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Abstract. We consider an optimization problem arising in the context of gas

transport in pipe networks. To compensate the pressure loss due to friction and
to guarantee a desired (time dependent) outflow profile, compressor stations
are included in the network. These compressor stations are relatively cost-
intensive, so that a cost effective control is required. In the presented model
the compressors are special vertices of the network. We derive an adjoint
calculus for gas networks to solve the optimization problem and prove well–
posedness of forward and adjoint coupling conditions. Furthermore, numerical
examples illustrate the obtained results.

1. Introduction. Recently, there has been intense research in physical phenomena
posed on networks with applications in gas dynamics [5, 6, 12, 13, 14, 16, 30, 35] and
other areas as for example traffic flow [8, 11, 19, 28, 29] or networks of open channels
[23, 24]. Recent work has also been conducted in the field of telecommunication
networks [2] and supply chains [1, 3, 4, 20].

This publication is concerned with the optimal control of gas networks which is
an important industrial problem and has been under investigation for several years,
see [17, 25, 37, 38, 40, 41]. Further control problems in the context with networks
have been studied in the case of traffic flow e.g. in [18, 26, 27] and in [22] for
water networks. In gas networks the basic physical phenomenon is pressure loss
due to pipe wall friction effects. Therefore, compressor stations are introduced at
certain points in the network raising again the pressure. One question arising in this
context is the optimal (i.e. cost effective) choice of the pressure energy which has to
be applied to satisfy certain pressure demands of customers. In this context models
for transient gas flow have been investigated recently, see e.g. [17, 35]. Therein,
discretized flow equations are used and solved by linear [21, 43, 45], mixed–integer
[35] or nonlinear optimization techniques [17]. We contribute to this discussion by
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considering a simplified model in a continuous setting. Well–posedness of the model
equations is shown. We investigate the approach of optimize–then–discretize in the
following sense: We first derive an adjoint calculus for a particular gas network
model. Then, we prove well–posedness of the arising coupling conditions in the
continuous optimality system. This guarantees that the optimality system can be
discretized. We finally discretize and solve numerically the optimality system on
a sample network and compare the results with another coarse scale model for
optimization of gas pipelines.

The outline of the paper is as follows. Section 2 deals with the modeling part. We
motivate the use of a simplified model for gas transport in networks and introduce
the basic notations for the network model. Further, a detailed analysis of the
equations is given. Section 3 is devoted to the optimization of this model and
Section 4 contains the numerical results. We summarize the results in Section 5.

2. Common Gas Models For Pipe Networks. We introduce the governing
dynamics for gas flow in pipe networks and some necessary notation.

In case of a single pipe and natural gas flow some common assumptions include
constant temperature of the gas. Further the pipe is modeled as an only one–
dimensional domain, see [37, 38, 40]. This allows to simplify the Euler equations
and obtain the following set of partial differential equations

∂tρ+ ∂x(ρu) = 0, (1a)

∂t(ρu) + ∂x(ρu2 + p(ρ)) = −fg
ρu|ρu|

2Dρ
, (1b)

where ρ(x, t) is the gas density u the gas velocity and p(ρ) an equation of state.
In the momentum equation we have a steady state friction factor fg calculated for
example using Chen’s formula [10]. The diameter of the pipe is D. Moreover, in
many cases the term ∂x

(

ρu2
)

in (1) can be neglected, see [37]. This simplification
can be justified when considering realistic high–pressure gas systems: Typical values
are u ≈ 10[m/s], c ≈ 300[m/s], ρ = 50[kg/m3] and p = 70 [bar]. For a pipe of length
L = 100[km] and a time period of t = 1[h], the momentum term ∂xρu

2 is of order
O(10−3), whereas all other terms (and in particular the friction term) is of order
O(1). The pipe wall friction factor fg is typically of orderO(10−2). This derivation is
only formal and not mathematically justified. However, the simplified equations are
commonly used in the engineering community [39, 44]. In the section on numerical
results we give a comparison of model (1) and its simplified version (2).

From now on, we consider this simplified model for gas transport.

∂tρ+ ∂x (ρu) = 0 (2a)

∂t (ρu) + ∂xp(ρ) = −fg
ρu|ρu|

2Dρ
. (2b)

The equation of state typically applied in the context of gas flow at constant tem-
perature is given by

p(ρ) =
zRT

Mg
ρ =: a2ρ, (3)

where p is the pressure, z the natural gas compressibility factor, R the universal
gas constant, Mg the molecular weight of the gas and T the temperature of the
gas. The resulting parameter a can be viewed as the speed of sound in the gas. It
describes the speed of propagation of simple waves in solutions to model (2).
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Figure 1. Illustration of the directed graph as model for a pipe network

Throughout the document we use the following notation

q := ρu, U :=

(

ρ
q

)

, F (U) :=

(

q
a2ρ

)

. (4)

We recall basic properties of (2) and equation (3). The eigenvalues are λ1/2 = ±a

and the corresponding eigenvectors are given by r1/2 =

(

1
±a

)

. A parameteri-

zation of the i-contact discontinuity curves through a given state Ul is hence given
by

Ui (ξ) = Ul + ξri = Ul + ξ

(

1
±a

)

−∞ < ξ <∞. (5)

