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Abstract. We investigate some of the properties and extensions of a dynamic
innovation network model recently introduced in [37]. In the model, the set
of efficient graphs ranges, depending on the cost for maintaining a link, from
the complete graph to the (quasi-) star, varying within a well defined class of
graphs. However, the interplay between dynamics on the nodes and topology
of the network leads to equilibrium networks which are typically not efficient
and are characterized, as observed in empirical studies of R&D networks, by
sparseness, presence of clusters and heterogeneity of degree. In this paper,
we analyze the relation between the growth rate of the knowledge stock of the
agents from R&D collaborations and the properties of the adjacency matrix as-
sociated with the network of collaborations. By means of computer simulations
we further investigate how the equilibrium network is affected by increasing the
evaluation time τ over which agents evaluate whether to maintain a link or not.
We show that only if τ is long enough, efficient networks can be obtained by
the selfish link formation process of agents, otherwise the equilibrium network
is inefficient. This work should assist in building a theoretical framework of
R&D networks from which policies can be derived that aim at fostering efficient
innovation networks.

1. Introduction. The field of Network Theory has only recently focused its at-
tention on the study of dynamic models in which the topology of the network
endogenously drives the evolution of the network. These models assume that the
evolution of the links in the network is driven by the dynamics of a state variable,
associated to each node, which depends, through the network, on the state variable
of the other nodes [22, 47]. Such an interplay is crucial in many biological systems
and especially in socio-economic systems. In biological systems, a Darwinian se-
lection mechanism usually works at a global level: for instance in the context of
networks, one can think of a mechanism in which the least fit nodes are replaced
(together with their connections) with new nodes that are randomly connected to
the remaining nodes [34, 33, 6]. In socio-economic networks, besides the global
selection mechanism, there exists a “local” selection mechanism: the nodes in fact
represent agents that form or delete links with other agents, based on the utility
that those links may provide to them [41, 28, 8].

The foregoing issue has also attracted researchers in computer science [39, 18, 11]
as well as social scientists and economists [32, 1, 2, 25, 26] In particular, the study
of networks has become increasingly important in the literature on R&D networks
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[21, 17, 12]. Here, the evolution of the network is of interest for the investigation of
the efficiency and stability of networks of agents exchanging knowledge in R&D col-
laborations. In such a context, we have recently introduced a new model of network
evolution in which the topology and the state variable of nodes co-evolve [37, 38].
The nodes of the network are associated with a dynamical state variable, represent-
ing the utility of the agent, that depends on the links (the R&D collaborations) and
the utility of the other agents. The network then evolves according to a prescribed
link formation rule, which, in turn, depends on the expected increase of utility of
the agents.

Independently of the co-evolution of the network and the utility of the agents, we
determine exactly the efficient graphs (in which the aggregate utility of the agents
is maximized) and we show that there are stable equilibria which are not efficient.
This implies that, if the network evolves through the selfish linking behavior of
agents, it may not reach an efficient equilibrium. This result is of interest for policy
design questions how to establish incentive mechanisms and legal frameworks in
order to help the system to reach its efficient equilibrium. Interestingly, the model
is also able to reproduce some of the main stylized facts of empirical studies on
R&D networks [27, 42, 12] - namely that such networks are sparse, clustered and
heterogeneous in degree - and therefore offers a candidate framework to explain the
formation of these networks.

In this paper, we consider the same model of [37] and we investigate further
some of its properties, in particular, the relation between the utility of the agents
and the properties of the adjacency matrix of the network. In addition, here we
also introduce a time delay τ in the decision about keeping or removing a link and
we investigate by means of computer simulation how the equilibrium reached by
the network is affected by increasing τ . The result is interesting in view of more
realistic models for the design of policies that may facilitate the formation of efficient
innovation networks.

The paper is organized as follows. First (Sec. 2), we introduce the dynamics
of knowledge exchange on a static network. Then we review some results from
algebraic graph theory and we discuss their implications for our model (Sec. 3).
We proceed by showing the existence of inefficient equilibria (Sec. 4-6). We finally
report the results of computer simulations of the evolution of the network, in par-
ticular, with respect to impact of the evaluation time of the links (Sec. 7). We
finally summarize the results and draw some conclusions (Sec. 8).

2. Knowledge dynamics and utility function of the agents. In this Section
we describe the dynamics of the state variable of the nodes in a static network. In
Section 5 we extend our studies to the endogenous evolution of the network whereby
we introduce the rules for the formation of links.

Consider a set of agents, N = {1, ..., n}, represented as nodes of an undirected
graph G, with an associated variable xi representing the knowledge of agent i. A link
ij, represents the transfer of knowledge between agent i and agent j. Knowledge is
shared among an individual’s direct and indirect acquaintances and the knowledge
level of an agent is proportional to the knowledge levels of its neighbors. We assume
that knowledge x = (x1, ..., xn) grows, starting from positive values, xi(0) > 0 ∀i,
according to the following linear ordinary differential equation

ẋi =
n

∑

j=1

aijxj , (1)
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where aij = {0, 1} are the elements of the adjacency matrix A of the graph G. In
vector notation we have ẋ = Ax. In the following we will use the terms network
and graph as synonyms.

