖRKE, KRUG AND WAGNER

to one of the power laws originally found by Faloutsos et al. [14], namely that the
frequency of nodes with degree d is proportional to d raised to a power of a constant
α: f(d) ∝ dα. Since this law does not cover all nodes and in order to match other
relevant properties as well, optimizations for various specific conditions were added
to the original procedure over time. The complete generation method is explained
in [17]. Since the procedures of Inet are already customized to AS networks, only a
small number of input parameters can be specified: the total number of nodes, the
fraction of degree-one nodes, and the size of the square used for node placement.

The Boston university Representative Internet Topology gEnerator BRITE [20]
can generate networks for different levels of the Internet topology. Beside this, it
offers various other options to customize the generation procedure.

Drawing area. The nodes of the generated topology are distributed in a square
of a certain size.

Node distribution. In the drawing area, nodes are either distributed uniformly
at random or Pareto.

Outgoing links. New nodes are connected with a specific number of outgoing
links to other, already existing nodes.

Connectivity. The neighborhood of a node is selected based on certain guide-
lines such as geometric locality, preferential attachment, or a combination of both.

Procedure. Nodes can either be placed before the addition of edges or in an
incremental fashion. In the latter case each new node introduces a number of new
edges that can only connect to already existing nodes.

4.2. Characteristics. In [17], an extensive collection of characteristics is evaluated
that judge the fitness of a generated graph with respect to its real world counterpart.
We repeated this evaluation for a representative selection of these properties with a
focus on the assessment of the core generator. In the following, we summarize the
properties we employed in our analysis.

General statistics. To see how well the generated networks fit to the most
obvious characteristics we computed some basic properties: the number of edges,
the minimum and the maximum degree. Note that all models strictly meet the
given number of nodes, so the number of edges corresponds to density and average
degree.

Cores. The core decomposition is a significant structural property of an AS
network. We compare not only the core number but the extensive core fingerprint.

Clustering coefficient. The clustering coefficient is a measure for the local
density around a node. It counts how many of a node’s pairs of neighbors are
themselves adjacent. These values are averaged to get a single measure for the
network. Closely related characteristics are the numbers of triangles and triples
and the transitivity [24].

Path length. We compare two properties based on path length: characteristic
path length, which is the average of the distances of all node pairs and average
eccentricity. The eccentricity of a node is its maximum distance to all other nodes.
Average eccentricity then is the average of all nodes eccentricities.

Frequency versus degree. One of the classic power laws found by Faloutsos et
al. [14] is f(d) ∝ dα , that is, the frequency of nodes with degree d, is proportional
to d raised to a power of a constant α. Since this power law does not hold for nearly

k-CORE GENERATION USING PA 289

AS 2002-01 Core BRITE Inet
Number of Nodes 12,485 12,485 12,485 12,485
Number of Edges 25,980 25,980 24,967 27,494
Minimum Degree 1 1 2 1
Maximum Degree 2,538 644 302 2,154
Core Number 20 20 2 9
Number of Triples 7,258,817 3,140,777 347,443 6,821,628
Number of Triangles 22,832 17,272 157 11,144
Transitivity 0.009 0.016 0.001 0.005
Clustering Coeff. 0.45 0.24 0.00 0.29
Avg. Path Length 3.63 3.69 5.09 3.29
Avg. Eccentricity 8.74 9.71 8.35 6.85

Table 2. Characteristics of the AS network of January 2002 and
the three generators.

2% of the highest degree nodes, we use a modified version [8, 10]:

F (d) =
∑

i>d

f(i) ∝ dα .

Size of k-neighborhood. Another power law identified in [14] is N (k) ∝ kβ ,
where N (k) is the sum over all nodes of their neighborhood sizes within distance k,
i. e., N (k) =

∑

u∈V

∑

v∈V distk(u, v), where

distk(u, v) =

{

1 , if dist(u, v) ≤ k

0 , otherwise.

Note that this characteristic can also be measured as an average over all nodes, and
it is also known as the number of pairs within k hops.

4.3. Evaluation. In the following, we detail the findings of our systematic evalua-
tion. We gathered results on the three generators as described in Sections 3 and 4.1
and on the real AS network for all the properties listed in Section 4.2.

Based on the previous studies we set appropriate parameters for the generators
Inet and BRITE. For Inet we have chosen the default input parameters except for
the number of nodes and the random seed. As the results in [21] suggest, we have
used preferential attachment and incremental growth for BRITE. Furthermore, we
add two edges for each new node to fit the average degree of AS networks.