The single model can be extended to a network as follows: We call a finite, di-
rected graph (J , V) a network. Both sets are supposed to be non–empty sets of
indices. Each element (edge) j ∈ J corresponds to a pipe. Each pipe is parameter-
ized by a finite interval Ij :=

[

xa
j , x

b
j

]

. Each element (node) v ∈ V correspond to a
single intersection of pipes. We refer to figure 1 for an example. For a fixed vertex
v ∈ V , δ−v (δ+v ) is defined as the set of all indices of edges j ∈ J ingoing (outgoing)
to the vertex v. We given an example: For the vertex v = 2 of figure 1 we have
δ−2 = {1}, δ+2 = {2, 3}. Note that for the vertex v = 1 and v = 5, the set δ−v = ∅
since these vertices are inlets. A similar argument holds true for the vertices v = 3
and v = 7, respectively. We further subdivide the set of vertices according to their
physical interpretation. For a vertex v ∈ V we define its degree as the total number
of connected pipes. We denote the degree of v by | · |. Any vertex of degree one, i.e.,
|δ+v ∪δ−v | = 1, is either an inflow (δ−v ∩J = ∅, vertices v = 1 and v = 5 in the exam-
ple network of figure 1) or outflow boundary node (v = 3, v = 7). The set of such
nodes is denoted by VI (e.g. gas providers) and VO (e.g. customers) respectively.
Further, we assume that each node v ∈ VC ⊂ V for some set VC and with degree
two is a compressor station (in the example of figure 1, VC = {6}). The remaining
nodes v ∈ VP := V\ (VC ∪ VI ∪ VO) are simple pipe–to–pipe intersections.

We assume the linear model (2) with equation of state (3) on each edge j of the
network

∂tρj + ∂xqj = 0 (6a)

∂tqj + a2∂xρj = −fg
qj |qj |

2Dρj
, (6b)

for x ∈ Ij and t ∈ [0, T ] and for some initial conditions

ρj(x, 0) = ρj,0(x), qj(x, 0) = qj,0(x). (7)
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Further, boundary conditions at x = xa,b
j have to be imposed. Typically, it is

reasonable to prescribe the pressure p(ρj) = a2ρj for the gas providers, i.e.,

ρj(x, t) = ρj,v(t), x = xa
j , j ∈ δ+v , v ∈ VI (8)

and the gas throughout qj at the customer nodes, i.e.,

qj(x, t) = qj,v(t), x = xb
j , j ∈ δ−v , v ∈ VO. (9)

Other choices are possible but not considered here. The boundary conditions at

x = x
a/b
j with j ∈ δ±v and for v ∈ VP are obtained by prescribing (algebraic) coupling

conditions at a vertex. Different conditions have been suggested and discussed in
the recent literature, c.f. [5, 6, 12, 13, 14]. Here, we make the following assumptions
which are commonly used in the engineering literature, see [15, 44].

(A1) ρj > 0, i.e. the solution cannot have vacuum states.
(A2) The pressure is constant at pipe-to-pipe intersections, in the sense

that, at any time t the trace of the pressure functions coincide at a
pipe–to–pipe intersection (see equation (10b) )

(A3) Mass is conserved at pipe–to–pipe intersections (see equation (10a))

Remark 1. Condition (A1) is imposed to obtain physical solutions. However,
for the linear model considered here, this condition is only relevant at compressor
stations as for example seen in figure 2: If we increased the compressor with P >> 1
we would generate a backwards moving wave with negative density on pipe one.
Recent investigations on alternatives to assumption (A2) in the case of (1) can be
found in [14]. However, in the case of (6) the conditions (A2) can be obtained by
the following procedure (see [33]): Since the intersection is a point of length zero we
neglect the friction term at the intersection for the following considerations. Then,
the momentum equation in the weak form for a single vertex v gives

∑

j∈δ±
v

∫ T

0

∫ bj

aj

∂tφjqj + ∂xφj (p(ρj)) = 0

for any set of test functions {φj}j∈δ±
v
, φj ∈ C∞

0 ([aj , bj ]× (0, T )). Suppose now that

aj = bi = 0 for j ∈ δ+v and i ∈ δ−v and bj − aj = 1 for all j ∈ δ±v . Then, we can
choose an arbitrary function φ ∈ C∞

0 ([0, 1) × (0, T )), arcs k, l ∈ δ±v and obtain for
φi ≡ 0, i 6= k, i 6= l, φk = φ, φl = −φ the relation

∫ T

0

φ(0, t) (p(ρk(0, t)) − p(ρl(0, t))) = 0.

This gives a mathematical justification for the condition (A2).

The previous assumptions motivate the following definition of a solution Uj =
(ρj , qj) at a single vertex v ∈ VP .

Definition 1. Consider a single vertex v ∈ VP and assume given constant initial
data U0

j on each edge j ∈ δ−v ∪δ+v with ρ0
j > 0. A family of functions (Uj)j∈δ−

v ∪δ+
v

is

called a solution at the vertex if Uj is a weak solution in pipe j and for Uj sufficiently
regular: For all j ∈ δ−v , for all i ∈ δ+v and any t > 0 the following equations hold

∑

j∈δ−
v

qj(x
b
j , t) =

∑

i∈δ+
v

qi(x
a
i , t), (10a)

p(ρj(x
b
j , t)) = p(ρi(x

a
i , t)). (10b)
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In proposition 1 we show that in fact (A2)–(A3) yield boundary conditions
for (6). The following propositions can also be formulated in the notion of special
Riemann Solvers (RS) at the intersection [11] or as half–Riemann problems [29].
Due to the linearity of the equations and the fact that the wave speeds in the
solution are ±a it suffices to give the construction of the boundary values.