Similar to [7] we assume that the gross return of agent i is proportional to her
knowledge growth rate, with proportionality constant set to 1 for sake of simplicity.
We also assume that maintaining a link induces a constant cost c ≥ 0 for both
agents connected by the link. Therefore the net return ρi of agent i is given by

ρi(t) =
ẋi(t)

xi(t)
− cdi, (2)

where di denotes the degree of agent i. We assume that the utility function of an
agent in a given network is her asymptotic net return ui = limt→∞ ρi(t) . As we

will show in the next Section, limt→∞
ẋi(t)
xi(t)

= λPF(Gi) where λPF is the spectral

radius of the block (sub-) matrix in A corresponding to the connected component
Gi to which i belongs to. Therefore, the utility function of agent i in a given network
is

ui = λPF(Gi)− cdi. (3)

As we will see later on, the evolution of the network stems from each agent trying
independently to increase her utility by forming or deleting links. Of course when
she does so, this affects the utility of the other agents which will react by forming or
removing other links. However, before describing the evolution of the network, we
want to discuss some implications of our assumptions on the growth of knowledge
and the utility function of the agents.

3. Knowledge growth and properties of the adjacency matrix. Since the
knowledge dynamics is linear and the utility function is proportional to the largest
real eigenvalue of the graph, there are many mathematical properties immediately
available for the static part of the model. In this Section we review the implications
of some well known results for matrices and graphs on the dynamics of knowledge
growth in the model. We will only focus on undirected graphs and symmetric
matrices respectively.

First of all, since the adjacency matrix in (1) is non-negative and in particular it
is a Metzler matrix, the vectorial space Rn

+ is invariant for the linear operator A. It
follows that for non-negative initial values (as assumed in the model), it is ẋ(t) ≥ 0
and x(t) ≥ 0, ∀t > 0 [45]. This ensures the following property:

Proposition 1. The values of knowledge x in (1) are non-negative for all times.

For convenience of the reader we report below some facts and definitions that we
need in the succeeding Sections.

A walk in the graph is an alternating sequence of nodes and links. The k-power
of the adjacency matrix is related to walks of length k in the graph. In particular,
(

Ak
)

ij
gives the number of walks of length k from node i to node j [20]. A connected

component of a graph is a maximal subgraph in which there exists a walk from
every node to every other node. The graph is connected when the only connected
component is the graph itself. If the adjacency matrix can be decomposed in blocks,
each block corresponds to a connected component.

An n×n matrix A is said to be a reducible matrix if and only if for some permu-
tation matrix P , the matrix PT AP is block upper triangular. If a square matrix is
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not reducible, it is said to be an irreducible matrix. The adjacency matrix of a con-
nected graph is always irreducible [30] and in particular it cannot be decomposed
in multiple blocks. Irreducible matrices can be primitive or cyclic (imprimitive)
[45]. This distinction is important because some result about the convergence of
the knowledge values holds only for graphs with primitive adjacency matrix.

For a primitive, non-negative matrix A it is Ak > 0 for some positive integer
k ≤ (n − 1)nn [30]. This means that, A is primitive if, for some k, there is a walk
of length k from every node to every other node. Notice that this definition is a
much more restrictive than the one of irreducible (or connected) graph in which it
is required that there exits a walk from every node to every other node, but not
necessarily of the same length. A graph is said to be primitive if its associated
adjacency matrix is primitive.

The general solution [30, 35, 4] of the system of linear ordinary differential equa-
tions in Eq. (1) is

x(t) = eAtx(0), (4)

where x(0) is the initial state and eA =
∑∞

n=0
A

n

n! is the matrix exponential. The
real, symmetric matrix A(G) is diagonalizable [23] and thus, the matrix exponential
can be written as

eAt = S











eλ1t 0 · · · 0
0 eλ2t · · · 0
...

...
. . .

...
0 0 · · · eλnt











S−1. (5)

λPF = λ1 ≥ λ2 ≥ ... ≥ λn are the real eigenvalues of A and S is a non-singular
matrix whose columns are the eigenvectors of A. Accordingly, for (4) we get [50]

x(t) =

n
∑

i=1

civie
λit, (6)

where ci are unknown constants, that are determined by the initial values x(0) =
∑n

i=1 civi, and v1, ...,vn the eigenvectors corresponding to the eigenvalues.
If the graph G is connected, then the largest real eigenvalue of G dominates all

other eigenvalues in the exponent for each component i in Eq. (6). Since the matrix
A ≥ 0 is non-negative, this eigenvalue coincides with the spectral radius and with
the Perron-Frobenius eigenvalue, λPF (see below). Thus, it is straightforward to see
that the ratio ẋi

xi

is dominated, for t→∞, by λPF,

lim
t→∞

ẋi

xi

= λPF. (7)

If the graph is disconnected, the agents in disconnected components Gi have uncou-
pled equations of the form (1) that can be solved separately. For each agent i, the
asymptotic growth rate in Eq. (7) is then given by the largest real eigenvalue of the
connected component of i. More precisely, let G = (V, E) be a graph with connected
components G1, G2, ..., Gl. The set of eigenvalues of G, i.e. the spectrum of G, is the
union of sets of eigenvalues of the components. Thus, λPF(G) = maxj{λPF(Gj)}
[43, 10].

