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Abstract. The paper proposes a feedforward boundary control to reject mea-
sured disturbances for systems modelled by hyperbolic partial differential equa-
tions obtained from conservation laws. The controller design is based on fre-
quency domain methods. Perfect rejection of measured perturbations at one
boundary is obtained by controlling the other boundary. This result is then
extended to design robust open-loop controller when the model of the system is
not perfectly known, e.g. in high frequencies. Frequency domain comparisons
and time-domain simulations illustrates the good performance of the feedfor-
ward boundary controller.

1. Introduction. In this paper, we consider the control of plants whose models
are hyperbolic partial differential equations obtained from conservation laws, with
an independent time variable t ∈ [0, +∞) and an independent space variable on a
finite interval x ∈ [0, L].

The motivation of this work is related to the problem of controlling an open-
channel around a given regime, represented by linearized Saint-Venant equations.
These hyperbolic partial differential equations describe the dynamics of open-channel
hydraulic systems assuming one dimensional flow. Numerous publications are re-
lated to the design of open-loop controllers for open-channel systems. Most of
them are based on simple approximate formulations, see e.g. [17, 13, 3, 14, 2] and
references therein.

We focus on the design of a feedforward control law in order to reject measured
disturbances using boundary control. This open-loop control problem was first con-
sidered in [1], where the authors used a Riemann invariants approach to derive
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an explicit expression for the open-loop control. The proposed method is how-
ever restricted to specific hyperbolic plants corresponding to horizontal frictionless
channels. Following previous works by the authors (see e.g. [10, 12]) we consider
in this paper a more general class of hyperbolic systems, and use a frequency do-
main approach. This enables us to extend the results of [1] to the case of canal
pools with nonzero slope and friction, and arbitrary uniform geometry (not nec-
essarily rectangular). We design a feedforward compensator that perfectly reject
the perturbation. Since the obtained compensator is actually an irrational transfer
function, we propose and compare various rational approximations. We also inves-
tigate how to design a rational pre-compensator by explicitly considering the plant
uncertainties, that is, a robust feedforward boundary controller.

The proposed feedforward control is tested in simulation for an open-channel
described by linearized Saint-Venant equations where the upstream discharge is the
disturbance and the control variable is the downstream discharge.

2. Control problem statement. We consider a plant modelled by an hyperbolic
partial differential equations obtained from conservation laws:

∂ξ

∂t
+

(

0 1
αβ α − β

)

∂ξ

∂x
+

(

0 0
−γ δ

)

ξ = 0 (1)

where t and x are the two independent variables: a time variable t ∈ [0, +∞)
and a space variable x ∈ [0, L] on a finite interval, ξ(t, x) = (h(t, x), q(t, x))T :
[0, +∞) × [0, L] → Ω ∈ R

2 is the state of the system; α > β > 0, γ ≥ 0 and δ ≥ 0
are positive real scalars.

The two equations of system (1) can be interpreted as a mass conservation law
with h the conserved quantity and q the flux. The second equation can then be
interpreted as a momentum conservation law.

We consider the solutions of the Cauchy problem for the system (1) over [0, +∞)×
[0, L] under an initial condition ξ(0, x), x ∈ [0, L] and two boundary conditions of
the form q(t, 0) = q0(t) and q(t, L) = qL(t), t ∈ [0, +∞).

We assume that the input boundary condition at x = 0 q(t, 0) is a measured
disturbance on the system and that the input boundary condition at x = L q(t, L)
is the control variable. The control objective is therefore to design a feedforward
boundary controller such that the boundary output variable h(t, L) remains close
to 0. We first discuss the perfect rejection (h(t, L) = 0) with the model assumed
perfectly known in section 3 (the feedforward control problem). As the proposed
controller is actually irrational, its approximation by a rational transfer function
is discussed. In section 4, we no longer assume that the model is perfectly known
(uncertain plant). In this case, we investigate how to design a rational compensator
(the robust feedforward control problem).