Proposition 1. Consider a vertex v ∈ VP of degree |v| = n and let U0
i i = 1, . . . , n

be constant initial data satisfying (A1). Assume furthermore fg = 0. Then there

exists a unique solution Uj, j = 1, . . . , n in the sense of Definition 1 for all t > 0.

Proof. We construct solutions such that the conditions (10) are fulfilled for all t > 0

by prescribing boundary values at x = xa
j and x = xb

j , respectively. Let qj
k (ρ) be

the parameterization of the k-contact discontinuity curve (k = 1, 2) through the
given initial state U0

j in the (ρ, q)-plane. Then,
∑

j∈δ−
v

qj
1 (ρ) =

∑

i∈δ+
v

qi
2 (ρ) .

has a unique solution ρ̄ since the eigenvectors of ∇F are linearly independent.
Here, F is given by equation (4). Finally, the boundary values for pipe j are

Ūj =

(

ρ̄

qj
k (ρ̄)

)

.

In the case |v| = 2 the solution obtained by applying proposition 1 is the same
as to a classical Riemann problem for equation (6) with initial data U0

1 for x ≤ 0
and U0

2 for x > 0, respectively.
Finally, it remains to discuss boundary values for edges connected to vertices

v ∈ VC , i.e., the compressor stations. We introduce the (non–negative) time–
dependent functions Pv(t) for each v ∈ VC modeling the applied compressor power
at time t. For an applied power P = Pv(t) an ideal compressor station increases an
incoming pressure pin to pout according to [41]:

P = cq

((

pout

pin

)κ

− 1

)

.

Herein, c is a compressor dependent constant and κ = γ−1
γ and γ is the isentropic

coefficient, i.e., depending on the gas γ ∈ {5/3, 7/5}. We refer to [41, 25] for more
details. Similar to the previous approach we obtain boundary conditions from the
assumptions of mass conservation and the algebraic relation for the compressor
power. The following definition allows for well–defined boundary conditions for (6)
as stated in proposition 2.

Definition 2. Consider a vertex v ∈ VC with incoming pipe i ∈ δ−v and outgoing
pipe j ∈ δ+v with constant states U0

i and U0
j . Let Pv (t) > 0 be a given function.

Then, the functions Ui and Uj are called solution at the vertex v ∈ VC if they are
weak solutions on the pipe, satisfy assumption (A1) and fulfill

qi
(

xb
i , t
)

= qj (xa
i , t)

cqi
(

xb
i , t
)

((

ρj(xa
j , t)

ρi(xb
i
, t)

)κ

− 1

)

= Pv (t)
(11)

Remark 2. In the case P = 0 we recover the coupling conditions (10) for junctions
with two pipes.
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Proposition 2. Consider a vertex v ∈ VC and let U0
1 =

(

ρ0
1, q

0
1

)

and U0
2 =

(

ρ0
2, q

0
2

)

be initial states of pipe 1 and 2 respectively, satisfying

q01 + q02 − a
(

ρ0
1 − ρ0

2

)

6= 0. (12)

Assume furthermore fg = 0. Then, for any constant P ≥ 0 sufficiently small, there

exists a unique solution Ui, i = 1, 2 in the sense of Definition 2 for all t > 0.

Before giving the formal proof we illustrate the idea of the proof in Figure 2.
Therein U0

1 and U0
2 denote the initial states, Um is the intersection of U1(ξ) and

U2(τ). Note that for P = 0 (no compressor), this state is the right boundary con-
dition for pipe one and the left boundary condition for pipe two. Condition (12)
insures qm 6= 0, so that condition (11) can be fulfilled. Now, for P = 1 we obtain the
states Ū1 and Ū2. According to the figure, we can connect U0

1 to Ū1 by a 1-wave of
negative speed and similarly, Ū2 to U0

2 by a 2–wave of positive speed. Furthermore,
Ū1 and Ū2 are such that (11) are satisfied.

0 1 2 3 4 5 6 7 8

−4

−2

0

2

4

6

ρ

q

1−wave curve
2−wave curve
flux q for P=1

Ū1

Ū2

U
0
2

U
0
1

Um

Figure 2. Influence of a compressor on the solution near a vertex

Proof. The case P = 0 is included in proposition 1 for n = 2. Let P 6= 0 and let
U1 (ξ) and U2 (τ) be a parameterization of the 1- and 2-wave curves through the
states U0

1 and U0
2 , given by (5). Let Um := (ρm, qm) = U1 (ξm) = U2 (τm) be the

unique intersection point of curves ξ → U1 (ξ) and τ → U2 (τ) .
The pressure condition at the vertex v as function of ξ and τ is given by

c
(

q01 − aξ
)

((

ρ0
2 + τ (ξ)

ρ0
1 + ξ

)κ

− 1

)

= P

or equivalently

τ (ξ) =
(

ρ0
1 + ξ

)