In the following, we repeat here the Perron-Frobenius theorem in a formulation
convenient to our context [45].

Theorem 3.1 (The Perron-Frobenius Theorem). Let A be a non-negative matrix.
Then (1) the spectral radius is an eigenvalue, (called λPF) and all other eigenvalues
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are smaller or equal in absolute value; (2) λPF is associated to one or more non-
negative eigenvectors and, (3) λPF is bounded from below and above as follows:
mini

∑

j aij ≤ λPF ≤ maxi

∑

j aij .

If, in addition, A is an irreducible matrix, then (4) λPF has multiplicity 1 and
(5) the associated eigenvector is positive.

If, in addition, A is a primitive matrix, then (6) λPF is strictly greater in absolute
value than all other eigenvalues.

Notice that, going from non-negative to irreducible matrices the eigenspace of
λPF reduces from several non-negative eigenvectors to only one positive eigenvector.
In the limit of large t, the terms related to the largest real eigenvalues will dominate
in Eq. (6). In particular, it can be shown that for large t, the vector x(t) converges
(in direction) to a linear combination of Perron eigenvectors (associated to the
Perron eigenvalue λPF) [30], where the specific linear combination may depend on
the initial conditions. In particular, if the adjacency matrix is primitive, the Perron
eigenvector is unique and there is a unique stable attractor. Interpreting the result
in our model, one can say that

Proposition 2. If the graph of interaction between agents is primitive, there is a
unique asymptotic distribution of relative values of knowledge x/

∑n

j=1 xj given by
the Perron eigenvector of the adjacency matrix A.

If the assumption of primitivity of the matrix falls, in particular if the matrix is
non-negative but not irreducible, then there are, in general, several Perron eigen-
vectors and thus several possible equilibria for the relative values of knowledge,
depending on the initial condition.

It is useful to look at an alternative but equivalent way to characterize a primitive
graph. A graph G is primitive if and only if it is connected and the greatest common
divisor of the set of length of all cycles in G is 1 [49]. This means, for instance, that
the connected graph consisting of two connected nodes is not primitive as the only
cycle has length 2 (since the link is undirected a walk can go forward and backward
along the link). Similarly, a chain or a tree is also not primitive, since all cycles
have only even length. However, if we add one link in order to form a triangle, the
graph becomes primitive. The same is true, if we add links in order to form any
cycle of odd length. We can state the following result.

Proposition 3. If the graph G is connected, the presence of one cycle of odd length
is a sufficient condition for the primitivity of G and hence for the uniqueness of the
relative knowledge distribution x/

∑n

j=1 xj given by the Perron eigenvector.

We now discuss the relation between walks in the graph and growth rate of
knowledge. In our model, a walk in the graph corresponds to a sequence of agents
contributing to their individual knowledge to their neighbors in the walk in order
to generate a sequence of recombined knowledge. As mentioned in the beginning,
each component of the power k of the adjacency matrix,

(

Ak
)

ij
, gives the number

of walks of length k from node i to node j. Considering the vector u = (1, ..., 1), we
have that nk := uTAku is the number of all walks of length k among all nodes in G.
Since the adjacency matrix is symmetric we have that u =

∑

aiwi where wi is the
eigenvector of A associated with the eigenvalue λi. It follows that nk =

∑

i |ai|2λk
i .

For large k, we have approximately nk ∼ λk
PF [9], and we get

nk − nk−1

nk−1
∼ λPF − 1. (8)
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Thus, the largest real eigenvalue λPF of the graph measures the growth rate of the
number of walks of length k when the length increases by one, as well as the growth
factor of the number of knowledge recombinations in the network of collaborations.
As we have seen in the first part of this Section, λPF coincides also with the asymp-
totic growth rate of knowledge in time. Therefore, the faster the number of walks
in the graph (and thus of knowledge recombinations) grows with the length of the
walks, the faster also grows in time the knowledge of the agents involved. One
should not confuse the two growth rates, one in time and the other with respect to
walk length (which does not vary in time, as we are analyzing a static network).