3. Feedforward control design. We first compute the input-output transfer ma-
trix of the system, and then derive the exact feedforward controller. The obtained
controller, which is infinite dimensional is then decomposed in simple elements to
obtain a rational approximation.

3.1. Input-output transfer matrix. The open-loop transfer matrix of the plant
can be obtained by applying Laplace transform to the linear partial differential
equations (1), and solving the resulting system of Ordinary Differential Equations
in the variable x, parameterized by the Laplace variable s [9, 12].
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The downstream water level is then related to upstream and downstream dis-
charges as follows:

h(s, L) = G(s)q(s, 0) + G̃(s)q(s, L) (2)

with

G(s) =
(λ2(s) − λ1(s))e

(λ1(s)+λ2(s))L

s
(

eλ2(s)L − eλ1(s)L
) (3)

G̃(s) =
λ1(s)e

λ1(s)L − λ2(s)e
λ2(s)L

s
(

eλ2(s)L − eλ1(s)L
) (4)

and where the eigenvalues λ1(s) and λ2(s) are given by, for i = 1, 2:

λi(s) =
(α − β)s + γ + (−1)i

√

d(s)

2αβ
(5)

and d(s) = (α + β)2s2 + 2[(α − β)γ + 2αβδ]s + γ2.
This irrational transfer function model (2) gives the frequency domain input-

output behavior of the linear hyperbolic system (1) subject to the specified boundary
inputs.

3.1.1. Open-loop poles of the system. The poles of this transfer matrix are obtained
as the solutions of

s(eλ2(s)L − eλ1(s)L) = 0.

There is a pole in zero (the hyperbolic system acts as an integrator) and the other
poles verify the following equation:

d(s) = −4α2β2k2π2

L2

with k ∈ N
∗.

The poles (p±k)k∈N∗ are then given by:

p±k =
2αβ

(α + β)2

[

−δ −
(

1

β
− 1

α

)

γ

2
±

√

∆(k)

]

(6)

with ∆(k) = δ2 − γ2

αβ +
(

1
β − 1

α

)

γδ − k2π2(α+β)2

L2 .

Let km ∈ N
∗ be the greatest integer such that ∆(km) ≥ 0. Then the poles

obtained for 0 < k ≤ km are negative real, and those obtained for k > km are

complex conjugate, with a constant real part equal to − 2αβ
(α+β)2

[

δ +
(

1
β − 1

α

)

γ
2

]

.

The oscillating poles are therefore located on a vertical line in the left half plane.
Let us note that when γ = δ = 0 the poles are located on the imaginary axis.

3.2. Feedforward controller design.

3.2.1. A naive approach. Using Eq. (2), it is easy to see that a perfect rejection of
disturbances provoked by q(s, 0) can be achieved by specifying q(s, L) as follows:

q(s, L) = KF (s)q(s, 0) (7)

with

KF (s) = −G(s)

G̃(s)
=

(λ2(s) − λ1(s))e
(λ1(s)+λ2(s))L

λ2(s)eλ2(s)L − λ1(s)eλ1(s)L
. (8)

KF (s) is an irrational controller which is stable and causal. For its implementa-
tion, a rational approximation has to be computed.
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3.2.2. Some practical remarks. In practice, since the system is marginally stable
(it contains an integrator), it is not advised to design the open-loop controller
represented by eq. (8) and implement it with eq. (7). Indeed, a constant input
perturbation leads to an unbounded output for such an open-loop marginally stable.
Therefore, it is necessary to first stabilize the system with a feedback controller and
then to design the open-loop controller for the closed-loop system.

To this purpose, let us assume that the system is stabilized with the following
proportional boundary control:

q(s, L) = khh(s, L) + kww(s) (9)

where w is an additional boundary input, kh > 0 and kw ∈ R
∗ are real constants∗.