(

P

c (q01 − aξ)
+ 1

)
1
κ

− ρ0
2

for q01 − aξ 6= 0. If we define

f (P, ξ) = q1 (ξ) − q2 (τ (ξ)) = q01 − aξ − q02 − aτ (ξ) ,

then clearly f (0, ξm) = 0 and ∂f
∂ξ (0, ξm) = −2a < 0 for all U0

i . By applying the

implicit function theorem we obtain unique values (ξ, τ) for the compressor coupling
and for P ≥ 0 sufficiently small. The corresponding boundary values for (6) are
therefore U1 (ξ (P )) and U2 (τ (ξ (P ))) for pipe one and two, respectively.
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Remark 3. Typically, compressors are accompanied by bypass pipes in case of
change in the flow direction. The compressor stations work only one–way. Assuming
that the compressor works for uj > 0, t > 0, we obtain the necessary condition
q01 − aξm > 0 which in turn yields q01 + q02 − a

(

ρ0
1 − ρ0

2

)

> 0 as conditions on the

initial states U0
1 and U0

2 .

Finally, we comment on other approaches to treat the model equations.

Remark 4. We present a gas model based on the linear Euler equations (2, 3). In
the case of the isothermal Euler equation (1) results similar to proposition 2 and 1
have been obtained in [25] and [5], respectively. Since (2) is linear, we could also
introduce the characteristic variables w± := ρ ± (ρu)/a and analyze the system in
diagonal form. Of course, we would obtain the same results. But since the physical
quantities for pipe–to–pipe intersections are ρ and ρu we prefer to use (2, 3).

3. The Optimization Problem And Adjoint Equations. In this section we
propose an optimization problem for the compressor power Pv subject to the gas
model introduced above. We further derive the optimality system and discuss prop-
erties of the adjoint equations.

The motivation for the optimization is as follows: The main interest of gas
providers is to minimize the compressor power such that certain desired output
pressures at the customer nodes are guaranteed. This problem has been studied in
the context of mixed–integer optimization in [35] and in the context of fully dis-
cretized equations in [16]. Here, we use similar cost functionals and constraints as
in the given references but deal with the continuous setting.

We assume each compressor v ∈ VC to be controlled independently by prescribing
a time–dependent compressor power Pv(t) and define P (t) := (Pv(t))v∈VC

. We
assume that each customer has a known desired pressure consumption Rj(t) for
j ∈ δ−v , v ∈ VO. We further assume that the desired pressure can be delivered
by suitable compressor controls. As a first step we consider a cost functional of
tracking–type for the desired pressure (see below for a discussion).

J (P,U) =
∑

v∈VC

∫ T

0

ωvPv(t) dt

+
∑

j∈δ−
v ,v∈VO

∫ xj

b

xa
j

∫ T

0

αj

2
(p(ρj (x, t)) −Rj)

2
dxdt

+
∑

i∈δ−
v ,v∈VO

∫ T

0

αv

2

(

p(ρi(x
b
i , t)) −Ri

)2
dt

where U = (Uj)j∈J , for given non–negative weights ωv(t), αj(x, t) and αv(t). The
optimization problem then reads

min J(P,U) subject to (6), (7), (8), (9), (10) and (11) (14)

Some comments are in order.
Firstly, we use the time–dependent compressor power as control for our problem.
For any fixed function Pv(t) we can compute the solution to the partial differential
equations (6) with the coupling conditions (10) and (11). Then, we can evaluate the
cost functional. Further, we also evaluate its gradient with respect to the compressor
control by means of the adjoint calculus introduced below. This information is then
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used to apply steepest descent type methods for numerically solving problem (14),
see section 4 and e.g. [42].
Second, we use the L2−norm to measure the difference between applied and desired
pressure on some part of the customers pipe as well as directly at the customers
node. This straightforward choice allows for a convex differentiable cost functional
and therefore regularizes the optimization problem. A more realistic modeling would
prescribe the customers desired pressure as state constraints, i.e.,

p(ρj(x
b
j , t)) ≥ Rj(t) j ∈ δ−v , v ∈ VO.

However, due to the finite speed of propagation this constraint is clearly violated
for a certain time interval, if the initial data does not fulfill this restriction, see also
section 4, figure 5.
Third, as in [35, 17] we assume a simplified, linear relation between the assigned
compressor power Pv(t) at time t and compressor v ∈ VC and the corresponding
costs. These costs typically arise from fuel used by the compressor station. For
high–pressure gas pipes so–called turbo–compressors are used [16, 17]. This type
of compressor station is modeled as single idealized compressor with a constant
efficiency and fuel consumption linearly related to the compressor power. Hence,
the factor ωv measure the costs per consumed fuel unit.
Fourth, there is no physical meaning of P < 0. Hence we additionally enforce the
control constraint

P ≥ 0

and present the changes to the optimality system in remark 5.