By construction, the numbers of nodes match the reference AS network, however,
the numbers of edges already differ heavily. While the number of edges is only
slightly lower for graphs generated by BRITE, and exactly fits the reference for
core generator (called Core in the following), the edge set created by Inet is larger
by one third.

The well-known phenomenon of highly connected hubs in the AS network ac-
companied by the power-law degree distribution is regarded as one of the most sig-
nificant properties of the Internet. Inet reproduces these quite well, but overstates
the maximum degree. In contrast, the degree distribution of Core oscillates around
the reference but fails to produce high-degree nodes due to its lack of preferential
attachment and the degree distribution of BRITE suggests that the preference of

290 BAUR, GAERTLER, GÖRKE, KRUG AND WAGNER

AS 2006-01 Core BRITE Inet
Number of Nodes 21,419 21,419 21,419 21,419
Number of Edges 45,638 45,638 42,835 58,069
Minimum Degree 1 1 2 1
Maximum Degree 2,408 662 411 3,572
Core Number 26 26 2 19
Number of Triples 12,161,105 5,631,122 637,716 30,643,658
Number of Triangles 46,256 36,052 177 75,770
Transitivity 0.011 0.019 0.001 0.007
Clustering Coeff. 0.38 0.17 0.00 0.53
Avg. Path Length 3.81 3.84 5.31 3.07
Avg. Eccentricity 8.52 10.36 8.63 6.45

Table 3. Characteristics of the AS network of January 2006 and
the three generators.

AS 2007-07 Core BRITE Inet
Number of Nodes 25,787 25,787 25,787 25,787
Number of Edges 53,014 53,014 51,571 76,467
Minimum Degree 1 1 2 1
Maximum Degree 2,391 838 393 5,168
Core Number 22 22 2 26
Number of Triples 13,889,150 6,759,443 757,653 56,514,215
Number of Triangles 39,646 29,612 174 162,889
Transitivity 0.009 0.013 0.001 0.009
Clustering Coeff. 0.33 0.15 0.00 0.65
Avg. Path Length 3.89 3.92 5.39 2.99
Avg. Eccentricity 10.24 10.64 8.72 6.52

Table 4. Characteristics of the AS network of July 2007 and the
three generators.

new nodes to connect to existing hubs is not strong enough either. These facts can
be observed in Figure 5.

At a first glance, BRITE clearly fails to build up any kind of deep core structure
(the core number is 2). The reason for this becomes evident from the incremental
generation process of BRITE: the iterative addition of nodes incident to two new
edges can simply be reversed, resulting in a valid removal sequence for the 2-core
that ultimately yields an empty 3-core. Figure 6 plots both the number of nodes and
the number of edges per k-core exemplary for January 2006. Inet builds up a decent
core hierarchy but fails to attain a sufficient depth for earlier snapshots, obviously
resulting in larger mid-level shells, in terms of both nodes and edges. However, as
Inet seems to systematically overestimate the number of edges, for later snapshots,
the core hierarchy becomes too deep. By construction, Core perfectly matches
the reference. The plots in Figure 7 show the numbers of nodes and edges per
k-shell, again exemplary for January 2006. They confirm the above observations
and additionally grant an insight into the absolute numbers of elements per shell.

k-CORE GENERATION USING PA 291

(a) January 1st, 2002

(b) January 1st, 2006

(c) July 1st, 2007

Figure 5. The number of nodes with a degree at least d (left)
and the k-neighborhood for distances k ∈ [0, 10] (right) for the AS
network and the generated graphs for 2002, 2006, and July 2007.

292 BAUR, GAERTLER, GÖRKE, KRUG AND WAGNER

Figure 6. The numbers of nodes (left figure) and of edges (right
figure) per k-core. Note that BRITE generates only nodes in the
2-core and that the lines of the AS 2006 and Core perfectly match
by construction.

Figure 7. The numbers of nodes (left figure) and of edges (right
figure) per k-shell (BRITE omitted). An edge is considered to be-
long to the k-shell if its endnode with smallest coreness has coreness
k. Note that the lines of the AS 2006 and Core perfectly match by
construction.

The shallow core structure created by BRITE is accompanied by a very low tran-
sitivity alongside a negligible number of triangles and a tiny clustering coefficient,
suggesting that the BRITE graph is primarily composed of a set of paths of length
two. The high average path length further corroborates this conjecture, since by
virtue of preferential attachment hubs of high degree evolve, which, however, are
interconnected via paths of length two by construction.