The resulting closed-loop system becomes:

h(s, L) = G1(s)q(s, 0) + G2(s)w(s)

with G1(s) = G(s)

1−khG̃(s)
and G2(s) = kwG̃(s)

1−khG̃(s)
. Then, for any kh > 0, the closed-loop

system is stable (see [10]).
Now, the perfect rejection of the effect of measured upstream boundary perturba-

tions on the downstream boundary is obtained by designing w(s) = KFw(s)q(s, 0)
such that h(s, L) = 0, i.e.:

KFw(s) = − 1

kw

G(s)

G̃(s)
=

1

kw
KF (s). (10)

Therefore, for a perfect rejection, it is possible to compute q(t, L) using the open-

loop controller KF (s) and to implement it with w(t) = q(t,L)
kw

. This is equivalent to

inverting eq. (9) by assuming that h(s, L) = 0.
We focus below on the analysis of KF (s), keeping in mind that the implementa-

tion is done with a stabilizing feedback such as the one in eq. (9).

3.3. Series decomposition of the feedforward controller. In the general case,
it is necessary to use a rational approximation of KF (s) before implementation. One
possibility to this end is to expand the transfer function into series, and then to
truncate the infinite series.

The poles of the controller are the solutions of the following equation:

e(λ2(s)−λ1(s))L =
λ1(s)

λ2(s)
. (11)

They can be shown to be stable, i.e. ∃ǫ > 0 such that for all k, ℜ(pk) < −ǫ, if and
only if γ 6= 0 or δ 6= 0.

Let us denote the poles (pn)n∈Z, and p−n = p̄n. Since each pole has single
multiplicity, the rational approximation problem reduces to find the residues of
KF (s) such that:

KF (s) =

∞
∑

n=−∞

an

s − pn
(12)

with an = lims→pn
(s − pn)KF (s), i.e.

an =

[

(λ2 − λ1)e
(λ1+λ2)L

(1 + Lλ2)λ′
2e

λ2L − λ′
1(1 + Lλ1)eλ1L

]

(pn) (13)

∗In the case of an open-channel, this can be achieved by a moveable hydraulic structure such
as a weir or a gate, and w represents the gate opening or the weir elevation.
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with

λ′
i(s) =

(α − β)

2αβ
+ (−1)i (α + β)2s + (α − β)γ + 2αβδ

2αβ
√

d(s)
(14)

and d(s) = (α + β)2s2 + 2[(α − β)γ + 2αβδ]s + γ2.

3.4. Illustrative example in the case γ = δ = 0. In order to illustrate our
approach and to link it with previous results presented by [1], we consider the
special case where γ = δ = 0, corresponding to a frictionless horizontal canal.
In this case, an analytical expression for open-loop control has been obtained by
[1] using a Riemann invariants approach. Our formula (12) does not lead to the
same expression. However, using the explicit frequency domain expression of the
feedforward controller (8) and using another series decomposition, we recover the
expression of [1]. Moreover, we derive upper and lower bounds for the H∞ norm of
the approximation error due to the infinite series truncation.

3.4.1. Explicit solution of the open-loop control. When γ = δ = 0 the eigenvalues
become λ1(s) = − s

α and λ2(s) = s
β .

Then, the open-loop controller KF (s) becomes:

KF (s) =
(1 + k)e−s L

α

1 + ke−τs
(15)

where we have used the following notations:

k =
β

α
(16)

and

τ =
L

α
+

L

β
. (17)

This infinite dimensional controller can be approximated by a series of delays,
using the well-known series expansion:

1

1 + z
=

∞
∑

n=0

(−1)nzn

which is valid for |z| < 1.
In our case 0 < k < 1 since β < α, therefore the series converges and we get:

KF (s) =

∞
∑

n=0

(−1)nkn(1 + k)e−s( L

α
+nτ). (18)

In the time domain, this expression leads to an explicit solution for the open-loop
control:

q(t, L) =
∞
∑

n=0

(−1)nkn(1 + k)q

(

t − L

α
− nτ, 0

)

. (19)

This expression was first obtained by [1] using a Riemann invariants approach.
Our frequency domain approach allows to evaluate the approximation error gen-

erated by the truncation. We evaluate below the H∞ norm of the approximation
error due to the truncation of the series (18).
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3.4.2. Evaluation of the truncation error. When the infinite series (18) is truncated,
this generates an approximation error which can easily be evaluated. Indeed, sup-
pose that this series is approximated by the first N elements of the series, and let

us denote K
[1]
F,N(s) this truncated series. We have:

K
[1]
F,N(s) =

N
∑

n=0

(−1)nkn(1 + k)e−jω( L

α
+nτ).