Derivation of the adjoint equations. In the sequel, we first formally derive the ad-
joint equations and then discuss their analytical properties. Denote by Φj = (ϕj , ψj)
the Lagrange multiplier for density ρj and flux qj , respectively. Then, the Lagrange
functional is given by

L := J(P,U) −
∑

j∈J

∫ T

0

∫ xb
j

xa
j

(

∂tρj + ∂xqj
∂tqj + ∂xa

2ρj +
fg

2D
qj |qj |

ρj

)T

·

(

ϕj

ψj

)

dxdt

The following optimality system can be derived:

• On each pipe j ∈ J the forward equations are

∂tρj + ∂xqj = 0, ∂tqj + a2∂xρj = −fg
qj |qj |

2Dρj

with initial conditions ρj (x, 0) = ρj,, qj (x, 0) = qj,0 and the adjoint equations
are

− ∂tψj − ∂xϕj = −fg
|qj |

Dρj
ψj , (15a)

−∂tϕj − a2∂xψj = fg
qj |qj |

2Dρ2
j

ψj + δi,j αi a
2 (p(ρi(x, t)) −Ri) (15b)

Therein, i := j if and only if j ∈ δ−v for some v ∈ VO. The terminal conditions
are ϕj (x, T ) = 0, ψj (x, T ) = 0.

• For any vertex in v ∈ VP , i ∈ δ+v , j ∈ δ−v , the following conditions hold for
the forward

∑

i∈δ+
v

qi (xa
i , t) =

∑

j∈δ−
v

qj
(

xb
j , t
)

, ρi (xa
i , t) = ρj

(

xb
j , t
)
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and the adjoint problem, respectively,
∑

i∈δ+
v

ψi (xa
i , t) =

∑

j∈δ−
v

ψj

(

xb
j , t
)

, ϕi (xa
i , t) = ϕj

(

xb
j , t
)

. (16)

• For any vertex which is either an inflow or outflow node, we obtain conditions
for the forward system

ρj(x
a
j , t) = ρj,v(t), j ∈ δ+v , v ∈ VI , qj(x

b
j , t) = qj,v(t), j ∈ δ−v , v ∈ VO

and for the adjoint system

ϕj(x
a
j , t) = 0, j ∈ δ+v , v ∈ VI ,

ψj(x
b
j , t) = αv

(

a2ρj(x
b
j , t) −Rj

)

, j ∈ δ−v , v ∈ VO
(17)

• For the controllable vertices v ∈ VC and with i ∈ δ+v , j ∈ δ−v we obtain the
forward conditions as

qi (xa
i , t) = qj

(

xb
j , t
)

, Pv = c qj
(

xb
j , t
)

((

ρi (xa
i , t)

ρj

(

xb
j , t
)

)κ

− 1

)

and the adjoint conditions as

ϕi (xa
i , t) = ϕj

(

xb
j , t
)

+
a2ψi(x

a
i , t)Pv(t)ρj(x

b
j , t)

cκq2i (xa
i , t)

(

Pv(t)

cqi(xa
i , t)

+ 1

)
1
κ
−1

(18a)

Pv = cqi (xa
i , t)

((

ψj

(

xb
j , t
)

ψi (xa
i , t)

)κ

− 1

)

(18b)

• The optimality condition reads

ωv +
a2

κc

ρj

(

xb
j , t
)

qi (xa
i , t)

(

Pv (t)

cqi (xa
i , t)

+ 1

)
1−κ

κ

ψi

(

xi
a, t
)

= 0 (19)

for all v ∈ VC , i ∈ δ+v , j ∈ δ−v .

Remark 5. If we additionally restrict P to non-negative values the optimality
condition (19) changes as follows.

∑

v∈VC

∫ T

0



ωv +
a2

κc

ρj

(

xb
j , t
)

qj
(

xb
j , t
)

(

P ∗
v (t)

cqj
(

xb
j , t
) + 1

)
1−κ

κ

ψi (xa
i , t)



 · (P ∗
v − Pv) dt ≥ 0

(20)
for all Pv ≥ 0 where i ∈ δ+v and j ∈ δ−v .

There is the a further meaning of equation (19): The left–hand side of the equa-

tion is the gradient of the reduced cost functional J̃ with respect to Pv(t). Similarly,
equation (20) yields that in the case of the constraint Pv ≥ 0 the gradient of the
reduced cost functional is non–negative and vanishes for Pv > 0.

Next, we discuss the adjoint coupling conditions and prove that these condi-
tions yield a well–defined boundary value problem for (15). The eigenvalues of the
adjoint equations are given by µ1/2 = ±a and the corresponding eigenvectors are

s1/2 =

(

±a
1

)

. This yields a parameterization of the i-contact discontinuity curve

of the adjoint equations through a given state Φ̄ =
(

ϕ̄, ψ̄
)

by

Φi (ξ) = Φ̄ + ξsi = Φ̄ + ξ

(

±a
1

)

−∞ < ξ <∞ (21)
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Analogously to the definitions 2 and 1 we define:

Definition 3. Consider a single vertex v ∈ V and assume given constant initial
data Φ0

j on each edge j ∈ δ−v ∪ δ+v . A family of functions (Φj)j∈δ−
v ∪δ+

v
is called

a solution at the vertex v ∈ V \ (VI ∪ VO) if Φj is a weak solution in pipe j and
satisfies the coupling conditions (16) for v ∈ VP or (18) for v ∈ VC respectively (for
Φj sufficiently regular).