A similar interpretation comes from the Rayleigh-Ritz theorem [30] which states
that:

λPF = max
x 6=0

xT Ax

xT x
, (9)

where the maximum is obtained for the Perron eigenvector associated with λPF.
Here, x can be any vector in Rn. xixj can be interpreted as the result of the
recombination of the knowledge of agents i and j if they are connected. Accordingly,
one can interpret the right-hand side of Eq. (9) as the maximum number of total
knowledge recombinations, xT Ax =

∑

i,j xiaijxj , normalized to the absolute total

knowledge, xTx =
∑n

i=1 x2
i . Some other results relate λPF to the number of links or

the degree of the nodes in the graph. For instance, the Perron-Frobenius theorem
states that λPF is bounded from below and above by the minimum and maximum
degree respectively (di =

∑

j aij is the degree of node i). This means, that the

higher (minimum or maximum) the degree of the nodes in the graph, the higher
λPF and thus the knowledge growth rate. We denote the maximum degree in G
by ∆. Then, a better lower bound holds so that

√
∆ ≤ λPF(G) ≤ ∆. We refer to

[15, 14] for other inequalities involving λPF.
There is also a result about the inequality of the growth rate of knowledge across

agents. For a primitive matrix A one can show [3] that the Perron-Frobenius
eigenvector associated with the eigenvalue λPF is the solution to the following op-
timization problem

max
x>0

min
1≤i≤n

∑n

j=1 aijxj

xi

, (10)

where
∑n

j=1 aijxj = (Ax)i = ẋi. The Perron eigenvector is the vector that max-
imizes the minimum growth factor over all agents i and also minimizes the maxi-
mum growth factor. By maximizing the minimum growth factor we obtain balanced
growth [3]. In terms of our model:

Proposition 4. If the graph G is primitive, the unique stable distribution of rela-
tive knowledge values x/

∑n

j=1 xj to which the dynamics (1) converges, is also the
distribution that minimizes the difference between maximum and minimum growth
rates across agents.

From the results above we can conclude that the utility function of agent i in Eq.
(3) increases with the number of walks in the connected component to which agent
i belongs to. On the other hand the utility decrease with the degree of the agent.
Therefore it is best for an agent to be able to reach the other agents through many
walks but to have not too many links. We now compare this utility function with
other similar utility functions in the literature on innovation networks that depend
on the position of an agent in the network. For instance, the utility function of [32]
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is given by

ui =

n
∑

i=1

δd(i,j) − cdi, (11)

where 0 ≤ δ ≤ 1 and d(i, j) is the length of the shortest path from node i to node
j. Other examples are those introduced by [28, 8] and [18, 11].

The cost term in our utility function (3) is the same as in (11). The difference
is in the benefit term: while the latter utility function only considers the shortest
path we take into account all walks across. It has been argued that that knowledge
gets transferred not only along the shortest path but also along all other paths in
the network [48]. Accordingly, all agents to which agent i is indirectly connected to,
contribute to the utility of agent i in our model. [1, 36] introduce a utility function
of the form

ui = |Gi| − cdi, (12)

where |Gi| is the size of the connected component of agent i ∈ Gi, that is the
number of agents who can be reached by agent i in the network G. This utility
function takes into account all agents that agent i can reach and it is higher the
more agents there are in its connected component. The difference between (12) and
our utility function (3) is that, in our model, not only the number of agents that
can be reached (size of the connected component |Gi|) but also the structure of the
component contributes to the utility of the agent.

4. Efficiency. In this Section we define the efficiency of the system (the social
optimum for all agents) and we show that if cost is not too high (c < 1/2), the
complete graph is efficient. In the following Section (6) we show that however,
during the evolution, the system does not necessarily reach the efficient network
and can very well stabilize in inefficient networks. For the investigation of the set
of efficient graphs in the whole range of cost, see [37]

Definition 4.1. The performance Π(G) of the network G is defined as the sum of
the individual utility

Π(G) =
∑n

i=1 ui

=
∑n

i=1 (λPF(Gi)− cdi)
=

∑n

i=1 λPF(Gi)− 2mc,
(13)

where m denotes the number of edges in G and Gi is the connected component to
which agent i belongs.

If G is connected, then there is obviously only one component. The idea of
Definition (13) is that, in order to maximize the performance of the system, one
has to maximize total knowledge growth while minimizing the total cost. Π is given
by the sum of the individual asymptotic net returns, which is just the sum of the
asymptotic individual knowledge growth rates ẋi

xi

minus the total cost for all links.
The network G∗ is called efficient, if it maximizes Π over the set of all possible

graphs with a given number of nodes:

G∗ = argmax
G

{Π(G) : |V (G)| = n}. (14)

Following [15] , we will denote the star with n nodes (and n − 1 edges) as K1,n−1

and the complete graph with n nodes as Kn.
We can immediately determine the efficient network, in the special case of null

costs, c = 0. The case c < 1/2 requires some more work.
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Proposition 5. If costs are zero, c = 0, then the complete graph Kn is the efficient
graph. Its performance is given by Π(Kn) = nλPF(Kn) = n(n− 1).

Proof. If costs are zero, then total asymptotic net returns are Π = nλPF. The
graph with the highest eigenvalue is the complete graph Kn with λPF(Kn) = n− 1
[29].

Proposition 6. The complete graph Kn is efficient for c < 1
2 . For costs c ≥ n the

empty graph is efficient.

Proof. Since for the complete graph it is λPF = n − 1 and m = n(n−1)
2 , its perfor-

mance is Π(Kn) = n(n− 1)− 2n(n−1)
2 c = n(n− 1)(1− c).