Then, let us evaluate the norm of the approximation error for s = jω:

∣

∣

∣
KF (jω) − K

[1]
F,N(jω)

∣

∣

∣
= (1 + k)

∣

∣

∣

∣

∣

∞
∑

n=N+1

(−1)nkne−jω( L

α
+nτ)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

(1 + k)kN+1e−jω(L

α
+(N+1)τ)

1 + ke−τjω

∣

∣

∣

∣

∣

=
(1 + k)kN+1

√

1 + k2 + 2k cos(ωτ)
.

Since | cos(ωτ)| ≤ 1, we have the double inequality:

kN+1 ≤
∣

∣

∣
KF (jω) − K

[1]
F,N (jω)

∣

∣

∣
≤ (1 + k)

1 − k
kN+1.

Therefore the worst case approximation error (H∞ norm) will always be larger
than kN+1. Since k < 1, this tends towards zero as N tends towards ∞. This
convergence can however be slow especially for canals where α and β are very close.

3.5. Rational approximation.

3.5.1. Delay-free feedforward controller. There are various possibilities for approx-
imating the feedforward controller (e.g. eqs. (12) or (18)), but the series may not
converge very rapidly. It may be necessary to use a large number of terms in order
to get a good approximation. As we will show in the application, a better approxi-
mation can be achieved by extracting the delay exp(−L

αs) from the controller and
considering the delay-free controller:

K̃F (s) = KF (s)e
L

α
s.

In this case, a good low frequency approximate solution of order N is obtained by:

K̃F,N(s) = 1 +

N
∑

n=−N

(

ãn

s − pn
+

ãn

pn

)

(20)

with ãn = lims→pn
(s − pn)K̃F (s), i.e.

ãn =

[

(λ2 − λ1)e
(λ1+λ2+

s

α
)L

(1 + Lλ2)λ′
2e

λ2L − λ′
1(1 + Lλ1)eλ1L

]

(pn). (21)

3.5.2. Finite bandwidth approximation. The above approaches have considered se-
ries decomposition of the feedforward controller, with a given order, leading to a
given truncation error. Another interesting possibility is to consider a finite band-
width approximation of the feedforward controller, with a bounded error for higher
frequencies. This is coherent with the fact that the control is implemented by finite
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bandwidth actuators. In this case, the problem can be stated as an H∞-like mini-
mization one, where one tries to minimize the norm of the difference between the
feedforward controller KF (s) and its rational approximation KFA(s):

min |KF (jω) − KFA(jω)| for ω ∈ [0, ω0]

and

|KF (jω) − KFA(jω)| < K for ω > ω0.

Under some conditions, this problem is a convex one and has already been solved
[11]. But this approach is not so simple to implement since the frequency bandwidth
of interest remains to be determined, and the system is uncertain in high frequencies.
In order to take into account these uncertainties, it is more realistic to directly
consider the robust feedforward control problem, as we do in the following section.

4. Robust feedforward design. The previous approach has two possible draw-
backs: (i) the plant model is assumed to be perfect, (ii) the irrational feedforward
controller has to be approximated by a rational one. A remedy to these drawback
is to define an uncertain model, express the feedforward control problem as an H∞

criterium and then apply the robust H∞ feedforward control approach proposed in
[16].

Let us denote by ⋆ the Redheffer product [18]. The first point is that the plant
can be modelled as ∆ ⋆ G where ∆ is the uncertainty which is stable such that
‖∆‖∞ < 1 and where G is a rational transfer function matrix, with two inputs and
two outputs. The introduction of ∆ allows to rigourously take into account (i) the
approximation of the irrational plant by a rational transfer function, (ii) the model
uncertainty.