The coupling conditions (16) conserve the adjoint mass and prescribe equality
of the adjoint pressure. Hence, analogously to proposition 1 we obtain the well–
posedness of the boundary conditions for the adjoint equations (15) on edges j
connected to a vertex v ∈ VP in the following sense:

Proposition 3. Consider a vertex v ∈ VP and let Φ0
i i = 1, . . . , n be initial states

and assume fg = 0. Then there exists a unique solution Φj, j = 1, . . . , n in the

sense of Definition 3 for all t ≥ 0.

Similarly, we obtain well–defined boundary conditions for edges connected to
v ∈ VI ∪VO. It remains to discuss the adjoint coupling conditions for a compressor.

Note that for P = 0 the coupling conditions at a compressor vertex v ∈ VC reduce
to the linear coupling conditions for standard pipe-to-pipe intersections v ∈ VP .

Proposition 4. Consider a vertex v ∈ VC and assume fg = 0. Let Φ0
1, Φ0

2, U
0
1

and U0
2 be initial states satisfying q01 + q02 + a

(

ρ0
1 − ρ0

2

)

6= 0. Then, for any constant

P ≥ 0 sufficiently small, there exists a unique subsonic solution Φi = (ϕi, ψi),
i = 1, 2 in the sense of Definition 3 for all t > 0.

Proof. Let Φ1 (ξ) and Φ2 (τ) be a parameterization of the 1- and 2-wave curves
through the states Φ0

1 and Φ0
2, given by (21). Analogously to the considerations in

the proof of proposition 2, we have to assure that the coupling conditions (18) are
fulfilled for all t > 0. This means that we seek states Φ̄1 and Φ̄2 such that Φ0

1 and
Φ̄1 are connected by a 1-wave and Φ0

2 and Φ̄2 are connected by a 2-wave.
For P = 0 the solution Φi, (i = 1, 2) has to satisfy ϕ1

(

xb
1, t
)

= ϕ2 (xa
2 , t) and

ψ1

(

xb
1, t
)

= ψ2 (xa
2 , t). Define now by Φm := (ϕm, ψm) = Φ1 (ξm) = Φ2 (τm) the

unique intersection point of Φ1 (ξ) and Φ2 (τ). Note that τ (ξm) = τm. Then the
solution Φi is given by the solution of the Riemann problem

∂tΦi +

(

0 a2

1 0

)

∂xΦ = 0 (22)

with initial conditions

Φ1 (x, 0) =

{

Φ0
1 x < xb

1

Φ̄1 x ≥ xb
1

(23)

Φ2 (x, 0) =

{

Φ̄2 x ≤ xa
2

Φ0
2 x > xa

2
(24)

at the vertex v for Φ̄1 = Φ̄2 = Φm.
Due to proposition 2 we know that for every P ≥ 0 sufficiently small there exist
states U1

(

x1
b , t
)

) = U1

(

xb
1, t, P

)

and U2 (xa
2 , t) = U2 (xa

2 , t, P ) satisfying the coupling

conditions (11). Recall that, directly at the vertex, U1

(

xb
1, t, P

)

is independent of t

but not of P . To simplify the notations, we write U1 (P ) =

(

ρ1 (P )
q1 (P )

)

instead of

U1

(

xb
1, t, P

)

.
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Recall that q1
(

xb
1, t
)

= q2 (xa
2 , t) and therefore the adjoint coupling conditions at a

compressor node for P 6= 0 are

ϕ2 (xa
2 , t) = ϕ1

(

xb
1, t
)

+
a2ψ2(x

a
2 , t)Pv(t)ρ1(x

b
1, t)

κcq21(x
b
1, t)

(

Pv(t)

cq1(xb
1, t)

+ 1

)
1
κ
−1

Pv = cq1
(

xb
1, t
)

((

ψ1

(

xb
1, t
)

ψ2 (xa
2 , t)

)κ

− 1

)

Due to the parameterization of ϕ and ψ, we get ψ1 (ξ) = ψm+ξ and ϕ1 (ξ) = ϕm−aξ
for some ξ and ψ2 (τ) = ψm + τ as well as ϕ2 (τ) = ϕm + aτ for some τ . We can
thus express the coupling condition in terms of ϕi and ψi to get an expression for
τ in terms of ξ.

τ (P, ξ) =
(

g (P, q1 (P ))
1
κ − 1

)

ψm + g (P, q1 (P ))
1
κ ξ,

where g (P, q1 (P )) =
(

P
cq1(P ) + 1

)

. Define

f (P, ξ) = ϕ1 (ξ) +
a2Pρ1 (P )

κcq21 (P )
g (P, q1 (P ))

1−κ
κ ψ2 (τ (P, ξ)) − ϕ2 (τ (P, ξ))

Then clearly f (0, ξm) = 0 since τ (ξm) = τm and

∂

∂ξ
f (P, ξ) = −a

(

1 + g (P, q1 (P ))
1
κ

)

−
a2Pρ1 (P )

κcq21 (P )
g (P, q1 (P ))

2−κ
κ ,

since d
dξψ (τ (P, ξ)) = g (P, q1 (P ))

1
κ .