On the other hand, the largest real eigenvalue λPF of a graph G with m edges is
bounded from above so that λPF ≤ 1

2 (
√

8m + 1 − 1) [46]. For the performance of
the system we then have

Π =

n
∑

i=1

λPF(Gi)− 2mc ≤ n max
1≤i≤n

λPF(Gi)− 2mc

≤n

2
(
√

8m + 1− 1)− 2cm := b(n, m, c), (15)

with n ≤ m ≤
(

n
2

)

. For fixed cost c and number of nodes n, the number of edges

maximizing Eq. (15) is given by m∗ = n2−c2

8c2 if n2−c2

8c2 <
(

n
2

)

and m∗ = n(n−1)
2 if

n2−c2

8c2 >
(

n
2

)

. The graph with the latter number of edges is the complete graph.
Inserting m∗ into Eq. (15) yields

b(n, m∗, c) =

{

n
2 (

√

n2−c2

c2 + 1− 1)− n2−c2

4c
c > n

2n−1

n(n− 1)(1− c) = Π(Kn) c < n
2n−1 .

(16)

The bound for c ≤ n
2n−1 ∼ 1

2 coincides with the performance of the complete

0 0.5 1 1.5 2
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b(
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∗
,c
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c

Figure 1. Upper bound b(n, m∗, c) of Eq. (16) for n = 100 and
varying costs c. For c ≤ n

2n−1 the upper bound is given by the
complete graph Kn.

graph, Kn which is therefore the efficient graph. If instead c = n then m∗ = 0
and the efficient graph is the empty graph. This concludes the proof. Notice that
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a similar result can be obtained using an alternative bound for connected graphs,
λPF ≤

√
2m− n + 1 due to [29].

5. Network evolution. In our model we assume that agents have a certain in-
ertia for creating new links and evaluating their existing ones. The rate at which
links are formed is much slower than the rate at which knowledge flows (and the
knowledge stocks of agents change). In other words, there are two different time
scales in our dynamical system: the fast dynamics of the knowledge levels and re-
turns and the slow evolution of the network. The returns immediately reach their
quasi-equilibrium state, whereas the network remains unchanged during this short
adaptation time. One can say that the variables with the fast dynamics are “slaved”
by the variables with the slow dynamics [24] (see [22] for a review)1. We assume
that the knowledge growth rate has got very close to its asymptotic value when
agents create new links.

In the network evolution process, pairs of agents are asynchronously updated.
Let T count the number of such updates. At every network update T the following
steps are taken: (1) Two agents, not already connected, are uniformly selected at
random to form a link and the creation time T (birth date) is recorded for that link.
(2) All links that have been previously created and that are as old as τ are evaluated
(with τ as an exogenous parameter). For the evaluation of a link, the incident agents
compare their current utility at T with the utility before the creation at T − (τ +1),
i.e. before the birth date of the link. The link is maintained only if both agents
strictly increase their utility2, otherwise the link is removed. (3) Finally. the age of
all links is increased by one, T → T +1. This process is represented in the following
algorithm.

1 Initialization: empty graph
2 quasi-equilibrium (fast knowledge growth/decline):

With A fixed, the knowledge grows according to Eq. (1) to reach constant
growth rates (“balanced” growth).

3 perturbation: network update (slow network evolution)
(i) A pair of agents is randomly chosen to create a link.
(ii) The performance of the links attaining an age of τ is evaluated3:

if both utilities have increased → keep the link
otherwise → remove the link

4 Stop the evolution if the network is stable4, otherwise T → T + 1 and go to 2

In the version of the model analyzed here the links that pass the evaluation
τ network updates after their creation remain in the graph forever. Some of the
results presented here still hold if this hypothesis is relaxed and links are evaluated
again in the future and possibly deleted, but we do not consider this case in the
present paper. Moreover, we assume that the costs for a link are identical for both

1This principle has been used e.g by [33, 34] in the context of evolutionary biology. Subsequently
[44] have applied their model to an innovation system.

2Note that in the mean time the network and also the neighbors of the agents that are evaluating
the link may have different knowledge values which in turn affects the utility of the agents. This
means that the utility of the agents may have increased due to different reasons than the link that
is currently evaluated. In our model agents do not distinguish which of their links is responsible
for an increase or decrease in their utility separately but they rather observe the overall effect on
their utility by all their links at the same time.

3If τ = 1 the link that is created is immediately evaluated afterwards.
4The notion of stability is defined in (6.1)
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initialization

xi reach
quasi-equilibrium

perturbation
of aij

adjacent agents and its creation requires their mutual consent. Finally, the local
process of formation of links described above intends to mimic the process by which
selfish agents improve their utility through a trial and error method.

6. Stability. In this Section we first give a definition of stability as a stationary
network resulting from the network formation process described in the previous
Section. We then give two examples of stable networks that are not efficient, the
star K1,n−1 and the clique Kn. Finally we derive an upper bound for the cost of
links above which the complete graph is not reachable (and for costs c < 1

2 it is the
efficient network). In the proofs of this Section we assume an evaluation period of
τ = 1. This means that links are evaluated immediately after they are created.