The absolute numbers of triples and triangles as well as the transitivity and the
clustering coefficient are acceptable for both Core and Inet. The discrepancy of the
latter generator from the reference can quite generally be explained by the increased
number of edges. The behavior of Core with respect to these values is largely due to
the absence of high-degree nodes, since, intuitively speaking, star-shaped structures

k-CORE GENERATION USING PA 293

yield a high number of triples. The relatively high number of triangles thus yields
an increased transitivity. The low clustering coefficient, however, suggests, that
there is large number of nodes with a sparse direct neighborhood. Since, at the
same time, Core exhibits a high number of triangles, the majority of these triangles
is incident to nodes with higher degree.

Figure 5 depicts the size of the neighborhood within k hops (sum over all nodes).
Note that the high average path length of BRITE mentioned earlier comes along
with the slow growth of the neighborhood size. The low average path length and
the low average eccentricity exhibited by Inet are, again, due to the large edge set.
With respect to these values, Core excels. Both the average path length and the
k-neighborhood practically match the reference.

5. Conclusion. In the recent past, the core decomposition has been found to be
a crucial characteristic of real world complex systems. In this paper we presented
a novel algorithm for the generation of graphs that brings together the well-know
concepts of k-cores and preferential attachment.

After scrutinize and clarifying how to specify the core fingerprint of a network
by examining the inter-connectivity of each pair of shells. We employ this core
fingerprint to introduce a simple and efficient algorithm for the generation of random
graphs based on the core decomposition.

We exemplify the feasibility of our technique in a case study using the AS net-
work of the Internet, comparing our generator to the established topology gener-
ators BRITE [20] and Inet [17]. Our results yield that our generator is highly
suitable for the simulation of AS topologies, confirming the importance of the core
decomposition. Moreover we show that BRITE largely fails to capture significant
characteristics of the AS network, including its core structure, and that Inet roughly
matches the reference except for its general tendency to be too densely connected.
While our core generator and BRITE create a topology within seconds, a major
drawback of Inet is its generation time of several minutes.

The high customizability of our rather generic core generator suggests several
adaptations that can further increase the fitness to the specific peculiarities of the
AS network. Such adaptations to special networks can be realized by employing a
number of structural modifications such as swapping and rewiring without interfer-
ing with the core decomposition.

Acknowledgements. We would like to thank Jorge Busch for pointing out a prob-
lem in the previous version of Lemma 2.1, and for valuable comments and discussion
on its resolution. Moreover, we would like to thank the referees very much for their
valuable comments and suggestions.

REFERENCES

[1] Réka Albert and Albert-László Barabási, Statistical mechanics of complex networks, Reviews
of Modern Physics, 74 (2002), 47–97.

[2] José Ignacio Alvarez-Hamelin, Luca Dall’Asta, Alain Barrat and Alessandro Vespignani, k-

Core decomposition: A tool for the analysis of large scale internet graphs, Electronically
published at http://arxiv.org/abs/cs.NI/0511007 , November 2005.

[3] José Ignacio Alvarez-Hamelin, Luca Dall’Asta, Alain Barrat and Alessandro Vespignani, Large

scale networks fingerprinting and visualization using the k-core decomposition, In “Advances
in Neural Information Processing Systems 18,” pages 41–50, MIT Press, 2006.

[4] Vladimir Batagelj and Ulrik Brandes, Efficient generation of large random networks, Physical
Review E, (036113), 2005.

http://www.ams.org/mathscinet-getitem?mr=1895096&return=pdf
http://arxiv.org/abs/cs.NI/0511007

294 BAUR, GAERTLER, GÖRKE, KRUG AND WAGNER

[5] Vladimir Batagelj and Matjaž Zaveršnik, An O(m) algorithm for cores decomposition of

networks, Technical Report 798, IMFM Ljublana, Ljubljana, 2002.
[6] Vladimir Batagelj and Matjaž Zaveršnik, Generalized cores, Preprint 799, IMFM Ljublana,

Ljubljana, 2002.
[7] Michael Baur, Marco Gaertler, Robert Görke, Marcus Krug and Dorothea Wagner, Generat-

ing graphs with predefined k-core structure, In “Proceedings of the European Conference of
Complex Systems (ECCS’07),” October 2007.

[8] Tian Bu and Don Towsley, On distinguishing between internet power law topology generators,
In “INFOCOM’02” [16].

[9] Shai Carmi, Shlomo Havlin, Scott Kirkpatrick, Yuval Shavitt and Eran Shir, A model of

internet topology using k-shell decomposition, in “Proceedings of the National Academy of
Science of the United States of America,” 104 (2007), 11150–11154.