Note that ∂
∂ξ f (0, ξm) = −2a. Using the implicit function theorem we now conclude

the existence of a neighborhood B (0) ⊂ R and a function ξ : B (0) → R mapping
P onto ξ (P ) with ξ (0) = ξm and f (P, ξ (P )) = 0 for all P ∈ B (0). This yields the
solvability of the compressor coupling conditions (18) for P sufficiently small. The
solutions Φ1 and Φ2 are then given by the solution to the Riemann problem (22),

(23), (24) for Φ̄1 =

(

ϕ1 (ξ (P ))
ψ1 (ξ (P ))

)

and Φ̄2 =

(

ϕ2 (τ (P, ξ (P )))
ψ2 (τ (P, ξ (P )))

)

.

4. Numerical Examples. We present numerical examples for solutions to the
optimization problem (14). We discretize the optimality system (’optimize–then–
discretize’) using a second–order relaxed finite volume scheme, see [7, 31, 34].
For the simplified model this reduces to a second–order upwinding scheme with
minmod–limiter. The source term is integrated exactly in the case of the forward
equation (6) and an explicit forward Euler discretization in case of the adjoint equa-
tion (15). The cost functional is discretized using a second–order quadrature rule.
The optimization is carried out for the reduced cost functional using a steepest
descent method with second–order correction, see [32, 36]. The optimization is ter-
minated if the projected gradient is less than the tolerance tol in the L2−norm.
Further parameters are κ = 2

7 , a = 1, c = 1, D = 1
2 and xb

j − xa
j = 1 for all pipes.

The examples will be presented for the simple test case of two connected pipes with
a single compressor station as depicted in figure 3. The cost functional is given by
(13) with ων = 1, αj = 0 and αv = 100.
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Figure 3. Sample network with a single compressor station.

Verification of adjoint equations. At first we verify the adjoint calculus by compar-
ing with a finite difference approximation of the gradient. The cost functional is
given by (13) and using the adjoint calculus its reduced gradient is given by (20).
We compare both gradients using Nx × Nt = 11 × 27 = 297 discretization points
and a network consisting of two arcs connected by a compressor. We report the
gradient for a given compressor control with starting value P = 0 in figure 4 and
observe a good agreement between the finite difference approximation to the gradi-
ent and the adjoint calculus. We emphasize that the computation of the gradient
using the adjoint calculus only requires to solve once (6) and once (15) independent
of the number Nt of discretization points for the compressor control P i

v = Pv(ti).
However, using a central finite difference approximation the gradient approximation
needs 2 ·Nt computations of (6).
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Finite Differences

Figure 4. Comparison between gradient computed by the adjoint
method (solid line) and a finite difference approximation of the
gradient (dashed line)

Time–dependent optimization results. Initially, we assume that the compressor is
turned off and the network is at steady state with an outflow pressure of p(ρ(a1, 0)) =
3 and a flux of q2(b2, 0) = 15 at the customer. Then, the pressure profile along the
pipe is square–root shaped and decreasing to nearly 1

2 at x = b2. We prescribe a
time horizon of T = 2 and assume that customer requires a pressure distribution as
depicted in the lower right part of figure 5. We solve the optimization problem for
the time–dependent compressor energy Pv(t) on a grid Nx × Nt = 100 × 264 per
pipe. The optimization with initial guess Pv(t) ≡ 0 terminates within a tolerance
of 10−2 using 92 iterations. The optimal compressor energy P ∗

v (t) is depicted in the
lower left part of figure 5. Further, we report the corresponding optimal density and
flux evolution in the top part of this figure. We observe the expected results: Since
wave speeds and length of the pipe are equal, any change in the compressor energy
at time t > 1 does not reach the boundary x = b2 within the given time interval
T = 2. Therefore, the compressor energy drops down to zero at t ≈ 1. Similarly, in
the comparison of the finally obtained pressure at x = b2 and the desired pressure
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we again observe that changes in the compressor energy only affect the outlet pres-
sure for t > 1. The emerging of waves introduced by turning on the compressor can
be observed in the contour plots for density and flux. The emerging waves reach the
boundary of the computational domain and interact with the boundary conditions
which can yield traveling waves and yields the zig zag pattern. At x = 1 the pipes
one and two are coupled by the compressor. We observe the equal flux through
x = 1 as prescribed by the coupling condition (11) as well as the discontinuity in
the density as long as the compressor is turned on, i.e. for t ≤ 1.
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Figure 5. Results on transient gas flow for network (3). Arc one
and two correspond to x ∈ (0, 1) and x ∈ (1, 2), respectively. The
optimal pressure control P ∗

v (t) is given in the lower left plot, the
corresponding density and flux evolutions in the upper left and
upper right part. The desired pressure at x = b2 and the actual
achieved pressure are depicted in the lower right part.

Comparison to the steady–state optimization problem. Depending on the size of the
network and the discretization, problem (14) can be computationally expensive to
solve and the question arises whether or not one can replace the already simplified
dynamics by an even simpler one. On the toy problem (figure 3) we compare
the impact of the transient model with a coarser model. The coarse model is
obtained assuming a steady–state inside each pipe. Then, (6) reduces to an ordinary
differential equation for the pressure loss along the pipe. To be more precise, a
steady–state solution Uj = (ρj(x), qj(x)) on pipe j to equations (6) satisfies

qj = const , ∂xp(ρj) = −
fgqj |qj |

2Dρj
, (25)
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where the flux qj is determined by the boundary condition. Again, we couple this
model using the conditions (10) and (11). In our example given by figure 3, the
pressure on the customer’s pipe (j = 2) can be computed exactly by solving (25),
(11), (9), (8). The pressure on the customer pipe is then given by

p2(ρ2(x)) = −
fga

2q2,0|q2,0|

D
(x− xa

2)