In the sequel, the control input, the controlled output and the perturbation are
denoted u, y and d. Let us introduce Wy and Wu two weighting transfer functions.
Wy allows to define the considered disturbance and the rejection performance (re-
jection time, asymptotic rejection). Wu allows to limit the control input u. The
feedforward problem can be written as the following weighted H∞ norm minimiza-
tion (see Figure 1) : Find the stable rational transfer function Kf such that

sup
∆, ‖∆‖∞<1

∥

∥

∥

∥

[

Wy × (∆ ⋆ G)
Wu

]

Kf

∥

∥

∥

∥

∞

< 1.

This problem is a subcase of the general robust H∞ feedforward control problem

- KF
- G -

-

∆ �

Wy
-

d u y

- Wu
-

Figure 1. Robust H∞ feedforward control problem

(see Figure 2) considered in [16]. In the sequel, we present an application of Theorem
5.1 presented in [16].
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∆ �

Gff
KF

-

-

W

-

-- -

Figure 2. General robust H∞ feedforward control problem

With N > 0 a given integer, let X(∆) be the set of N × N real symmetric
matrices of the structure:





















2x0 0 x1 0 · · · · · ·
0 0 · · · · · · 0

...
...

...
. . .

. . .
... xN−1

... 0
. . .

. . .
... 0

... · · · · · · xN−1 0 2xN





















.

Let B(s) be
[

sN sN−1 · · · 1
]T

and d(s) = sN + d1s
N−1 + · · · + d0 a

given polynomial with roots whose real parts are strictly negative. The state space

representation of B(s)
d(s) and









[

I 0
0 Wy(s)

]

G(s)

0 Wu(s)









are denoted:
[

Ab Bb

Cb Db

]

and

[

Ap B1 B2

Cp D1 D2

]

.

Theorem 1. The robust H∞ feedforward control problem has a solution if and only

if there exist N > 0, matrices P , Z, X ∈ X(∆), A, B, C and D such that

(i) P > Z, Z > 0 and






L1(P, Z,A,C) + · · ·
L1(P, Z,A,C)T + L2(X)

L3(B,D)T

L3(B,D) −I






< 0 (22)

with L1(P, Z,A,C) defined by:





P
P − Z

0









Ab 0 0 0
[

0 Bb 0
]

0 Ab BbB1
T 0

[

0 Bb

]

D1
T

0 0 AT 0 CT





· · · +





I
I
0





[

AT CT
]

[

0 0 0 I 0

0 0 B2
T 0 D2

T

]
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L2(X) = ΩT





X 0 0
0 −X 0
0 0 −γ2I



Ω

with Ω defined by:















0 0

[

0
Cb

] [

I 0
0 Db

]

B1
T 0

[

I 0
0 Db

]

D1
T

0

[

0
Cb

]

0 0 0

[

I 0
0 Db

]

0

0 0 0 0 0 0 I















and L3(B,D) is defined by

[

BT DT
]

[

0 0 0 0 I 0

0 0 0 B2
T 0 D2

T

]

.

(ii) Pb = PT
b and

[

AT
b Pb + PbAb PbBb

BT
b PT

b 0

]

+

[

CT
b

DT
b

]

X
[

Cb Db

]

> 0 (23)

Testing Theorem 1 condition is a feasibility problem involving Linear Matrix
Inequality constraints which can be efficiently solved [4]. If the condition is satisfied
then the robust feedforward KF is obtained as

KF (s) =
(

D + C(s(P − Z) − A)−1B
)

.

The proof of the sufficiency is obtained by application of Theorem 5.1 presented
in [16]. Necessity is obtained as the µ upper bound is equal to the actual value of µ
in the case of one dynamical uncertainty [15], with the choice of a multiplier/scaling
whose degree N is large enough [6].