The network evolution is in a stable equilibrium if it is bilaterally stable. A
network G is bilaterally stable if and only if no pair of agents, i and j, can create a
bilateral connection such that the utilities of both agents at the evaluation period
τ are higher than the current utilities. More formally,

Definition 6.1. For a fixed value of τ G is bilaterally stable at time t if there does
not exist a pair i, j such that both ui(t + τ) > ui(t) and uj(t + τ) > uj(t).

This definition is similar to the notion of pairwise stability introduced earlier by
[31]. Let G + uv denote the graph obtained by adding a link uv to the existing
graph G. The addition of one edge uv leads to a change in the individual utility ui

(cf. Eq. (3))

∆ui = ui(G + uv)− ui(G)
= λPF(G + uv)− c(di + 1)− (λPF(G)− cdi)
= ∆λPF − c.

(17)

Proposition 7. For τ = 1 and any value of cost c, there exists a number of nodes
n such that the star K1,n−1 is bilaterally stable .

Proof. We consider a graph with consisting in the star K1,n−1 as a subgraph and
some isolated nodes and we show that if n is large enough, the benefit of any
additional link is smaller than a given cost c. As shown in Fig. 2, there are only
three types of links that can be added, either between the nodes of the star or by
attaching a disconnected node.

(i) By adding a leaf to the central node of the star K1,n−1, (link (i) in Fig. 2),

the change in eigenvalue is ∆λPF =
√

n −
√

n− 1 which is monotonically
decreasing with n > 0. For any given c if

√
n−
√

n− 1 < c then no new node
will be attached to K1,n−1.

(ii) If a link is created from a disconnected node to a peripheral node in the star
(link (ii) in Fig. 2), then the resulting eigenvalue is smaller than the eigenvalue
obtained from the link created to the central node in the star. This comes
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Figure 2. A star K1,8 and an additional edge, appended either
from an isolated node to the nodes in the star or between two nodes
in the star.

from the fact that the former adjacency matrix is not stepwise while the latter
is, see [5].

(iii) The case of a link between two nodes in the star (link (iii) in Fig. 2) requires
a little more work. We use an upper bound due to [40] on the increase of
the largest real eigenvalue ∆λPF of a connected undirected graph G, if an
edge ij is added. The upper bound depends on the component i and j of the
eigenvector x associated to λPF:

λPF(G + ij)− λPF(G) < 1 + δ − δ(1 + δ)(2 + δ)

(xi + xj)2 + δ(2 + δ + 2xixj)
, (18)

where δ denotes the minimum degree in the graph G. With this upper bound
we can compute the change in individual utility by the addition of an edge,
∆ui = ∆λPF − c.

The characteristic polynomial of the star K1,n−1 is given by (λ2 − (n −
1))λn−2. Thus the largest real eigenvalue is λPF =

√
n− 1. The corresponding

normalized eigenvector is given by 1
2(n−1) (1, ..., 1,

√
n− 1, 1, ..., 1)T . Applying

Eq. (18) to the star K1,n−1 gives ∆λPF = (λPF(K1,n−1 + ij)− λPF(K1,n−1)) <

2− 4n2

1+2n2 which leads to ∆ui < 2
1+2n2 − c. For n ≥

√

2−c
2c

, ∆ui becomes neg-

ative and therefore adding the link is not profitable.

Combining the results above, and noticing that
√

n −
√

n− 1 > 2
2n2+1 , we can

conclude that, for any c, no link of either one of the three types is added to the star
for n large enough.

Notice that the bound of [40] which we used in the first part of the previous
Proposition holds only for connected graphs and cannot be used when adding a
link that connects a graph to a previously disconnected node. For the next proofs
we will use a bound on the increase of the largest real eigenvalue ∆λPF when a
link is added, which depends only on the number of links and nodes in the graph,
regardless of the structure of the links.

Proposition 8. The change in the largest real eigenvalue, ∆λPF of a graph G with
m edges and n nodes, by adding one edge to the graph is bounded as follows

∆λPF ≤
1

2
(−1 +

√

1 + 8(m + 1))− 2m

n
. (19)
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Figure 3. A complete graph K9 and a node appended.

Proof. The average degree of the graph is d̄ = 2m
n

. A lower bound on the largest real

eigenvalue is given by λPF ≥ d̄ [15]. An upper bound on the largest real eigenvalue
is given by λPF ≤ 1

2 (−1 +
√

1 + 8m) [46]. Combining the two bounds yields the
Proposition.

Proposition 9. For τ = 1 and any value of cost c, there exists a number of nodes
n such the clique Kn is bilaterally stable.

Proof. We consider the graph G′ obtained by connecting a clique Kn and an iso-
lated node via and edge (see Fig. 3). We consider the increase of the largest real
eigenvalue, ∆λPF = λPF(G′)− λPF(Kn) and we apply the bound of prop. 8. Since

d̄ = n− 1 in the clique, we have ∆λPF ≤ 1
2 (−1 +

√

1 + 8(m + 1))− (n− 1) which

is smaller than c for n > n∗ = 2+c(1+c)
2c

, as one can check solving the inequality for

m = n(n−1)
2 + 1.