+

(

p2(ρ1,0) −
fga

2q2,0|q2,0|

D
(xb

1 − xa
1)

)(

Pv

cq2,0
+ 1

)
2
κ

,

for x ∈ [xa
2 , x

b
2], possibly time–dependent inlet pressure of p(ρ1,0), outlet flux of q2,0

and compressor energy Pv. Using the same cost functional as in (14), the optimiza-
tion problem reads

min J(P,U) subject to (25), (7), (8), (9), (10) and (11) (26)

In the following, we compare the solutions to (14) and (26). In the latter case the
solution is obtained by a quasi–Newton descent method, see [32] up to order 10−6.
We use the same boundary data as before and consider an optimization horizon
of T = 3. The desired state Ri is given by Ri = 3

2 + 1
2 sin

(

2πt+ 1
4

)

as in the
previous example. The solution on [0, 2] to (26) is depicted in figure 6. In contrast
to the transient case there is no delay due to traveling waves and the compressor
power is such that the desired pressure is instantaneously obtained. Hence, the
optimal compressor power has also a sinusoidal shape. Next we compare the optimal
compressor power obtained when solving (14) with (26) in figure 7. We observe some
differences. Qualitatively they are similar, but due to the induced dynamics in the
transient model there are quantitative differences. The effect of the quantitative
differences is observed in the right part of figure 7. Therein, the optimal control
obtained for the steady–state model, i.e. (26), is used as compressor control for
the dynamic model, i.e., (6). Comparing this with the right part of figure 5 we
observe a rather huge difference between the actual pressure at the customer and
the desired pressure. This indicates that there are significant differences between
solutions to problems (14) and (26) even so their qualitative behavior is similar. In
this example the coarse model (25) cannot provide reasonable optimal controls for
the full transient model (6).
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Figure 6. Results on problem (26). Difference between desired
and actual pressure profile at the customer (to the left) and corre-
sponding optimal compressor power P ∗

v (t) (to the right).
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Figure 7. Comparison of the optimal compressor power of (26)
(dashed line) and (14) (solid line) in the left part. Outflow pressure
using model (6) with the optimal compressor power obtained from
(26).

Comparison of nonlinear, simplified and steady–state models. As stated in the in-
troduction, the model under consideration is a simplification of the isothermal Euler
equations. In this section we compare the qualitative and quantitative difference
between the full nonlinear model (1), the simplified model (2) discussed in this
work and the steady–state problem (25). We compare the models under realistic
conditions taken from [9, 39]: Each pipe has a length x = 100[m], the speed of
sound is a = 300[m/s]. The inlet pressure is p(ρ(xa

1 , t)) = 40[bar] and the outlet
flux is q(xb

2, t) = 3.74 105[m3/h] under standard conditions. The friction factor is
fg = 1.1 10−2.

In order to investigate the dependence on the optimal compressor power we
consider a situation as in figure 3. Therein, a single compressor connects two pipes.
We prescribe the inlet pressure and the outlet flow with values stated above. We
assume an optimal compressor power control as

Pv(t) =
1

2
+

1

4
sin(π

t

2
)

and a time horizon of T = 4[min]. We simulate the nonlinear model (1), the simpli-
fied model (2) and the steady–state model (25) with the given control. We refer to
[25] for a discussion of the necessary compressor coupling conditions for the isother-
mal Euler equations. We present results on the outlet pressure for all simulations in
figure 8. For a detailed comparison of the pressure evolution for the isothermal and
simplified model in each pipe we refer to figure 9. Under the given flow conditions
we observe a qualitative and quantitatively good agreement between the isothermal
and the simplified model. Peaks and sinks in the final pressure evolution are cap-
tured by the simplified model. The maximal difference in pressure at the outlet is
less than 2[bar] corresponding to an error of less than 5%. This is even true for the
full time evolution of the problem as seen in figure 9. This supports the fact that
in realistic flow regimes the nonlinear momentum can be neglected without losing
qualitative features of the solution. As already seen in the previous example and as
expected the steady–state approximation is rather inaccurate and cannot capture
the detailed dynamics.



748 MICHAEL HERTY AND VERONIKA SACHERS

0.5 1 1.5 2 2.5 3 3.5 4

40

41

42

43

44

45

46
Pressure at x=200[m] for a=300 [m/s]

t

[b
ar

]

 

 
Steady−State
Linear Euler
Nonlinear Euler

Figure 8. Comparison of outlet pressures p(ρ(xb
2, t))[bar] for sim-

ulations of isothermal, simplified and steady–state model. In all
cases the same compressor power is applied.

Figure 9. Simulation results for the pressure in the isothermal
and simplified model, respectively. The same compressor power
and the same boundary conditions are applied in both cases. The
location of the compressor is at x = 100.

5. Summary. We presented an optimization problem for a simplified model used
in gas dynamics on networks with compressor stations. We derived an adjoint
calculus and provided an analysis using the coupling conditions arising. The derived
equations have been implemented and tested on a small toy example to illustrate the
qualitative behavior of the expected solutions. A comparison with a steady–state
optimization is provided.
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