5. Application to an open-channel.

5.1. Saint-Venant equations. We consider a prismatic canal pool of length L
with uniform geometry (not necessarily rectangular) and a given slope Sb ≥ 0.
The Saint-Venant equations are hyperbolic nonlinear partial differential equations
involving the average discharge Q(t, x) and the water depth H(t, x) along one space
dimension [7]:

∂A

∂t
+

∂Q

∂x
= 0 (24)

∂Q

∂t
+

∂Q2/A

∂x
+ gA

∂H

∂x
= gA

(

Sb −
Q2n2

A2R4/3

)

(25)

where A(t, x) is the wetted area (m2), Q(t, x) the discharge (m3/s) across section A,
V (t, x) the average velocity (m/s) in section A, H(t, x) the water depth (m), g the
gravitational acceleration (m/s2), n the Manning coefficient (sm−1/3) expressing
the friction of the channel and R the hydraulic radius (m), defined by R = A/P ,
where P is the wetted perimeter (m).

The boundary conditions are Q(0, t) = Q0(t) and Q(L, t) = QL(t). These bound-
ary conditions are suited for control purposes, since the system is then combined
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with gates linking locally the discharge with the water elevation. The initial condi-
tions are given by Q(0, x) and H(0, x).

5.2. Linearized Saint-Venant equations. We consider small variations of dis-
charge q(t, x) and water depth h(t, x) around constant stationary values Q0 (m3/s)
and H0 (m) corresponding to an equilibrium regime. When Sb 6= 0, the equilibrium
regime (H0, Q0) verifies the following algebraic equation:

Sb =
Q2

0n
2

A2
0R

4/3
0

. (26)

If the slope Sb and the friction coefficient n are zero, then any couple (H0, Q0) can
be chosen as an equilibrium solution, provided that the Froude number F0 = V0/C0

remains strictly lower than 1. V0 is the average velocity (m/s) and C0 =
√

gA0/T0

the wave celerity (m/s), with T0 the water surface top width (m).
Linearizing the Saint-Venant equations around these stationary values leads to

a linear hyperbolic system of partial differential equations (1) with the following
values of the constant parameters:

α = C0 + V0

β = C0 − V0

γ = gSb

(

10

3
− 4A0

3T0P0

dP0

dH

)

δ =
2gSb

V0
.

Note that the variable h is scaled by a factor T0, i.e. eq. (1) applies in fact to
h∗ = T0h, which is denoted h with an abuse of notation.

5.3. Closed-loop controller. The stabilizing proportional boundary control is
performed with a moveable weir, defined by the linearized equation:

q(s, L) = khh(s, L) + kww(s)

with kh = 0.6
√

2gLw, where Lw is the length of the weir, and kw = −kh. In the
simulations, the weir length is equal to 0.5T0.

5.4. Feedforward controller.

5.4.1. Bode diagrams. The feedforward controller is obtained following Eq. (8).
Figure 3 depicts the Bode diagram of controller KF (s) for an hyperbolic system
with the following parameters α = 4.63, β = 3.33, γ = 2.7 × 10−3, δ = 3 × 10−3

and L = 3000 m. These parameters correspond to the linearized Saint-Venant
representing a canal pool with a trapezoidal geometry, (bed width of 7 m, side slope
of 1.5), a bed slope Sb = 0.0001 and Manning coefficient of 0.02. The considered
stationary regime corresponds to a discharge Q0 = 14 m3/s and a water depth
H0 = 2.12 m.

Figure 3 compares the feedforward controllers KF (s) for three canals with the
same length, same α and β, but with different slope and friction, leading to different
γ and δ. It is clear from Figure 3 that even small changes of the slope and the friction
dramatically change the Bode diagram of the feedforward controller. This remark
justifies our approach that explicitly takes into account nonzero γ and δ parameters
in the feedforward control design.

5.4.2. Rational approximations.
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Figure 3. Bode plot of KF (s) with (α, β, γ, δ) = (4.63, 3.33, 2.7×
10−3, 3×10−3) (solid blue). The two others plots are obtained with
parameters γ and δ changed by ±50%: γ1 = γ/1.5, δ1 = δ/1.5
(dash-dotted red), and γ2 = 1.5γ, δ2 = 1.5δ (dashed green).