There is another bound on the change of λPF for bilateral link deletion or creation:
if the undirected connected graphs G and G′ differ in only one edge then |λPF(G)−
λPF(G′)| ≤ 1 [16]. This bound is weaker than the ones previously introduced, but
it is still useful to derive the following Proposition.

Proposition 10. If costs are higher than one, c > 1, and τ = 1, then no agent will
create any link. Any graph is bilaterally stable and in particular, the empty graph
is bilaterally stable.

Since Eq. (1) implicitly assumes benefit equal 1 from a collaboration, the case
c > 1 is somehow an extreme case, because the cost of a link is higher than the
benefit and therefore the result above is not surprising.

We now prove that the efficient graph is not necessarily reached by the evolution
(see also Fig. 4).

Proposition 11. For τ = 1 and cost c < 1/2 the efficient, complete graph Kn of
size n ≥ 2

c
cannot be reached by the network formation process.

Proof. We apply the bound of Proposition (8) on the change in the largest real
eigenvalue, ∆λPF, by adding an edge to the graph G with m edges. Solving the
equation ∆λPF = c for m yields the maximal number m∗ of edges that can be
added to a graph of n nodes when the cost is c, m∗(n, c) = n

4 (−1 − 2c + n +
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Figure 4. Maximal value of cost c for which the complete graph
can be obtained as an equilibrium network.

√

n2 + 9− 2n(1 + 2c)). Notice that m∗(n, c) decreases with increasing cost c. Im-
posing now this expression to be equal to one edge less than the number of edges in

a complete graph Kn of n nodes,
(

n
2

)

−1 = n(n−1)
2 −1, we get c∗ = 2

n
. Thus, if costs

exceed this value then the increase in eigenvalue corresponding to the creation of
the link that would make the graph complete, is smaller than the cost. Notice that
c∗ decreases with n and tends to 0 for large n, as plotted in Fig. 4, and therefore
for any given c there is an n large enough such that the complete graph cannot be
reached.

Similar to previous works of other authors [32, 1, 11] we find stars and cliques to
be stable structures for a given value of cost for the links. However, in this model,
there is a limit size above which these networks can be stable. Moreover, for a same
level of cost, one can obtain both a star or a complete graph (with different n) as
stable equilibria of the dynamics. This points to the existence of multiple equilibria,
as investigated more thoroughly in [37]

7. Simulation studies of network evolution. For multiple realizations (simu-
lations)5 we study the evolution of the network and the stable equilibrium networks
reached by this evolution. In order to characterize the networks, we introduce some
simple network measures:

(i) The network density s(G) of a graph G is defined as the number of links m

divided by the maximum number of links n(n−1)
2 , i.e. s(G) := 2m

n(n−1) . s(G)

measures how sparse a network is.

(ii) The relative performance π(G) := Π(G)
Π(Kn) = Π(G)

n(n−1)(1−c) . π(G) measures the

relative performance of a network compared to the complete graph. In Sec-
tion 4 we have shown that for costs c < 1

2 the complete graph is efficient.
Thus, a value of the relative performance smaller than one is a measure of the
inefficiency of the network.

5When simulating the network evolution the largest real eigenvalue of the network has to be
computed many times. Since the largest real eigenvalue of a graph can be computed in polynomial
time [29] our model is well suited for numerical investigations.
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(iii) The clustering coefficient Ci for agent i is the proportion of links between the
agents within its neighborhood Ni divided by the number of links that could
possibly exist between them. More formally, let E(G) denote the set of edges
of the graph G and di = |Ni| the degree of agent i, then

Ci =
2|{jk : j, k ∈ Ni ∧ jk ∈ E}|

di(di − 1)
. (20)

The total clustering coefficient is the sum of the clustering coefficients for each
agent, C =

∑n

i=1 Ci. The global clustering coefficient is at most one.

We first study the networks obtained with an evaluation period τ = 1, which means
that agents evaluate their links immediately after reaching their balanced growth
rates. We then investigate the density and efficiency of the stable equilibrium net-
works that are reached, if τ is longer than 1. This means that agents are evaluating
their bilateral links after several other agents may have created bilateral links.

In Fig. (5), the evolution of the network measures mentioned above (the network
density, the relative performance, average degree and the global clustering coeffi-
cient) is shown for three particular realizations with n = 306 agents and different
values of cost, c ∈ {0.01, 0.2, 0.5}, c ≤ 0.5. These cost values range from a scenario
in which the formation of links is rather cheap over an intermediate level of cost
to high costs and they were chosen such that the complete graph is known to be
the efficient network. The values we measure are relative quantities with respect to
the complete graph. One can see that for c = 0.2 and c = 0.5, the stable equilib-
rium network is inefficient, sparse and highly clustered. It is important to notice
that those agents with high degree, which bear the cost of many interactions, have
smaller utility than those with a smaller degree. This is also indicated by the colors
of the nodes in Fig. (6). The agents with small degree are benefiting to a larger
extent than the high degree agents. This comes from the properties of the largest
real eigenvalue of the adjacency matrix. The eigenvalue of the network, which de-
termines the positive contribution to the individual growth rates, is the same for
all the agents in the same component, but the costs are depending on the degree.
Accordingly, the nodes with high degree have the same return as the nodes with
small degree from the network but they have to incur higher costs.