[10] Qian Chen, Hyunseok Chang, Ramesh Govindan and Sugih Jamin, The origin of power laws

in internet topologies revisited , In INFOCOM’02 [16], 608–617.
[11] Sergey N. Dorogovtsev, Andrew V. Goldberg and Jose Ferreira F. Mendes, k-Core Organiza-

tion of Complex Networks, Physical Review Letters, 96 (2006), 1–4 .
[12] Nicolas Ducheneaut, Nicholas Yee, Eric Nickell and Robert J. Moore, Alone together?: Ex-

ploring the social dynamics of massively multiplayer online games, In “Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems (CHI’06),” 407–416, ACM
Press, 2006.

[13] Paul Erdős and Alfred Rényi, On random graphs I, Publicationes Mathematicae Debrecen, 6

(1959), 290–297.
[14] Michalis Faloutsos, Petros Faloutsos and Christos Faloutsos, On power-law relationships of the

internet topology, In “SIGCOMM ’99: Proceedings of the conference on Applications, tech-
nologies, architectures, and protocols for computer communication,” 251–262, ACM Press,
1999.

[15] Horst Gilbert, Random graphs, The Annals of Mathematical Statistics, 30 (1959), 1141–1144.
[16] “Proceedings of the 21st Annual Joint Conference of the IEEE Computer and Communications

Societies (Infocom),” volume 1. IEEE Computer Society Press, 2002.
[17] Cheng Jin, Qian Chen and Sugih Jamin, “Inet Topology Generator,” Technical Report CSE-

TR-433, EECS Department, University of Michigan, 2000.

[18] Damien Magoni, Nem: A software for network topology analysis and modeling, In “Proceed-
ings of the 10th International Symposium on Modeling, Analysis, and Simulation of Computer
and Telecommunication Systems,” IEEE Computer Society, 2002.

[19] Damien Magoni and Jean Jacques Pansiot, Analysis and comparison of internet topology

generators, In “Proceedings of the 2nd International IFIP-TC6 Networking Conference,” 364–
375. Springer, 2002.

[20] Alberto Medina, Anukool Lakhina, Ibrahim Matta and John Byers, BRITE: An approach

to universal topology generation, In “Proceedings of the 9th International Symposium on
Modeling, Analysis, and Simulation of Computer and Telecommunication Systems,” 2001.

[21] Alberto Medina, Ibrahim Matta and John Byers, On the origin of power laws in internet

topologies, Computer Communication Review, 30 (2000).
[22] Romualdo Pastor-Satorras and Alessandro Vespignani, “Evolution and Structure of the In-

ternet: A Statistical Physics Approach,” Cambridge University Press, 2004.
[23] University of Oregon Routeviews Project, http://www.routeviews.org/ .
[24] Thomas Schank and Dorothea Wagner, Approximating Clustering Coefficient and Transitiv-

ity, Journal of Graph Algorithms and Applications, 9 (2005), 265–275.
[25] Stephen B. Seidman, Network Structure and Minimum Degree, Social Networks, 5 (1983),

269–287.
[26] Duncan J. Watts and Steven H. Strogatz, Collective dynamics of “small-world” networks,

Nature, 393 (1998), 440–442.
[27] Stefan Wuchty and Eivind Almaas, Peeling the yeast protein network, Proteomics, 5 (2005),

444–449.

Received August 2007; revised March 2008.

E-mail address: baur@informatik.uni-karlsruhe.de;wagner@informatik.uni-karlsruhe.de

E-mail address: rgoerke@informatik.uni-karlsruhe.de;krug@informatik.uni-karlsruhe.de
E-mail address: gaertler@informatik.uni-karlsruhe.de

http://www.ams.org/mathscinet-getitem?mr=0120167&return=pdf
http://www.ams.org/mathscinet-getitem?mr=0108839&return=pdf
http://www.routeviews.org/
http://www.ams.org/mathscinet-getitem?mr=2185281&return=pdf
http://www.ams.org/mathscinet-getitem?mr=0721295&return=pdf

	1. Introduction
	2. Preliminaries
	2.1. Core decomposition
	2.2. Edges in a core hierarchy
	2.3. Random models and preferential attachment

	3. Core generator
	3.1. Input parameters
	3.2. Algorithmic approach
	3.3. Analysis of the algorithm
	3.4. Refinements

	4. Modeling the AS network
	4.1. Topology generators
	4.2. Characteristics
	4.3. Evaluation

	5. Conclusion
	Acknowledgements
	REFERENCES