Complete controller. The rational approximations obtained with eq. (12) are com-
pared to KF (s) on figure 4. The Bode diagram shows that a higher number of
poles gives a better approximation of the controller. The approximation error
|KF (jω) − KF,N(jω)| is depicted in figure 5. The error clearly diminishes in low
frequencies as the number of poles increases.
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Figure 4. Bode plot of KF (s) (solid blue) and rational approxima-
tions obtained with eq. (12), using 5, 10 and 20 poles (dash-dotted
red).
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Figure 5. Approximation error |KF (jω)−KF,N(jω)| for different
rational approximations of KF using 5, 10 and 20 poles.

Reduced controller. We compared the rational approximations obtained with eq.
(20) to KF (s). The Bode plot in fig. 6 shows that a higher number of poles gives
a better approximation of the controller. In this case, a good approximation is
obtained with only 2 pair of poles, leading to a delay-free controller of dimension 4.

The approximation error |KF (jω) − K̃F,N(jω)e−jω L

α | is depicted in figure 7,
which confirms the fact that the error diminishes in low frequencies as the number
of poles increases. We also observe that with the same number of poles, the delay-
free controller (20) leads to a better approximation of KF (s) than the one including
the delay (12).

5.4.3. Simulation results. Figure 8 compares the water level h(t, L) and the feed-

forward discharge q(t, L) computed with controller K̃F (s) of Eq. (20) with 5 poles
and the controller of [1] obtained with Eq. (19). It is clear from Figure 8 that a
controller designed by assuming δ = γ = 0 gives large poorly damped oscillations
of the control q(t, L), leading to a large error in the downstream water level. On
the contrary, when the damping linked to the nonzero slope and friction is taken
into account, the control q(t, L) is much more smooth and the output error much
smaller.

This is also clear from the Bode plot of figure 9 which compares the Bode diagram
of the controller KF (s) to the one of the controller of [1].

6. Conclusion. The paper has used a frequency domain approach to design a feed-
forward boundary controller for cancellation of measured boundary disturbances for
first-order linear hyperbolic partial differential equations with constant coefficients.
This approach enables to explicitly take into account nonzero parameters γ and
δ (corresponding to nonzero slope and friction in the case of open-channel flow),
contrarily to the Riemann invariants approach of [1].

We proposed a series of feed-forward controller designs: analytically computed
irrational controller, its rational approximation and a delay-free controller. In ad-
dition, for the case of horizontal frictionless channel, we recovered the time domain
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s (solid blue) and rational approx-

imations obtained with eq. (20), using 1, 2 and 5 poles (dash-dotted
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Figure 7. Approximation error |KF (jω) − K̃F,N(jω)e−jω L

α | for

different rational approximations of K̃F using 1, 2 and 5 poles.

result obtained by [1] and derived bounds on approximation error due to infinite
series truncation. Finally, a robust H∞ feed-forward controller is proposed that can
be obtained by solving a LMI feasibility problem.

Frequency domain and time domain comparisons for feedforward boundary con-
trol of an open-channel flow represented by linearized Saint-Venant equations have
shown the superiority of the delay-free controller over the one with delay. The simu-
lations also demonstrate the need to explicitly account for friction and slope effects
for the design of practically implementable feed-forward controllers.
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Figure 8. Downstream water level error h(t, L) and feedforward

control q(t, L) for a rational approximations of K̃F using 5 poles
(solid blue) and the controller of [1] (dashed red).
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Figure 9. Bode diagram of KF (s) (solid blue) and of the con-
troller of [1] (dash-dotted red).

These results can be extended to the case of non-uniform flow, corresponding to
non constant coefficients, by using a numerical approach, such as the one developed
in [9] to compute the frequency response of an open-channel for non uniform flow
conditions.

Future extensions of this work will deal with the application of the robust feed-
forward controller proposed in section 4, which could take into account model un-
certainties due to linearization.
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