In Fig. (6)7 the stable equilibrium networks for 30 agents and three different
values of the cost are shown. The links between the nodes in the figure indicate
the mutual exchange of knowledge between agents (R&D collaborations). For small
costs, c = 0.1, the complete and efficient graph is reached. For intermediate costs,
c = 0.2, a sparse and highly clustered graph with a highly heterogeneous degree
distribution is obtained. For high costs, c = 0.5, the stable equilibrium network
consists of many small clusters. For exceedingly high costs the stable equilibrium
graph is identical to the initial, empty graph. One can see that by decreasing the
cost the size of the connected components grows. This is consistent with what has
been observed in a recent study by [27] on R&D collaborations of firms in the IT
industry.

6We have chosen a small network with 30 agents to make the network layouts more easily
readable and we have used this system sizes for all measures under investigation in order to keep
the results consistent. Moreover, the returns from a link are a function of the connected component
of an agent and not of the system size. Thus, the size of the connected components formed in the
equilibrium depend on the cost and not on the total number of agents. By increasing the system
size we therefore do not expect to obtain significantly different results than with the current size.

7The graphs were plotted with a network layout algorithm introduced by [19].
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Figure 5. Evolution of the network starting from an empty graph
until reaching its stable equilibrium configuration, Fig. (6 bottom).
The stable equilibrium network for intermediate costs c = 0.2 is
inefficient, sparse and is highly clustered, while for small costs c =
0.01 the efficient complete graph is realized.

In Fig. (7) network density s(G) and relative performance π(G) are shown for
increasing values of the evaluation period τ (10 realizations for every value of τ)
for n = 30 agents and intermediate costs c = 0.2. If the evaluation period is long
enough, the efficient graph, i.e. the complete graph, can be reached. Thus, if agents
are evaluating their interactions in the long-term, the performance of the system
can be increased up to the efficient state.

8. Conclusion. In this paper, we consider the economic model of network evolu-
tion introduced in [37] in the context of innovation and R&D collaborations. The
model is characterized by two time scales: there is a fast dynamics on the state vari-
able of the nodes, representing their knowledge, and a slow dynamics on the links
of the graph. Since the fast dynamics is linear and occurs on a static graph, there
is a number of well known results form the theory of matrices that can be applied
to the model and we have reviewed the most important of them. For what concerns
the evolution of the network we have used some results from the theory of graph
spectra to derive some Propositions on the efficiency and stability of the network.
In particular, we have provided a simple proof of the existence of equilibria, like the
star and the clique, that for c < 1/2 are not efficient but are stable. The existence
of inefficient equilibria is of interest to economists because it raises the issue of how
to design appropriate policies to help the system to reach the efficient equilibria.
Our simulations confirm the analytical results and show that the interplay between
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Figure 6. Initial (empty) network (top) and stable equilibrium
networks for costs c = 0.01 (left), c = 0.2 (bottom) and c = 0.5
(right). For all values of cost the complete graph is most efficient,
but only for a very small cost, c = 0.01 (left), it is reached in the
network evolution. For intermediate costs, (bottom), those agents
with a high degree, that are maintaining many links, have smaller
utility than those with a small degree. The color saturation of the
nodes indicates the utility of the agent compared to the maximum
utility.
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Figure 7. Density (a) and relative performance (b) for the stable
equilibrium networks with cost c = 0.2, n = 30 agents and 10
realizations for every evaluation period τ ∈ [0, 20]. By increasing
the evaluation period τ , the efficient graph, Kn, is reached.

dynamics on the nodes and topology of the network leads in many cases to equilib-
rium networks which are not efficient and are characterized, as observed in empirical
studies of R&D networks, by sparseness, presence of clusters and heterogeneity of
degree. In particular, we observe subgraphs of finite size and highly heterogeneous
degree distribution among which there are only a few connections. These properties
have been observed in empirical studies of innovation networks [13, 27] (for a more
systematic comparison with the stylized facts on innovation networks, see [37]).

As an new element, in this paper we also introduce a time τ after which agents
evaluate whether to keep or delete a link and we investigate by means of computer
simulation how the equilibrium reached by the network is affected by increasing the
time τ . If agents evaluate their interactions on a long-term, then they are able to
reach an efficient state, which, on the other hand, is not reachable, when collab-
orations are evaluated in the short-term. In other words, a short-sighted rational
behavior in the agents can give rise to inefficient networks, as often happens in
reality. Appropriate policy measures could be designed to support economic agents
in maintaining interactions even when, in the short run, they may be unprofitable.
Our model may serve as a first step towards both a theoretical explanation for
the empirical regularities in a R&D networks and a very simple test bed for policy
design.
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